Examples of the manifolds £—1((Q)n S2n+1,
f(Z)=Z§0+Z{1 4+ Zym

By Yoshifumi ANDO

Consider the polynomials f(2)=Z5+Z{i+ - +Z% a,22, 2,€C(i=0, 1, 2,
---,n) and closed differentiable manifolds of dim (22—1), K,=£"'(0)NS**,
where S™*! denotes the unit sphere in €. The purpose of this paper
is to give examples which shows what manifolds K, are when (ay, a, -,
a,)=(2,2,-,2,p,q9), q=0(p) and n=3. This paper is a continuation of [1],
so we will use the same notations as them in [I]. Let g=0(p) be satisfied.
Then K., a'=(2,2,---,2,p,9—1) is a homotopy sphere which is denoted by
2 in the sequel if and only if 7 is odd or both p and ¢g—1 are odd in
case of n being even. This is an easy consequence of [3,§14]. In the
sequel we assume that a and a' are as stated above. Unless otherwise
stated, a manifold means a smooth manifold.

THEOREM 1. Let n=3 and q=0(p).

(1) If n is odd, then K, is diffeomorphic to (S*'x S"), #(S*!'xS"), &
B (S*Ix S, 82 when p is odd or both p and qlp are even, and to
OD(r ) 8- 8 0D(t ) # ("7 XS pppir § - 8 (S" % S™),-1 § 2 when p is even
and qlp is odd.

(ii) If n is even, p=3, and q=0(6), then K, is diffeomorphic to (S"*
XS ES xS EDS.

At first we consider ths case when n is odd. Let F, be a fiber of
Milnor fibering associated to the polynomial f and F, the closure of F, in

v
S+ [5]. Now we recall the exact esquence 0—H,(K,~H, (F,)—H,(F,,
0
Ka)'_) n—l(Ka)"’O-

To know the modules H,(K,) and H,_,(K,) we must examine the matrix

U=A—'A, Aycoereneenes A

T WO —A, A—tA)
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, where A =/1 ) R 1\ and degree of A is (¢—1)

[1, Theorem 1. 6]. Let E be a unit matrix, S=(1, —1, O ,

O Ty,
1/

C=(1, 1. O , D=(0, 1. O and degrees
O TS O "o, 1

—1,0,—1, 0 —1,e e, —1, —1
of them are (¢—1). Then

E, —L. O S, O ¥=[{C-D, E-C.. O
0 o |
» ' .é;

E
Since C—D=E, this matrix is [E, —D O . Hence,

E...... O E,~D, O \=(E ~D. 0
O .-E, O O 'E’ ._'_D O E, '—'D,

p-1

—D, ~(D+D*..., =S, EJ\D, D,....D, C 0,C+ 5D
d1 &

Since H,(F,) is a free module and provided with a canonical basis a0y, Xy,

5 ®p-na-n [, §1], we can represent an element x of H,(F,) by an integer

vector (xy, &z, -+, x,.,), where each x; is a (g—1) tuple of integers, (zy, Zis,

4, Tyy). Then a vector . so that ¥*x=0 satisfies the equations ‘z,= D"z,
»-1

‘=Dz, -, 'z, ,=D'x,., and (C+ ZIY) ‘z,.1=0. It follows from the
=2

direct computations that
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D=/ Lo \1

and therefore

p-1

ol 3 o T T P P g—1
i=2

(.),.-.-1’... .................. ’_..1,___1, Q q_p+2

\ () ........ '.'.‘0, '_'_'1", ................... ,°'_'-1";.1_;'-(')) g—1

n-—-1
Since g—p=0(p), all vectors .xr,_, which satisfy (C +]Z D") tx, =0 are
i=2
generated, for example, by vectors zj,_,=(0,:--,0,1,0:--0, —1; 0,---,0,1,0--+
2 \= ()_71()..‘...()1.()....; 0—10++---- 010+

\”C;;l \Q-++-- ()1() ..... 0—1 % 0e-ee ()1() 0—1:

ooooo

10 0-10 0
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0,—1; -5 0,---,0,1,0---0) where (jp+i)—th components are 1 and (j+1)p
—th components are —1 (j=0,1,2,--- and i=1,2, ---,p—1). By direct
computations we have (*).

Let « be a map; H, (F,)—1,_,(SO,) in [1, (1. 6)].

PropOSITON 2. Let n=3. If n is odd, then H, ,(K,)=H,(K)=Z®
@ Z (p—1) sum of Z) and the module Ker ¥ is generated by the above
elements (%, x%, -+, z%_,) (=1, 2, ---, p—1). Moreover a((zt, zi, ---, 25_,)) is
equal to i(p—1) (g/p) modulo 2. If n is even, p=3 and q=0(6), then
H,(K,)=H, ,(K)=Z® Z.

(PrROOF) We have already proved the first part. By [7, Lemma 2]

a((xi:’ ‘1"59 Y x§)~l>>

= jZ‘] Xy +(xt, 23, -, 2k ) [A—E, Ao A\ (txt
. ¢
A—-E . Ly
O .... .11 E
A=E) \'z).,
=) xAlx (2).
iTk

By using (1), (2) and (3),
- o ])—1- .
DX Axl = Yt Alxl
Jsk Jj=1

5 alp){p(p—1)—ili— )= (p—i) (p—i—1)}
=(q/p) ({)(p—1)
=(q/p) (i) (p—1) (2). |

(1) xjA'zxi=xi,,Axi,,. This follows from the fact that :DAD=A.

(2) :Cf,._l ‘A=(1,1,---,1,0,---,0; 1,1,---,1,0,+--,0; ---; 1,1,---, 1,0, ---,
0), where (jp+%)—th components are 1 when 1<k=<i: and 0 when i<k=Z
p(7j=0,1,2,--)

(3) It is easily shown using (*) that if i<p—i, then zjA ‘2, is
equal to —g/p when j<i, 0 when i<j<p—i—1 and g/p when p—i<j=<
p—1, and that if i>p—i, then x}A’xl_, is equal to —g/p when j<p—i
—1, 0 when p—i<;j<i and g/p when <.

In case of n being odd the matrix is transformed into O 00

ll

...................

by a unimodular integer matrix. (Q.E.D) E : O
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ProOF oF THEOREM 1. Consider the two manifolds F, and F,,. The
F, is constructed as follows. We take a 2n-disk D*", embeddings ¢,: 0D;}
s D"—>9D?. Then we attach n-handles D} x D" to D using ¢, and round
the corners. The attaching maps ¢; (i=1,2, -+-,(p—1)(g—1)) are determined
in [1, Theorem 1. 6]. It follows from Theorem A in that F, is con-
structed from F,, by attaching (p—1) n-handles on the boundary 9F,. By
removing the interior of F,, from F, we have a manifold N with N =
(— K,)U K, which is diffeomorphic to (K, x I)U(the above (p—1) n-handles).
Since ¢=0(p) and 7 odd, K, is a homotopy sphere 2. Therefore we have
a diffeomorphism d: S ?>S""% so that 3 is diffeomorphic to D*'U

a

D', We embed the interval I=[0, 1] smoothly in N so that INdN=1I
and the embedded path intersects transversely with dN. Then we remove
its open tubular neighbourhood which is diffeomorphic to D»1xI. Then
we attach D*'x I again to N—L* 'xI by the diffeomorphism dxid of
oD*»'x ] We denote this manifold by M'. It is clear that dM'=—(2%
(—Z)UK,#(—2). Since T#(—2) is a standard sphere, we finally have
a manifold M by attaching a 2n-disk on X §(—2) to M'. From the con-
struction we know that M comes from D by attaching (p—1) n-handles.
Here we take another handle decomposition of M by representing each
generator (zf, z%, ---, 25_;) of H,(K,) by an embedded sphere in M which
intersects transversely with other embedded spheres. On the other hand

we have an exact sequence 0—H,(K,)—H,(M)>H,(M, Ka)i 1K )—0.
Since H,(K.)=H, (K)=H,(M)=H,(M, K,)ZZ®--®Z (p—1 sum of Z),
the homomorphism, H,(M)—H,(M, K,) is a zero mpa. Hence the intersec-
tion pairing of H,(M) is a zero bilinéar form. It follows from that M
is diffeomorphic to T\ ¥ T, %---# T, where T, is D"xS™ or D(cg,) accord-
ing as a((xf, 2%, -+, 25_1))=0 or 1. By proposition 2, the number of {7}
so that a((zf, xf, -, 25_1))=1 is equal to p/2 when p is even and g/p odd.
In other cases its number is O.

Now we proceed to the case when 7 is even. Similarly we can con-
struct a manifold M so that it comes from D* by attaching two zn-handles
and that M =K,. Since ¢=0(6), we again have an exact sequence 0—

0
H,(K,)->H,(M)>H,(M, K,)>H,_ ,(K,—~0, where these modules are iso-
morphic to Z@Z. Hence the intersection pairing is a zero quadratic form.

And the attaching maps of the two #n-handles corresponds to the trivial
element of I7,_,(S0O,) [4, p.51].

Hokkaido University



(1]
(2]
[3]
[4]
[5]
[61]

[7]

Examples of the manifolds f-1(0)NS2n+1, f(Z)=Zy '+ Z3 44 Zy" 195

References

Y. ANDO: A relation between the fibers of Milnor fiberings associated to poly-
nomials f(Z)=Z%+---+Za», Hokkaido Math. Journal, 2 (1973), 252-258.

E. BRIESKORN; Beispiele zur Differential topologie von Singularititen, Inven-
tions Math., 2 (1966), 1-14.

F. HIRZEBRUCH and K. H. MAYER: O(n)}-Mannigfaltigkeiten, exotische Sphéren
und Singularititen, Springer-Verlag, Berlin, 1968.

J. MILNOR: A procedure for killing the homotopy groups of differentiable
manifolds, Symposia in pure Math. A. M. S., Vol. III (1961), 39-55.

J. MILNOR: Singular points of complex hypersurfaces, Annals of Mathematics
Studies, Princeton University Press, 1968.

F. PHAM: Formules de Picard-Lefshetz généralisées et ramifications des inte-
grales, Bull. Soc. Math. France, 93 (1965), 333-367.

C.T.C. WALL: Classification of (#—1) connected 2#-manifolds, Annals of Math,,
75 (1962), No. 1, 163-189.

(Received November 8, 1973)



	THEOREM 1. ...
	References

