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0. Introduction

Let A be a weak_{-}^{*Dirich}1et algebra of L^{\infty}(m) which was introduced
by Srinivasan and Wang [7]. Let H^{\infty}(m) denote the weak_{-}^{*c}1osure of A
in L^{\infty}(m) . Suppose there exists at least one positive nonconstant function
v in L^{1}(m) such that the measure vdm is multiplicative on A. Then
Merrill [4] characterizes the classical space H^{\infty}(d\theta) by invariant subspaces
of H^{\infty}(m) or the maximality of H^{\infty}(m) as a weak_{-}^{*c}1osed subalgebra of
L^{\infty}(m) . In section 1 we characterize H^{\infty}(d\theta d\phi), which is certain weak-*
Dirichlet algebra on the torus, by invariant subspaces of H^{\infty}(m) . We need
not assume the existence of the above v. Then, in some special case,

Muhly [6] shows that H^{\infty}(m) is a maximal weak_{-}^{*c}1osed subalgebra of
L^{\infty}(m) . But in general, H^{\infty}(m) is not maximal and so there exist weak-*
closed subalgebras of L^{\infty}(m) which contain H^{\infty}(m) properly. In section 2
we construct some typical subalgebra in such subalgebras and we determine
forms of all weak_{-}^{*c}1osed subalgebras which contain this subalgebra. This
is applied to determine forms of all subalgebras which contain H^{\infty}(d\theta d\theta) .

Recall that by definition a weak_{-}^{*Dirich}1et algebra is an algebra A of
essentially bounded measurable functions on a probability measure space
(X, \mathfrak{M}, m) such that (i) the constant functions lie in A;(ii)A+\overline{A} is weak-*
dense in L^{\infty}(m) (the bar denotes conjugation, here and always); (iii) for all

f and g in A, !fgdm=(.|fdm)(!gdm) . The abstract Hardy spaces H^{p}(m),
1\leq p\leq\infty , associated with A are defined as follows. For 1\leq p<\infty , H^{p}(m)

is the L^{p}(m)-closure of A, while H^{\infty}(m) is defined to the weak_{-}^{*c}1osure of
A in L^{\infty}(m) . For 1\leq p\leq\infty , H_{0}^{p}=\{f\in H^{p}(m):.\uparrow fdm=0\} . For any subset
M\subseteq L^{\infty}(m), denote by [M]_{2} the L^{2}(m)-closure of M. A closed subspace
M of L^{p}(m) is called B invariant if f\in M and g\in B imply that fg\in M,

where B is a subalgebra of L^{\infty}(m) . In particular, if B=L^{\infty}(m), M is called
doubly-invariant. For any measurable subset E of X, the function \chi_{E} is
the characteristic function of E. If f\in L^{p}(m), write E_{f} for the support set
of f and write \chi_{f} for the characteristic function of E_{f} .

We use the following result.
(a) If M is a weak- cl*osed A-invariant subspace of L^{\infty}(m), then M=
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[M]_{2}\cap L^{\infty}(m) .
For weak_{-}^{*Dirich}1et algebras this has never published, but the proof

is easy if we use the logmodularity of H^{\infty}(m) .

1. Characterization of H^{\infty}(d\theta d\phi)

Let A be the algebra of continuous, complex-valued functions on the
torus T^{2}=\{(z, w):|z|=|w|=1\} which are uniform limits of polynomials in
z^{n}w^{m} where

(n, m)\in\Gamma=\{(n, m):m>0\}\cup\{(n, 0): n\geq 0\}(

Denoting the normalized Haar measure on T^{2} by d\theta d\phi, then A is a weak-*
Dirichlet algebra of L^{\infty}(d\theta d\phi). Recall H^{\infty}(d\theta d\phi) is the weak_{-}^{*c}1osure of
A in L^{\infty}(d\theta d\phi) .

In general, let A be a weak_{-}^{*Dirich}1et algebra of L^{\infty}(m) . Suppose
there exists at least one positive nonconstant function v in L^{1}(m) such that
for all f and g in A, !fgvdm=(.|fvdm)(.\backslash \cdot gvdm) . Then by the logmodu-
larity of H^{\infty}(m), H_{0}^{\infty}=ZH^{\infty}(m) for some inner function Z in H^{\infty}(m), where
a function f\in H^{\infty}(m) is called inner if |f|=1a.e. .

In [4] Merrill obtains the following result for the characterization of
the classical space H^{\infty}(d\theta) .

(b) The following properties for H^{\infty}(m) are equivalent.
(1) H^{\infty}(m) is isomorphic to the classical space H^{\infty}(d\theta) .
(2) Every nonzero weak_{-}^{*}closed A-invariant subspace of H^{\infty}(m) has

the form
M=FH^{\infty}(m)

where F is an inner function in M.
(3) H^{\infty}(m) is a maximal weak- cl*osed subalgebra of L^{\infty}(m) .
In this section we characterize H^{\infty}(d\theta d\phi) which is not a maximal

weak-*Dirichlet algebra [4]. Let J^{\infty} be the weak_{-}^{*c}1osure of \bigcup_{n=0}^{\infty}\overline{Z}^{n}H^{\infty}(m)

and let I^{\infty} be\bigcap_{n=0}^{\infty}Z^{n}H_{0}^{\infty} .
THEOREM 1. (1) J^{\infty} is the minimum weak- cl*osed subalgebra of L^{\infty}(m)

which contains H^{\infty}(m) properly. (2) I^{\infty} is the maximal weak- cl*osed ideal
of J^{\infty} in H^{\infty}(m) .

PROOF. First, we shall show that if B is a weak_{-}^{*c}1osed subalgebra
of L^{\infty}(m) such that B_{\neq}\supset H^{\infty}(m), then B\supseteq J^{\infty}- If m is multiplicative on B,
then \overline{B} is orthogonal to H_{0}^{\infty} and hence B\subseteq H^{2}(m)[7, p226] and hence
B\subseteq H^{2}(m)\cap L^{\infty}(m)=H^{\infty}(m) by (a) in Introduction. This contradicts to
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B_{\neq}^{\supset}H^{\infty}(m) . If m is not multiplicative on B, the function Z has the inverse
in B. For, if not, there exists a complex homomorphism \phi on B such
that \phi(Z)=0 . Then ker \phi\supseteq H_{0}^{\infty}=ZH^{\infty}(m) . If \phi is restricted to H^{\infty}(m),
then ker \phi=H_{0}^{\infty}. so by the logmodularity, the unique representing measure
of \phi is m. This contradicts that m is not multiplicative on B. Thus B is
the weak_{-}^{*c}1osed subalgebra of L^{\infty}(m) that contains \overline{Z} and H^{\infty}(m), so B\supseteq

J^{\infty}- This proves (1).
Now if K is the weak_{-}^{*c}1osed ideal of J^{\infty} such that I^{\infty}\subseteq K\subseteq H^{\infty}(m),

since both Z and \overline{\tilde{Z}}, is in J^{\infty}
- the subalgebra K=ZK. Thus K \subseteq\bigcap_{n=1}^{\infty}Z^{n}H^{\infty}(m)

=I^{\infty} . It is known [5] that I^{\infty} is the ideal of J^{\infty} . This proves (2).
Denote by \mathscr{A}_{-}^{p}’(1\leq p\leq\infty) the closure in L^{p}(m) (weak_{-}^{*c}1osure for p=\infty )

of polynomials in Z.
\cdot

Denote by \mathscr{L}^{p}(1\leq p\leq\infty) the closure in L^{p}(m) (weak-*
closure for p=\infty ) of polynomials in Z and \overline{Z}. Let I^{p} be the closure of
I^{\infty} in L^{p}(m) and 1et.\mathscr{I}^{p} be the closure of I^{p}+\overline{I}^{p} in L^{p}(m) and let J^{p} be
the closure of J^{\infty} in L^{p}(m) . The following result is known [4, Lemma 5].

(c) If 1\leq p\leq\infty , then
H^{p}(m)=\mathscr{F}^{p}+I^{p} , L^{p}(m)=\mathscr{L}^{p}+\mathscr{I}^{p}

J^{p}=\mathscr{L}_{-}^{p}+I^{p}

where+denotes algebraic direct sum and if p=2, each decomposition is
orthogonal.

If 1<p<\infty , we can show easily that L^{p}(m)=J^{p}+\overline{I}^{p} .
The following result is known, too [3].

(d) For 1\leq p\leq\infty , there exists an isometric^{*}-isomorphism (i.e. , taking
complex conjugates into complex conjugates) betwem L^{p}(d\theta) of the disc and
\mathscr{L}^{p} in L^{p}(m), whcih maps the classical space H^{p}(d\theta) onto {?}^{p} in H^{p}(m) .

We can prove the following results (e) and (f). The proofs are almost
parallel to those of (c) and (d). Suppose there exists a nontrivial inner
function W in I^{\infty} . Denote by H^{p}(1\leq p\leq\infty) the closure in L^{p}(m) (weak-*
closure for p=\infty ) of polynomials in Z^{n}W^{m} where (n, m)\in\Gamma- Then H^{p}

is a subspace (subalgebra for p=\infty ) of H^{p}(m) by ZI^{p}=I^{p} which (2) in
theorem 1 shows. Denote by L^{p}(1<p<\infty) the closure in L^{p}(dm) (weak-*
closure for p=\infty ) of polynomials in Z,\overline{Z}, W and \overline{W} . Let

S^{p}= \{f\in H^{p}(m):\int Z^{n}\overline{W}^{m}fdm=0 , (n, m)\in\Gamma\} .
Denote by \mathscr{S}^{p} the closure of S^{p}+S^{p} in L^{p}(m) (weak_{-}^{*c}1osure for p=\infty ).

(e) For 1\leq p\leq\infty , there exists an isometirc*-isomorphism betwem
L^{p}(d\theta d\phi) of the torus and L^{p}, which map H^{p}(d\theta d\phi) onto H^{p} .
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(f) If 1\leq p\leq\infty , then

Hp\{dm)=H^{p}+S^{p}, L^{p}(dm)=L^{p}+\mathscr{S}^{p}

where+dmotes algebraic direct sum and if p=2, each decomposition is
orthogonal.

Lemma 1. Suppose I^{\infty}=WJ^{\infty} for some inner function W in I^{\infty} . Thm
S^{\infty} is a weak- cl*osed J^{\infty}-invariant subspace of H^{\infty}(m) such that S^{\infty}=WS^{\infty}-

PROOF. By the above remark (c) and I^{\infty}=WJ^{\infty} , I^{2}\ominus WI^{2}=W\mathscr{L}^{2}, where
\ominus is orthogonal complement. Denote S=F - \sum_{f=1}^{\infty}W^{f}\mathscr{L}^{2}. then S= \bigcap_{f=1}W^{f}I^{2}\infty

and I^{2}=S+ \sum_{f=1}^{\infty}W^{f}\mathscr{L}^{2} . The proof of WS=S is the same as [1, p109] and

S is a J^{\infty}-invariant subspace of H^{2}(m) by that S=\cap W^{f}I^{2} and I^{2} is a J^{\infty}-

invariant subspace by (2) of theorem 1. The proof f=1ofS=S^{2} is trivial. By
the definition, S^{\infty}=S^{2}\cap L^{\infty}(m) and hence S^{\infty}=WS^{\infty} and S^{\infty} is a J^{\infty}-in-
variant subspace.

THEOREM 2. The following properties for H^{\infty}(m) are equivalent.
(1) H^{\infty}(m) is isomorphic to H^{\infty}(d\theta d\phi) .
(2) (a) J^{\infty} has no doubly invariant subspace, (b) every nonzero weak-*

closed J^{\infty}-invariant subspace M of H^{\infty}(m) has the form
M=\chi_{E}FJ^{\infty}

where \chi_{E} is a characteristic function in J^{\infty} and F is a unimodular function.
PROOF. (1)\Rightarrow(2) . If M is a J^{\infty}-invariant subspace, then \overline{Z}M\subset M and

so M is a sesqui-invariant subspace [5]. So by [5, p473] , M=\chi_{E}FJ^{\infty} where
\chi_{E} is a characteristic function in \mathscr{L}^{\infty} and F is a unimodular function. But
we can show easily that for any characteristic function \chi_{E} , \chi_{E}\in J^{\infty} if and
only if \chi_{E}\in \mathscr{L}^{\infty} . This proves (2). (2)\Rightarrow(1) . By the hypothesis of (b) in (2),
we can write I^{\infty}=\chi_{E}WJ^{\infty}\eta

, where \chi_{E}\in J^{\infty} and W is a unimodular function.
If m(E)<1 , by the remark (c), J^{\infty} must have some doubly invariant sub-
space. So we can write I^{\infty}=WJ^{\infty} with W in I^{\infty} . For this inner function
W, S^{\infty} is a weak_{-}^{*c}1osed J^{\infty}-invariant subspace of H^{\infty}(m) and S^{\infty}=WS^{\infty}

by Lemma 1. If S^{\infty}\neq\{0\rangle , by the hypothesis of (b) in (2), we can write
S^{\infty}=\chi_{E}FJ^{\infty} where \chi_{E}\in J^{\infty} and F is a unimodular function. By that \chi_{E}F\in

\chi_{E}FJ^{\infty} and \overline{W}S^{\infty}=S^{\infty} , the function \chi_{E}F\overline{W} is in \chi_{E}FJ^{\infty} and hence there
exists some function g in J^{\infty} such that \chi_{E^{=}}\chi_{E}Wg . From W\in I^{\infty}, it fol-
lows that \chi_{E}Wg\in I^{\infty} and hence \chi_{E}\in I^{\infty}- This shows that \chi_{E}=0 by \chi_{E}\in J^{\infty}

and hence S^{\infty}=\{0\} . By the remark (f), H^{\infty}(m)=H^{\infty} and by the remark
(e), this proves (1).
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H^{\infty}(d\theta d\phi) is not maximal as a weak_{-*c}1osed subalgebra of L^{\infty}(dd\phi).
So it is impossible to characterize H^{\infty}(d\theta d\phi) by the maximality. One
question that arises is: is it possible to characterize H^{\infty}(ffid\phi) by subal-
gebras of L^{\infty}(m) which contain it? In the next section we shall answer
this.

2. Subalgebras which contain H^{\infty}(m)

Let A be a weak_{-}^{*Dirich}1et algebra of L^{\infty}(m) . We need not always
the assumption such that there exists a positive nonconstant function v in
L^{1}(m) such that the measure vdm is multiplicative on A.

Muhly [6] show that H^{\infty}(m) is a maximal weak_{-}^{*c}1osed subalgebra of
L^{\infty}(m) if and only if no nonzero function in H^{\infty}(m) can vanish on a set
of positive measure. If V is a weak_{-}^{*c}1osed subalgebra which is generated
by H^{\infty}(m) and \chi_{f} for all f\in H^{\infty}(m), then the subalgebra V contains H^{\infty}(m\rangle

and \chi_{f}\in V for every f\in H^{\infty}(m) . We determine forms of all subalgebras
which contain V.

THEOREM 3. Let V be a weak- cl*osed subalgebra of L^{\infty}(m) which
contains H^{\infty}(m) . The following are equivalent.

(1) \chi,\in V for every f\in V.
(2) \chi_{f}\in V for every f\in H^{\infty}(m) .
(3) Each weak- cl*osed subalgebra B of L^{\infty}(m) that contains V has the

form
B=\chi_{E}V+\chi_{E}cL^{\infty}(m)

for some \chi_{E}\in V.
PROOF. (1)\Rightarrow(2) trivial.
(2)\Rightarrow(3) . Let K be an orthogonal complement of B in L^{2}(m) . We

may assume K\neq\{0\} . Let E be the support set of K, then \chi_{E}\in V. For
since B contains H^{\infty}(m), the set K\subseteq\overline{H}_{0}^{2}[7, p226] . For each f in H^{2}(m),
there exists a function g in H^{\infty}(m) such that \chi_{f^{=}}\chi_{g}[6] . So if f in K,
then \chi_{f^{=}}\chi_{f}\in V by the hypothesis of (2). If f and g in K, let F=E_{f}\backslash E_{g} ,
then \chi_{F}\in V. Since \chi_{F}B\subseteq B, we can show \chi_{F}K\subseteq K and hence h=g+\chi_{F}f

is in K. So if f, g\in K, there exists h\in K with E_{h}=E_{f}\cup E_{g} . This shows
that there exists a function f in K such that E_{f}=E and hence \chi_{E}\in V.
Since \chi_{E}cK=\{0\} and \chi_{E}\in V, we can get B\supseteq\chi_{E}V+\chi_{E}cL^{\infty}(m) and \chi_{E}V+

\chi_{E}cL^{\infty}(m) is a weak_{-}^{*c}1osed subalgebra.
We shall show B=\chi_{E}V+\chi_{E}cL^{\infty}(m) . Suppose B\neq\chi_{E}V+\chi_{E}cL^{\infty}(m) . Just

as Muhly [6], there exists a nonconstant unimodular function q and \overline{q} in
B such that \overline{q}\not\in\chi_{E}V+\chi_{E}cL^{\infty}(m) . Then \chi_{E\overline{q}\not\in}\chi_{E}V. Let N be the weak-*
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closure of polynomials of q,\overline{q} and all characteristic functions in V. Then
N is a commutative von Neumann algebra as an algebra of operators on
L^{2}(m) . By \chi_{E}\overline{q}\not\in V, V can not contain the whole \chi_{E}N. There exists \chi_{E_{0}}

in N such that \chi_{E_{0}\cap E}\neq 0 and for any nonzero \chi_{F} in V

\chi_{E_{0}\cap E}\chi_{F}\neq\chi_{F} .
For suppose there exists a nonzero \chi_{F} in V such that \chi_{H\cap E}\chi_{F^{=}}\chi_{F} for any
\chi_{H} in N such that \chi_{H\cap E}\neq 0 . Then H\cap E\supset F for the nonzero \chi_{F} in V. If
H\cap E\neq F, since \chi_{H}\chi_{F}\acute{\prime}\in N and \chi_{H}\chi_{F}^{c}\neq 0 , there exists a nonzero \chi_{F’} in V
such that H\cap F^{c}\cap E\supset F’ arguing as above. This leads to that \chi_{H\cap E}\in V

for any \chi_{H} in N, i.e. \chi_{E}N\subseteq V by that N is a commutative von Neuman
algebra. This contradiction shows that there exists such a \chi_{E_{0}} in N. By
\chi_{E_{0}\cap E}\in B, it follows that \chi_{E_{0}\cap E}K\subseteq K. If \chi_{E_{0}\cap E}K\neq\{0\} , we can show that
there exists some nonzero \chi_{F_{0}} in V such that \chi_{E_{0}\cap E}\chi_{F_{0}}=\chi_{F_{0}} . \chi_{E_{0}\cap E}K=\{0\} .
Since m(E_{0}\cap E)>0 , this contradicts that E is the support set of K. Thus
B=\chi_{E}V+\chi_{E}^{c}L^{\infty}(m) .

(3)\Rightarrow(1). Suppose f in any function in V. We can assume that 0<
\chi_{f}<1 . Let D=D(f) be the weak- cl*osure of \{fg:g\in V\} , then D\subseteq V and
the support set of D coincides with the support set of f. Let B=\{v\in

L^{\infty}(m):vD\subseteq D\} . Then V\subseteq B. From the hypothesis of (3), we can write
B=\chi_{E}V+\chi_{E}cL^{\infty}(m) for some \chi_{E}\in V. Then we can choose \chi_{E} in V such
that \chi_{E}V has no doubly invariant subspace. If m(E)=0, then B=L^{\infty}(m)

which means that D is doubly-invariant and hence \chi_{f}L^{\infty}(m)\subseteq V. So \chi_{f}\in V.
Suppose m(E)>0 . Since (1-\chi_{f})L^{\infty}(m)\subseteq B and \chi_{E}cL^{\infty}(m) is the maximum
doubly-invariant subspace of B, we have E_{f}\supseteq E. If E_{f}\neq E, define g=\chi_{E}^{c}.f,
then the function g is in V and g\neq 0 . Arguing as above, there exist
a nonzero \chi_{F} in V such that E_{f}\cap E^{c}\supseteq F. This shows that \chi_{f}\in V.

COROLLARY 1. (Muhly [6]) The following properties for H^{\infty}(m) are
equivalmt.

(1) no nonzero function in H^{\infty}(m) can vanish on a set of positive
measure.

(2) H^{\infty}(m) is a maximal weak- cl*osed subalgebra of L^{\infty}(m) .
PROOF. (1)\Rightarrow(2) . If f is any function in H^{\infty}(m), then \chi_{f}\equiv 0 or \chi_{f}\equiv 1

and hence \chi_{f}\in H^{\infty}(m) . Apply theorem 3 with V=H^{\infty}(m). (2)\Rightarrow(1). The
condition (3) in theorem 3 is satisfied with V=H^{\infty}(m) because of the
maximality of H^{\infty}(m) . Therefore \chi_{f}\in H^{\infty}(m) for every f\in H^{\infty}(m) . But
the only real valued functions in H^{\infty}(m) are constants, hence \chi_{f}\equiv 0 or
\chi_{f}\equiv 1 .

If there exists a positive nonconstant function v in L^{1}(m) such that
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the measure vdm is multiplicative on A, we can choose J^{\infty} as V. Here
J^{\infty} is the minimum weak_{-}^{*c}1osed subalgebra of L^{\infty}(m) which contains
H^{\infty}(m) properly.

THEOREM 4. The following properties for H^{\infty}(m) are equivalent.
(1) \chi_{f}\in J^{\infty} for every f\in H^{\infty}(m) .
(2) Each weak_{-}^{*}closed subalgebra B of L^{\infty}(m) that contains H^{\infty}(m)

properly has the form
B=\chi_{E}J^{\infty}+\chi_{E}^{c}L^{\infty}(m)

for some \chi_{E}\in J^{\infty}-

PROOF. If B_{\neq}^{\supset}H^{\infty}(m), then B\supseteq J^{\infty} since J^{\infty} is the minimum weak-*
closed subalgebra. So by theorem 3, we can get this theorem.

In section 3 we shall show that \chi_{f}\in J^{\infty} for every f in H^{\infty}(d\theta d\phi), i.e.
this algebra satisfies the condition (1) of theorem 4. Moreover we shall
give an example (2) such that H^{\infty}(m) satisfies the condition (1) of theorem
4 and it is not isomorphic to H^{\infty}(d\theta d\phi) . Now we can give the negative
answer to the question raised at the end of section 1. For H^{\infty}(m) in
example (2) and H^{\infty}(d\theta d\phi) have same subalgebras in the form which con-
tain them by theorem 4.

COROLLARY 2. Suppose J^{\infty}\neq L^{\infty}(m) and \chi_{f}\in J^{\infty} for every f in H^{\infty}(m) .
Then there is no algebra which contains H^{\infty}(m) and is maximal among the
proper weak- cl*osed subalgebras of L^{\infty}(m) .

PROOF. Suppose B is a maximal weak_{-}^{*c}1osed subalgebra of L^{\infty}(m)

such that H^{\infty}(m)\subset\neq B\subset L^{\infty}(\neq m) . By theorem 4 we can write B=\chi_{E}J^{\infty}+\chi_{E}^{c}

L^{\infty}(m) for some E such that m(E)>0 and \chi_{E}\in J^{\infty} Then we can choose
\chi_{E} such that \chi_{E}J^{\infty} has no doubly invariant subspace. But \chi_{E}\in J^{\infty} if and
only if \chi_{E}\in \mathscr{S}^{\infty}. . By the remark (d) in section 1 \mathscr{L}^{\infty} is isomorphic to L^{\infty}(d\theta\rangle

of the disc. If F in L^{\infty}(d\theta) corresponds to f\in \mathscr{L}^{\infty} , then f(x)=F(Z(x))a.e.
[5, Lemma 4]. Hence there is a measurable set E’ such that E’\subset E and
m(E)\neq m(E’)>0 and \chi_{E’}\in \mathscr{L}^{\infty} . If B’=\chi_{E’}J^{\infty}+\chi_{E’}^{c}’ L^{\infty}(m), then L^{2}(m)\neq[\supset B’]_{2}

\neq[\supset B]_{2} by that \chi_{E’}J^{\infty} has no doubly invariant subspace and hence B\subset B^{\prime\subset}\neq\neq

L^{\infty}(m) .
COROLLARY 3. Suppose \chi_{f}\in J^{\infty} for every f in H^{\infty}(m) . If B is a weak-*

closed subalgebra of L^{\infty}(m) which contains H^{\infty}(m) and a function v such
that \chi_{E}v\in J^{\infty} for any nonzero \chi_{E}\in J^{\infty}

- then B=L^{\infty}(m) .
PROOF. By theorem 4, we can write B=\chi_{E}J^{\infty}+\chi_{E’}^{c}L^{\infty}(m) for some

\chi_{E}\in J^{\infty} . Since B contains v, \chi_{E}v\in\chi_{E}J^{\infty}\subseteq J^{\infty} . If m(E)>0 , then \chi_{E}v\not\in J^{\infty}

by assumption. This implies m(E)=0, Hence B=L^{\infty}(m) .
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3. Example

(1) Let A be the weak_{-}^{*Dirich}1et algebra on the torus which was
raised at the first of section 1. Then there exist positive nonconstant func-
tions in L^{1}(d\theta d\phi) which are multiplicative on A. H_{0}^{\infty}(dd\phi)=zH^{\infty}(d\theta d\phi)

and J^{\infty} is the weak_{-}^{*c}1osure of \cup\overline{z}^{n}H^{\infty}(d\theta d\phi) . Then \chi_{f}\in J^{\infty} for every
n=0

f=f(z, w)\in H^{\infty}(d\theta d\phi). In fact, there exist polynomials p_{n}(w) such that for
almost all points z_{0} in T, as narrow\infty

\int_{T}|f(z_{0}, w)-p_{n}(w)|^{2}d\phiarrow 0 .

Then it follows that f(z_{0}, w)=0a.e . d\phi or |f(z_{0}, w)|>0a.e . d\phi . Let E_{1}=

\{z_{0}\in T:|f(z_{0}, w)|>0a.e. d\phi\} . Then the set E_{1}\cross T is a support set of f.
For every (n, m) with m>0

\int\int_{T^{2}}\chi_{E_{1}\cross T}z^{n}w^{m}d\theta d\phi

= \int_{E_{1}}d\theta\int_{T}z^{n}w^{m}d\phi=0 .

Hence \chi_{f^{=}}\chi_{E_{1}\cross T}\in J^{\infty} by that L^{2}(d\theta d\phi)=\overline{J}^{2}+I^{2} and the remark (a) in In-
troduction. Thus by theorem 4, each weak_{-}^{*c}1osed subalgebra B of
L^{\infty}(d\theta d\phi) that contains H^{\infty}(d\theta d\phi) properly has the form B=\chi_{E_{1}\cross T}J^{\infty}+\chi_{F_{1}\cross T}

L^{\infty}(d\theta d\phi) where E_{1} is some measurable set of T and F_{1}=T\backslash E_{1} . It is
known [2] that there exists a maximal uniform closed subalgebra of C(T^{2})

the set of all complex-valued continuous functions on T^{2}, which contains
A. But by corollary 2, there is no algebra which contains H^{\infty}(d\theta d\phi) and
is maximal among the proper weak_{-}^{*c}1osed subalgebras of L^{\infty}(d\theta d\phi).
Moreover as v in corollary 3, we can take u.\overline{w}^{r}(r is a positive real number
and u\in \mathscr{L}^{\infty} and |u|>0), \chi_{E}(E=T\cross E_{2}, d\phi(E_{2})<1), etc.

(2) Let K be the Bohr compactification of the real line. Let A be
the algebra of continuous, complex-valued functions on T\cross K which are
uniform limits of polynomials in z^{n}\chi_{\tau} where

(n, \tau)\in\Gamma=\{(n, \tau):\tau>0\}\cup\{(n, 0) : n\geq 0\}

and denote by \chi_{\tau} the characters on K, where \tau in the real line. Denote
by m the normalized Haar measure on T\cross K, then A is the weak- D*irichlet
algebra of L^{\infty}(m)[5] . There exist positive nonconstant functions in L^{1}(m)

which are multiplicative on A. H_{0}^{\infty}=zH^{\infty}(m) and J^{\infty} is the weak_{-*c}1osure

of \bigcup_{n=0}\overline{z}^{n}H^{\infty}(m) . We can show that \chi_{f}\in J^{\infty} for every f\in H^{\infty}(m) as in (1).
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(3) Let A be the algebra of continuous, complex-valued functions on
K\cross K which are uniform limits of polynomials is \chi_{\tau_{1}}\chi_{\tau_{2}} where

(\tau_{1}, \tau_{2})\in\Gamma=\{(\tau_{1}, \tau_{2}):\tau_{2}>0\}\cup\{(\tau_{1},0):\tau_{1}\geq 0\}

and denote by \chi_{\tau}t the characters on K, where \tau_{i} in the real line. Denote
by m the normalized Haar measure on K\cross K, then A is the weak-*
Dirichlet algebra of L^{\infty}(m). Then there exist no positive nonconstant
functions in L^{1}(m) which are multiplicative on A. Let V be the weak-*
closure of \cup\overline{\chi}_{\tau_{1}}H^{\infty}(m) , then H^{\infty}(m)\subset\neq V\neq L^{\infty}\subset(m) and V is a weak- cl*osed

\tau_{1}\geq 0

subalgebra. We can show that \chi_{f}\in V for every f\in H^{\infty}(m) as in (1). By
theorem 3, we can know the form of weak_{-}^{*c}1osed subalgebras of L^{\infty}(m)

which contains V properly.
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