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On the order and hyper-order of meromorphic solutions

of higher order linear differential equations
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Abstract. In this paper, we investigate the order of growth of solutions of the higher

order linear differential equation

f
(k)

+

k−1X

j=0

`
hje

Pj(z)
+ dj

´
f
(j)

= 0,

where Pj(z) (j = 0, 1, . . . , k−1) are nonconstant polynomials such that deg Pj = n ≥ 1

and hj(z), dj(z) (j = 0, 1, . . . , k− 1) with h0 6≡ 0 are meromorphic functions of finite

order such that max{ρ(hj), ρ(dj) : j = 0, 1, . . . , k − 1} < n. We prove that every

meromorphic solution f 6≡ 0 of the above equation is of infinite order. Then, we

use the exponent of convergence of zeros or the exponent of convergence of poles of

solutions to obtain an estimation of the hyper-order of solutions.

Key words: Linear differential equations, Meromorphic solutions, Order of growth,

Hyper-order.

1. Introduction and statement of results

Throughout this paper, f will denote a transcendental meromorphic
function in the whole complex plane, we use the standard notations of
Nevanlinna’s value distribution theory ([11], [16]). Let f be a meromor-
phic function, we define

m(r, f) =
1
2π

∫ 2π

0

log+ |f(reit)|dt,

N(r, f) =
∫ r

0

n(t, f)− n(0, f)
t

dt + n(0, f) log r,

and

T (r, f) = m(r, f) + N(r, f)
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is the Nevanlinna characteristic function of f , where log+ x = max(0, log x)
for x ≥ 0, and n(t, f) is the number of poles of f(z) lying in |z| ≤ t, counted
according to their multiplicity. Also, we define

N

(
r,

1
f

)
=

∫ r

0

n
(
t, 1

f

)
− n

(
0, 1

f

)

t
dt + n

(
0,

1
f

)
log r,

N

(
r,

1
f

)
=

∫ r

0

n
(
t, 1

f

)
− n

(
0, 1

f

)

t
dt + n

(
0,

1
f

)
log r,

where n(t, 1/f) is the number of zeros of f(z) lying in |z| ≤ t, counted ac-
cording to their multiplicity, and n(t, 1/f) indicate the number of distinct
zeros of f(z) lying in |z| ≤ t. In addition, we will use notations λ(f) =
lim supr→+∞(log N(r, 1/f))/(log r), to denote the exponent of convergence
of the zero-sequence and λ(1/f) = lim supr→+∞(log N(r, f))/(log r), to de-
note the exponent of convergence of the pole-sequence of a meromorphic
function f(z). See ([11], [13], [16]) for notations and definitions.

Definition 1.1 ([19]) Let f be a meromorphic function. Then the order
ρ(f) and the lower order µ(f) of f(z) are defined respectively by

ρ(f) = lim sup
r→+∞

log T (r, f)
log r

, µ(f) = lim inf
r→+∞

log T (r, f)
log r

.

To express the rate of growth of meromorphic solutions of infinite order,
we recall the following definition.

Definition 1.2 ([19]) Let f be a meromorphic function. Then the hyper-
order ρ2(f) of f(z) is defined by

ρ2(f) = lim sup
r→+∞

log log T (r, f)
log r

.

To give the precise estimate of fixed points, we define:

Definition 1.3 ([17]) Let f be a meromorphic function and let z1, z2, . . .

(|zj | = rj , 0 < r1 ≤ r2 ≤ · · · ) be the sequence of the fixed points of f ,
each point being repeated only once. The exponent of convergence of the
sequence of distinct fixed points of f(z) is defined by
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τ(f) = inf
{

τ > 0 :
+∞∑

j=1

|zj |−τ < +∞
}

.

Clearly,

τ(f) = lim sup
r→+∞

log N
(
r, 1

f−z

)

log r
,

where N(r, 1/(f − z)) is the counting function of distinct fixed points of
f(z) in {z : |z| < r}.

Several authors, such as Kwon [12], Chen [5], Gundersen [10] have in-
vestigated the second order linear differential equation

f ′′ + A1(z)eP (z)f ′ + A0(z)eQ(z)f = 0, (1.1)

where P (z), Q(z) are nonconstant polynomials, A1(z), A0(z) 6≡ 0 are entire
functions such that ρ(A1) < deg P (z), ρ(A0) < deg Q(z). Gundersen showed
in [10, p. 419] that if deg P (z) 6= deg Q(z), then every nonconstant solution
of (1.1) is of infinite order. If deg P (z) = deg Q(z), then (1.1) may have
nonconstant solutions of finite order. For instanse f(z) = ez + 1/2 satisfies
f ′′ + 2ezf ′ − 2ezf = 0. In [6], Chen and Shon investigated the case when
deg P (z) = deg Q(z) = 1 and obtained the following result.

Theorem A ([6]) Let Aj(z) (6≡ 0) (j = 0, 1) be meromorphic functions
with ρ(Aj) < 1, let a, b be complex constants such that ab 6= 0 and arg a 6=
arg b or a = cb (0 < c < 1). Then every meromorphic solution f 6≡ 0 of the
differential equation

f ′′ + A1(z)eazf ′ + A0(z)ebzf = 0

has an infinite order.

In [18], Xu and Yi generalized Theorem A and study fixed points of
solutions and their derivatives. In [1], Beläıdi investigated this case and
generalized it for a class of higher-order linear differential equations and
obtained the following result.

Theorem B ([1]) Let Pj(z) =
∑n

i=0 ai,jz
i (j = 0, 1, . . . , k−1) be noncon-
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stant polynomials, where a0,j , a1,j , . . . , an,j (j = 0, 1, . . . , k− 1) are complex
numbers such that an,jan,0 6= 0 (j = 1, 2, . . . , k − 1), let Aj(z) 6≡ 0 (j =
0, 1, . . . , k−1) be meromorphic functions. Suppose that arg an,j 6= arg an,0 or
an,j = can,0 (0 < c < 1) (j = 1, 2, . . . , k−1), ρ(Aj) < n (j = 0, 1, . . . , k−1).
Then every meromorphic solution f(z) 6≡ 0 of the equation

f (k) + Ak−1e
Pk−1(z)f (k−1) + · · ·+ A1e

P1(z)f ′ + A0e
P0(z)f = 0 (1.2)

is of infinite order, where k ≥ 2.

In [14], Liu and Yuan generalized Theorem A and gave an estimation
of the hyper-order of solutions. In [7], Chen and Xu replace the condition
“coefficients having finite poles” in [14] by the condition “all poles of the
solution f of the equation

f (k) + hk−1f
(k−1) + · · ·+ hse

P (z)f (s) + · · ·+ h1f
′ + h0e

Q(z)f = 0 (1.3)

are of uniformly bounded multiplicity” to give an estimation of the hyper-
order and obtained the following theorem.

Theorem C ([7]) Let P (z) and Q(z) be nonconstant polynomials such
that

P (z) = anzn + an−1z
n−1 + · · ·+ a1z + a0,

Q(z) = bnzn + bn−1z
n−1 + · · ·+ b1z + b0

for some complex numbers ai, bi (i = 1, 2, . . . , n) with an 6= 0, bn 6= 0,
and let hj (j = 0, 1, . . . , k − 1) be meromorphic functions with h0 6≡ 0 and
ρ = max{ρ(hj) : j = 0, 1, . . . , k − 1} < n. Suppose all poles of fare of
uniformly bounded multiplicity. Then the following three statements hold :

( i ) If an = bn and deg(P−Q) = m ≥ 1, ρ < m, then every transcendental
meromorphic solution f of equation (1.3) is of infinite order and m ≤
ρ2(f) ≤ n.

( ii ) If an = cbn with c > 1, and deg(P −Q) = m ≥ 1, ρ < m, then every
meromorphic solution f 6≡ 0 of equation (1.3) is of infinite order and
ρ2(f) = n.

(iii) If max{ρ(hj) : j = 1, . . . , k − 1} < ρ(h0) < 1/2, an = cbn with c ≥ 1,
and P (z) − cQ(z) is a constant, then every meromorphic solution
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f 6≡ 0 of equation (1.3) is of infinite order and ρ(h0) ≤ ρ2(f) ≤ n.

In this paper, we continue the research in this type of problems, we
extend the above results, and we obtain the following theorems.

Theorem 1.1 Let Pj(z) =
∑n

i=0 ai,jz
i (j = 0, 1, . . . , k − 1) be noncon-

stant polynomials, where a0,j , a1,j , . . . , an,j (j = 0, 1, . . . , k − 1) are com-
plex numbers such that an,jan,0 6= 0 (j = 1, 2, . . . , k − 1), let hj(z), dj(z)
(j = 0, 1, . . . , k − 1) be meromorphic functions with h0 6≡ 0. Suppose that
arg an,j 6= arg an,0 or an,j = cjan,0 (cj > 0, cj 6= 1) for all j = 1, . . . , k − 1
and ρ = max{ρ(hj), ρ(dj) : j = 0, . . . , k − 1} < n. Then the following two
statements hold :

( i ) Every meromorphic solution f 6≡ 0 of the equation

f (k) +
(
hk−1e

Pk−1(z) + dk−1

)
f (k−1) + · · ·+ (

h1e
P1(z) + d1

)
f ′

+
(
h0e

P0(z) + d0

)
f = 0 (1.4)

is transcendental.
( ii ) For every meromorphic solution f of (1.4) with infinite order ρ(f) =

∞, we have if λ(1/f) < n and λ(f) < n, then ρ2(f) = n.

Theorem 1.2 Let Pj(z) =
∑n

i=0 ai,jz
i (j = 0, 1, . . . , k − 1) be noncon-

stant polynomials, where a0,j , a1,j , . . . , an,j (j = 0, 1, . . . , k − 1) are com-
plex numbers such that an,jan,0 6= 0 (j = 1, 2, . . . , k − 1), let hj(z), dj(z)
(j = 0, 1, . . . , k − 1) be meromorphic functions with h0 6≡ 0. Suppose that
arg an,j 6= arg an,0 or an,j = cjan,0 (0 < cj < 1) (j = 1, 2, . . . , k − 1),
ρ = max{ρ(hj), ρ(dj) : j = 0, . . . , k − 1} < n. Then every meromorphic
solution f(z) 6≡ 0 of equation (1.4) is of infinite order and the hyper-order
of f satisfies ρ2(f) ≥ n. In addition, if λ(1/f) < ∞, then ρ2(f) = n.

Theorem 1.3 Let Pj(z) =
∑n

i=0 ai,jz
i (j = 0, 1, . . . , k − 1) be noncon-

stant polynomials, where a0,j , a1,j , . . . , an,j (j = 0, 1, . . . , k − 1) are com-
plex numbers such that an,jan,0 6= 0 (j = 1, 2, . . . , k − 1), let hj(z), dj(z)
(j = 0, 1, . . . , k − 1) be meromorphic functions with h0 6≡ 0. Suppose that
an,j = cjan,0 (cj ≥ 1), deg(P0(z) − (1/cj)Pj(z)) = 0 (j = 1, 2, . . . , k − 1)
and ρ = max{ρ(hj) (j = 1, . . . , k − 1), ρ(dj) (j = 0, . . . , k − 1)} < ρ(h0).
If λ(1/h0) < µ(h0) ≤ ρ(h0) < 1/2, then every transcendental meromorphic
solution f of equation (1.4) is of infinite order and the hyper-order of f
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satisfies ρ2(f) ≥ ρ(h0). In addition, the following two statements hold :

( i ) If λ(1/f) < ∞, then ρ(h0) ≤ ρ2(f) ≤ n.
( ii ) For cj 6= 1 (j = 1, 2, . . . , k − 1) if λ(f) < n and λ(1/f) < n, then

ρ2(f) = n.

Theorem 1.4 Let Pj(z) =
∑n

i=0 ai,jz
i (j = 0, 1, . . . , k − 1) be noncon-

stant polynomials, where a0,j , a1,j , . . . , an,j (j = 0, 1, . . . , k − 1) are com-
plex numbers such that an,jan,0 6= 0 (j = 1, 2, . . . , k − 1), let hj(z), dj(z)
(j = 0, 1, . . . , k − 1) be meromorphic functions with h0 6≡ 0. Suppose that
arg an,j 6= arg an,0 (j = 1, 2, . . . , k− 1), arg(an,1 +an,j) 6= arg an,0 (j = 2, 3)
or an,j = cjan,0 (0 < cj < 1) (j = 1, 2, . . . , k − 1) and ρ = max{ρ(hj),
ρ(dj) : j = 0, 1, . . . , k − 1} < n. Then for any meromorphic solution f 6≡ 0
of equation (1.4), f , f ′, f ′′ all have infinitely many fixed points and satisfy

τ(f) = τ(f ′) = τ(f ′′) = ∞.

2. Lemmas for the proofs of theorems

First, we recall the following definitions. We define the linear measure of
a set H ⊂ [0,+∞) by m(H) =

∫ +∞
0

χH(t)dt, where χH is the characteristic
function of H, and the logarithmic measure of a set E ⊂ [1,+∞) by lm(E) =∫ +∞
1

(χE(t)dt/t). The upper and the lower densities of H are defined by

densH = lim sup
r→+∞

m(H ∩ [0, r])
r

, dens H = lim inf
r→+∞

m(H ∩ [0, r])
r

.

The upper and the lower logarithmic densities of E are defined by

log dens(E) = lim sup
r→+∞

lm(E ∩ [1, r])
log r

, log dens(E) = lim inf
r→+∞

lm(E ∩ [1, r])
log r

.

Lemma 2.1 ([15, pp. 253–255]) Let P (z) =
∑n

i=0 biz
i, where n is a pos-

itive integer and bn = αneiθn , αn > 0, θn ∈ [0, 2π). For any given ε

(0 < ε < π/4n), we introduce 2n closed angles

Sj : −θn

n
+ (2j − 1)

π

2n
+ ε ≤ θ ≤ −θn

n
+ (2j + 1)

π

2n
− ε

(j = 0, 1, . . . , 2n− 1). (2.1)
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Then there exists a positive number R1 = R1(ε) such that for |z| = r > R1,

Re(P (z)) > αnrn(1− ε) sin(nε), (2.2)

if z = reiθ ∈ Sj, when j is even; while

Re(P (z)) < −αnrn(1− ε) sin(nε), (2.3)

if z = reiθ ∈ Sj, when j is odd.

Lemma 2.2 ([3]) Let g(z) be a transcendental meromorphic function of
order ρ(g) = ρ < +∞. Then for any given ε > 0, there exists a set E1 ⊂
(1,∞) that has finite linear measure and finite logarithmic measure, such
that

|g(z)| ≤ exp{rρ+ε} (2.4)

holds for |z| = r /∈ [0, 1] ∪ E1, r → +∞.

Lemma 2.3 ([9]) Let f(z) be a transcendental meromorphic function,
and let α > 1 be a given constant. Then there exist a set E2 ⊂ (1,+∞)
of finite logarithmic measure and a constant A > 0 that depends only on α

and (m,n) (m,n positive integers with m < n) such that for all z satisfying
|z| = r /∈ [0, 1] ∪ E2, we have

∣∣∣∣
f (n)(z)
f (m)(z)

∣∣∣∣ ≤ A

[
T (αr, f)

r
(logα r) log T (αr, f)

]n−m

. (2.5)

Lemma 2.4 ([4]) Suppose that h(z) is a meromorphic function with
λ(1/h) < µ(h) ≤ ρ(h) = ρ < 1/2. Then for any given ε > 0, there ex-
ists a set E3 ⊂ (1,+∞) that has a positive upper logarithmic density such
that for all z satisfying |z| = r ∈ E3, we have

|h(z)| ≥ exp
{
(1 + o(1))rρ−ε

}
. (2.6)

It is well-known that it is very important of the Wiman-Valiron theory
[13] to investigate the properties of entire solutions of differential equations.
In [4], Z. X. Chen has extend the Wiman-Valiron theory from entire func-
tions to meromorphic functions. Here we give a special form of the result
given by J. Wang and H. X. Yi in [17], when meromorphic function has
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infinite order.
Let g(z) =

∑∞
n=0 an zn be an entire function. We define by µ(r) =

max{|an|rn; n = 0, 1, . . . } the maximum term of g, and define by νg(r) =
max{m; µ(r) = |am|rm} the central index of g.

Lemma 2.5 ([17]) Let f(z) = g(z)/d(z) be an infinite order meromorphic
function with ρ2(f) = σ, g(z) and d(z) are entire functions, where ρ(d) <

+∞. Then there exists a sequence of complex numbers {zk = rkeiθk}k∈N
satisfying rk → +∞, θk ∈ [0, 2π); k ∈ N, limk→+∞ θk = θ0 ∈ [0, 2π),
|g(zk)| = M(rk, g) and for sufficiently large k, we have

f (n)(zk)
f(zk)

=
(

νg(rk)
zk

)n

(1 + o(1)) (n ∈ N), (2.7)

lim sup
rk→+∞

log log νg(rk)
log rk

= ρ2(g). (2.8)

Lemma 2.6 ([10]) Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone
non-decreasing functions such that ϕ(r) ≤ ψ(r) for all r /∈ E4 ∪ [0, 1], where
E4 ⊂ (1,+∞) is a set of finite logarithmic measure. Let α > 1 be a given
constant. Then there exists an r1 = r1(α) > 0 such that ϕ(r) ≤ ψ(αr) for
all r > r1.

Lemma 2.7 Suppose that k ≥ 2 and A0, A1, . . . , Ak−1 are meromorphic
functions. Let ρ = max{ρ(Aj) : j = 0, . . . , k−1} and let f(z) be a transcen-
dental meromorphic solution with λ(1/f) < ∞ of the equation

f (k) + Ak−1f
(k−1) + · · ·+ A1f

′ + A0f = 0. (2.9)

Then ρ2(f) ≤ ρ.

Proof. We assume that f is a transcendental meromorphic solution of equa-
tion (2.9). If ρ(f) < ∞, then ρ2(f) = 0 ≤ ρ. If ρ(f) = ∞. We can rewrite
(2.9) as

−f (k)

f
= Ak−1

f (k−1)

f
+ Ak−2

f (k−2)

f
+ · · ·+ A1

f ′

f
+ A0. (2.10)

By Hadamard factorization theorem, we can write f as f(z) = g(z)/d(z),
where g(z) and d(z) are entire functions, with λ(d) = ρ(d). Since λ(1/f) <
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∞, we have λ(d) = ρ(d) = λ(1/f) < ∞ and ρ2(f) = ρ2(g). By Lemma 2.2
and Lemma 2.5, for any small ε > 0, there exists a sequence {zj = rje

iθj}
satisfying rj /∈ [0, 1] ∪ E1, rj → +∞, θj ∈ [0, 2π), limj→∞ θj = θ0 ∈ [0, 2π),
|g(zj)| = M(rj , g) such that for j sufficiently large, we have

f (n)(z
j
)

f(zj)
=

(
νg(rj)

zj

)n

(1 + o(1)) (n ∈ N), (2.11)

lim sup
rj→+∞

log log νg(rj)
log rj

= ρ2(g), (2.12)

|As(zj)| ≤ exp
{
rρ+ε
j

}
, s = 0, 1, . . . , k − 1. (2.13)

Substituting (2.11) and (2.13) into (2.10), we obtain

(
νg(rj)

rj

)k

|1 + o(1)| ≤ erρ+ε
j +

k−1∑
s=1

erρ+ε
j

(
νg(rj)

rj

)s

|1 + o(1)|.

It follows that

(νg(rj))k|1 + o(1)| ≤ kerρ+ε
j rk

j (νg(rj))k−1|1 + o(1)|.

Hence

νg(rj) ≤ kMrk
j erρ+ε

j , (2.14)

where the sequence {zj = rje
iθj} satisfies rj /∈ [0, 1] ∪ E1, rj → +∞, θj ∈

[0, 2π), limj→∞ θj = θ0 ∈ [0, 2π), |g(zj)| = M(rj , g) and M > 0 is some
constant. Then by (2.12), (2.14), Lemma 2.6 and ε > 0 being arbitrary, we
obtain that ρ2(g) = ρ2(f) ≤ ρ. ¤

Lemma 2.8 ([8, p. 30]) Let P1, P2, . . . , Pn (n ≥ 1) be non-constant polyno-
mials with the degree in order d1, d2, . . . , dn, respectively. Suppose that when
i 6= j, then deg(Pi−Pj) = max{di, dj}. Let A(z) =

∑n
j=1 Bj(z)ePj(z), where

Bj(z) 6≡ 0 are meromorphic functions satisfying ρ(Bj) < dj. Then

ρ(A) = max
1≤j≤n

{dj}. (2.15)

Lemma 2.9 ([2]) Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromor-
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phic functions. If f is a meromorphic solution with ρ(f) = +∞ of the
equation

f (k) + Ak−1f
(k−1) + · · ·+ A1f

′ + A0f = F, (2.16)

then

λ(f) = λ(f) = ρ(f) = ∞. (2.17)

Lemma 2.10 Let Pj(z) (j = 0, 1, . . . , k) be polynomials with deg P0(z) =
n (n ≥ 1) and deg Pj(z) ≤ n (j = 1, 2, . . . , k). Let Aj(z) (j = 0, 1, . . . , k) be
meromorphic functions with finite order and max{ρ(Aj) : j = 0, 1, . . . , k} <

n such that A0(z) 6≡ 0. We denote

F (z) = AkePk(z) + Ak−1e
Pk−1(z) + · · ·+ A1e

P1(z) + A0e
P0(z). (2.18)

If deg(P0(z)− Pj(z)) = n for all j = 1, . . . , k, then F is a nontrivial mero-
morphic function with finite order and satisfies ρ(F ) = n.

Proof. Set Pj(z) = an,jz
n +an−1,jz

n−1 + · · ·+a1,jz+a0,j (j = 0, 1, . . . , k).
Suppose that deg(P0(z)−Pj(z)) = n for all j = 1, . . . , k. Then, an,0 6= an,j ,
for all j = 1, . . . , k. Let {an,j1 , an,j2 , . . . , an,jm} ⊂ {an,1, an,2, . . . , an,k} such
that an,jl

(l = 1, 2, . . . , m) are different from each other. For each an,j ∈
{an,1, an,2, . . . , an,k} we have an,j = 0 or an,j 6= 0. In the case when an,j 6= 0,
there exists only one an,jl

∈ {an,j1 , an,j2 , . . . , an,jm
} such that an,j = an,jl

.
We can write

(
Aj(z)ePj(z)−an,jzn

+ Ajl
(z)ePjl

(z)−an,jl
zn)

ean,jl
zn

instead of Aj(z)ePj(z) + Ajl
(z)ePjl

(z) when an,j = an,jl
(an,j ∈ {an,1, an,2,

. . . , an,k}). For an,j = 0, we set an,j = an,si ∈ {an,s1 , an,s2 , . . . , an,st} where
an,si

= 0 (i.e., deg(Psi
) < n for i = 1, 2, . . . , t). By A0(z) 6≡ 0 we can write

equation (2.18) in the form

A0(z)eP0(z) +
m∑

l=1

Bjl
(z)ean,jl

zn

+
t∑

i=1

Asi
(z)ePsi

(z) = F (z),

it follows that



On the order and hyper-order of meromorphic solutions 367

A0(z)eP0(z) +
m∑

l=1

Bjl
(z)ean,jl

zn

= B(z), (2.19)

where B(z) = F (z)−∑t
i=1 Asi(z)ePsi

(z) and Asi(z) (i = 1, 2, . . . , t), Bjl
(z)

(l = 1, 2, . . . , m) are meromorphic functions of finite order which is less
than n. Suppose that ρ(F ) 6= n. Since deg Psi

(z) < n and ρ(Asi
) < n

(i = 1, 2, . . . , t), then

ρ(B) 6= n. (2.20)

By an,0 and an,jl
(l = 1, 2, . . . , m) are different from each other, then

deg(P0(z) − an,jl
zn) = n (l = 1, 2, . . . , m) and deg(an,jl

zn − an,ji
zn) = n

(1 ≤ l 6= i ≤ m). Since ρ(Bjl
) < n, A0(z) 6≡ 0, ρ(A0) < n, by (2.19) and

Lemma 2.8, we find that ρ(B) = n, this contradicts (2.20). Hence, ρ(F ) = n.
¤

3. Proof of Theorem 1.1

(i) We assume that the meromorphic solution f(z) 6≡ 0 of equation
(1.4) is not transcendental, then ρ(f) = 0 (f is a rational function or is a
polynomial). Since we have h0f 6≡ 0, we write equation (1.4) in the form

h0f eP0(z) +
k−1∑

j=1

hjf
(j)ePj(z) = B(z), (3.1)

where B(z) = −(f (k)+dk−1f
(k−1)+· · ·+d0f), h0f and hjf

(j) are meromor-
phic functions of finite order with ρ(B) < n, ρ(h0f) < n and ρ(hjf

(j)) < n

(j = 1, 2, . . . , k − 1). Since arg an,j 6= arg an,0 or an,j = cjan,0 (cj > 0,
cj 6= 1) for all j = 1, 2, . . . , k − 1 then deg(P0(z) − Pj(z)) = n. From (3.1)
and by Lemma 2.10, we have ρ(B) = n, this contradicts the fact ρ(B) < n.
Hence, every meromorphic solution f 6≡ 0 of equation (1.4) is transcenden-
tal.

(ii) Set Hj(z) = Aj(z)ePj(z) + dj(z) (j = 0, 1, . . . , k − 1). Suppose that
f 6≡ 0 is a meromorphic solution of (1.4) with ρ(f) = ∞, λ(1/f) < n and
λ(f) < n. Then, by Hadamard factorization theorem, we can write f as
f(z) = (π(z)/d(z))eh(z), where π(z), d(z) are entire functions with λ(π) =
ρ(π) = λ(f) < n, λ(d) = ρ(d) = λ(1/f) < n and h is a transcendental entire
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function with ρ2(f) = ρ(h). Put g = f ′/f , then (see [13, Lemma 2.3.7])

f (j)

f
= gj +

1
2
j(j − 1)gj−2g′ + Gj−2(g) (j = 2, 3, . . . , k), (3.2)

where Gj−2(g) is a differential polynomial of the meromorphic function g

with constant coefficients and the degree no more than j − 2. Substituting
(3.2) into (1.4), we obtain

gk = Tk−1(g), (3.3)

where Tk−1(g) is a differential polynomial of the meromorphic function g

with the coefficients H0,H1, . . . , Hk−1 and the degree no more than k − 1.
Applying Clunie Lemma [13] to (3.3), we have

m(r, g) ≤ O

( k−1∑

j=0

m(r,Hj)
)

+ S(r, g).

We know that

N(r, g) = N

(
r,

f ′

f

)
= N(r, f) + N

(
r,

1
f

)
,

hence

T (r, g) ≤ O

( k−1∑

j=0

T (r,Hj)
)

+ N(r, f) + N

(
r,

1
f

)
+ S(r, g). (3.4)

It follows from (3.4) and the fact λ(f) < n, λ(1/f) < n, ρ(Hj) = n (j =
0, 1, . . . , k− 1) that ρ(g) ≤ n. We assert that ρ(g) = n. If ρ(g) < n, then by
(3.2) we have

ρ

(
f (j)

f

)
< n (j = 1, 2, . . . , k).

Since we have h0f 6≡ 0, we write equation (1.4) in the form

h0e
P0(z)f+

k−1∑

j=1

hje
Pj(z)f (j)+

(
f (k)+dk−1f

(k−1)+· · ·+d0f
′+d0f

)
= 0. (3.5)
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It follows that

h0e
P0(z) +

k−1∑

j=1

(
hj

f (j)

f

)
ePj(z) = −

(
f (k)

f
+ dk−1

f (k−1)

f
+ · · ·+ d1

f ′

f
+ d0

)
.

(3.6)
Hence

h0(z)eP0(z) +
k−1∑

j=1

Bj(z)ePj(z) = F (z), (3.7)

where Bj = hj(f (j)/f) (j = 1, 2, . . . , k − 1), h0 6≡ 0 and F (z) = −(f (k)/f +
dk−1(f (k−1)/f) + · · · + d1(f ′/f) + d0) are meromorphic functions of finite
order with ρ(Bj) < n (j = 1, 2, . . . , k − 1), ρ(h0) < n and ρ(F ) < n. Since
arg an,j 6= arg an,0 or an,j = cjan,0 (cj > 0, cj 6= 1) for all j = 1, 2, . . . , k− 1
then deg(P0(z) − Pj(z)) = n for all j = 1, 2, . . . , k − 1. From (3.7) and
Lemma 2.10, we have ρ(F ) = n, this contradicts the fact that ρ(F ) < n.
Hence ρ(g) = n. Since ρ2(f) = ρ(h) and λ(d) = λ(1/f) < n, then by
Lemma 2.7 we have ρ2(f) = ρ(h) ≤ max{ρ(Hj) : j = 0, 1, . . . , k − 1} = n.
Suppose that ρ(h) < n. Then, it follows from f ′/f = π′/π − d′/d + h′ that

T

(
r,

f ′

f

)
≤ T

(
r,

π′

π

)
+ T

(
r,

d′

d

)
+ T (r, h′) + O(1)

= m

(
r,

π′

π

)
+ N

(
r,

1
π

)
+ m

(
r,

d′

d

)
+ N

(
r,

1
d

)
+ T (r, h′) + O(1)

= O(log r) + N

(
r,

1
π

)
+ O(log r) + N

(
r,

1
d

)
+ T (r, h′)

= O(log r) + N

(
r,

1
π

)
+ N

(
r,

1
d

)
+ T (r, h′). (3.8)

By (3.8) and the fact λ(π) < n, λ(d) < n, we get ρ(f ′/f) = ρ(g) < n, a
contradiction to ρ(g) = n, hence ρ(h) = n, then ρ2(f) = n. ¤

4. Proof of Theorem 1.2

Let f 6≡ 0 be a meromorphic solution of equation (1.4). Then, by
Theorem 1.1, f is transcendental.
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Case 1: When arg an,j 6= arg an,0 (j = 1, 2, . . . , k − 1). From (1.4), we
have

|eP0(z)| ≤
∣∣∣∣

1
h0(z)

∣∣∣∣
∣∣∣∣
f (k)(z)
f(z)

∣∣∣∣ +
(∣∣∣∣

hk−1(z)
h0(z)

∣∣∣∣|ePk−1(z)|+
∣∣∣∣
dk−1(z)
h0(z)

∣∣∣∣
)∣∣∣∣

f (k−1)(z)
f(z)

∣∣∣∣

+ · · ·+
(∣∣∣∣

h1(z)
h0(z)

∣∣∣∣|eP1(z)|+
∣∣∣∣
d1(z)
h0(z)

∣∣∣∣
)∣∣∣∣

f ′(z)
f(z)

∣∣∣∣ +
∣∣∣∣
d0(z)
h0(z)

∣∣∣∣. (4.1)

By Lemma 2.1, there exist constants R0 > 0, L > 0 and θ1 < θ2, such that
for all z = reiθ, |z| = r > R0, θ ∈ (θ1, θ2), we have

Re(Pj(z)) ≤ 0 (j = 1, 2, . . . , k − 1) and Re(P0(z)) > Lrn. (4.2)

Set ρ = max{ρ(hj), ρ(dj) : j = 0, 1, . . . , k − 1} < n, by Lemma 2.2, for any
given ε (0 < ε < n − ρ), there exists a set E1 ⊂ (1,+∞) that has finite
logarithmic measure such that when |z| = r /∈ [0, 1] ∪ E1, r −→ +∞, we
have

∣∣∣∣
1

h0(z)

∣∣∣∣ ≤ erρ+ε

,

∣∣∣∣
dj(z)
h0(z)

∣∣∣∣ ≤ erρ+ε

(j = 0, 1, . . . , k − 1) (4.3)

and
∣∣∣∣
hj(z)
h0(z)

∣∣∣∣ ≤ erρ+ε

(j = 1, 2, . . . , k − 1). (4.4)

By Lemma 2.3, there exist a constant A > 1 and a set E2 ⊂ (1,+∞) which
has finite logarithmic measure, such that for all |z| = r /∈ [0, 1]∪E2, we have

∣∣∣∣
f (j)(z)
f(z)

∣∣∣∣ ≤ A[T (2r, f)]2k, j = 1, 2, . . . , k. (4.5)

In accordance with (4.2), (4.3), (4.4) and (4.5), for z = reiθ, θ ∈ (θ1, θ2),
r /∈ [0, 1] ∪ E1 ∪ E2, r −→ +∞ the inequality (4.1) gives

eLrn ≤ erρ+ε

A[T (2r, f)]2k + 2(k − 1)erρ+ε

A[T (2r, f)]2k + erρ+ε

≤ 2kAerρ+ε

[T (2r, f)]2k. (4.6)
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Since ρ + ε < n, by Lemma 2.6 and (4.6) we obtain

ρ(f) = lim sup
r→+∞

log T (r, f)
log r

= +∞

and

ρ2(f) = lim sup
r→+∞

log log T (r, f)
log r

≥ n.

In addition, if λ(1/f) < +∞ then by Lemma 2.7 and from equation (1.4),
we have ρ2(f) ≤ n, so ρ2(f) = n.

Case 2: When an,j = cjan,0 (0 < cj < 1) (j = 1, 2, . . . , k − 1). We put
deg(Pj(z) − cjP0(z)) = mj (mj is a positive integer and 0 ≤ mj < n). By
Lemma 2.1, there exist constants R1 > 0, L1 > 0, λ > 0 and θ1 < θ2, such
that for allz = reiθ, |z| = r > R1, θ ∈ (θ1, θ2), we have

Re(Pj(z)− cjP0(z)) < λ (j = 1, 2, . . . , k − 1)

and

Re(P0(z)) > L1r
n.

Set c = max{cj : j = 1, . . . , k − 1}, then we have 0 < c < 1 and

e(1−c)L1rn ≤
∣∣e(1−c)P0(z)

∣∣,
∣∣e−cP0(z)

∣∣ ≤ e−cL1rn

< 1. (4.7)

Since (cj − c) ≤ 0 for all j = 1, 2, . . . , k − 1, we obtain

∣∣ePj(z)−cP0(z)
∣∣ =

∣∣ePj(z)−cjP0(z)+(cj−c)P0(z)
∣∣

=
∣∣ePj(z)−cjP0(z)

∣∣∣∣e(cj−c)P0(z)
∣∣ < eλ. (4.8)

From (1.4) we have

∣∣e(1−c)P0(z)
∣∣ ≤

∣∣∣∣
1

h0(z)

∣∣∣∣
∣∣e−cP0(z)

∣∣
∣∣∣∣
f (k)(z)
f(z)

∣∣∣∣
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+
(∣∣∣∣

hk−1(z)
h0(z)

∣∣∣∣
∣∣ePk−1(z)−cP0(z)

∣∣ +
∣∣∣∣
dk−1(z)
h0(z)

∣∣∣∣
∣∣e−cP0(z)

∣∣
)∣∣∣∣

f (k−1)(z)
f(z)

∣∣∣∣

+ · · ·+
(∣∣∣∣

h1(z)
h0(z)

∣∣∣∣
∣∣eP1(z)−cP0(z)

∣∣ +
∣∣∣∣
d1(z)
h0(z)

∣∣∣∣
∣∣e−cP0(z)

∣∣
)∣∣∣∣

f ′(z)
f(z)

∣∣∣∣

+
∣∣∣∣
d0(z)
h0(z)

∣∣∣∣
∣∣e−cP0(z)

∣∣. (4.9)

In accordance with (4.3), (4.4), (4.5), (4.7) and (4.8), for z = reiθ, θ ∈
(θ1, θ2), r /∈ [0, 1] ∪ E1 ∪ E2, r −→ +∞ the inequality (4.9) gives

e(1−c)L1rn ≤ erρ+ε

A[T (2r, f)]2k + (k − 1)erρ+ε

(eλ + 1)A[T (2r, f)]2k + erρ+ε

≤ A(k + 1)(eλ + 1)erρ+ε

[T (2r, f)]2k. (4.10)

Since ρ + ε < n and 1− c > 0, by Lemma 2.6 and (4.10) we obtain

ρ(f) = lim sup
r→+∞

log T (r, f)
log r

= +∞

and

ρ2(f) = lim sup
r→+∞

log log T (r, f)
log r

≥ n.

In addition, if λ(1/f) < ∞ then by Lemma 2.7 and from equation (1.4), we
have ρ2(f) ≤ n, so ρ2(f) = n. ¤

5. Proof of Theorem 1.3

Let f be a transcendental meromorphic solution of (1.4). We assume
that P0(z) − (1/cj)Pj(z) = Aj (Aj is a constant) for all j = 1, . . . , k, then
Pj(z) = cjP0(z)− cjAj . Let j0 ∈ {1, 2, . . . , k − 1}, we have

Pj(z)− 1
cj0

Pj0(z) = (cj − 1)P0(z)− cjAj + Aj0 .

According to Lemma 2.1, there exists a continuous curve Γ (see also [12]),
such that for all z = reiθ with z ∈ Γ and |z| = r > R2, we have



On the order and hyper-order of meromorphic solutions 373

Re(P0(z)) = 0.

Consequently, there exists λ > 0 such that for all j = 1, 2, . . . , k−1, we have

∣∣ePj(z)−(1/cjo )Pj0 (z)
∣∣ =

∣∣e(cj−1)P0(z)−cjAj+Aj0
∣∣ = eRe(−cjAj+Aj0 ) < eλ (5.1)

and
∣∣e−(1/cjo )Pj0 (z)

∣∣ =
∣∣e−P0(z)+Aj0

∣∣ = eRe(Aj0 ) < eλ. (5.2)

Since ρ = max{ρ(hj) (j = 1, . . . , k−1), ρ(dj) (j = 0, 1, . . . , k−1)} < ρ(h0),
let α, β be two real numbers that satisfy ρ < β < α < ρ(h0). Then, by
Lemma 2.2, there exists a set E1 ⊂ (1,+∞) that has finite logarithmic
measure such that when |z| = r /∈ [0, 1] ∪ E1, r −→ +∞, we have

|hj(z)| ≤ erβ

, j = 1, 2, . . . , k−1 and |dj(z)| ≤ erβ

, j = 0, 1, . . . , k−1. (5.3)

Since h0 is a meromorphic function and λ(1/h0) < µ(h0) ≤ ρ(h0) < 1/2,
by Lemma 2.4, there exists a set E3 ⊂ (1,+∞) that has a positive upper
logarithmic density such that for all z satisfying |z| = r ∈ E3, we have

|h0(z)| ≥ erα

. (5.4)

From equation (1.4) it follows that

∣∣h0(z)eP0(z)−(1/cjo )Pj0 (z)
∣∣

≤ ∣∣e−(1/cjo )Pj0 (z)
∣∣
∣∣∣∣
f (k)(z)
f(z)

∣∣∣∣

+
(|hk−1(z)|

∣∣ePk−1(z)−(1/cjo )Pj0 (z)
∣∣ + |dk−1(z)|

∣∣e−(1/cjo )Pj0 (z)
∣∣)

∣∣∣∣
f (k−1)(z)

f(z)

∣∣∣∣

+ · · ·+ (|h1(z)|∣∣eP1(z)−(1/cjo )Pj0 (z)
∣∣ + |d1(z)|∣∣e−(1/cjo )Pj0 (z)

∣∣)
∣∣∣∣
f ′(z)
f(z)

∣∣∣∣

+ |d0(z)|∣∣e−(1/cjo )Pj0 (z)
∣∣. (5.5)

In accordance with (4.5), (5.1), (5.2), (5.3) and (5.4), for all z = reiθ with
z ∈ Γ and r ∈ E3 − [0, 1] ∪ E1 ∪ E2, r −→ +∞, the inequality (5.5) gives
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erα

eRe(Aj0 ) ≤ eλA[T (2r, f)]2k + 2(k − 1)eλerβ

A[T (2r, f)]2k + eλerβ

≤ 2Akeλerβ

[T (2r, f)]2k. (5.6)

Since β < α, by Lemma 2.6 and (5.6) we find

ρ(f) = lim sup
r→+∞

log T (r, f)
log r

= +∞

and

ρ2(f) = lim sup
r→+∞

log log T (r, f)
log r

≥ α.

Since that α is an arbitrary number in the interval ]β, ρ(h0)[, we obtain that
ρ2(f) ≥ ρ(h0). In addition:

( i ) If λ(1/f) < ∞, then by Lemma 2.7 and from equation (1.4), we have
ρ2(f) ≤ n, so ρ(h0) ≤ ρ2(f) ≤ n.

( ii ) For cj 6= 1 (j = 1, 2, . . . , k − 1), if λ(f) < n and λ(1/f) < n, then by
Theorem 1.1, we have ρ2(f) = n. ¤

6. Proof of Theorem 1.4

Let f be a nontrivial meromorphic solution of equation (1.4). Then, by
Theorem 1.2, we have ρ(f) = ∞.

Step 1. We consider the fixed points of f(z). Let g0(z) = f(z)−z, then z is
a fixed point of f(z) if and only if g0(z) = 0. We have g0(z) is a meromorphic
function and ρ(g0(z)) = ρ(f(z)) = ∞. Substituting f(z) = g0(z) + z into
equation (1.4), we obtain

g
(k)
0 +

(
hk−1e

Pk−1(z) + dk−1

)
g
(k−1)
0

+ · · ·+ (
h1e

P1(z) + d1

)
g′0 +

(
h0e

P0(z) + d0

)
g0

= −(
h1e

P1(z) + d1

)− z
(
h0e

P0(z) + d0

)
. (6.1)

We rewrite (6.1) in the form
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g
(k)
0 + A0,k−1g

(k−1)
0 + · · ·+ A0,1g

′
0 + A0,0g0 = −A0,1 − z A0,0 = A0. (6.2)

For equation (6.2), we consider just meromorphic solutions of infinite order
satisfying g0(z) = f(z)− z. We have

A0 = −A0,1 − z A0,0 = −(
h1e

P1(z) + d1

)− z
(
h0e

P0(z) + d0

)

= −zh0e
P0(z) − h1e

P1(z) − d1 − zd0 = B0e
P0(z) + B1e

P1(z) + B2,

where B0 = −zh0 6≡ 0, B1 = −h1, B2 = −d1 − zd0. Since deg(P0(z) −
P1(z)) = n, max{ρ(B0), ρ(B1), ρ(B2)} < n and B0 6≡ 0, according to Lemma
2.10, we have A0 6≡ 0. By using Lemma 2.9 to equation (6.2) above, we
obtain

λ(g0(z)) = τ(f) = ρ(g0(z)) = ∞.

Step 2. We consider the fixed points of f ′(z). Let g1(z) = f ′(z) − z,
then z is a fixed point of f ′(z) if and only if g1(z) = 0. We have g1(z)
is a meromorphic function and ρ(g1(z)) = ρ(f ′(z)) = ρ(f(z)) = ∞. By
differentiating the both sides of equation (1.4), we obtain

f (k+1) +
(
hk−1e

Pk−1(z) + dk−1

)
f (k)

+
[
(hk−1e

Pk−1(z) + dk−1)′ + (hk−2e
Pk−2(z) + dk−2)

]
f (k−1)

+ · · ·+ [
(h2e

P2(z) + d2)′ + (h1e
P1(z) + d1)

]
f ′′

+
[
(h1e

P1(z) + d1)′ + (h0e
P0(z) + d0)

]
f ′ +

(
h0e

P0(z) + d0

)′
f = 0. (6.3)

By equation (1.4) we have

f = − 1
(h0eP0(z) + d0)

[
f (k) + (hk−1e

Pk−1(z) + dk−1)f (k−1)

+ · · ·+ (h1e
P1(z) + d1)f ′

]
. (6.4)

Substituting (6.4) into (6.3), we obtain
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f (k+1) +
[(

hk−1e
Pk−1(z) + dk−1

)− (h0e
P0(z) + d0)′

(h0eP0(z) + d0)

]
f (k)

+
[(

hk−1e
Pk−1(z) + dk−1

)′ + (
hk−2e

Pk−2(z) + dk−2

)

− (h0e
P0(z) + d0)′

(h0eP0(z) + d0)
(
hk−1e

Pk−1(z) + dk−1

)]
f (k−1)

+ · · ·+
[(

h2e
P2(z) + d2

)′ + (
h1e

P1(z) + d1

)

− (h0e
P0(z) + d0)′

(h0eP0(z) + d0)
(
h2e

P2(z) + d2

)]
f ′′

+
[(

h1e
P1(z) + d1

)′ + (
h0e

P0(z) + d0

)

− (h0e
P0(z) + d0)′

(h0eP0(z) + d0)
(
h1e

P1(z) + d1

)]
f ′ = 0. (6.5)

We can denote equation (6.5) by the following shape

f (k+1) + A1,k−1f
(k) + A1,k−2f

(k−1) + · · ·+ A1,1f
′′ + A1,0f

′ = 0, (6.6)

where A1,j (j = 0, 1, . . . , k− 1) are meromorphic functions defined by equa-
tion (6.5). Substituting f ′(z) = g1(z) + z, f ′′(z) = g′1(z) + 1, f (j+1) = g

(j)
1

(j = 2, 3, . . . , k) into equation (6.6), we obtain

g
(k)
1 + A1,k−1g

(k−1)
1 + A1,k−2g

(k−2)
1 + · · ·+ A1,1g

′
1 + A1,0g1

= −A1,1 − z A1,0 = A1, (6.7)

where

A1 = −
[(

h2e
P2(z) + d2

)′ + (
h1e

P1(z) + d1

)

− (h0e
P0(z) + d0)′

(h0eP0(z) + d0)
(
h2e

P2(z) + d2

)]
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− z

[(
h1e

P1(z) + d1

)′ + (
h0e

P0(z) + d0

)

− (h0e
P0(z) + d0)′

(h0eP0(z) + d0)
(
h1e

P1(z) + d1

)]

= − 1
(h0eP0(z) + d0)

[
zh2

0e
2P0(z) + B1e

P0 + B2e
P0+P1

+ B3e
P0+P2 + B4e

P2 + B5e
P1 + B6

]

= − 1
(h0eP0(z) + d0)

[ 6∑

j=0

Bje
Gj

]
,

Gj are polynomials defined as above, where G0 = 2P0(z) and B0 = zh2
0 6≡ 0,

Bj (j = 1, 2, 3, 4, 5, 6) are meromorphic functions of finite order which is less
than n, written on the form of a sum of terms of kinds of multiplications
of the functions z, hi, h′i, P ′i , di, d′i (i = 0, 1, 2). We have if Gj = P0;
P0 + P1; P0 + P2; P2; P1 then Gj − 2P0(z) = −P0; P1 − P0; P2 − P0;
P2 − 2P0; P1 − 2P0. Since an,0 6= 0 and arg an,j 6= arg an,0 or an,j = cjan,0

(0 < cj < 1) (j = 1, 2, . . . , k − 1), then

an,j − an,0 6= 0, an,j − 2an,0 6= 0 (j = 1, 2).

Hence deg(Gj − 2P0(z)) = deg(2P0(z)) = n (j = 1, 2, 3, 4, 5, 6). Since
B0 = zh2

0 6≡ 0, then according to Lemma 2.10, we have A1 6≡ 0. By using
Lemma 2.9 to equation (6.7) above, we obtain

λ(g1) = λ(f ′ − z) = τ(f ′) = ρ(g1) = ρ(f) = ∞.

Step 3. We prove that τ(f ′′) = λ(f ′′ − z) = ∞. Let g2(z) = f ′′(z) − z,
then z is a fixed point of f ′′(z) if and only if g2(z) = 0. We have g2(z) is
a meromorphic function and ρ(g2(z)) = ρ(f ′′(z)) = ρ(f(z)) = ∞. We just
prove that λ(g2) = ∞. By differentiating the both sides of equation (6.6),
we obtain

f (k+2) + A1,k−1f
(k+1) + (A′1,k−1 + A1,k−2)f (k)

+ · · ·+ (A′1,1 + A1,0)f ′′ + A′1,0f
′ = 0. (6.8)

By equation (6.6) we have
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f ′ = − 1
A1,0

[
f (k+1) + A1,k−1f

(k) + A1,k−2f
(k−1) + · · ·+ A1,1f

′′]. (6.9)

We remark that A1,0 6≡ 0, because h0 6≡ 0 (for the proof, we can apply
Lemma 2.10). Substituting (6.9) into (6.8) we obtain

f (k+2) +
[
A1,k−1 −

A′1,0

A1,0

]
f (k+1) +

[
A′1,k−1 + A1,k−2 −

A′1,0

A1,0
A1,k−1

]
f (k)

+ · · ·+
[
A′1,2 + A1,1 −

A′1,0

A1,0
A1,2

]
f (3) +

[
A′1,1 + A1,0 −

A′1,0

A1,0
A1,1

]
f ′′

= 0. (6.10)

We can denote equation (6.10) by the following shape

f (k+2) + A2,k−1f
(k+1) + A2,k−2f

(k) + · · ·+ A2,1f
(3) + A2,0f

′′ = 0, (6.11)

where A2,j (j = 0, 1, . . . , k− 1) are meromorphic functions defined by equa-
tion (6.10) above, and we have

A2,0 = A′1,1 + A1,0 −
A′1,0

A1,0
A1,1, A2,1 = A′1,2 + A1,1 −

A′1,0

A1,0
A1,2.

Substituting f ′′(z) = g2(z) + z, f (3)(z) = g′2(z) + 1, f (j+2) = g
(j)
1 (j =

2, 3, . . . , k) into equation (6.11), we obtain

g
(k)
2 + A2,k−1g

(k−1)
2 + A2,k−2g

(k−2)
2 + · · ·+ A2,1g

′
2 + A2,0g2 = A2, (6.12)

where

A2 = −A2,1 − zA2,0

= −
[
A′1,2 + A1,1 −

A′1,0

A1,0
A1,2

]
− z

[
A′1,1 + A1,0 −

A′1,0

A1,0
A1,1

]

= − 1
A1,0

[
A′1,2A1,0 + A1,1A1,0 −A′1,0A1,2

+ zA′1,1A1,0 + zA2
1,0 − zA′1,0A1,1

]
. (6.13)
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We have

A1,0 = (h1e
P1(z) + d1)′ + (h0e

P0(z) + d0)− (h0e
P0(z) + d0)′

(h0eP0(z) + d0)
(h1e

P1(z) + d1),

A1,1 = (h2e
P2(z) + d2)′ + (h1e

P1(z) + d1)− (h0e
P0(z) + d0)′

(h0eP0(z) + d0)
(h2e

P2(z) + d2),

A1,2 = (h3e
P3(z) + d3)′ + (h2e

P2(z) + d2)− (h0e
P0(z) + d0)′

(h0eP0(z) + d0)
(h3e

P3(z) + d3).

Therefore

A1,0 =
1

(h0eP0(z) + d0)
(
h2

0e
2P0 + α

(1)
1,0e

P0 + α
(2)
1,0e

P0+P1 + α
(3)
1,0e

P1 + α
(4)
1,0

)
,

A1,1 =
1

(h0eP0(z) + d0)
(
α

(0)
1,1e

P0 + α
(1)
1,1e

P0+P2 + α
(2)
1,1e

P0+P1

+ α
(3)
1,1e

P2 + α
(4)
1,1e

P1 + α
(5)
1,1

)
,

A1,2 =
1

(h0eP0(z) + d0)
(
α

(0)
1,2e

P0 + α
(1)
1,2e

P0+P2 + α
(2)
1,2e

P0+P3

+ α
(3)
1,2e

P2 + α
(4)
1,2e

P3 + α
(5)
1,2

)

and

A′1,0 =
1

(h0eP0(z) + d0)2
(
β

(0)
1,0e3P0 + β

(1)
1,0e2P0 + β

(2)
1,0e2P0+P1 + β

(3)
1,0eP0+P1

+ β
(4)
1,0eP0 + β

(5)
1,0eP1 + β

(6)
1,0

)
,

A′1,1 =
1

(h0eP0(z) + d0)2
(
β

(0)
1,1e2P0 + β

(1)
1,1e2P0+P2 + β

(2)
1,1e2P0+P1 + β

(4)
1,1eP0+P2

+ β
(5)
1,1eP0+P1 + β

(6)
1,1eP0 + β

(7)
1,1eP2 + β

(8)
1,1eP1 + β

(9)
1,1

)
,

A′1,2 =
1

(h0eP0(z) + d0)2
(
β

(0)
1,2e2P0 + β

(1)
1,2e2P0+P2 + β

(2)
1,2e2P0+P3 + β

(4)
1,2eP0+P2

+ β
(5)
1,2eP0+P3 + β

(6)
1,2eP0 + β

(7)
1,2eP2 + β

(8)
1,2eP3 + β

(9)
1,2

)
,

where α
(l)
i,j , β

(l)
i,j are meromorphic functions of finite order which is less than

n, written on the form of a sum of terms of kinds of multiplications of the
functions hi, h′i, P ′i , di, d′i (i = 0, 1, 2, 3). From (6.13) we have
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A2 = − 1
A1,0(h0eP0(z) + d0)3

× [
zh5

0e
5P0 + B1e

4P0 + B2e
3P0 + B3e

2P0 + B4e
P0 + B5e

4P0+P1

+ B6e
4P0+P2 + B7e

4P0+P3 + B8e
3P0+P1 + B9e

3P0+P2 + B10e
3P0+P3

+ B11e
3P0+P1+P2 + B12e

3P0+P1+P3 + B13e
3P0+2P1 + B14e

2P0+P1

+ B15e
2P0+P2 + B16e

2P0+P3 + B17e
2P0+2P1 + B18e

2P0+P1+P2

+ B19e
2P0+P1+P3 + B20e

P0+P1 + B21e
P0+P2 + B22e

P0+P3

+ B23e
P0+2P1 + B24e

P0+P1+P2 + B25e
P0+P1+P3 + B26e

2P1 + B27e
P1

+ B28e
P1+P2 + B29e

P1+P3 + B30e
P2 + B31e

P3 + B32

]

= − 1
A1,0(h0eP0(z) + d0)3

[ 32∑

j=0

Bje
Gj

]
,

Gj are polynomials defined as above, where G0 = 5P0(z) and B0 = zh5
0 6≡ 0,

Bj (j = 1, 2, . . . , 32) are meromorphic functions of finite order which is less
than n, written on the form of a sum of terms of kinds of multiplications of
the functions z, hi, h′i, P ′i , di, d′i (i = 0, 1, 2, 3). We certify that A2 6≡ 0. We
have

( i ) if

Gj = 4P0; 3P0; 2P0; P0; 4P0 + P1; 4P0 + P2; 4P0 + P3

then

Gj − 5P0 = −P0; − 2P0; − 3P0; − 4P0; P1−P0; P2−P0; P3−P0.

( ii ) If

Gj = 3P0 + P1; 3P0 + P2; 3P0 + P3; 3P0 + P1 + P2; 3P0 + P1 + P3;

3P0 + 2P1

then
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Gj − 5P0 = P1 − 2P0; P2 − 2P0; P3 − 2P0; P1 + P2 − 2P0;

P1 + P3 − 2P0; 2P1 − 2P0.

(iii) If

Gj = 2P0 + P1; 2P0 + P2; 2P0 + P3; 2P0 + 2P1; 2P0 + P1 + P2;

2P0 + P1 + P3

then

Gj − 5P0 = P1 − 3P0; P2 − 3P0; P3 − 3P0; 2P1 − 3P0;

P1 + P2 − 3P0; P1 + P3 − 3P0.

(iv) If

Gj = P0 + P1; P0 + P2; P0 + P3; P0 + 2P1; P0 + P1 + P2;

P0 + P1 + P3

then

Gj − 5P0 = P1 − 4P0; P2 − 4P0; P3 − 4P0; 2P1 − 4P0;

P1 + P2 − 4P0; P1 + P3 − 4P0.

( v ) If

Gj = 2P1; P1; P1 + P2; P1 + P3; P2; P3

then

Gj − 5P0 = 2P1 − 5P0; P1 − 5P0; P1 + P2 − 5P0; P1 + P3 − 5P0;

P2 − 5P0; P3 − 5P0.

Since an,0 6= 0 and an,j = cjan,0 (0 < cj < 1) (j = 1, 2, . . . , k − 1), then

an,j − λan,0 = (cj − λ)an,0 6= 0 for λ = 1, 2, 3, 4, 5; j = 1, 2, 3,

2an,1 − λan,0 = (2c1 − λ)an,0 6= 0 for λ = 3, 5,

an,1 + an,j − λan,0 = ((c1 + cj)− λ)an,0 6= 0 for λ = 2, 3, 4, 5; j = 2, 3
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or arg an,j 6= arg an,0 (j = 1, 2, . . . , k − 1) and arg(an,1 + an,j) 6= arg an,0

(j = 2, 3). Hence deg(Gj − 5P0(z)) = deg(5P0(z)) = n (j = 1, 2, . . . , 32).
By Lemma 2.10 and the fact B0 = zh5

0 6≡ 0, we obtain A2 6≡ 0. By using
Lemma 2.9 to equation (6.12) above, we have

λ(g2) = λ(f ′′ − z) = τ(f ′′) = ρ(g2) = ρ(f) = ∞. ¤
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Department of Mathematics

Laboratory of Pure and Applied Mathematics

University of Mostaganem (UMAB)

B. P. 227 Mostaganem-(Algeria)

E-mail: belaidi@univ-mosta.dz


