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Congruence classes of minimal ruled real hypersurfaces

in a nonflat complex space form
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Abstract. In this paper we study congruency of minimal ruled real hypersurfaces

in a nonflat complex space form with respect to the action of its isometry group. We

show that those in a complex hyperbolic space are classified into 3 classes and show

that those in a complex projective space are congruent to each other hence form just

one class.
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1. Introduction

In a nonflat complex space form CMn(c) of constant holomorphic sec-
tional curvature c (6= 0) and of complex dimension n (≥ 2), we have two
typical classes of real hypersurfaces. One is the class of Hopf hypersurfaces
and the other is the class of ruled real hypersurfaces. A real hypersurface
M of CMn is said to be Hopf if its characteristic vector field ξ is a princi-
pal curvature vector at each point. Here, the characteristic vector field is
defined by ξ = −JN with complex structure J on CMn and a unit normal
N of M in CMn. It is well known that Hopf hypersurfaces in CMn all
of whose principal curvatures are constant functions must be homogeneous,
that is to say, such hypersurfaces are orbits of some subgroups of the isom-
etry group Iso(CMn) of the ambient space CMn. Moreover, such hypersur-
faces are classified by Takagi [10] in the case c > 0 and by Berndt [3] in the
case c < 0. A real hypersurface M of CMn is said to be ruled if its holomor-
phic distribution T 0M =

⋃
p∈M{v ∈ TpM | v ⊥ ξp} is integrable and each
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of its maximal integral manifolds is a totally geodesic complex hypersurface
which is locally congruent to CMn−1. It is known that the characteristic vec-
tor field of a ruled real hypersurface M is not principal on some open dense
subset of M . Therefore, Hopf hypersurfaces and ruled real hypersurfaces are
quite contrastive. Besides, in their paper [4] Berndt-Tamaru classified all
homogeneous real hypersurfaces in a complex hyperbolic space. There are
many non-homogeneous Hopf hypersurfaces as well as many homogeneous
Hopf hypersurfaces in this ambient space. We note that there exists a min-
imal homogeneous ruled real hypersurface in a complex hyperbolic space,
which is a typical example of a non-Hopf homogeneous hypersurface. We
are hence interested in minimal ruled real hypersurfaces in nonflat complex
space forms.

In [6], Lohnherr-Reckziegel studied ruled real hypersurfaces by param-
eterizing them by maps of the form R×CMn−1 → CMn and show proper-
ties on these maps. We here focus our mind on minimal ones and represent
them explicitly through Hopf fibrations. By use of representations we can
make clear their congruency. In a complex hyperbolic space minimal ruled
real hypersurfaces are classified into three classes, which are called axial,
parabolic and elliptic, and in a complex projective space all minimal ruled
real hypersurfaces are congruent to each other.

We emphasize that the classifications of minimal ruled real hypersur-
faces correspond to the classifications of totally real circles on nonflat com-
plex space forms. On a complex projective space CPn(c), all totally real
circles are closed. On a complex hyperbolic space CHn(c), totally real cir-
cles are closed if their curvatures are greater than

√
|c|/2, are horocyclic

if their curvatures are equal to
√
|c|/2, and are unbounded and have two

distinct points at infinity if their curvatures are less than
√
|c|/2.

2. Ruled real hypersurfaces in CMn

On a real hypersurface M in a Kähler manifold M̃ with complex struc-
ture J and Riemannian metric 〈 , 〉, an almost contact metric structure
(φ, ξ, η, 〈 , 〉) is naturally induced as ξ = −JN with a unit normal local
vector field N of M in M̃ and as η(v) = 〈v, ξ〉, φ(v) = Jv − η(v)N for each
tangent vector v ∈ TM . We call ξ and φ the characteristic vector field and
the characteristic tensor field, respectively.

Let CMn(c) denote a complex space form of constant holomorphic sec-
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tional curvature c, which is a complex projective space CPn(c), a complex
Euclidean space Cn and a complex hyperbolic space CHn(c) according as
c is positive, zero and negative. We say a real hypersurface M in CMn(c)
to be ruled if T 0M =

⋃
p∈M{v ∈ TpM | v ⊥ ξp} is integrable and each of

its maximal integral manifolds is a totally geodesic complex hypersurface.
A ruled real hypersurface in CMn is hence a real hypersurface which is
foliated by totally geodesic complex hypersurfaces in CMn. More exactly,
every ruled real hypersurface in CMn is constructed by attaching complex
hyperplanes on a smooth curve in the following manner (see [5]). We take
an arbitrary regular (real) curve γ : I → CMn defined on some open in-
terval I. At each point γ(t) (t ∈ I) we attach a totally geodesic complex
hypersurface Mt which is locally congruent to CMn−1 and is orthogonal to
the real plane spanned by {γ̇(t), Jγ̇(t)} at that point γ(t). We then get a
ruled real hypersurface M =

⋃
t∈I Mt in CMn. We shall call this a ruled

real hypersurface associated with γ.
Ruled real hypersurfaces are characterized by the property of their shape

operators in the following manner (see [9]). For a real hypersurface M we
define two functions µ, ν : M → R by µ = 〈Aξ, ξ〉 and ν = ‖Aξ−µξ‖, where
A denotes the shape operator on M . Then M is ruled if and only if the
following two conditions hold:

i) the set M∗ = {p ∈ M | ν(p) 6= 0} is an open dense subset of M ;
ii) there is a unit vector field U on M∗, which is orthogonal to ξ and satisfies

Aξ = µξ + νU, AU = νξ, Av = 0

for an arbitrary tangent vector v orthogonal to both ξ and U .

The reason why we consider the set M∗ is that we define the vector field U

clearly by U = (Aξ − µξ)/ν. By this definition, the vector field U can not
be extended to a smooth vector field on M in general. But in some cases,
considering −U instead of U and −ν instead of ν on some components of
M∗, we can define a smooth vector field U and a smooth function ν on M

satisfying the equalities in the condition ii). In the following, we shall apply
this rule to U and ν.

The above characterization on ruled real hypersurfaces shows that their
characteristic vector fields are not principal, that is, not to be eigenvectors
of their shape operators, at each point of open dense subsets. We hence
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find that ruled real hypersurfaces are contrastive of Hopf hypersurfaces,
which are real hypersurfaces whose characteristic vector fields are principal
at everywhere on them. For the function ν and integral curves of the vector
field φU we have the following.

Lemma 1 ([8]) For a ruled real hypersurface M in a nonflat complex space
form CMn(c), the following hold.

(1) Every integral curve of φU is a geodesic on M .
(2) The function ν satisfies the differential equation φUν = ν2 + (c/4).

By this Lemma, on an integral curve σ of φU , which is a geodesic, the
function ν is given as follows:

i) When c > 0, it satisfies ν(σ(s)) = ±(
√

c/2) tan((
√

c/2)s + a) with some
constant a;

ii) When c < 0, it satisfies

ν(σ(s)) =





±(
√
|c|/2) tanh

(
(
√
|c|/2)s + a

)
,

±(
√
|c|/2),

±(
√
|c|/2) coth

(
(
√
|c|/2)s + a

)

with some constant a, according as initial condition |ν(σ(0))| is less than√
|c|/2, equal to

√
|c|/2 or greater than

√
|c|/2.

As we have a choice of directions for the vector field U , we put double signs
in the above expressions on ν.

In order to go into our study on minimal ruled real hypersurfaces, we
here recall a characterization of them by a property on integral curves of
characteristic vector fields. We say a smooth curve γ on a Riemannian man-
ifold N to be a circle if it satisfies the differential equation ∇γ̇∇γ̇ γ̇ = −k2γ̇

with some nonnegative constant k. We call this k = kγ the curvature
of γ. When N is a Kähler manifold and kγ is positive, we can see that
〈γ̇, J∇γ̇ γ̇〉/kγ is constant along γ. We denote this constant by τγ and call
it the complex torsion of γ. We call this circle Kähler when τγ = ±1,
and call it totally real when τγ = 0. On CMn(c), every Kähler circle lies
on some totally geodesic CM1(c) and every totally real circle lies on some
totally geodesic real 2-dimensional submanifold RM2(c/4) of constant sec-
tional curvature c/4. Moreover, two circles γ1, γ2 on CMn(c) are congruent
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to each other (i.e. γ2(t) = ϕ◦γ1(t) for all t with some isometry ϕ of CMn(c))
if and only if they satisfies one of the following:

i) They are geodesics (i.e. kγ1 = kγ2 = 0);
ii) They have the same positive curvatures (kγ1 = kγ2 > 0) and they have

the same absolute values of their complex torsions (|τγ1 | = |τγ2 |).
For a Hopf hypersurface in CMn(c), every integral curve of its characteristic
vector field is a Kähler circle if we regard it as a curve in CMn(c). On the
contrary, we know the following for ruled real hypersurfaces.

Proposition 1 ([7]) Let M be a ruled real hypersurface in a nonflat com-
plex space form CMn(c).

(1) If M is minimal, the function ν satisfies ξν = 0 for its characteristic
vector field ξ, and every integral curve γ of ξ is a totally real circle if
we regard it as a curve in CMn(c). More precisely, it satisfies

∇̃γ̇ γ̇(γ(t)) = ν(γ(t))φU(γ(t)), ∇̃γ̇(φU)(γ(t)) = −ν(γ(t))γ̇(t),

where ∇̃ denotes the Riemannian connection on CMn(c).
(2) If M is not minimal, it has an integral curve of its characteristic vector

field which does not lies on some totally geodesic real 2-dimensional
submanifold RM2(c/4) in CMn(c).

This result also shows that minimal ruled real hypersurfaces and Hopf
hypersurfaces are quite contrastive. This result also shows that minimal
ruled real hypersurfaces in a nonflat complex space form CMn(c) are ruled
real hypersurfaces associated with totally real circles.

3. Classification of minimal ruled real hypersurfaces in CHn

In this section we study minimal ruled real hypersurfaces in a com-
plex hyperbolic space CHn. On CHn(c) we take a totally real circle γ

of curvature kγ ≥ 0. On CHn(c) totally real circles are classified into
3 kinds of classes (see [1]). When the curvature kγ of a totally real cir-
cle γ is greater than

√
|c|/2, it is closed of length 4π/

√
4k2

γ + c, hence is
bounded. When kγ ≤

√
|c|/2, it is unbounded and has limit points at in-

finity γ(∞) = limt→∞ γ(t), γ(−∞) = limt→−∞ γ(t) in the ideal boundary
∂CHn of a Hadamard manifold CHn. When kγ <

√
|c|/2, it has two dis-
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tinct points at infinity. When kγ =
√
|c|/2, it is horocyclic, that is, it has

a single point at infinity and if it crosses to a geodesic σ which satisfies
σ(∞) = γ(∞) then they cross orthogonally. Thus we classify totally real
circles according as kγ >

√
|c|/2, kγ =

√
|c|/2 and 0 ≤ kγ <

√
|c|/2. We

consider a minimal ruled real hypersurface M which corresponds to a totally
real circle γ. Corresponding to the classification of totally real circles, we
call this ruled real hypersurface M of elliptic type, parabolic type and axial
type according as the curvature of γ satisfies kγ >

√
|c|/2, kγ =

√
|c|/2 and

0 ≤ kγ <
√
|c|/2. Since an open subset of a ruled real hypersurface is also

called a ruled real hypersurface, when we say minimal ruled real hypersur-
faces of axial type, of parabolic type and of elliptic type, we assume that
they are not contained properly into other minimal ruled real hypersurfaces.
Our goal of this section is to show that there are essentially three congruence
classes of minimal ruled real hypersurfaces in CHn(c).

Theorem 1 Minimal ruled real hypersurfaces in a complex hyperbolic
space CHn(c) satisfy the following properties.

(1) Minimal ruled real hypersurfaces of axial type (resp. of parabolic type,
of elliptic type) are congruent to each other with respect to the action of
the isometry group of CHn(c).

(2) If two minimal ruled real hypersurfaces are not of the same type, they
are not congruent to each other.

(3) Minimal ruled real hypersurfaces of parabolic type and axial type are
complete, but not ruled real hypersurfaces of elliptic type.

(4) Every minimal ruled real hypersurface is congruent to an open subset of
one of minimal ruled real hypersurfaces of axial type, of parabolic type
and elliptic type.

We are enough to study in CHn(−4). Let $ : H2n+1
1 → CHn(−4) be a

canonical fibration of an anti-de Sitter space H2n+1
1 = {z ∈ Cn+1 | 〈〈z, z〉〉 =

−1}. Here, the Hermitian product 〈〈 , 〉〉 on Cn+1 is given as 〈〈z, w〉〉 =
−z0w̄0 + z1w̄1 + · · ·+ znw̄n for z = (z0, . . . , zn), w = (w0, . . . , wn) ∈ Cn+1.

We first study axial minimal ruled real hypersurfaces. We take a point
zA(0) = (1, 0, . . . , 0) ∈ H2n+1

1 ⊂ Cn+1 and a horizontal vector

uA(0) =
(
zA(0), (0, 1, 0, . . . , 0)

) ∈ TzA(0)H
2n+1
1 ⊂ TzA(0)Cn+1 ∼= Cn+1,

and consider a geodesic γ0 in CHn(−4) with initial condition γ0(0) =
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$(zA(0)), γ̇0(0) = d$
(
uA(0)

)
. Its horizontal lift γ̂0 with γ̂0(0) = zA(0)

is of the form γ̂0(t) = cosh t zA(0) + sinh t uA(0). Here, we identify
uA(0) ∈ TzA(0)H

2n+1
1 with (0, 1, 0, . . . , 0) ∈ Cn+1. We frequently use such

a convention from now on. The axial ruled real hypersurface M associated
with γ0 is expressed as $(M̂) with

M̂ =
{

e
√−1ψ

(
cosh s cosh t, cosh s sinh t, sinh sw2, . . . , sinh swn

) ∈ H2n+1
1

∣∣∣∣
w = (w2, . . . , wn) ∈ Cn−1,

∑n
j=2 |wj |2 = 1,

s, t ∈ R, 0 ≤ ψ < 2π

}
⊂ Cn+1.

By this expression, it is clear that this ruled real hypersurface is complete.
For κ with −1 < κ < 1 and κ 6= 0, by choosing a point

zA(κ) =
(
1/

√
1− κ2, 0, κ/

√
1− κ2, 0, . . . , 0

) ∈ H2n+1
1 ⊂ Cn+1

and horizontal orthonormal vectors

uA(κ) =
(
zA(κ), (0, 1, 0, . . . , 0)

)
,

vA(κ) =
(
zA(κ), (−κ/

√
1− κ2, 0,−1/

√
1− κ2, 0, . . . , 0)

) ∈ TzA(κ)H
2n+1
1 ,

we take a totally real circle γκ of curvature |κ| with initial condition

γκ(0) = $
(
zA(κ)

)
, γ̇κ(0) = d$

(
uA(κ)

)
, ∇γ̇κ γ̇κ(0) = |κ|d$

(
vA(κ)

)
.

According to [1] we find that its horizontal lift γ̂κ with γ̂κ(0) = z(κ) is
represented as

γ̂κ(t) =
1

1− κ2

(
cosh

√
1− κ2 t− κ2

)
zA(κ) +

1√
1− κ2

sinh
√

1− κ2 t uA(κ)

+
κ

1− κ2

(
cosh

√
1− κ2 t− 1

)
vA(κ).

=
(

1√
1−κ2

cosh
√

1−κ2 t,
1√

1−κ2
sinh

√
1−κ2 t,

κ√
1−κ2

, 0, . . . , 0
)

.

We shall show that the axial minimal ruled real hypersurface associated
with γκ coincides with the axial ruled real hypersurface M associated with
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γ0. We take a leaf MT of the axial ruled real hypersurface M which is
attached to γ0 at γ0(T ). By the expression of M we see M̂T = $−1(MT ) is
given by

M̂T =
{

e
√−1ψ

(
cosh s cosh T, cosh s sinhT, sinh sw2, . . . , sinh swn

) ∈ M̂
∣∣∣ w ∈ Cn−1, ‖w‖ = 1, s ∈ R, 0 ≤ ψ < 2π

}
.

It is a totally geodesic CHn−1(−4) in CHn(−4). Moreover, two distinct
leaves do not meat each other. It is clear that the horizontal lift γ̂κ of the
circle γκ crosses to M̂T at γ̂κ

(
T/
√

1− κ2
)
. Since we have

˙̂γκ(t) =
(
γ̂κ(t), (sinh

√
1− κ2 t, cosh

√
1− κ2 t, 0, . . . , 0)

)
,

we find γκ and MT cross Hermitian orthogonally at γκ(T/
√

1− κ2). Here,
we shall say a curve σ on CHn crosses Hermitian orthogonally to a sub-
manifold N in CHn at σ(t0) if the complex line spanned by σ̇(t0) and the
tangent space Tσ(t0)N cross orthogonally. Thus, we find MT coincides with
the leaf of the ruled real hypersurface associated with γκ which is attached
at γκ(T/

√
1− κ2). Therefore we can conclude that M coincides with the

axial ruled real hypersurface associated with γκ.
If we make mention of the function ν of this manifold, we can say that

ν(σ(s)) = tanh s on an integral curve σ of φU with σ(0) = γ0(T ), which is
given by σ(s) = $((cosh s cosh T, cosh s sinhT, sinh s, 0, . . . , 0)).

Next we study elliptic minimal ruled real hypersurfaces. Given a con-
stant κ with |κ| > 1, we take a point zE(κ) = (κ/

√
κ2 − 1, 0, 1/

√
κ2 − 1,

0, . . . , 0) ∈ H2n+1
1 ⊂ Cn+1 and horizontal orthonormal vectors

uE(κ) =
(
zE(κ), (0, 1, 0, . . . , 0)

)
,

vE(κ) =
(
zE(κ), (−1/

√
κ2 − 1, 0,−κ/

√
κ2 − 1, 0, . . . , 0)

) ∈ TzE(κ)H
2n+1
1 .

We consider a totally real circle γκ on CHn(−4) with initial condition

γκ(0) = $(zE(κ)), γ̇κ(0) = d$(uE(κ)), ∇γ̇κ
γ̇κ(0) = |κ|d$(vE(κ)).

It is a closed curve of length 2π/
√

κ2 − 1. Its horizontal lift γ̂κ with γ̂κ(0) =
zE(κ) is of the form
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γ̂κ(t) =
1

κ2 − 1
(
κ2 − cos

√
κ2 − 1 t

)
zE(κ) +

1√
κ2 − 1

sin
√

κ2 − 1 t uE(κ)

+
κ

κ2 − 1
(
1− cos

√
κ2 − 1 t

)
vE(κ)

=
(

κ√
κ2 − 1

,
1√

κ2 − 1
sin

√
κ2 − 1 t,

1√
κ2 − 1

cos
√

κ2 − 1 t, 0, . . . , 0
)

.

We here choose an arbitrary κ0 with κ0 > 1. The elliptic minimal ruled real
hypersurface M associated with γκ0 is expressed as $(M̂) with

M̂ =
{

e
√−1ψ

(
cosh s, sinh s sin θw2, sinh s cos θw2,

sinh sw3, . . . , sinh swn

) ∈ H2n+1
1

∣∣∣∣
w = (w2, . . . , wn) ∈ Cn−1,

∑n
j=2 |wj |2 = 1,

0 < s < ∞, 0 ≤ θ, ψ < 2π

}
⊂ Cn+1.

We shall show that the elliptic minimal ruled real hypersurface associ-
ated with γκ satisfying |κ| > 1 coincides with this elliptic minimal ruled
real hypersurface M . We take a leaf MΘ which is attached to γκ0 at
γκ0(Θ/

√
κ2

0 − 1). By the expression of M we see M̂Θ = $−1(MΘ) is given
by

M̂Θ =
{

e
√−1ψ

(
cosh s, sinh s sinΘw2, sinh s cos Θw2,

sinh sw3, . . . , sinh swn

) ∈ M̂
∣∣∣‖w‖ = 1, 0 < s < ∞, 0 ≤ ψ < 2π

}
.

Every leaf MΘ is an open subset of a totally geodesic CHn−1. It is clear
that the horizontal lift γ̂κ of a totally real circle γκ (|κ| > 1) crosses to this
M̂Θ at γ̂κ(Θ/

√
κ2 − 1). Since we have

˙̂γκ(t) =
(
γ̂κ(t), (0, cos

√
κ2 − 1 t,− sin

√
κ2 − 1 t, 0, . . . , 0)

)
,

we find γκ and MΘ cross Hermitian orthogonally at γκ(Θ/
√

κ2 − 1). Thus,
we can conclude that M is the elliptic ruled real hypersurface associated
with γκ.

For the function ν we find that ν(σ(s)) = coth s on an integral curve σ :
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(0,∞) → M of φU with σ((1/2) log |(κ0 +1)/(κ0− 1)|) = γκ0

(
Θ/

√
κ2

0 − 1
)
,

which is given by σ(s) = $((cosh s, sinh s sinΘ, sinh s cos Θ, 0, . . . , 0)). As
we see lims↓0 ν(s) = ∞, we find that the geodesic σ can not be extended.
Therefore this elliptic minimal ruled real hypersurface is not complete.

We finally study parabolic minimal ruled hypersurfaces. We here write
down the parabolic minimal ruled hypersurface M . Take a point zH =
(1, 0, . . . , 0) ∈ H2n+1

1 ⊂ Cn+1 and horizontal orthonormal vectors

uH =
(
zH , (0, 1, 0, . . . , 0)

)
, vH =

(
zH , (0, 0,−1, 0, . . . , 0)

) ∈ TzH
H2n+1

1 .

We consider a totally real circle γ1 with initial condition

γ̇1(0) = $(zH), γ̇1(0) = d$(uH), ∇γ̇1 γ̇1(0) = d$(vH).

Its horizontal lift γ̂1 with γ̂1(0) = zH is of the form

γ̂1(t) =
1
2
(t2 + 2)zH + tuH +

t2

2
vH =

(
t2 + 2

2
, t,− t2

2
, 0, . . . , 0

)
.

Hence the parabolic minimal ruled real hypersurface M is expressed as
$(M̂) with

M̂ =
{

e
√−1ψ

(
t2 + 2

2
cosh s− t2

2
sinh sw2, t cosh s− t sinh sw2,

− t2

2
cosh s+

t2−2
2

sinh sw2, sinh sw3, . . . , sinh swn

)
∈ H2n+1

1

∣∣∣∣
w = (w2, . . . , wn) ∈ Cn−1, ‖w‖ = 1,

s, t ∈ R, 0 ≤ ψ < 2π

}
⊂ Cn+1.

It is clear that this parabolic ruled real hypersurface is complete. For the
function ν we have ν(σ(s)) ≡ 1 on an integral curve σ of φU with σ(0) =
γ1(T ), which is give by

σ(s) = $
(
((T 2/2)(cosh s− sinh s) + cosh s, T (cosh s− sinh s),

− (T 2/2)(cosh s− sinh s)− sinh s, 0, . . . , 0)
)
.

It is clear that minimal ruled real hypersurfaces we give above are “max-
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imal” in the sense that they are not properly contained in other ruled real
hypersurfaces. Since two totally real circles on CHn(4) are congruent to
each other if and only if they have the same curvatures, with above argu-
ment, we can conclude that there are 3 and just 3 congruence classes of
“maximal” minimal ruled real hypersurfaces in CHn; ruled real hypersur-
faces of axial type, parabolic type and elliptic type. We can also conclude
that every ruled minimal real hypersurface is congruent an open subset of
one of these minimal ruled real hypersurfaces.

For the sake of readers’ convenience we here give images of ruled real
hypersurfaces of axial, parabolic and elliptic types in a ball model Dn =
{(z1, . . . , zn) ∈ Cn | |z1|2 + · · · + |zn|2 < 1} of a complex hyperbolic space
CHn. In figures, dotted lines show leaves of ruled real hypersurfaces and
lines inside of the balls show totally real circles on a totally geodesic RH2,
which are denoted by γκ in the above. If we regard these figures as models
of RH2 containing the totally real circles, the dotted lines show integral
curves of φU . We note that all the totally real circles have the same pairs of
points at infinity as we can see in Figure 1. In Figure 2, two lines show
horocyclic totally real circles having the same points at infinity. One may
easily guess that only parabolic one is homogeneous. In this case, our min-
imal ruled real hypersurface is expressed as an orbit under the action of
the direct product of the isometry group Iso(CHn−1) of totally geodesic
CHn−1(c) and a one-parameter subgroup {ϕs}s∈R generating a horocycle
in CHn(c).

Figure 1. axial type. Figure 2. parabolic type. Figure 3. elliptic type.

4. Ruled real hypersurfaces in CP n

Next we study minimal ruled real hypersurfaces in a complex projective
space CPn. On CPn(c) every totally real circle γ is closed and is of length
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4π/
√

4k2
γ + c. We consider minimal ruled real hypersurfaces associated with

totally real circles which are “maximal” in the sense that they are not prop-
erly contained in other minimal ruled real hypersurfaces. We shall show the
following.

Theorem 2 In a complex projective space CPn(c), all “maximal” minimal
ruled real hypersurfaces are not complete and they are congruent to each
other with respect to the action of its isometry group.

Remark 1 Theorem 2 shows that every minimal ruled real hypersurface
is congruent to an open subset of the “maximal” minimal ruled real hyper-
surface associated with a geodesic.

In order to show Theorem 2 we are enough to study the case c = 4. Let
$ : S2n+1

(⊂ Cn+1
) → CPn(4) be a Hopf fibration. Given a constant κ, we

take a point

zE(κ) =
(
1/

√
κ2 + 1, 0, κ/

√
κ2 + 1, 0, . . . , 0

) ∈ S2n+1 ⊂ Cn+1

and horizontal orthonormal vectors

uE(κ) =
(
zE(κ), (0, 1, 0, . . . , 0)

)
,

vE(κ) =
(
zE(κ), (−κ/

√
κ2 + 1, 0, 1/

√
κ2 + 1, 0, . . . , 0)

) ∈ TzE(κ)S
2n+1.

We consider a totally real circle γκ on CPn(4) with initial condition

γκ(0) = $(zE(κ)), γ̇κ(0) = d$(uE(κ)), ∇γ̇κ
γ̇κ(0) = |κ|d$(vE(κ)).

It is a closed curve of length 2π/
√

κ2 + 1. Its horizontal lift γ̂κ with γ̂κ(0) =
zE(κ) is of the form

γ̂κ(t) =
1

κ2 + 1
(
κ2 + cos

√
κ2 + 1 t

)
zE(κ) +

1√
κ2 + 1

sin
√

κ2 + 1 t uE(κ)

+
κ

κ2 + 1
(
1− cos

√
κ2 + 1 t

)
vE(κ)

=
(

1√
κ2 + 1

cos
√

κ2 + 1 t,
1√

κ2 + 1
sin

√
κ2 + 1 t,

κ√
κ2 + 1

, 0, . . . , 0
)

.

The minimal ruled real hypersurface M associated with a geodesic γ0 is
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expressed as $(M̂) with

M̂ =
{

e
√−1ψ

(
cos s cos t, cos s sin t, sin sw2, . . . , sin swn

) ∈ S2n+1

∣∣∣∣
w = (w2, . . . , wn) ∈ Cn−1, ‖w‖ = 1,

−π/2 < s < π/2, 0 ≤ t, ψ < 2π

}
⊂ Cn+1.

We shall show that the minimal ruled real hypersurface associated with
γκ coincides with M . We take a leaf MT of M which is attached to γ0 at
γ0(T ). The horizontal lift γ̂κ of a circle γκ crosses to M̂T at γ̂κ(T/

√
κ2 + 1).

Since we have

˙̂γκ(t) =
(
γ̂κ(t), (− sin

√
κ2 + 1 t, cos

√
κ2 + 1 t, 0, . . . , 0)

)
,

we find γκ and MT cross Hermitian orthogonally at γκ(T/
√

κ2 + 1). Thus,
we can conclude that M is the ruled real hypersurface associated with γκ.
Since two totally real circles on CPn(4) are congruent to each other if and
only if they have the same curvatures, we find minimal ruled real hypersur-
faces in CPn(4) are congruent to each other.

For the function ν of this real hypersurface we have ν
(
σ(s)

)
= tan s

on an integral curve σ of φU with σ(0) = γ0(T ), which is given as σ(s) =
$((cos s cos T, cos s sinT, sin s, 0, . . . , 0)). Since lims↑π/2 ν(σ(s)) = ∞, we
find that the geodesic σ can not be extended. Therefore we see minimal
ruled real hypersurfaces in CPn are not complete.
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