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Introduction

All notations and terminologies in this paper are same as those in the
author’s previous papers [7}, [8], [9} and [11]. All rings shall have
identities, and all subrings of them shall have the same identities as them.
Whenever we denote a ring and its subring by 4 and I', respectively, we
shall always denote the center of 4 by C and the centralizers of I' in 4,
ie.,, VI, by 4. A ring 4 is an H-separable extension of a subring I"
if A®r4 is A-A-isomorphic to a A-A-direct summand of a finite direct sum
of copies of 4. Some equivalent conditions and fundamental properties
have been researched in [3], and [7]. In case I' is the center of 4,
this definition is same as that of Azumaya algebra, and we have found in
H-separable extension many similar properties to Azumaya algebra. In §1
we shall study in what case an H-sparable extension 4 of I' become I'-
projective. If B is an intermediate subring of 4 and I' such that zB,<@®
2Ar and B is left relatively separable over I' in A4, A is left B-projective.
And if furthermore B is right relatively separable over I" in 4, 4 is a left
QF-extension of B (Theorem 1.1). In §2 we shall study some relations
between H-separable extensions of simple rings and classical fundamental
theorem on simple rings. The latter states that if 4 is a simple ring with
its center C, and if D is a simple C-algeba ([D:C]< o) contained in 4,
then I'=V, (D) is simple, D= V,(I"), and some interesting commutor theo-
rems hold in this case (see [2]. Now we shall prove that 4 is an H-
separable extension of I in this case (Theorem 2.1). We have already
found that similar commutor theorems hold in general H-separable exten-
sions (see Theorem 1 [6]). In §3 we shall study some properties of ideals
in H-separable extensions. Especially, we will see in [Theorem 3.2 that if
A is an H-separable extension of I' such that A is right I'-projective and
a right I'-generator, there exists a 1-1 correspondence between the class
of left ideals of I' and the class of left ideals of 4 which ars also right
4d-submodules.

The author gives his hearty thanks to Alexander von Humboldt-Stiftung in West Ger-
many who gave him the financial support when he wrote this paper in Munich.
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1. On projectivity of H-separable extensions

For any ring 4 and a subring I" of 4, we have a well known canonical
A-A-homomorphism @

6: A® rA— Hom (Hom ( 4, '), Ar)

such that 0(x®y)(f)=xzf(y) for x, y€ 4 and fe Hom(r4, ;). It is obvious
that if Y z;®v;€(AQrA), that is, if X} x,Qy; is a casimir element, #(} x;
®y;) is a A-I-map. Also it is well known that if A is left I'-f.g. projec-
tive, # is an isomorphism. On the other hand, A4 is an H-separable exten-
sion of I if and only if 1Q1€(A® 4)'4 (4=V,(I"), that is, if and only if
there exist X x;;®v:;€(ARrA)* and d,€ 4(i=1, 2, ---, n) such that 1Q1=
Z(g} 2;®vy;)d;. By putting a;=60(); x,,Qv,;), we have

LemMA 1.1 Let A be a ring and I' a subring of A. Then we have;

(1) If A is an H-separable extension of I', there exist A-I'-maps a;
of Hom(;A, iI") to A and d;€ 4 such that 3, a;(d;-f)=f(1) for any f€ Hom
(1" Aa r 1 ’)'

(2) In case A is left I'-f.g. projective, A is an H-separable extension
of I if and only if there exist a; and d; which satisfy the condition of (1).

PrROPOSITION 1.1 Let A be an H-separable extension of I' such that
I <®rdy for some subring A of I'. Then,

(1) A is isomorphic to a direct summand of a finite direct sum of
copies of Hom(v4, :I') as A-A-module, that is, 14,<® (3@ Hom(r4, 1I))4.

(2) If furthermore, A is left I'-f.g. projective and the map AQ J—A
defined by x@r—xr for x€ A, rel, splits as A-I-map, A is a left QF-
extension of I.

ProoF. (1). Let a; and d; be as in Lemma 2.1, and let p be the I'-A-
projection of 4 to I. Then clearly d;op are also I'-A-maps, and 3 a;(d;p)
=p(1)=1. Then we have I'-A-maps

G: A—>3 @®Hom (o, )
F: Z@Hom(p/l, rF)"'—"A
such that G(x)=(xd,op, xdyop, -+, xd,op) and F(f, fo, =+, fu)= 2 ai( fi), for

x€A and fi€eHom(y4, (I'). Clearly FG=1,, hence we have AAA<@A(£®
Hom(;4, ;). (2). Let G and F be as above. Since the map A®.['—4
splits, there exists Y} ;®7; in (A®.) with 3 2;7s=1. Then the map
defined by G'(x)=Y, G(xz;)r; is a A-I'-map with GF'=1. Since F is also
a A-I'-map, we see that A is a left QF-extension of I'.
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Now we had better give a new definition concerning as rings AcI'c A
which satisfy the condition of Proposition 1.1 (2).

DEFINITION Let A be a ring and A and I' subrings of A with AcCT.
Then we shall call that I' is a left relatively separable subextension of
A in A, if map x of I'QuA to A such that z(xQy)=xy for x€l', yed
splits as I'-A-map. A right relatively separable subextension can be defined
similarly.

Now assume again that a ring 4 is an H-separable extension of
a subring I'. In [I1], H. Tominaga proved that if A is left (resp. right)
I'-projective, A is left (resp. right) I'-f. g. projective. Now we shall inves-
tigate in what case 4 is I'-projective. First we shall note that the following
isomorphisms exist for every left A-module M.

4 ®C’M = A®CHOm (AA, AM) = Hom <AHOm(CA, CA)) AM)
= Hom (,4®r4, ,M)= Hom <rA, rHom (,4, ;M ))
= Hom (p/.l, rM)

the composition 7, of the above isomorphisms is such that 7,(d®m)(x)=
dxm, for ded, x€d and me M. Therefore, for any left A-modules M,
N and for any left A-map f of N to M, we have a commutative diagram

4® N >
Q¢ L&F 4® M
l’)zv P?M
Hom (r/.l, IVN) Hom (A, f) 4 Hom (FA, ['M)

By this fact we have,

ProprosITION 1.2 If A is an H-separable extension of I, then for any
A-epimorphism f of N to M and for any I'-homomorphism g of A to M,
there exists a I'-homomorphism h of A to N such that foh=g.

ProrosITION 1.3 Let A be an H-separable extension of I'. Then if
there exists a subring A of I' such that I' is left relatively separable over
A in A and I, <®@rA,, we have

(1) A4 is left I'-f.qg. projective

(2) A is left (resp. right) A-projective if and only if T is left (resp.
right) A-projective.

PrOOF. (1). Since I'® 4— 4 splits, there exists 3 7 ®x; € (I'Q 4A)" with
2 rixi=1. Now let f be any left I'-epimorphism of N to M and ¢ any
left I"-homomorphism of 4 to M, where M and N are arbitrary left I'-
modules. We can define a new I'map of 4 to AR M by G(z)=Y r®
g(x;x). Since X rri®@z;x=Y, r;Qx;rx for any reI" and x€ A, we see that
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G is a I'-map. Then by [Proposition 1.2, there exists a left I™-map H of
4 to AQ N such that (1,®f)cH=G. Let p be the I'-A-projection of 4

to I'. Then we have a commutative diagram of I’-maps

1 1o N8 e N T N

G jh@f ih@f if
AR M E®Y pe py T

where 7, and 7y are the contraction maps. Then z,°(p®1,)°G=g, since
T3 (PR 1) G () =7u(p®12) (L 7:® i (2 7)) =1:( X i@ g (2, 2))= X rig(x:2)=
9(X rnzix)=g(x). Thus there exists a left I'-homomorphism % (=r,(p®
1y)eH) of A to N such that foh=g¢g. Therefore, A is left I'-pojective.
(2). Suppose that I' is right A-projective. Since 4 is projective by (1),
Hom(y4, rI') is right I'-projective. Hence Hom (-4, I') is right A-projective.
Then, since AAA<®,1(§I @Hom (-4, -I")), by [Proposition 1. 1 and the assump-
tion that I",<@®r4,, A is right A-projective. Next suppose that I is left
A-projective. Then, since 4 is left I'-projective, A is left A-projective.
The converse is clear, since I",<@®rA,.

In and [11], we considered the class B, of subrings B of 4 such
that BDI', 3B, <@ A, and B is left relatively separable over I" in 4. Class
B, is defined similarly. In case 4 is H-separable over I', these classes have
interesting properties, because there exists a 1-1 correspondence of B, to
the class of C-subalgebras D of 4 such that ,D<@®,4 and D is left rela-
tively C-separable in 4. It is easy to prove that if BE®B, (or B,), 4 is H-
separable over . (see (0.8) [11]. Therefore by [Proposition 1.3, we have;

THEOREM 1.1 Let A be an H-separable extension of I', and let B,
and B, be as above, Then, we have

(1) A is left (resp. right) B-f.g. projective for every Be®B, (resp. B,).

(2) A is a QF-extension of B for every Be®B,NB,.

(3) For any B in B,, B is left (resp. right) I'-f.g. projective if and
only if A is left (resp. right) I'-f.g. projective.

THEOREM 1.2 If A is an H-separable extension of I' such that rI'r
<@rdr, A is left and right I'-f. g. projective. In this case A is a Frobenius
extension of I.

Proor. The first part is clear by [Proposition 1.3 Then, since 4 is
C-f.¢. projective and separable (see Proposition 4.7 [4]), 4 is a Frobenius
C-algebra by Endo-Watanabe’s Theorem. Then 4 is a Frobenius extension
of I' (see Corollary 2 [8]).
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2. Some remarke on separable extensions over simple rings

First we shall give an example of H-separable extension over a simple
ring, which has a closed relation to the well known classical “fundamental
theorem on simple rings”.

THEOREM 2.1 Let A be a simple ring with the center C and 4 a sim-
ple C-algebra contained in A, and denote I'=V,(d). Then I' is a simple
ring and A is an H-separable extension of I.

PrROOF. A®c4° is a simple ring, and 4 is a left AQ4°- and right I'-
bimodule. Furthermore, we have an isomorphism Hom (sg,.s4, 1pso4)= VA4),
by corresponding f in Hom (g4, sgpsA) to f(1). Now consider the map

n: A®cA— Hom(4r, Ar) (n(x®d°) (y)=zyd, for z,y€ 4, de 4)

Since AQc4° is a simple ring, 4 is a AQ 4°-generator. Hence A is right
finitely generated projective over I'=End(sg.s4), and we have also

Y| ® CAO = Bicom (‘4®C"QA> =~ Hom (Ar, Ar)

The composition of the above isomorphisms is exactly », which is a 4-4-
map. Hence Hom(A4r, Ar) is A-centrally projective, i.e., Hom(4r, 4;) is
isomorphic to a direct summand of a finite direct sum of copies of 4 as
A-A-module. Therefore 4 is an H-separable extension of I' by Corollary
3 [10]. That I' is a simple ring is well known. But this is clear by the
fact that I'=End(g.s4) and 4 is finitely generated by a simple ring A®c4°.

In case I' is a simple ring and 4 is an H-separable extension of I', 4
is a simple ring, 4 is a simple C-algebra with [A: I'],=[4:I'],=[4: C],
and I'=V,(V,(I")) (see Theorem 1.5 [11]). Now we shall study some prop-
erties of intermediate simple ring between A and I'. Before then, we shall
consider a general case. Let 4 be an arbitrary ring and I' a subring of
A, and let M be a left I'-module. Then A®, M is a left A- and right 4-
bimodule by z(y®@m)d=xyd®m for x, yed, de 4 and me M. By this
module structure we have,

LEMMA 2.1 Let I' and A be arbitrary rings with I' a subring of A,
and let M be an arbitrary porjective left I'-module. Then for any subring

D of 4, we have (AQ M)?=V,(D)QrM.

ProofF. Denote B=V,(D). Clearly BOI', and B&®,M is a submodule
of AQrM, since M is I'-projective. Let {f;, m;} be a dual basis of ;M.
i.e., fie Hom(:M, ;I") and m;€ M such that for every me M, f;(m)=0 for
all but a finite number of i, and m=7}] fi(m)m;. Now for each i, define
a A-map F, of AQ:M to A by F,(x®@m)=xf;(m) for xe A4 and me M.
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Then clearly {F;, 1®m,} is a dual basis of ,A® M. Hence we have a=
2 Fia)@m,; for any ac AQ M. Let =) x;Qn; be an arbitrary element
of (A®rM)?. Then df=pd= Y x;d®n; for every de D, and we have
dF;(B)=Fi(dB)=Fi(fd)=Fy( X ;d®@n,)= 3] x;df(n;)= 2 x;fi(n;)d= X Fi(B)d,
since de DC4 and fi(n;)eI’. Hence F;(8)e V,(D)=B for each 7. Since
B=2 F,(B)®m;, we have e B M. BRXrMC(ARXM)? is clear. There-
fore we have (AR M)?=B®, M.

COROLLARY 2.1 Let A be an arbitrary algebra over a commutative
ring R and M a projective R-module. Then we have (AR xM)'=C® M,
where C is the center of A.

ProrosiTION 2.1 Let A be an H-separable extension of I' such that
A is left I'-projective. Then for any C-subalgebra D of 4 and for B=
VD), we have;

(1) The map 15 of BR;A to Hom(pd, ,A) defined by nz(b®x)(d)=
bdx is a B-A-isomorphiem.

(2) If 4 is a left D-generator, then B is left relatively separable over
I' in A.

(3) If 4 is left D-f. g. projective, then zBRrA,< @ (AD --- DA),.

(4) If furthermore B is right I'-projective, then the map Pz of BX B
to Hom(pdp, pAp) defined in the same way as (1) is a B-B-isomorphism.

ProoF. (1). Since A is H-separable over I', we have a (4—4)—(4— A)-
isomorphism 7 of A®r4 to Hom(cd, ;4) defined in the same way as 7z.
Hence we have the following commutative diagram ;

B®pA. _— Hom (DA, DA)
"
/1 ®r/1 —_— Hom (CA, CA)
, 7

where all vertical maps are inclusion maps, since ®,4 is exact. Hence 7z
is a monomorphism. Then since Hom(»4, »4)=[Hom(4, c4)]?, and B& 4
=V (D)®rA=(AR® A" by Lemma 2.1, we see that 7 is an epimorphism.
Tnus 75 is an isomorphism. (2). Now consider the following commutative
diagram of B-/-maps

where o(f)=f(1) for feHom (4, p4), and 7z is the contraction map.
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Denote the left D-projection of 4 to D by p and the canonical B-4-
isomorphism of 4 to Hom(,D, ,4) by v. Then, we see po-Hom(p, A)ev=1,.
Thus = splits as B-A-map. (3). Since 4 is left D-f.g. projective, we have
sBRrA,= sHom (pd, A<D s[2 D@Hom (D, pA),= HAD -+ @4),. (4). Since
B is right I'-f. g. projective and 7 in (1) is an isomorphism, we can prove
(4) in the same way as (1).

Applying this to H-separable extensions over simple rings, we obtain ;

PRroPOSITION 2.2 Let I' be a simple ring and A an H-separable ex-
tension of I'.  Then for any simple subring B of A which contains I' and
for D=V,(B), we have;

(1) The following two maps are isomorphisms

7s: B®rA— Hom(pd, pA)
(75(6®x)(d) = bdz for xe 4, beB, de 4)
Pz: B®rB— Hom (pdp, pAp)
(P5(a®b)(d) = adb, for a,be B, de4)

(2) B is left as well as right relatively separable over I' in A.

Proor. It is well known that D is a simple C-subalgebra of 4 and
B=V, (D), by classical fundamental theorem on simple ring. Therefore,
the proof is immediate by [Proposition 2. 2|

COROLLARY 2.2 Let A, ", B and D be as in Prop. 2.2. Then, we
have ;

(1) B is a separable (resp. an H-separable) extension of I', if and only
if}) »<Ppdp (TeSP- 2dp< @D(DC'B @D)D)-

(2) If zBs<@pds, B is a separable extension of I', and D is a sepa-
rable C-algebra. |

ProoOF. (1). Since @5 defined in Prop. 2.2 is a B-B-isomorphism, the
‘if’ part is clear. The ‘only if’ part is due to (0.7) [11]. (2.) Since B& A4
— A splits and zBz<@zdz, B is separable over I' by (1.4) [11]. Then D
is C-separable by Theorem (1. 3) [11].

3. On ideals in H-separable extension

It is well known that in Azumaya algebra there exists a 1-1 corre-
spondence between the class of two sided ideals and that of ideals of its
center. Therefore, it may be natural to consider this probrem for H-sepa-
rable extension. The following theorems are easy to prove but are inter-
esting. Before proving them, we need some remarks. In case 4 is an H-
separable extension of I', we have the following three ring isomorphisms
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7.0 A& ¢A°— Hom (4, rA4)
7, A®_0AO——’H0m (4r, 4r)
/R 4 ® ¢4°— Hom (-4, rAr)

defined by 7, (d®x°)(y)=dzxy, for x, y€ A and d€ 4, etc., (Prop. 3.1 & 4.7
[4]. |

LeEMMA 3.1 Let A be an H-separable extension of I'. Then for left
4- and right A-bisubmodule N of A, and for any f€ Hom(rA, rA), we have
FAHcA.

Proor. By the isomorphism 7,, we see f(A)=) d;Ax,CcA for some
d;€4 and z;€ A.

THEOREM\. 3.1 Let A be an H-separable extension of I' such that A
is right I'-projective. Then for any left ideal N of A which is also a rignt
4-submodule, we have A=AANT). In particular, for any two sided ideal
A of A, we have A=AANT) A | ,

Proor. Let {f;, x;} be a dual basis of 4,. Then, since f;€ Hom(4,,
I')CHom(4,, 4;), f{{)CUANT for each j. Then for each ae N, a=73 x,
fil@)e AANTI"). Thus A=ARANTI).

CoROLLARY 3.1 If I' is a two sided simple ring, and if A is an H-
separable extension of I' such that A is left or right I'-projective, then A
is also a two sided simple ring.

Now consider the following correspondences of ideals ;
I. A—ANT M: a—> Ja

where U is a left ideal of A which is also a right 4-module, and a is a left
ideal of I Then we have;

THEOREM 3.2 Let A be an H-separable extension of I' such that I'r
<@A; and A is right I'-projective. Then we have;

(1) I and M are mutually converse 1-1 correspondences between the
class of left ideals of A which are also right 4-submodules and the class
of left ideals of I.

(2) I and M induce 1-1 crrespondences between the class of left A-
and right I'4-bisubmodules of A and the class of two sided ideals of T.

(3) If furthermore, A=1T14 (e.qg., A is I'-centrally projective), then
M(a)=4da, and 1 and M induce 1-1 correspondences between the class of
two sided ideals of A and that of I.

Proor. For any left ideal a of I', ad=4a and Aa is a A-4-submodule.
Also it is obvious that AaNI'=a, since I'<®A4,. MI=identity is due to
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1. Thus we have proved (1). (2) and (3) are easy consequences
of (1).

As for two sided ideal in general case, we see

PrROPOSITION 3.1 Let A be an H-separable extension of I Then for
any two sided ideal N of A, we have (ANC)4=AN4. |

Proor. By (0.1) [11], 4 is H-separable over I" if and only if M*®.4
=M’ by m@d—md(me M, de 4), for every two sided 4-module M. Hence
ANA=W=A'Rd=ANC)RA=(ANC)4. Thus we have (ANC)4=AN4.

Next we shall study some properties of ring homomorphisms of H-
separable extensions. The author has proved the next proposition in [7].

ProrosiTION 3.2 Let A be an H-separable extension of I', ¢ a ring
homomorphism of A onto another ring A, and denote I'=¢(I"), 4= V3(I')
and C=the center of 1. Then 1 is an H-separable extension of T, and
the map g of CQRcd to 4 defined by ¢(c®d)=cp(d)(ceC,ded) is an
isomorphism. Consequently, 4=Cyp(d). (Prop. 1.5 [7]).

PrOPOSITION 3.3 Let A, I", 0, 4 and T' be as above. Then ¢ induces
ring homomorphism ¢, and ¢,, as follows

&2 Hom(pd, ()— Hom (e, 11) 3.(f)(p(x)) = ¢(f(2))
g.: Hom(Ar, A)— Hom (41, 1) §.(s) (p(a)) = ¢(g())
where fe Hom(-A, rA), and x€ A. Both ¢, and ¢, are surjections.

ProoF. We need only to prove on ¢,. Since f(kerp)Cker¢e for
every f€ Hom(;4, ;4) by Lemma 3.1, g, is a well defined ring homomor-
phism. By Prop. 3.2, 4 is H-separable over I' and 4®.C=4(d®c—¢(d)c,
for ded, ceC). Hence 4®;1° = AQCRg1° = 4Q,A°. This isomorphism
induces a commutative diagram of ring homomorphisms ;

4@ cA4° — Hom (¢4, p4)
e
. 114®$0 l@z
A@C/Io ——5—’ Hom (1‘*], f'/-i)
4
where £,(d®x°)(7)=¢(d)y%, for #,5€4 and ded. Clearly & is an iso-
morphism. Then since 7, and &, are isomorphisms and 1,®¢ is a surjec-
tion, ¢; is a surjection.

PropPOSITION 3.4 Let A, ', 4, T and ¢ be as in Prop. 3.2. If A=T
@A as left (resp. right or two sided) I'-module, then we have

(1) Z=T(—Q¢(A) as left (resp. right or two sided) T'-module.

(2) For any two sided ideal N of A, we have A=ANT)DAN A).
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ProoF. Suppose ;A= /('@ A), and let = be the left I"-projection of A
onto I'. Then since = € Hom(r4, rA)= A®A°, there exists Y d;Qx; € ARQcA°
such that Y d;x;=1 and } d;Az;=0. Then clearly ¥ o(d,)¢(z)=0(3 d,
z;)=1 in 4, and ¢(d;)€ Vi(T') for each i. We also have ) o(d:) p(A) o(x;)
=¢(2 diAx,)=0. Therefore, the map # of 4 to I' such that (%)=
o(d)Z p(x;) for T€d, is the left I'-projection of 4 to I'. Thus we have
A=1T'®¢p(A)). Similarly we can prove in case Ar=('®A).. Further-
more, since 4®¢4°=Hom(.4;, r4;) by 7., we can prove in case ,4,=(I"®
A)r, in the same way. (2). Let %A be an arbtrary two sided ideal of 4,
and suppose A=, (I"®A). Let ¢ be the canonical map of 4 to 4/A, and
put 4=4/A and I'=¢(I"). Then by (1), we have tI'={(T'®Pp(A). For
any x€, we have x=r+a with 7€' and a€ A. Then 0=¢(x)=¢(r)+
¢(a), and ¢(r)=¢(a)=0. Therefore, 7e ’'NA and ac ANNA. Thus we have
A=('NA)D(ANA). We can prove in other cases in the same way.

4. On H-separable extensions over self injective rings

To begin with, we note the following interesting properties of general
H-separable extensions. Let Zj]xij®y”,di(i =1, -+, n) be an H-system of
an H-separable extension 4 of I, i.e., 1Q1=Y x,;,Qy.,;d;, 2 iy Ry €(A
®rd)* and d;€4. Now suppose that I' is a left I-direct summand of 4,
and let p be the I-projection of A to I. Then for any z in A4, we have ;.
2®1 = 2} 2x,;Qu;di =}, Z;i;®Yi;2d;, and 2®1 =2zQp(l)=X2 x;;Qp (yijzdi)-
Thus we have an equation z=3J x;;p(y;;2d,), for any z in A By this
formula, we have;

THEOREM 4.1 Let A be an H-separable extension of I' such that I'
is a left I'-direct summand of A. Then we have

(1) A is right I'-finitely generated.

(2) For any two sided ideal U of A, we have A=A NA)=A(I" N A) 4.

Proor. (1). Let X 2;;Qy.;,di(i=1, 2, -+-, n) and p be as above. Then,
since p(y;;2d;)erl’, Wejsee A=z I'. (2). For any a in U, we have a=
2 xyp(yisady). But since y;ad, €N, p(yyad)e’'NA by Lemma 3.1
Hence AcA(I'NN).

By Prop. 1.1, we see that if 4 is an H-separable extension of I" with
I' a left direct summand of 4, then A<® A[i @®Hom(, 4, ("), i.e., Hom (4,
rI') is a left A-generator. On the other hand, for ,M, and ,N, if N is 4-
injective and M is 2-flat, Hom(,M, ,N) is 2-injective. Therefore, we have

ProPOSITION 4.1 Let A be an H-separable extension of I Then we
have
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(1) If I' is left self injective, then A is also left self injective.

(2) If ' is left self injective and A is right I'-flat, A is left I'-injective
and [Hom(;4, (A)]° is a left self injective ring. '

Proor. (1). Since I' is left I'-injective, Hom(;4, ;I') is left A-injective,
and also we have ['<@®;4. Then by Prop. 1.1, we see AA<@,,[§_,‘@
Hom(,4, [I)]. Hence A is left A-injective. (2). Since 4 is left A-injective
and right I'flat, A(=Hom(4, ,A)) is left I-injective. Next, put 2=[Hom
(w4, A, Since <@, A is right 2-f.g. projective. Then Hom (-4, r4)
is left Q-injective, as A is left I'-injective.

By Theorem 4.1 and [Proposition 4.1, we obtain

THEOREM 4.2 If I' is a QF-ring and if A is an H-separable exten-
sion of ', then A is also a QF-ring.

ProOF. Since I' is left as well as right self injective, 4 is left as well
as right self injective. Moreover, 4 is right I'-finitely generated, since
JI'<®,A. Then 4 is right artinean, since I" is so. Hence 4 is a QF-ring.
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