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1\cdot Introduction

Let T be a bounded operator on a separable Hilbert space \mathfrak{H}

\cdot A sub-
space \mathfrak{L} of \mathfrak{H} is said to be hyperinvariant for T if \mathfrak{L} is invariant for every
operator that commutes with T In [2] the hyperinvariant subspaces for a
unilateral shift were determined, and those for an isometry in [1]\cdot Recall
that T is said to be of class C_{0}. if T is a contraction (i\cdot e., ||T||\leqq 1) and
T^{*n}arrow 0 (strongly) as narrow\infty . Hence a unilateral shift is of class C_{0}. .
Let T be of class C_{0}. \cdot Then it necessarily follows that

\delta_{*}\equiv\dim(1-TT^{*})\mathfrak{H}\geqq\dim(1-T^{*}T)\mathfrak{H}\equiv\delta

(see [6])\cdot In the case of \delta_{*}=\delta<\infty , in an earlier paper [8] we established
a canonical isomorphism between the lattice of hyperinvariant subspaces for
T and that for the Jordan model of T In this paper we extend this result
to the case of \delta<\delta_{*}<\infty . For an operator T of this class we shall pres-
ent complete description of the hyperinvariant subspaces \sigma Jt with the property
that every subspace of \mathfrak{R} hyperinvariant for T is hyperinvariant for the
restricted operator T|\mathfrak{R} . The author wishes to express his gratitude to
Prof. T. Ando for his constant encouragement.

2. Preliminaries

Let \theta be an n\cross m(\infty>n\geqq m) matrix over H^{\infty} on the unit circle. Such
a matrix \theta is called inner if \theta(z) is isometry a . e . on the unit circle. For
such an inner function \theta a Hilbert space \mathfrak{H} (\theta) and an operator S(\theta) are
define by

(1) \mathfrak{H}(\theta)=H_{n}^{2}- \theta H_{m}^{2} and S(\theta)h=P_{\theta}(Sh) for h in \mathfrak{H}(\theta) ,

where H_{n}^{2} is the Hardy space of n-dimensional (column) vector valued func-
tions, P_{\theta} is the projection from H_{n}^{2} onto \mathfrak{H}(\theta) , and S is the simple unilateral
shift, that is, (Sh) (z)=zh(z) . A contraction T of class C_{0}. with \delta_{*}=n and
\delta=m is unitarily equivalent to an S(\theta) of this type [7]. Thus in the sequel
we may discuss S(_{\backslash }\theta) in place of T

For a completely non unitary contraction T, it is possible to define
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\phi(T) for every function \phi in H^{\infty} . In particular, for S(\theta) given above \phi(S

(\theta)) can be equivalently defined by the following:

\phi(S(\theta))h=P_{\theta}\phi h for h in \mathfrak{H}(\theta) (see [5], [7])

If there is a function \phi such that \phi(T)=0 , then T is said to be of class
C_{0} . T of class C_{0}

\cdot with \delta\leqq\delta_{*}<\infty is of class C_{0} if and only if \delta=\delta_{*}[7] .
Suppose T_{1} is a bounded operator on \mathfrak{H}_{\vee}1 and T_{2} a bounded operator

on \mathfrak{H}_{2} . If there exists a complete injective family \{X_{a}\} from \mathfrak{H}_{1} to \mathfrak{H}_{2}

(i . e. , for each \alpha, X_{a} is an one to one bounded operator from \mathfrak{H}_{1} to \mathfrak{H}_{2} and
c1

\vee X_{\alpha}\mathfrak{H}_{1}=\mathfrak{H}_{2})\alpha such that for each \alpha X_{\alpha}T_{1}=T_{2}X_{\alpha} , then we write T_{1}\prec T_{2} . If

T_{1}^{c}\prec^{i}T_{2} and T_{2\backslash }^{c1}\prime T_{1} , then T_{1} and T_{2} are said to be completely injection-
similar, and denote by T_{1}^{ci}\sim T_{2}[6] .

An n\cross m(n\geqq m) normal inner matrix N’ over H^{\infty} is, by definition,
of the form :

(2) N’=[0 \cdot\cdot\psi_{2}\frac{\dot{0}0\cdot\dot{\psi}_{m}}{00\cdots 0,00\cdots 0’}...\cdot\cdot.\cdot\cdot.\cdot]\psi_{1}0\cdot\cdot 0\}n-m0

where, for each i, \psi_{i} is a scalar inner function and a divisor of its succesor.
Then

S(N’)=S(\psi_{1})\oplus\cdots\oplus S(\psi_{m})\oplus_{\frac{S\cdots\oplus S}{n-m}}

is called a Jordan operator.
Let \theta be an n\cross m(\infty>n\geqq m) inner matrix over H^{\infty} and N a corre-

sponding normal matrix, i . e. , N is the n\cross m normal inner matrix of the
form (2), where \psi_{1} , \psi_{2}\cdots , \psi_{m} are the “invariant factors” of \theta, that is,

\psi_{k}=\frac{d_{k}}{d_{k-1}} for k=1,2, \cdots , m ,

where d_{0}=1 and d_{k} is the largest common inner divisor of all the minors
of order k \cdot In this case, Nordgren [4] has shown that there exist pairs
of matrices \Delta_{i} , \Lambda_{i} and \Delta_{i}’ , \Lambda_{i}’(i=1,2) satisfying

(3) \Delta_{i}\theta=N\Lambda_{i} ,

(3)’ \theta\Lambda_{i}’=\Delta_{i}’N ,

(4) (det \Lambda_{i}) (det \Lambda_{i}’) \Lambda d_{m}=1 ,
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(5) (det \Delta_{1}) (det \Delta_{1}’) \Lambda(\det\Delta_{2}) (det \Delta\prime j) =1 ,
\langle 5)’ (det \Lambda_{1}) (det \Lambda_{1}’) \Lambda(\det\Lambda_{2}) (det \Lambda_{2}’) =1 ,

where x\Lambda y denotes the largest common inner divisor of scalar function x
and y in H^{\infty} . Setting

(6) X_{i}=P_{N}\Delta_{i}|H(\theta) and
(6)’ Y_{i}=P_{\theta}\Delta_{i}’|H(N) for i=1,2 ,

\{X_{1}, X_{2}\} and \{Y_{1}, Y_{2}\} are complete injective families satisfying the following
relations :

(7) X_{i}S(\theta)=S(N)X_{i} and

(8) S(\theta)Y_{i}=Y_{i}S(N) for i=1,2 .
This implies S(\theta)^{c}\sim^{i}S(N) (cf. [6]).

To every subspace \mathfrak{L} of \mathfrak{H}(\theta) , invariant for S(\theta) , there corresponds an
unique factorization \theta=\theta_{2}\theta_{1} of \theta such that \theta_{1} is an k\cross m inner matrix and
\theta_{2} is an n\cross k inner matrix (n\geqq k\geqq m) satisfying

\mathfrak{L}=\theta_{2}\{H_{k}^{2}O-\theta_{1}H_{m}^{2}\}=\theta_{2}H_{k}^{2}O-\theta H_{m}^{2} .
In this case S(\theta)|\mathfrak{L} and P_{f\}}\perp S(\theta)|\mathfrak{L}^{\perp} are unitarily equivalent to S(\theta_{1}) and
S(\theta_{2}) , respectively. For this discussion see [7].

Let M be an m\cross m normal inner matrix over H^{\infty} . Then, in [8], we
showed that, in order that a factorization M=M_{2}M_{1} corresponds to a sub-
space hyperinvariant for S(M), it is necessary and sufficient that both M_{1}

and M_{2} are m\cross m normal inner matrices.

3. Jordan operator

Let N=\{\begin{array}{l}M0\end{array}\} be an n\cross m normal inner matrix over H^{\infty}, that is, M is

an m\cross m normal inner matrix over H^{\infty} . Then S(N) on \mathfrak{H} (N) are identified
with

S(M)\oplus S_{n-m} on \mathfrak{H}(M)\oplus H_{n-m}^{2} ,

where (S_{n-m}h)(z)=zh(z) for h in H_{n-m}^{2} .
Let \mathfrak{R} be a hyperinvariant subspace for S(N) . Then it is clear that

\mathfrak{R} is decomposed to the direct sum,

\mathfrak{R}=\mathfrak{R}_{1}\oplus \mathfrak{R}_{2} ,

where \mathfrak{R}_{1} is a subspace of \mathfrak{H} (M), hyperinvariant for S(M), and \mathfrak{R}_{2} is a
subspace of H_{n-m}^{2} , hyperinvariant for S_{n_{-}m} . In this case we have the fol-
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lowing lemma.
Lemma 1. For \mathfrak{R}_{1} and \mathfrak{R}_{2} which are hyperinvariant for S(M) and

S_{n-m}, respectively, in order that the direct sum \mathfrak{R}=\mathfrak{R}_{1}\oplus \mathfrak{R}_{2} is hyperinvariant

for S(N), it is necessary and sufficient that \mathfrak{R}_{2}=\{0\} or there exists an inner

function \phi such that \mathfrak{R}_{2}=\phi H_{n-m}^{2} and \mathfrak{R}_{1}\supseteqq\phi(S(M))\mathfrak{H} (M) .

PROOF. An operator X=\{\begin{array}{ll}Y_{11} Y_{12}Y_{21} Y_{22}\end{array}\} commutes with S(N), if and only

if Y_{ij} satisfy the following conditions :

Y_{11}S(M)=S(M)Y_{11} , Y_{12}S_{n-m}=S(M)Y_{12} ,

Y_{21}S(M)=S_{n-m}Y_{21} and Y_{22}S_{n-m}=S_{n-m}Y_{22} .
Since S(M)^{n}arrow 0 as narrow\infty and S_{n-m} is isometry, we have Y_{21}=0 . Thus
if \mathfrak{R}_{2}=\{0\} , then it follows that X\mathfrak{R}\subseteqq \mathfrak{R} for every X commuting S(N) . By
the lifting theorem (cf. [5], [7]), a bounded operator Y_{12} from H_{n-m}^{2} to
H(M) intertwines S_{n-m} and S(M), if and only if there is an m\cross(n-m)

matrix \Omega over H^{\infty} such that Y_{12}=P_{M}\Omega . Thus, if \mathfrak{R}_{2}=\phi H_{n-m}^{2} and \mathfrak{R}_{1}\supseteqq\phi

(S(M))\mathfrak{H}(M) for some inner function \phi, then we have

X\mathfrak{R}=(Y_{11}\mathfrak{R}_{1}+Y_{12}\phi H_{n-m}^{2})\oplus Y_{22}\phi H_{n-m}^{2}

\subseteqq(\mathfrak{R}_{1}+P_{M}\Omega\phi H_{n-m}^{2})\oplus\phi H_{n-m}^{2}

\subseteqq(\mathfrak{R}_{1}+P_{M}\phi H_{m}^{2})\oplus\phi H_{n-m}^{2}

=(\mathfrak{R}_{1}+\phi(S(M))\mathfrak{H}(M))\oplus\phi H_{n-m}^{2}

\subseteqq \mathfrak{R}_{1}\oplus\phi H_{n-m}^{2}=\mathfrak{R}

for every X commuting with S(N) .
Conversely suppose \mathfrak{R}=\mathfrak{R}_{1}\oplus \mathfrak{R}_{2} is hyperinvariant for S(N), and \mathfrak{R}_{2}\neq\{0\} .

Then by [2] there exists an inner function \phi such that mathfrak{R}_{2}=\phi H_{n-m}^{2} . Let
\Omega_{i}(i=1,2, \cdots, m) be the m\cross(n-m) matrix such that the (j, k) -th entry of
\Omega_{i} is 1 for (j, k)=(i, 1) and 0 for (j, k)\neq(i, 1) . Setting

X_{i}= \{\begin{array}{ll}0 Y_{i}0 0\end{array}\} and Y_{i}=P_{M}\Omega_{i} ,

each X_{i} commutes with S(N) , hence we have \mathfrak{R}_{1}\supseteqq\sum_{i=1}^{n}Y_{i}\phi H_{n-m}^{2}=P_{M}\phi H_{m}^{2}=

\phi(S(M))\mathfrak{H}(M) . This completes the proof.

THEOREM 1. In order that a factorization N=N_{2}N_{1} of N into the
product of an n\cross k inner matrix N_{2} and an k\cross m inner matrix N_{1}(n\geqq k

\geqq m) corresponds to a hyperinvariant subspace \mathfrak{R} for S(N), it is necessary
and sufficient that N_{1} and N_{2} are normal matrices satisfying (i) or (ii):

(i) k=m ,
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(ii) k=n and N_{2} has the form \{\begin{array}{lll}M_{2} 0 0 \phi 1_{n-m} -\end{array}\}

PROOF. First, assume that k=m, and both N_{1} and N_{2} are normal inner

matrices. Then, setting N_{2}=\{\begin{array}{l}M_{2}’0\end{array}\} , it follows that N_{2}\{H_{m}^{2}O-N_{1}H_{m}^{2}\}=M_{2}’\{H_{m}^{2}

O-N_{1}H_{m}^{2}\} is hyperinvariant for S(M) (see [8]). Therefore, by Lemma 1, it
is hyperinvariant for S(N) . Next, assume that N_{1} and N_{2} are normal

matrices satisfying (ii). Set N_{1}=\{\begin{array}{l}M_{1}0\end{array}\} . Then we have

\mathfrak{R}=N_{2}\{H_{n}^{2} - N_{1}H_{m}^{2}\}=M_{2}\{H_{m}^{2}O-M_{1}H_{m}^{2}\}\oplus\phi H_{n-m}^{2} .
Normality of M_{1} and M_{2} implies that M_{2}\{H_{m}^{2}O-M_{1}H_{m}^{2}\} is hyperinvariant for
S(M) . On the other hand, normality of N_{2} implies M_{2}H_{m}^{2}\supseteqq\phi H_{n\iota}^{2} , and hence
we have

M_{2}H_{m}^{2}O-MH_{m}^{2}\supseteqq\phi(S(M)\mathfrak{H}(M) .
Thus from Lemma 1 we deduce that \mathfrak{R} is hyperinvariant for S(N) .

Conversely, first, assume that \mathfrak{R}=\mathfrak{R}_{1}\oplus\{0\} is hyperinvariant for S(N),
and N=N_{2}N_{1} is the factorization corresponding to \mathfrak{R} . Since S(N)|\mathfrak{R}=

S(M)|9l_{1} is of class C_{0} , S(N_{1}) is of class C_{0} (cf. 2). This implies that N_{1}

is an m\cross m inner matrix, that is, k=m. Setting N_{2}=\{\begin{array}{l}M_{2}\Gamma\end{array}\} , where M_{2} is

an m\cross m matrix and \Gamma an (n-m)\cross m matrix, we have

M=M_{2}N_{1} , \mathfrak{R}_{1}=M_{2}\{H_{m}^{2}O-N_{1}H_{m}^{2}\} and \Gamma H_{m}^{2}=\{0\}

Since \Gamma=0 and N_{2} is inner, it follows that M_{2} is inner. Thus the hyperin-
variance of \mathfrak{R}_{1} corresponding to M=M_{2}N_{1} implies that M_{2} and N_{1} are m
\cross m normal inner matrices. Next assume that ?l=\mathfrak{R}_{1}\oplus\phi H_{n-m}^{2} and \mathfrak{R}_{1}\supseteqq

\phi(S(M))\mathfrak{H} (M) . Clearly we have

P_{J}\perp S(N)|\mathfrak{R}^{L}=P_{\mathfrak{R}_{1}}\perp S(M)|\mathfrak{R}_{1}^{\rfloor}\cdot\oplus S(\phi 1_{n-m}) ,

where \mathfrak{R}_{\dot{1}}^{L} denotes the orthogonal complement of \mathfrak{R}_{1} in \mathfrak{H}(M) . Since the
right-hand operator is of class C_{0} (page 129 of [7]), S(N_{2}) is of class C_{0} .
This implies that N_{2} is an n\cross n matrix; i . e. , k=n. To the hyperinvariant
subspace \mathfrak{R}_{1} for S(M) there corresponds a factorization M=M_{2}M_{1} , where
M_{1} and M_{2} are m\cross m normal inner matrices. Thus setting N_{2}’=\{\begin{array}{ll}M_{2} 00 \phi 1_{n-m}\end{array}\}

and N_{1}’=\{\begin{array}{l}M_{1}0\end{array}\} , it is clear that N=N_{2}’N_{1}’ and \mathfrak{R}=N_{2}’\{H_{n}^{2} - N_{1}’H_{m}^{2}\} . From
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the uniqueness of the factorization of N into product of two inner matri-
ces corresponding to (hyper) invariant subspace \mathfrak{R} , only this factorization
N=N_{2}’N_{1}’ corresponds to \mathfrak{R} , that is, N_{2}=N_{2}’ and N_{1}=N_{1}’ . Since

M_{2}\{H_{m}^{2}O-M_{1}H_{n\iota}^{2}\}=\mathfrak{L}_{1}\supseteqq\phi(S(M))\mathfrak{L}(M)=P_{M}\phi H_{m}^{2} ,

we have M_{2}H_{m}^{2}\supseteqq\phi H_{m}^{2} ; this implies that every entry of M_{2} is a divisor of
\phi . Therefore N_{2} is an n\cross n normal inner matrix. Hence N_{1} and N_{2} are
normal inner matrices satisfying (ii)\cdot

4. Lattice isomorphism

Let \theta be an n\cross m inner matrix and N be the corresponding normal
inner matrix. Set

(9) \alpha(\mathfrak{L})=\check{Z}\{Z_{\sim}^{Q} : ZS(\theta)=S(N)Z\}

and

(10) \beta(\mathfrak{R})=\vee W\{W\mathfrak{R}:WS(N)=S(\theta)W\}

for each subspace \mathfrak{L} and \mathfrak{R} hyperinvariant for S(\theta) and S(N) , respectively,
where \vee \mathfrak{L}_{i} denotes the minimum subspace including all \mathfrak{L}_{i} . Since S(\theta)^{c}\sim^{1}

S(N) , it is clear that \alpha(t^{1}) is the non trivial hyperinvarinat subspace for
S(N) , if \mathfrak{L} is non trivial.

Lemma 2. If \theta=\theta_{2}\theta_{1} is the factorization corresponding to a non trivial
hyperinvariant subspace \mathfrak{L} for S(\theta) , then \theta_{1} is an m\cross m inner matrix, or
\theta_{2} is an n\cross n inner matrix.

PROOF. Let S(\theta)=[_{0}^{T_{1}}T_{2}*] and S(N)=\{\begin{array}{l}S_{1} *0 S_{2}\end{array}\} be the triangulations

corresponding to \mathfrak{H}(\theta)=\mathfrak{L}\oplus \mathfrak{L}^{\perp} and \mathfrak{H} (N)=\alpha(\mathfrak{L})\oplus\alpha(\mathfrak{L})^{\perp} , respectively. TheO-
rem 1 implies that S_{1} or S_{2} is of class C_{0} . First, suppose u(S_{1})=0 for
some u in H^{\infty} . For the bounded operator X_{1} given by (6) and every f in
\mathfrak{L} , in virtue of (3), it follows that

X_{1}u(T_{1})f=X_{1}u(S(\theta))f=P_{N}\Delta_{1}P_{\theta}uf=P_{N}\Delta_{1}uf ,

=P_{N}u\Delta_{1}f=u(S(N))X_{1}f=0 .

Since X_{1} is an injection, we have u(T_{1})f=0 , which implies that T_{1} is of
class C_{0} , that is, \theta_{1} is an m\cross m inner matrix. Next suppose S_{2} is of class
C_{0}, hence so is S_{2}^{*} . For Y_{i} given by (6)’ and every Z such that ZS(\theta)=

S(N)Z, in virtue of (8), Y_{i}Z commutes with S(\theta) ; this implies Y_{i}Z\mathfrak{L}\subseteqq \mathfrak{L} and
Hence Y_{i}\alpha(\mathfrak{L})\subseteqq \mathfrak{L} . Thus we have Y_{i}^{*}\mathfrak{L}^{\perp}\subseteqq\alpha(\mathfrak{L})^{\perp} . From this and (8), for each
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h in \mathfrak{L}^{\perp} , it follows that
Y_{i}^{*}T_{2}^{*}h=S_{2}^{*}Y_{i}^{*}h for i=1,2 .

From this we can deduce that
Y_{i}^{*}u(T_{2}^{*})h=u(S_{2}^{*})Y_{i}^{*}h for every u in H^{\infty} ,

(see [7] chap 3). Since Y_{1}\mathfrak{H}(N)\vee Y_{2}\mathfrak{H}(N)=\mathfrak{H}(\theta) , we have u(T_{2}^{*})=0 for u
satisfying u(S_{2}^{*})=0 . Therefore \theta_{2} is an n\cross n inner matrix. This completes
the proof.

The following theorem implies that the mapping \alpha:\mathfrak{L}arrow\alpha(\mathfrak{L}) is is0-
morphism from the lattice of hyperinvariant subspaces for S(\theta) onto that
for S(N) , and its inverse is given by \beta:\mathfrak{R}arrow\beta(\mathfrak{R}) .

THEOREM 2. For X_{i} and Y_{i}(i=1,2) given by (6) and (6)’,

(11) \alpha(L^{t})=X_{1}\mathfrak{L}\vee X_{2}\mathfrak{L} , and \beta\cdot\alpha(\mathfrak{L})=\mathfrak{L} ,

(12) \beta(\mathfrak{R})=Y_{1}\mathfrak{R}\vee Y_{2}\mathfrak{R} and \alpha\cdot\beta(\mathfrak{R})=\mathfrak{R} ,

where \mathfrak{L} and \mathfrak{R} are arbitrary hyperinvariant subspaces for S(\theta) and S(N),
respectively.

PROOF. Let \theta=\theta_{2}\theta_{1} and N=N_{2}N_{1} be the factorizations of \theta and N
corresponding to \mathfrak{L} and \alpha(\mathfrak{L}) , respectively. Then the proof of Lemma 2
implies that both \theta_{1} and N_{1} are k\cross m matrices and both \theta_{2} and N_{2} are n\cross

k matrices, where k=n or k=m. Since X_{i}\mathfrak{L}\subseteqq\alpha(\mathfrak{L}) and Y_{i}\alpha(\mathfrak{L})\subseteqq \mathfrak{L} , it clearly
follows that

\Delta_{i}\theta_{2}H_{k}^{2}\subseteqq N_{2}H_{k}^{2} and \Delta_{i}’N_{2}H_{k}^{2}\subseteqq\theta_{2}H_{k}^{2} ,

which guarantee the existence of k\cross k matirces A_{i} and B_{i} over H^{\infty} satisfying

(13) \Delta_{i}\theta_{2}=N_{2}A_{i} and \Delta_{i}’N_{2}=\theta_{2}B_{i} .

This and (3) implies that

(13)’ A_{i}\theta_{1}=N_{1}\Lambda_{i} and B_{i}N_{1}=\theta_{1}\Lambda_{i}’ .
By (13) we have

(14) \Delta_{i}’\Delta_{i}\theta_{2}=\theta_{2}B_{i}A_{i} ,

and by (13)’

(14)’ B_{i}A_{i}\theta_{1}=\theta_{1}\Lambda_{i}’\Lambda_{i} .
Thus, if k=n, then det A_{i} is a divisor of (det \Delta_{i}) (det \Delta_{i}’), and if k=m then
det A_{i} is a divisor of (\det\Lambda_{i})(\det\Lambda_{i}’) . To prove the first relation of (11),
suppose that
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f\in\alpha(\mathfrak{L})O-\{X_{1}\mathfrak{L}\vee X_{2}\mathfrak{L}\}

Then f is orthogonal to \Delta_{1}\theta_{2}H_{k}^{2}\Delta_{2}\theta_{2}H_{k}^{2}
\cdot On the other hand f\in\alpha(\mathfrak{L}) implies

the existence of g belonging to H_{k}^{2}- N_{1}H_{m}^{2} such that f=N_{2}g . Thus for
every h in H_{k}^{2} , we have for i=1,2
(15) 0=(f, \Delta_{i}\theta_{2}h)=(N_{2}g, N_{2}A_{i}h)=(g, A_{i}h) .
If k=n, then, by (5) and Beurling’s theorem

A_{i}H_{n}^{2}\supseteqq(\det A_{i})H_{m}^{2}\supseteqq(\det\Delta_{i})(\det\Delta_{i}’)H_{n}^{2}

induce A_{1}H_{n}^{2}\vee A_{2}H_{n}^{2}=H_{n}^{2} and hence g=0. If k=m, then it follows that
from (13) and (4) det N_{1} is a divisor of d_{m} , and that A_{i}H_{m}^{2}\supseteqq(\det\Lambda_{i}) (det
\Lambda_{i}’)H_{m}^{2} ; this implies, by (4), N_{1}H_{m}^{2}\vee A_{i}H_{m}^{2}=H_{m}^{2} . Consequently we have g=
0. Thus we showed that if k=n, then \alpha(\mathfrak{L})=X_{1}\mathfrak{L}\vee X_{2}\mathfrak{L}, and if k=m, then
\alpha(\mathfrak{L})=\overline{X_{1}\mathfrak{L}}=\overline{X_{2}\mathfrak{L}\cdot} The rest is proved in a similar way. Thus we can con-
clude the proof\cdot

COROLLARY 1. Let \theta be an n\cross m(n>m) inner matrix over H^{\infty}. Then
for any non constant scalar inner function \phi,\overline{\phi(S(\theta))\mathfrak{H}(\theta)} is a non trivial
hyperinvariant subspace for S(\theta) .

PROOF. Since \{X_{1}, X_{2}\} is a complete injective family, it is clear that
\overline{\alpha(\phi(S(\theta))\mathfrak{H}(\theta)})=\overline{\phi(S(N))\mathfrak{H}(N).}

The following relation :

\mathfrak{H}(M)\oplus\phi H_{n-m}^{2}\supseteqq\phi(S(N))\mathfrak{H}(N)\supseteqq\{0\}\oplus\phi H_{n-m}^{2}

implies that \phi(S(N))\otimes (N) is trivial and hence so \phi\overline{(S(\theta))\mathfrak{H}(\theta)} is by The
over 2.

COROLLARY 2\cdot K\phi(S(\theta))=\{h\in \mathfrak{H}(\theta):\phi(S(\theta))h=0\} is a non trivial hy-
perinvariant subspace for S(\theta) if and only if \phi\Lambda d_{m}\neq 1 .

PROOF. It is clear that K\phi(S(\theta)) is hyperinvariant for S(\theta) and

\alpha(K\phi(S(\theta)))=K\phi(S(N))=K\phi(S(M))\oplus\{0\}

Since, by the definition, we have d_{m}=\det M, we must show that
K\phi(S(M))=\{0\} if and only if \phi\Lambda(\det M)=1

But this results have already been proved in [3].

5. Restricted operators

For an arbitrary subspace \mathfrak{L} of \mathfrak{H} (\theta) we define the subspace \alpha’(\mathfrak{L}) of
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\mathfrak{H}(N) by

(15) \alpha’(\mathfrak{L})=X_{1}\mathfrak{L}\vee X_{2}\mathfrak{L} .
Similarly define the subspace \beta’(\mathfrak{R}) of \mathfrak{H}(\theta) by

(16) \beta’(\mathfrak{R})=Y_{1}\mathfrak{R}\vee Y_{2}\mathfrak{R} for a subspace \mathfrak{R} of \mathfrak{H} (N) .
Then by Theorem 2 \alpha’(\mathfrak{L})=\alpha(\mathfrak{L}) if \mathfrak{L} is hyperinvariant for S(\theta) .

THEOREM 3. Let \mathfrak{L} be a hyperinvariant subspace for S(\theta) . If \mathfrak{L}’ is
a subspace of \mathfrak{L} , hyperinvariant for S(\theta)|\mathfrak{L}, then \alpha’(\mathfrak{L}’) is a subspace of
\alpha’(\mathfrak{L}) , hyperinvariant for S(N)|\alpha’(\mathfrak{L}) and \beta’(\alpha’(\mathfrak{L}’))=\mathfrak{L}’t

PROOF. Let \theta=\theta_{2}\theta_{1} and N=N_{2}N_{1} be the factorization of \theta and N cor-
responding to \mathfrak{L} and \alpha’(\mathfrak{L})=\alpha(\mathfrak{L}) , respectively.

\mathfrak{L}=\theta_{2}\{H_{k}^{2}O-\theta_{1}H_{m}^{2}\}

implies that \theta_{2}|\mathfrak{H}(\theta_{1}) is unitary from \mathfrak{H} (\theta_{1}) onto \mathfrak{L} . Hence, in virtue of

(S(\theta)|\mathfrak{L})(\theta_{2}|\mathfrak{H}(\theta_{1}))=(\theta_{2}|\mathfrak{H}(\theta_{1}))(S(\theta_{1})) ,

it follows that (\theta_{2}|\mathfrak{H}(\theta_{1}))^{-1}\mathfrak{L}’ is hyperinvariant for S(\theta_{1}) . Now for A_{i} and
B_{i} given by (13), from (14) or (14)’\tau (det A_{i}) (det B_{i}) is a divisor of (det \Delta_{i})
(det \Delta_{i}’) or (det \Lambda_{i}) (det \Lambda_{i}’). Thus by (5) or (5)’ we have

(17) (det A_{1}) (det B_{1}) \Lambda(\det A_{2}) (det B_{2}) =1\tau

It is easy to show that for X_{i}’=P_{N_{1}}A_{i}|\mathfrak{H}_{arrow}(\theta_{1}) ,

X_{1}’(\theta_{2}|\mathfrak{H}(\theta_{1}))^{-1}\mathfrak{L}’\vee X_{2}’(\theta_{2}|\mathfrak{H}(\theta_{1}))^{-1}\mathfrak{L}’

is hyperinvariant for S(N_{1}) , by making use of (13)’, (4) and (17), as we
have shown Theorem 2 by making use of (3), (4), (5) and (6). Since N_{2}|\mathfrak{H}

(N_{1}) is unitary from \mathfrak{H} (N_{1}) onto \alpha’(\mathfrak{L})=\alpha(\mathfrak{L}) ,

(S(N)|\alpha(\mathfrak{L}))(N_{2}|\mathfrak{H}(N_{1}))=(N_{2}|\mathfrak{H}(N_{1}))S(N_{1})

implies that
N_{2}(X_{1}’(\theta_{2}|\mathfrak{H}(\theta_{1}))^{-1}\mathfrak{L}’\vee X_{2}’(\theta_{2}|\mathfrak{H}(\theta_{1}))^{-1}\mathfrak{L}’)

=N_{2}(P_{N_{1}}A_{1}(\theta_{2}|\mathfrak{H}(\theta_{1}))^{-1}\mathfrak{L}’\vee P_{N_{1}}A_{2}(\theta_{2}|\mathfrak{H}(\theta_{1}))^{-1}\mathfrak{L}’)

=P_{N}N_{2}A_{1}(\theta_{2}|\mathfrak{H}(\theta_{1}))^{-1}\mathfrak{L}’P_{N}N_{2}A_{2}(\theta_{2}|\mathfrak{H}(\theta_{1}))^{-1}\mathfrak{L}’

=P_{N}\Delta_{1}\theta_{2}(\theta_{2}|\mathfrak{H}(\theta_{1}))^{-1}\mathfrak{L}’\vee P_{N}\Delta_{2}\theta_{2}(\theta_{2}|\mathfrak{H}(\theta_{1}))^{-1}\mathfrak{L}’

=P_{N}\Delta_{1}\mathfrak{L}’\vee P_{N}\Delta_{2}\mathfrak{L}’=X_{1}\mathfrak{L}’\vee X_{2}\mathfrak{L}’=\alpha’(\mathfrak{L}’)

is hyperinvariant for S(N)|\alpha’(\mathfrak{L}) . \beta’(\alpha’(\mathfrak{L}’))=\mathfrak{L}’ is proved by the same way
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as Theorem 2. Thus we complete the proof.
The same argument as the proof of Theorem 3 yields.
THEOREM 3’. Let \mathfrak{R} be a hyperinvariant subspace for S(N) \cdot If \mathfrak{R}’

is a subspace of \mathfrak{R} , hyperinvariant for S(N)|\mathfrak{R}, then \beta’(\mathfrak{M}) is a subspace
of \beta’(\mathfrak{R}) , hyperinvariant for S(\theta)|\beta’(\mathfrak{R}) , and \alpha’(\beta’(\mathfrak{M}))=\mathfrak{M} .

THEOREM 4. Let \mathfrak{L} be a subspace hyperinvariant for S(\theta) . Then \mathfrak{L}’

is a subspace of \mathfrak{H}(\theta) , hyperinvariant for S(\theta) , if it is a subspace of \mathfrak{L} ,
hyperinvariant for S(\theta)|\mathfrak{L} .

PROOF. Set \alpha’(\mathfrak{L}’)=\mathfrak{R}’ and \alpha’(\mathfrak{L})=\alpha(\mathfrak{L})=\mathfrak{R} . Theorem 3 implies that
\mathfrak{R}’ is hyperinvariant for S(N)|\mathfrak{R} . Let N=N_{2}N_{1} be the factorization of N
corresponding to \mathfrak{R} . Then (N_{2}|\mathfrak{H}(N_{1}))^{-1}\mathfrak{M} is a subspace of \mathfrak{H} (N_{1}) , hyperin-
variant for S(N_{1})

\cdot Since N_{1} is a k\cross m (k=n or k=m) normal inner matrix
over H^{\infty}, by Theorem 1 there is an l\cross m normal inner matrix N_{1}’ and an
k\cross l normal inner matrix N_{2}’ such that

N_{1}=N_{2}’N_{1}’ and (N_{2}|\mathfrak{H}(N_{1}))^{-1}\mathfrak{R}’=N_{2}’\{H_{l}^{2}O-N_{1}’H_{m}^{2}\},\cdot

where n\geqq k\geqq l\geqq m , and l=m or l=n. It is easy to show that N_{2}N_{2}’ and
N_{1}’ satisfy the condition (i) or the condition (ii) of Theorem 1; this implies
that

\mathfrak{R}’=N_{2}N_{2}’\{H^{2},O-N_{1}’H_{m}^{2}\}

is hyperinvariant for S(N) . Thus
\beta(\mathfrak{R}’)=\beta’(\mathfrak{R}’)=\beta’(\alpha’(\mathfrak{L}’))=\mathfrak{L}’

is hyperinvariant for S(\theta) . Thus we conclude the proof.
Now, we determine a particular hyperinvariant subspace \mathfrak{L}_{*} for S(\theta)

by the following relation :

\mathfrak{L}_{*}=\{h\in \mathfrak{H}(\theta) : S(\theta)^{n}harrow 0 as narrow\infty\} ([7] P. 73).

Then, from \alpha(\mathfrak{L}_{*})\subseteqq \mathfrak{H}(M) and \beta(\mathfrak{H}(M))\subseteqq \mathfrak{L}^{*} , it follows that \alpha(\mathfrak{L}_{*})=\mathfrak{H}(M) .
THEOREM 5. Let \mathfrak{L} be a subspace hyperinvariant for S(\theta) . In order

that if \mathfrak{L}’ is a subspace of \mathfrak{L} , hyperinvariant for S(\theta) , then \mathfrak{L}’ is hyperin-
variant for S(\theta)|\mathfrak{L}, it is necessary and sufficient that there is a function \phi

in H^{\infty} such that

\mathfrak{L}=\phi(S(\theta))\mathfrak{H} (\theta) or \mathfrak{L}=\phi(S(\theta))\mathfrak{H} (\theta)\cap \mathfrak{L}_{*} .
PROOF. SUFFICIENCY. Case a : suppose \mathfrak{L}=\overline{\phi(S(\theta))\mathfrak{H}(\theta)} and hence

\alpha(\mathfrak{L})=\overline{\phi(S(N))\mathfrak{H}(N)}. Let N=N_{2}N_{1} be the factorization corresponding to
\alpha(\mathfrak{L}) . Then N_{2}=diag(\phi_{1}, \cdots, \phi_{m}, \phi, \cdots, \phi) , where \phi_{i}=\phi\Lambda\psi_{i} for i=1,2, \cdots , m \cdot

Set \phi=\phi_{i}u_{i} and \psi_{i}=\phi_{i}v_{i} for i=1,2, \cdots 9m . Then it follows that for i=
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1, 2, \cdots , m-1 ,

\phi_{i+1}=\phi\Lambda\psi_{i+1}=\phi_{i}u_{i}\Lambda\phi_{i}v_{i}\frac{\psi_{i+1}}{\psi_{i}}=\phi_{i}(u_{i}\Lambda v_{i}\frac{\psi_{i+1}}{\psi_{i}}) .

Since u_{i}\Lambda v_{i}=1 , this implies that

(18) \frac{\phi_{i+1}}{\phi_{i}}\Lambda v_{i}=1 .

Let \mathfrak{L}’ be a subspace of \mathfrak{L} , hyperinvariant for S(\theta) . Then there is the fac-
torization N_{1}=N_{2}’N_{1}’ , where N_{1}’ is a k\cross m inner matrix and N_{2}’ is an n\cross k

inner matrix, such that \alpha(\mathfrak{L}’)=N_{2}N_{2}’\{H_{k}^{2} - N_{1}’H_{m}^{2}\} (see [7] P. 291). The hy-
perinvariance of \alpha(\mathfrak{L}’) implies that N_{2}N_{2}’ and N_{1}’ are normal inner matrices
satisfying (i) or (ii) of Theorem 1. First, assume (i). Then N_{1}’ is an m\cross m

normal inner matrix and hence N_{2}’ is an n\cross m inner matrix. From the

normalities of N_{2}N_{2}’ and N_{2} , we can deduce that N_{2}’ has the form \{\begin{array}{l}M’0\end{array}\} ,

where M’= diag (t_{1}, t_{2}, \cdots, t_{m}) . Since \phi_{i}t_{i} is a divisor of \psi_{i} , it follows that t_{i}

is a divisor of v_{i} and, by (18), \frac{\phi_{i+1}}{\phi_{i}}\Lambda t_{i}=1 . Then normality of N_{2}N_{2}’ implies

that there is an inner function w_{i} such that w_{i}= \frac{\phi_{i+1}t_{i+1}}{\phi_{i}t_{i}} . From t_{i}w_{i}= \frac{\phi_{i+1}}{\phi_{i}}

t_{i+1} , it follows that t_{i} is a divisor of t_{i+1} . Thus N_{2}’ is normal. Hence N_{2}^{-1}

\alpha(\mathfrak{L}’)=N_{2}’\{H_{m}^{2}O-N_{1}’H_{n}^{2}\} is hyperinvariant for S(N_{1}) . Therefore \alpha(\mathfrak{L}’) is hy-
perinvariant for S(N)|\alpha(\mathfrak{L}) . Consequently \beta’(\alpha(\mathfrak{L}’))=\beta(\alpha(\mathfrak{L}’))=\mathfrak{L}’ is hyperin-
variant for S(\theta)|\mathfrak{L} . Next assume that N_{2}N_{2}’ and N_{1}’ satisfy (ii). Then we
have N_{2}’=diag(t_{1^{ }},\cdots, t_{m}, t, \cdots, t) , for inner functions t_{1} , t_{2}, \cdots , t_{m} and t . It is
proved as above that t_{i} is a divisor of t_{i+1} for i=1,2 , \cdots , m-1 . Since \phi_{m}

t_{m} is a divisor of \phi t , t_{m} is a divisor of u_{m}t . On the other hand since t_{m} is
a divisor of v_{m} and v_{m}\Lambda u_{m}=1 , t_{m} is a divisor of t. Thus it follows that
N_{2}’ is normal. Consequently in the same way as above we can deduce that
\mathfrak{L}’ is hyperinvariant for S(\theta)|\mathfrak{L} .

Case b : suppose \mathfrak{L}=\overline{\phi(S(\theta))\mathfrak{H}(\theta)}\cap \mathfrak{L}_{*}, . Then by Corollary 1 and \alpha(\mathfrak{L}_{*})

=\mathfrak{H}(M) we have
\alpha(\mathfrak{L})=\overline{\phi(S(N))\mathfrak{H}(N})\cap \mathfrak{H}(M)=\overline{\phi(S(M))\mathfrak{H}(M}) ,

because \alpha is a lattice isomorphism. Let N=N_{2}N_{1} be the factorization cor-
responding to \alpha(\mathfrak{L}) . Then it follows that

N_{2}=\{\begin{array}{l}M_{2}0\end{array}\} with M_{2}=diag (\phi_{1}, \phi_{2}, \cdots, \phi_{m}) ,

where \phi_{i}=\phi\Lambda\psi_{i} for i=1,2, \cdots , m. Let \mathfrak{L}’ be a subspace of \mathfrak{L} , hyperin-
variant for S(\theta) , and N_{1}=N_{2}’N_{1}’ be the factorization of N_{1} such that N=
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(N_{2}N_{2}’)N_{1}’ is the factorization of N corresponding to \alpha’(\mathfrak{L}’)=\alpha(\mathfrak{L}’) . The hy-
perinvariance of \alpha(\mathfrak{L}’) for S(N) implies that N_{2}N_{2}’ and N_{1}’ are normal inner
matrices satidfying (i). In the same way as Case a it follows that N_{2}’ is an
m\cross m normal inner matrix. Therefore it is simple to show that \mathfrak{L}’ is hy-
perinvariant for S(\theta)|\mathfrak{L} .

NECESSITY\cdot Let \mathfrak{L} be the hyperinvariant subspace for S(\theta) such that
\mathfrak{L}’ is hyperinvariant for S(\theta)|\mathfrak{L} , if \mathfrak{L}’ is a subspace of \mathfrak{L} , hyperinvariant for
S(\theta) . Then, for every subspace \mathfrak{R}’ of \alpha(\mathfrak{L}) such that \mathfrak{R}’ is hyperinvariant
for S(N) , it follows from Theorem 3 that \beta(\mathfrak{R}’)=\beta’(\mathfrak{R}’) is hyperinvariant
for S(\theta)|\mathfrak{L} . Hence, by Theorem 3, \mathfrak{R}’=\alpha’(\beta’(\mathfrak{R}’)) is hyperinvariant for S
(N)|\alpha(\mathfrak{L})

\cdot Let N=N_{2}N_{1} be the factorization corresponding to \alpha(\mathfrak{L})

\cdot Then
N_{2} and N_{1} are normal inner matrices.

Case a’ : assume that N_{1} and N_{2} have the form:
N_{1}=diag(\xi_{1}, \xi_{2^{ }},\cdots, \xi_{m}) and

N_{2}=\{\begin{array}{l}M_{2}0\end{array}\} with M_{2}=diag(\eta_{1}, \eta_{2} \cdots 1

Then it follows that \eta_{i} and \xi_{i} satisfy (18), that is \frac{\eta_{i+1}}{\eta_{i}} and \xi_{i} are relatively
prime. In fact, if it were not true, then we have

\omega\equiv\frac{\eta_{i+1}}{\eta_{i}}\wedge\frac{\xi_{j}}{\xi_{j-1}}\neq 1 for some j:1\leqq j\leqq i , \xi_{0}=1\tau

Set
M_{2}’= diag (\eta_{1^{ }},\cdots, \eta j-1’ \eta_{j}\omega, \eta_{j+1}\omega, \cdots, \eta_{i}\omega, \eta_{i+1^{ }},\cdots, \eta_{m})

N_{1}’=dag(\xi_{1}, \cdots , \xi_{j-1} , \frac{\xi_{j}}{\omega} , \frac{\xi_{j+1}}{\omega} , \cdots , \frac{\xi_{i}}{\omega} , \xi_{i+1} , \cdots , \xi_{m})

and N_{2}’=\{\begin{array}{l}M_{2}’0\end{array}\} . It is clear that \backslash \mathfrak{R}’\equiv N_{2}’\{H_{m}^{2}O-N_{1}’H_{m}^{2}\} is a subspace of \alpha(\mathfrak{L}) .
Since N_{1}’ and N_{2}’ are normal inner matrices, by Lemma 1 \mathfrak{R}’ is hyperin-
variant for S(N) . However,

(N_{2}|\mathfrak{H}(N_{1}))^{-1}N_{2}’\mathfrak{H}(N_{1}’)=diag(1, \cdots, 1, \omega, \cdots, \omega, 1, \cdots 1)\mathfrak{H} (N_{1}’)

implies that \mathfrak{R}’ is not hyperinvariant for S(N)|\alpha(\mathfrak{L}) . Thus we have \frac{\eta_{i+1}}{\eta_{i}}<

\xi_{i}=1 . Since \xi_{i} is a divisor of \xi_{i+1} , it follows that

\eta_{m}\Lambda\psi_{i}=\eta_{m}\Lambda(\eta_{i}\xi_{i})=\eta_{i}(\frac{\eta_{m}}{\eta_{i}}\Lambda\xi_{i})=\eta_{i} .
Thus we have

\alpha(\mathfrak{L})=\overline{\eta_{m}(S(M))\mathfrak{H}(M)}=\overline{\eta_{m}(S(N))\mathfrak{H}(N)}\cap \mathfrak{H}(M) .
Consequently \mathfrak{L}=\overline{\eta_{m}(S(\theta))\mathfrak{H}(\theta)}\cap \mathfrak{L}_{*} .
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Case b’ : assume that N_{1} and N_{2} are normal inner matrices satisfying
(ii). In this case, we can show

\mathfrak{L}=\phi(S(\theta))\mathfrak{H}(\theta) for some \phi in H^{\infty}

in the same way as Case a’ , Thus we complete the proof of Theorem 5.

References

[1] R. G. DOUGLAS: On the hyperinvariant subspaces for isometries, Math. Z., 107

(1968), 297-300.
[2] R. G. DOUGLAS and C. PEARCY: On a topology for invariant subspaces, J.

Func. Anal, 2 (1968), 323-341.
[3] P. A. FUHRMANN: On the Corona Theorem and its application to spectral pr0-

blems in Hilbert space, Trans. Amer. Math. Soc, 132 (1968), 55-66.
[4] E. A. NORDGREN: On quasi-equivalence of matrices over H^{\infty} , Acta Sci. Math.,

34 (1973), 301-310.
[5] D. SARASON: Generalized interpolation in H^{\infty} , Trans. Amer. Math. Soc, 127

(1967), 179-203.
[6] B. Sz.-NAGY and C. FOIAS, : Jordan model for contractions of class C_{0}. , Acta

Sci. Math. 36 (1974), 305-322.
[7] B. Sz.-NAGY and C. FOIAS, : Harmonic analysis of operators on Hilbert space,

North-Holland, Akad\’emiai Kiad\’o, 1970.
[8] M. UCHIYAMA: Hyperinvariant subspaces for operators of class C_{0}(N), Acta

Sci. Math., to appear.

M. Uchiyama
Division of Applied Mathematics

Research Institute of Applied Electricity
Hokkaido University

Sapporo, Japan

M. Uchiyama
The Department of Education

Fukuoka University of Education
Fukuoka, Japan


	1\cdot Introduction
	2. Preliminaries
	3. Jordan operator
	THEOREM 1. ...

	4. Lattice isomorphism
	THEOREM 2. ...

	5. Restricted operators
	THEOREM 3. ...
	THEOREM 3'. ...
	THEOREM 4. ...
	THEOREM 5. ...

	References

