Finding a homeomorphism between almost homeomorphic manifolds

By Kazuaki Kobayashi

§ 1. Introduction

Throughout this paper we shall only be concerned with the piecewise linear category of polyhedra and piecewise linear maps. In this paper we investigate the following problem; Let W_1 and W_2 be two PL manifolds whose interiors and boundaries are PL homeomorphic each other. When are W_1 and W_2 PL homeomorphic?

We obtain the result that such homeomorphism problem is closely related to the h-cobordism near the boundary (see Theorem 2).

 ∂M and Int M stand for the boundary and the interior of the manifold M. \cong means PL homeomorphic. I=[0,1] is a closed unit interval. $\sharp X$ means the order of a set X.

§ 2.

Definition 1. Let W_i (i=1,2) be bounded manifolds. When $\partial W_1 \cong \partial W_2$ and $Int\ W_1 \cong Int\ W_2$, we say W_1 is almost homeomorphic to W_2 . And we define $\mathscr{A}(W) = \operatorname{set}$ of PL homeomorphism classes of PL manifolds which are almost homeomorphic to W.

PROPOSITION 1. ([2. Th. 2, 4]) Let W_j^n (j=1,2) be compact bounded n-manifolds $(n \ge 6)$. Then Int $W_1^n \cong Int \ W_2^n$ if and only if W_1 and W_2 are boundary h-cobordant i.e. there are h-cobordisms $(U^{(i)}; \partial W_2^{(i)}, M^{(i)})$ such that

Fig. 1.

$$(W_{\scriptscriptstyle 1}, \partial W_{\scriptscriptstyle 2}) \! \cong \! (W_{\scriptscriptstyle 2} \! \cup_{_{\partial W_{\scriptscriptstyle 2}^{(1)}}} \! U^{\scriptscriptstyle (1)} \! \cup \cdots \! \cup_{_{\partial W_{\scriptscriptstyle 2}^{(p)}}} \! U^{\scriptscriptstyle (p)} \, , \ M^{\scriptscriptstyle (1)} \! \cup \cdots \cup M^{\scriptscriptstyle (p)})$$

where p is the number of the components of ∂W_i .

Lemma 1. Let W_i (i=1,2) be compact bounded n-manifolds such that Int $W_1 \cong Int \ W_2$ and $g: Int \ W_1 \to Int \ W_2$ be a given PL homeomorphism. Let $c_1: \partial W_1 \times I \to W_1$ be an PL embedding such that $c_1(x,0) = x$ for $x \in \partial W_1$ i.e. c_1 is a boundary collar and let U_g be a region bounded by ∂W_2 and $gc_1(\partial W_1 \times \{1\})$ in W_2 . If $U_g \cong \partial W_1 \times I$, there is a PL homeomorphism $h: W_1 \to W_2$ such that

$$h \mid W_1 - c_1(\partial W_1 \times [0, 1]) = g \mid W_1 - c_1(\partial W_1 \times [0, 1])$$

PROOF. Let $\phi: \partial W_1 \times I \to U_g$ be a PL homeomorphism such that $\phi(\partial W_1 \times \{0\}) = \partial W_2$ and $\phi(\partial W_1 \times \{1\}) = gc_1(\partial W_1 \times \{1\})$. Then we may define a PL homeomorphism $h: W_1 \to W_2$ by

$$h(x) = \begin{cases} g(x) & \text{on } x \in W_1 - c_1(\partial W_1 \times [0, 1]) \\ \phi(u, \alpha) & \text{on } x \in c_1(\partial W_1 \times [0, 1]) \end{cases}$$

where u and α are decided as follows; since $x \in c_1(\partial W_1 \times [0, 1])$, it can be written $x = c_1(y, \alpha)$ $(0 \le \alpha \le 1)$ and since $\phi(\partial W_1 \times \{1\}) = gc_1(\partial W_1 \times \{1\})$, we can write $\phi^{-1}gc_1(y, 1) = (u, 1)$ $(u \in \partial W_1)$. Since $g = \phi$ on $c_1(\partial W_1 \times \{1\})$ by definition, h is well defined.

Definition 2. Let U_g be a region defined by Lemma 1, then U_g is an h-cobordism by Proposition 1. We define $\tau(g_{\infty}) = \tau(U_g, gc_1(\partial W_1 \times \{1\}))$ $\in Wh(\pi_1(\partial W_1))$, Whitehead torsion near the boundary with respect to g.

PROPOSITION 2. Let W_i (i=1,2) be compact bounded manifolds and $f: Int W_1 \rightarrow Int W_2$ be a PL homeomorphism with $\tau(f_{\infty}) \neq 0$, then there is no PL homeomorphism $\bar{f}: W_1 \rightarrow W_2$ such that

$$\bar{f} | W_1 - c_1 (\partial W_1 \times [0, 1]) = f | W_1 - c_1 (\partial W_1 \times [0, 1]).$$

(See also [5. chap. IX]).

PROOF. If there is a PL homeomorphism \bar{f} as above,

$$\tau(f_{\infty}) = \tau(U_f, fc_1(\partial W_1 \times \{1\})) = \tau(U_f, \overline{f}c_1(\partial W_1 \times \{1\}))$$
$$= \tau(\partial W_1 \times I, \partial W_1 \times \{1\}) = 0.$$

This is a contradiction.

Theorem 1. Let W^n $(n \ge 6)$ be a connected compact bounded PL n-manifold with a connected boundary ∂W . If $Wh(\pi_1(\partial W))=(0)$, $\# \mathcal{A}(W)=1$.

PROOF. For any $W_1, W_2 \in \mathcal{A}(W)$, we will show $W_1 \cong W_2$. Let $f: Int W_1 \to Int W_2$ be a PL homeomorphism and U_f be a region bounded by ∂W_2 and $fc_1(\partial W_1 \times \{1\})$. Then U_f is an h-cobordism by Proposition 1 and $\tau(f_\infty) = \tau(U_f, fc_1(\partial W_1 \times \{1\})) = (-1)^{n-1}\tau(U_f, \partial W_2) \in Wh(\pi_1(\partial W_2)) \cong Wh(\pi_1(\partial W)) = (0)$ ([4, p. 394]). Hence by s-cobordism Theorem [6], $U_f \cong \partial W_2 \times I \cong \partial W_1 \times I$ and so there is a PL homeomorphism $\bar{f}: W_1 \to W_2$ such that $\bar{f} \mid W_1 - c_1(\partial W_1 \times [0, 1]) = f \mid W_1 - c_1(\partial W_1 \times [0, 1])$ by Lemma 1.

PROPOSITION 3. Let W_i^n (i=1,2) be compact bounded manifolds $(n \ge 6)$ with connected boundaries ∂W_i and Int $W_1 \cong \text{Int } W_2$. If n is even and $\pi_1(\partial W_1)$ is finite abelian, $D_\alpha W_1 \cong DW_2$ where DW_2 is the double of W_2 and $D_\alpha W_1 = W_1 \cup W_1$ by some identification homeomorphism $\alpha: \partial W_1 \to \partial W_1$. Furthermore if α is isotopic to identity, $D_\alpha W_1 \cong DW_1$.

PROOF. Let W^+ and W^- be the copy of W and $DW=W^+\bigcup_{id}W^-$. Let $f_\pm\colon Int\ W_1^\pm\to Int\ W_2^\pm$ be homeomorphisms and $U_{f\pm}$ be regions bounded by ∂W_2^\pm and $f_\pm c_1^\pm(\partial W_1^\pm\times\{1\})$ i. e. $(U_{f+};\ f_+c_1^+(\partial W_1^+\times\{1\}),\ \partial W_2^+)$ and $U_{f-}:\ f_-c_1^-(\partial W_1^-\times\{1\}),\ \partial W_2^-)$. If $\tau=\tau\ (U_{f+},\ f_+c_1^+(\partial W_1^+\times\{1\})),\ \tau\ (U_{f-},\ \partial W_2^-)=(-1)^{n-1}\bar{\tau}\ [4.\ p.\ 394]$ and so $\tau\ (U_{f+}\cup\ U_{f-},\ f_+c_1^+(\partial W_1^+\times\{1\}))=\tau+(-1)^{n-1}\bar{\tau}\in Wh(\pi_1(\partial W_1))$ [4. Th. 3. 2] where $(U_{f+}\cup\ U_{f-};\ f_+c_1^+(\partial W_1^+\times\{1\})),\ f_-c_1^-(\partial W_1^-\times\{1\})$ is an h-cobordism obtained from $U_{f+}\cup\ U_{f-}$ by $\partial\ W_2$ identiffied. Since $\pi_1(\partial\ W)$ is finite abelian, $\tau=\bar{\tau}$ [4] and so $\tau\ (U_{f+}\cup\ U_{f-},\ f_+c_1^+(\partial\ W_1^+\times\{1\}))=0$ if n is even. Hence $U_{f+}\cup\ U_{f-}\cong\partial\ W_1\times I$ by s-cobordism Theorem. Similarly if

$$\begin{split} U'_{f-} &= \left(U'_{f-}: \ \partial W_2^-, f_-c_1^- \left(\partial W_1^- \times \left\{\frac{1}{2}\right\}\right)\right) \text{ and} \\ U''_{f-} &= \left(U''_{f-}: \ f_-c_1^- \left(\partial W_1^- \times \left\{\frac{1}{2}\right\}\right), \ f_-c_1^- (\partial W_1^- \times \{1\})\right), \\ U_{f+} &\cup U'_{f-} \cong \partial W_1 \times I \ \text{ and } \ U''_{f-} \cong \partial W_1 \times I. \end{split}$$

Let $\phi_1: \partial W_1 \times I \to U_{f+} \cup U'_{f-}$ be a homeomorphism such that $\phi_1(\partial W_1 \times \{0\}) = f_+c_1(\partial W_1^+ \times \{1\})$

$$\phi_1\left(\partial W_1 \times \{1\}\right) = f_-c_1^-\left(\partial W_1^- \times \left\{\frac{1}{2}\right\}\right)$$

and let

$$\phi_2: \left(\partial W_1^+ \times [0, 1]\right) \cup \left(\partial W_1^- \times \left[0, \frac{1}{2}\right]\right) \rightarrow \partial W_1 \times I$$

be a homeomorphism defined by

$$\phi_2(y^+, 1-t) = \left(z^+(y^+), \frac{t}{2}\right), \ 0 \le t \le 1$$

$$\phi_2(y^-, t) = \left(z^+(y^+), \frac{1}{2} + t\right), \ 0 \le t \le \frac{1}{2}$$

where

$$y^+ \in \partial W_1^+, \ y^- \in \partial W_1^-$$
 and $\phi_1^{-1} f_+ c_1^+(y^+, 1) = (z^+(y^+), 0).$

And we define a homeomorphism $\tau: DW_1 \rightarrow DW_1$ by

$$\begin{split} & \mathcal{T} \left| \left(W_1^+ - c_1^+ (\partial W_1^+ \times [0, \ 1)) \right) \cup \left(W_1^- - c_1^- (\partial W_1^- \times [0, \ 1)) \right) = id \ . \\ & \mathcal{T} c_1^+ (y^+, t) = c_1^+ \left(y^+, \frac{1}{2} (3t - 1) \right) \quad \frac{1}{3} \leqq t \leqq 1 \ . \\ & \mathcal{T} c_1^+ (y^+, t) = c_1^- \left(y^-, \frac{1}{2} (1 - 3t) \right) \quad 0 \leqq t \leqq \frac{1}{3} \\ & \mathcal{T} c_1^- (y^-, t) = c_1^- \left(y^-, \frac{1}{2} (1 + t) \right) \quad 0 \leqq t \leqq 1 \ , \end{split}$$

and let $\beta \colon c_1^- \left(\partial W_1^- \times \left\{ \frac{1}{2} \right\} \right) \to c_1^- \left(\partial W_1^- \times \left\{ \frac{1}{2} \right\} \right)$ be a homeomorphism defined by

$$\beta c_1^- \left(y^-, \frac{1}{2} \right) = (f_-)^{-1} \phi_1 \phi_2 \left(y^-, \frac{1}{2} \right).$$

We define a homeomorphism $\alpha: \partial W_1 \rightarrow \partial W_1$ by

$$\alpha = \Upsilon^{-1}\beta \big(\Upsilon | c_1^+(\partial W_1 \times \{0\}) \big).$$

Then there is a well-defined homeomorphism $h: D_{\alpha}W_1 \rightarrow DW_2$ defined by

$$h(x) = \begin{cases} f_{+}(x^{+}) & x^{+} \in W_{1}^{+} - c_{1}^{+} \left(\partial W_{1}^{+} \times [0, 1) \right) \\ \phi_{1}\phi_{2}(c_{1}^{-})^{-1}\varUpsilon(x^{+}) & x^{+} \in c_{1}^{+} \left(\partial W_{1}^{+} \times \left[0, \frac{1}{3} \right] \right) \\ \phi_{1}\phi_{2}(c_{1}^{+})^{-1}\varUpsilon(x^{+}) & x^{+} \in c_{1}^{+} \left(\partial W_{1}^{+} \times \left[\frac{1}{3}, 1 \right] \right) \\ f_{-}\varUpsilon(x^{-}) & x^{-} \in W_{1}^{-} \end{cases}$$

Next we will show $D_{\alpha}W_1 \cong DW_1$ if α is isotopic to identity. Since $\alpha \approx id$, there is a level preserving homeomorphism $H: \partial W_1 \times I \to \partial W_1 \times I$ such that $H_0 = \alpha$ and $H_1 = id$. Let $c_1: \partial W_1 \times I \to W_1$ be a collar (embedding) such that $c_1(y, 0) = y \in \partial W_1$ and $c_1^{\alpha}: \partial W_1 \times I \to W_1$ be $c_1^{\alpha}(y, t) = c_1H(y, t)$. Then we define

a homeomorphism

$$F: DW_1 \rightarrow D_{\alpha}W_1$$

by

$$\begin{split} F(x^+) &= x^+ & x^+ \in W_1^+ \\ F(x^-) &= x^- & x^- \in W_1^- - c_1^- \left(\partial W_1^- \times [0, \ 1) \right) \\ F(x^-) &= F \Big(c_1^- (y^-, t) \Big) = c_1^a (y^-, t) & x^- \in c_1^- \left(\partial W_1^- \times [0, \ 1] \right). \end{split}$$

Hence $DW_1 \cong D_{\alpha}W_1$.

DEFINITION 3. Let W^n $(n \ge 6)$ be a compact bounded *n*-manifold. Then $I[W, \partial W]$ is the *inertia group* defined by [2] i.e.

$$I[W, \partial W] = \left\{ \tau \in Wh(\pi_1(\partial W)) | (W, \partial W) \circ \tau = (W, \partial W) \right\}$$

where $(W, \partial W) \circ \tau = (W \cup U, \partial W')$ and $(U; \partial W, \partial W')$ is an h-cobordism with $\tau(U, \partial W) = \tau$. Similarly if M is a closed n-manifold $(n \ge 5)$, $I[M] = \{\tau \in Wh(\pi_1(M)) | M \circ \tau = M \}$ where $M \circ \tau = M'$ and (U; M, M') is an h-cobordism with $\tau(U, M) = \tau$.

Let $\langle W, \partial W \rangle$ be a set of manifolds $(W', \partial W)$ such that $(W, \partial W) \circ \tau = (W', \partial W), \ \tau \in Wh(\pi_1(\partial W))$ and

$$\begin{split} \tilde{I}\left[\left.W,\,\partial W\right.\right] &= \left\{\tau \in Wh(\pi_1(\partial W))|(W',\partial W) \circ \tau = (W',\,\partial W) \\ &\quad \text{for any } (W',\,\partial W) \in \langle (W,\,\partial W) \rangle \right\}. \end{split}$$

Then the following Lemma is obvious by definition.

Lemma 2. $\sharp \tilde{I}[W, \partial W] \leq \sharp I[W, \partial W] \leq \sharp I[\partial W] \leq \sharp Wh(\pi_1(\partial W))$. Using s-cobordism Theorem we obtain the following.

PROPOSITION 4. Let W^n be a compact n-manifold $(n \ge 6)$ with $\partial W = M_1 \cup M_2$ where M_i (i=1, 2) are connected. If $(W; M_1, M_2)$ is an h-cobordism, $\# \mathscr{A}(W) = \# I[M_1] = \# I[M_2]$.

PROOF. CASE 1. $M_1 \cong M_2$. We define a map $\alpha \colon I[M_1] \to \mathscr{A}(W)$ by $\alpha(\tau) = \widetilde{W}$ where \widetilde{W} is an h-cobordism from M_1 with $\tau(\widetilde{W}, M_1) = \tau$. Then \widetilde{W} is uniquely determined by τ up to PL homeomorphism class [4. Th. 11. 3] and $\widetilde{W} \in \mathscr{A}(W)$ because $Int \ \widetilde{W} \cong M_1 \times R \cong Int \ W$ and $\partial \widetilde{W} = M_1 \cup M_1$ since $\tau \in I[M_1]$. And if $\tau_1 \neq \tau_2 \in I[M_1]$, $\widetilde{W}_1 \neq \widetilde{W}_2$ by [4. Th. 11. 3] where $\alpha(\tau_i) = \widetilde{W}_i$ (i=1,2). So α is injective, clearly for any $\widetilde{W} \in \mathscr{A}(W)$, $\tau \in I[M_1]$ where $\tau = \tau(\widetilde{W}, M_1)$. Hence α is onto.

CASE 2. $M_1 \not\cong M_2$. Let $\tau = \tau(W, M_1)$ fix. And we define a map α :

 $I[M_1] \rightarrow \mathscr{A}(W)$ by $\alpha(\omega) = U \cup_{M_1} W$ where U is an h-cobordism from M_1 with $\tau(U, M_1) = \omega$. Then $\partial(U \cup_{M_1} W) = M_1 \cup M_2$ and $Int(U \cup W) \cong M_1 \times R \cong Int W$ by [1. vol. II]. So $U \cup_{M_1} W \in \mathscr{A}(W)$. If $\tau_1 \neq \tau_2 \in I[M_1]$, $U_1 \cup_{M_1} W \neq U_2 \cup_{M_1} W$ by

[4. 11. 3]. Hence α is injective. Now we will show α surjective. For any $\widetilde{W} \in \mathcal{A}(W)$, since $\widetilde{W} - M_1 \cong W - M_1 \cong M_2 \times [0, \infty)$, there is a PL homeomorphism $f \colon W - M_1 \to \widetilde{W} - M_1$. Let U_f be a bounded region by M_1 and $fc_1(M_1 \times \{1\})$ in \widetilde{W} where $c_1 \colon M_1 \times I \to W$ is a boundary collar and let $\omega_f = \tau(U_f, M_1)$. Then $\omega_f \in I[M_1]$. Now ω_f does not depend on f because if G we will G and G because if G and G are G because G are G and G are G because G are G and G are G are G are G and G are G are G are G are G and G are G are G and G are G and G are G and G are G are G are G and G are G are G and G are G are G are G and G are G are G are G are G are G and G are G are G are G and G are G are G and G are G are G are G are G and G are G are G and G are G and G are G are G are G are G and G are G are G and G are G are G and G are G are G are G and G are G are G are G are G are G and G are G are G are G are G are G are G and G are G are G are G and G are G are G and G are G are G and G are G are G are G and G are G are G and G are G are G and G are G are G are G and G are G are G and G are G are G are G and G are G are G are G and G are G and G are G are G are G and G

Fig. 2.

not depend on f because if $g: W-M_1 \to \widetilde{W}-M_1$ is another PL homeomorphism,

$$egin{aligned} & au(U_g,\,M_{\scriptscriptstyle 1}) + au\Big(g(W),\,g(M_{\scriptscriptstyle 1})\Big) \ &= \omega_g + au = au(\widetilde{W},\,M_{\scriptscriptstyle 1}) \ &= au(U_f,\,M_{\scriptscriptstyle 1}) + au\Big(f(W,\,f(M_{\scriptscriptstyle 1})\Big) = \omega_f + au \end{aligned}$$

and so $\omega_g = \omega_f$. Hence α is onto and $\#I[M_1] = \#\mathscr{A}(W)$. Similarly $\#I[M_2] = \#\mathscr{A}(W)$.

COROLLARY. If W is the same as Proposition 4, $\# \mathscr{A}(W) \ge \# d^n(Wh(\pi_1(M_1)))$ where $d_n: Wh(\pi_1(M_1)) \to Wh(\pi_1(M_1))$ is an endomorphism defined by $d_n(\tau) = \tau + (-1)^{n-1}\overline{\tau}$.

Proof follows by the fact that $d_n(Wh(\pi_1(M_1)))$ is a subgroup of $I[M_1]$.

DEFINITION 4. Let W be a PL manifold and K be a subpolyhedron. We say K homotopy spine of W if the polyhedral pair (W, K) is an abstract h-neighborhood i.e. W, K satisfy the following conditions (see [2]):

- (1) $K \subset Int W$
- (2) for some regular neighborhood N of K in W, $(\overline{W-N}; \partial W, \partial N)$ is an h-cobordism.

Definition 5. If $\tau \in I[W, \partial W]$, by the definition there exist an h-cobordism $(U; \partial W, \partial W)$ with $\tau(U, \partial W) = \tau$ and PL homeomorphism

 $h: W \cup_{\partial W} U \rightarrow W$. We define $I[W, \partial W; id] = \{\tau \in I[W, \partial W] \mid h \mid K \text{ is homotopic to inclusion } i: K \rightarrow W \text{ for some homotopy spine } K \text{ of } W\}.$

LEMMA 3. Let W^n be a compact bounded n-manifold $(n \ge 6)$ with a connected boundary. If $i_*: Wh(\pi_1(\partial W)) \to Wh(\pi_1(W))$ is a monomorphism, $I[W, \partial W; id] = 0$.

PROOF. Let $\tau \in I[W, \partial W; id]$, $(U; \partial W, \partial W)$ be an h-cobordism with

 $\tau(U, \partial W) = \tau$ and $h: W \cup U \rightarrow W$ be a homeomorphism such that $h \mid K \simeq i$ for some homotopy spine K of W. Then by [4: 7.6, 7.7]

$$\tau(W, h(K)) = \tau(h) = \tau(i) = \tau(W, K) \in Wh(\pi_1(W)).$$

And since h is a homeomorphism,

$$\tau\!\left(\!\!\!\begin{array}{c} W,\ h\left(K\right) \end{array}\!\!\right) = \! i_{\#}\!\tau\!\left(U,\ \partial W\right) + \tau\!\left(W,\ K\right).$$

Hence $i_*\tau(U, \partial W) = i_*\tau = 0$ and $\tau = 0$.

THEOREM 2. If W^n is a compact bounded n-manifold $(n \ge 6)$ with a connected boundary, then $\# \mathscr{A}(W) = \# \langle (W, \partial W) \rangle \le \# I[\partial W]$. Furthermore if $\ker(i_*: Wh(\pi_1(\partial W)) \to Wh(\pi_1(W))) = 0$ and $I[W, \partial W: id] = I[W, \partial W]$, $\# \mathscr{A}(W) = \# I[\partial W]$.

PROOF. Let $W_1 \in \mathcal{A}(W)$ such that $W_1 \not\cong W$ and let $f \colon Int \ W_1 \to Int \ W$ be a homeomorphism. Let U_f be a region bounded by ∂W and $fc_1(\partial W_1 \times \{1\})$. Then $(U_f; \partial W, fc_1(\partial W_1 \times \{1\}))$ is an h-cobordism by Proposition 1 and $\tau(U_f, fc_1(\partial W_1 \times \{1\})) \neq 0$ in $I[\partial W_1] = I[\partial W]$ for any f because $\partial W_1 \cong \partial W$ and $W_1 \not\cong W$. Similarly if $W_1, W_2 \in \mathcal{A}(W)$ such that $W_1 \not\cong W \not\cong W_2, W_1 \not\cong W_2$, then $\tau(U_f, fc_1(\partial W_1 \times \{1\})) \neq \tau(U_g, gc_2(\partial W_2 \times \{1\}))$ where $g \colon Int \ W_2 \to Int \ W$ is a homeomorphism. So $\# \mathcal{A}(W) \leq \# I[\partial W]$.

Since $Int\ (W \cup U) \cong Int\ W$ where U is an h-cobordism from $\partial W,\ W' \in \mathscr{A}(W)$ if $W' \in \langle (W, \partial W) \rangle$. So $\sharp \langle W, \partial W \rangle \subseteq \sharp \mathscr{A}(W)$. And if $W_1,\ W_2 \in \mathscr{A}(W)$, $Int\ W_1 \cong Int\ W_2$ so W_1 is boundary h-cobordant to W_2 by Proposition 1 and $\partial W_1 \cong \partial W_2$. Hence $W_1,\ W_2 \in \langle W, \partial W \rangle$ and $\mathscr{A}(W) = \langle (W, \partial W) \rangle$. Since $\sharp \mathscr{A}(W) = \sharp (I[\partial W]/I[W, \partial W])$, by Lemma 3

$$\# \mathscr{A}(W) = \# I[\partial W]$$
 if $ker i_* = 0$

and $I[W, \partial W: id] = I[W, \partial W]$.

THEOREM 3. Let M^n be a closed n-manifold $(n \ge 5)$ and let $G = \{ \tau \in Wh(\pi_1(M \times S^1)) | \text{ if } A = (a_{ij}) \in GL(p, Z\pi_1(M \times S^1)) \text{ is a representative of } \tau, a_{ij} \in Z\pi_1(M) \otimes \{1\} \}$. Then there is a homomorphism ϕ of I[M] onto $G/(I[M \times S^1] \cap G)$ with $\ker \phi \supset \{\omega \in I[M] | \omega + (-1)^n \overline{\omega} = 0 \}$.

COROLLARY. If M^n is a closed n-manifold ($n \ge 5$ and odd) with $\pi_1(M)$ = finite abelian, $G \subset I[M \times S^1]$.

PROOF. If M satisfies all conditions, for any $\tau \in Wh(\pi_1(M))$ $\tau + (-1)^n \overline{\tau} = 0$ by [4]. So $\{\tau \in I[M] | \tau + (-1)^n \overline{\tau} = 0\} = I[M] \subset \ker \phi$. Hence $G/(I[M \times S^1] \cap G) = 0$ by Theorem 3.

PROOF OF THEOREM 3. Let U be an h-cobordism from M to itself.

Then $Int\ U\cong M\times R$ and so U is boundary h-cobordant to $M\times I$ by Proposition 1 i.e. $(M\times I;M,M)\cong (V_1\cup U\cup V_2;M,M)$ for some h-cobordisms $(V_1;M,M),\ (V_2;M,M)$. Let $(\widetilde{W};V_1\cup U\cup V_2,M\times I)$ be a trivial h-cobordism. Then $(W;U,M\times I)$ is an h-cobordism between U and $M\times I$ where

Fig. 3

 $\partial W \cong \partial \widetilde{W}$. Let $\omega_1 = \tau(V_1, M)$, $\omega_2 = \tau(V_2, M)$ and let $(V_1'; M, M)$, $(V_2'; M, M)$ be h-cobordisms with $\tau(V_1', M) = -\omega_1$, $\tau(V_2', M) = -\omega_2$. Then $V_1 \cup V_1'$ and $V_2 \cup V_2'$ are both trivial h-cobordism and so there are trivial h-cobordisms W_1, W_2 between $V_1 \cup V_1', V_2 \cup V_2'$ and $M \times I$. Therefore $V_1' \cup U \cup V_2'$ is h-cobordant to $M \times I$ by the h-cobordism $W_1 \cup W \cup W_2$ such that

 $\partial(V_1'\cup U\cup V_2')\cong M\times S^0$ is trivially h-cobordant to $M\times S^0$ by the same $W_1\cup W\cup W_2$. Let $X=(M\times I\times J)\cup (W_1\cup W\cup W_2)$ by identifying $M\times (0)\times (t)\sim M\times (t)\subset \text{``free''}$ part of $\partial W_1,\ M\times \{1\}\times \{t\}\sim M\times \{t\}\subset \text{``free''}$ part of ∂W_2 . Then X is an h-cobordism from $M\times S^1$. So there is a map

$$\widetilde{\phi}: I[M] \to Wh(\pi_1(M \times S^1))$$

defined by

$$\overline{\phi}(\tau) = \tau(X, M \times S^1)$$
 where $\tau = \tau(U, M)$.

Let $(\widetilde{U}; M, M)$ be an h-cobordism with $\tau(\widetilde{U}; M) = \widetilde{\tau} \neq \tau \in I[M]$. Then

 $U \not\cong \widetilde{U}. \quad \text{And let } \widetilde{V}_1', \widetilde{V}_2' \text{ be the corresponding h-cobordism for } \widetilde{U} \text{ as above.} \\ \text{If } (\widetilde{V}_1' \cup \widetilde{U} \cup \widetilde{V}_2') \cup M \times I \times \{1\} \neq (V_1' \cup U \cup V_2') \cup (M \times I \times \{1\}), \ \tau(\widetilde{X}, M \times S^1) \neq \tau(X, M \times S^1). \\ \text{But if } (\widetilde{V}_1' \cup U \cup \widetilde{V}_2') \cup (M \times I \times \{1\}) \cong (V_1' \cup U \cup V_2') \cup (M \times I \times \{1\}), \ \text{I don't know whether } \tau(\widetilde{X}, M \times S^1) = \tau(X, M \times S^1) \text{ or not.} \\ \text{So we define a map } \phi \colon I[M] \rightarrow Wh(\pi_1(M \times S^1))/I[M \times S^1] \text{ by } \phi(\tau) = [\tau(X, M \times S^1)]. \\ \text{Then } \phi \text{ is well defined.} \\ \text{And since } M \times I \times J \cup N(M \times 3I, W_1 \cup W \cup W_2) \subset X \text{ is homeomorphic to } M \times S^1 \times J \text{ where } M \times 3I = (M \times I) \cup (M \times I) \cup (M \times I) \cup \partial(W_1 \cup W \cup W_2) \\ \text{U} W_2) \text{ and } N(M \times 3I, W_1 \cup W \cup W_2) \text{ is a regular neighborhood of } M \times 3I \text{ in } W_1 \cup W \cup W_2, \text{ we may consider that } X \text{ is constructed from } M \times S^1 \times J \text{ by attaching handles on } M \times I \times \{1\} \subset M \times S^1 \times \{1\}. \\ \text{So if } A = (a_{ij}) \in GL(p, Z\pi_1(M \times S^1)) \text{ is a representation of } \tau(X, M \times S^1), \ a_{ij} \in Z\pi_1(M) \otimes \{1\}. \\ \text{Hence } Im \ \phi \subset G/(I[M \times S^1] \cap G). \\ \text{Now we will show } \phi \text{ surjective. Let } [\omega] \text{ be an element of } G/(I[M \times S^1] \cap G) \text{ such that } \omega = \tau(X, M \times S^1). \\ \text{Since a representative } A = (a_{ij}) \text{ of } \omega \text{ in } GL(p, Z\pi_1(M \times S^1)) \text{ has a form } a_{ij} \in Z\pi_1(M) \otimes \{1\}, \text{ we may assume}$

$$X = (M \times S^1 \times J) \cup \{handles\}$$
$$= (M \times I_1 \times J) \cup (M \times I_2 \times J) \cup \{handles\}$$

so that all handles do not attach one of $M \times I \times J'_s$, say $M \times I_1 \times J$ [4]. Let $U = \partial X - (M \times S^1 \times \{0\} \cup M \times I_1 \times \{1\})$. Then U is an h-cobordism between M. So there is an element $\tau(U, M) \in I[M]$ such that $\phi(\tau(U, M)) = [\omega]$. Now let ω be an element of I[M] such that $\omega + (-1)^n \overline{\omega} = 0$. Then $U \cup \overline{U} \cong M \times I$ where $\tau(U, M) = \omega$ and $\tau(\overline{U}, M) = (-1)^n \overline{\omega}$. So $((U \cup \overline{U}) \times J) \cup (M \times I \times J) \cong M \times S^1 \times J$. Hence $\phi(\omega) = 0$ and so $\ker \phi \supset \{\omega \in I[M] | \omega + (-1)^n \overline{\omega} = 0\}$.

Now, suppose R and R' are rings which are also algebras over the commutative ring A, and let C be a free R-complex with a preferred basis, and C' a free R' complex with a preferred basis. Then $C \otimes_A C'$ is a free $R \otimes_A R'$ compelx with a preferred basis.

We obtain the following proposition by [4. § 3].

PROPOSITION 5. Let C be a free R-complex with a preferred basis, and C' a free R'-complex with a preferred basis. Then if $H_*(C)$ and $H_*(C')$ are both free, so is $H_*(C \otimes_A C')$ and $\tau(C \otimes_A C') = \tau(C \otimes B) + \tau(C \otimes B') + \tau(\mathscr{L})$ where B and B' are R'-complexes such that

$$B: 0 \to C'_n \to C'_{n-1} \to \cdots \to C'_{p+1} \to 0$$

$$B': 0 \to C'_p \to C'_{p-1} \to \cdots \to C'_0 \to 0$$

for any p when

$$0 \to C'_n \to C'_{n-1} \to \cdots \to C'_p \to C'_{p-1} \to \cdots \to C'_0 \to 0$$

is a chain complex C' and where \mathscr{L} is an $R \otimes_A R'$ complex $H_m(C \otimes B) \rightarrow H_m(C \otimes C') \rightarrow H_m(C \otimes B') \rightarrow H_{m-1}(C \otimes B) \rightarrow \cdots \rightarrow H_0(C \otimes B') \rightarrow 0$ induced by the short exact sequence

$$0 \rightarrow C \otimes B \rightarrow C \otimes C' \rightarrow C \otimes B' \rightarrow 0$$
.

COROLLARY. If M is a manifold such that $H_*(\widetilde{M})$ is free $Z_{\pi_1}(M)$ -module where \widetilde{M} is a universal covering space, $\tau(M \times S^1) (\stackrel{\text{def}}{=} \tau(c(\widetilde{M} \times S^1))) \in Wh(\pi_1(M \times S^1))$ is equal to $\tau(c(\widetilde{M})) + \tau(\mathscr{L})$, where \mathscr{L} is a $Z_{\pi_1}(M) \otimes_{\mathbb{Z}} Z_{\pi_1}(S^1)$ complex

$$H_{m}(c(\widetilde{M}) \otimes c_{1}(\widetilde{S}^{1})) \to H_{m}(c(\widetilde{M}) \otimes c(\widetilde{S}^{1})) \to H_{m}(c(\widetilde{M}) \otimes c_{0}(\widetilde{S}^{1}))$$
$$\to \cdots \to H_{0}(c(\widetilde{M}) \otimes c_{0}(\widetilde{S}^{1})) \to 0.$$

PROOF. By Proposition 5

$$egin{aligned} & auig(c(\widetilde{m{M}})ig\otimes c(\widetilde{S}^1)ig) \ &= auig(c(\widetilde{m{M}})ig\otimes c_1(S^1)ig) + auig(c(\widetilde{m{M}})ig\otimes c_0(\widetilde{S}^1)ig) + au(\mathscr{L}) \ &= m{\chi}ig(c_1(\widetilde{S}^1)ig) auig(c(\widetilde{m{M}})ig) + m{\chi}ig(c_0(\widetilde{S}^1)ig) auig(c(\widetilde{m{M}})ig) + au(\mathscr{L}) \ &= m{\chi}ig(c(\widetilde{S}^1)ig) auig(c(\widetilde{m{M}})ig) + au(\mathscr{L}) \end{aligned}$$

where $\chi(c(\widetilde{S}^1))$ is the euler characteristic as $Z\pi_1(S^1)$ -complex. Since $\widetilde{S}^1 = \widetilde{R}^1$, $\chi(c(\widetilde{S}^1)) = 1$. Hence $\tau(c(\widetilde{M}) \otimes c(\widetilde{S}^1)) = \tau(c(\widetilde{M})) + \tau(\mathscr{M})$. And since $\widetilde{M} \times \widetilde{S}^1$, we obtain the result.

Hokkaido University .

References

- [1] L. C. GLASER: Geometrical combinatorial topology Vol. II. van Nostrand Reinhold Math. Studies.
- [2] M. KATO: Geometrical operation of Whitehead groups, J. Math. Soc. Japan, Vol. 21 (4) 1969 pp 523-542.
- [3] KYUNG WHAN KWUN and R. H. SZCZARBA: Product and sum theorems for Whitehead torsion, Ann. Math., Vol. 82 (1965)pp 183-190.
- [4] J. MILNOR: Whitehead torsion, Bull. Amer. Math. Soc., Vol. 72 (3) 1966 pp 358-
- [5] L. C. SIEBENMANN: The obstruction to finding a boundary for an open mani-

fold of dimension greater than five. ph. D. Thesis, Princeton Univ. (1965).

[6] J. R. STALLINGS: Lectures on polyhedral topology, Tata Inst. Fund. Research,
Bombay (1968).

(Received February 9, 1974) (Revised March 25, 1974)