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Hyperinvariant subspaces for contractions of class C.

By Mitsuru UcHIYAMA
(Received August 2, 1976)

1. Introduction

Let T be a bounded operator on a separable Hilbert space . A sub-
space & of O is said to be hyperinvariant for T if 8 is invariant for every
operator that commutes with 7. In the hyperinvariant subspaces for a
unilateral shift were determined, and those for an isometry in [1]. Recall
that 7 is said to be of class C, if 7 is a contraction (i.e., ||T]|<1) and’
T**—0 (strongly) as n——oco. Hence a unilateral shift is of class C,.
Let T be of class C.,. Then it necessarily follows that

0x =dim(1—TT% = dim(1—T*T) D =5

(see [6]). In the case of 6,=0< oo, in an earlier paper we established
a canonical isomorphism between the lattice of hyperinvariant subspaces for
T and that for the Jordan model of T. In this paper we extend this result
to the case of §<6x<co. For an operator T of this class we shall pres-
ent complete description of the hyperinvariant subspaces 9t with the property
that every subspace of 9t hyperinvariant for T is hyperinvariant for the
restricted operator T|N. The author wishes to express his gratitude to
Prof. T. Ando for his constant encouragement.

2. Preliminaries

Let 6 be an nXm (co >n=m) matrix over H® on the unit circle. Such
a matrix 6 is called inner if 6(z) is isometry a.e. on the unit circle. For
such an inner function ¢ a Hilbert space 9 (§) and an operator S(f) are

defined by
(1) O0)=HO0H. and S@h=P,(Sh) for hin D),

where H} is the Hardy space of n-dimensional (column) vector valued func-
tions, P, is the projection from H? onto $(f), and .S is the simple unilateral
shift, that is, (Sh)(2)=2h(2). A contraction T of class C., with d4=» and
0=m is unitarily equivalent to an .5(6) of this type [7]. Thus in the sequel
we may discuss S(f) in place of 7.

For a completely non unitary contraction 7, it is possible to define
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¢ (T) for every function ¢ in H*. In particular, for S(6) given above ¢(S
(#)) can be equivalently defined by the following :

$(S©O)h=P,gh for hin $(0) (see [5] [7].

If there is a function ¢ such that ¢(7)=0, then T is said to be of class
C,. T of class C., with §<04<oo is of class C, if and only if 6=d4 [7].
Suppose T; is a bounded operator on §; and 7, a bounded operator
on $,. If there exists a complete injective family {X,} from 9; to 9,
(i. e., for each a, X, is an one to one bounded operator from 9, to 9, and

V X, 9,=9,) such that for each a X,7T,=T,X,, then we write Tl< T, I

Tc<lT2 and Tzci\ < T;, then T1 and T, are said to be completely injection-
similar, and denote by T,~T, [6].

An nXm (n=m) normal inner matrix N’ over H® is, by definition,
of the form:

4,0
0 ¢yee 0
(2) - N'=[0 0" ¢n
00 ---0 l
n—m
(000

where, for each i, ¢; is a scalar inner function and a divisor of its succesor.
Then

S(N) =S D DSgn)DS-- DS
n—m
is called a Jordan operator.
Let # be an nXm (co>n=m) inner matrix over H* and N a corre-
sponding normal matrix, i.e., N is the nXm normal inner matrix of the
form (2), where ¢y, ¢5--+, ¢, are the “invariant factors” of 6, that is,

¢k:_ék— for k=1,2,---,m
-1

where dy=1 and d is the largest common inner divisor of all the minors
of order k£ In this case, Nordgren has shown that there exist pairs
of matrices 4;, 4; and 4}, 4, (i=1, 2) satisfying

(3) 4,6 =N 4;,
(3) 64, =4N,
(4) (det 4,) (det AY)Adr =1,
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(5) (det 4,) (det 47) A\(det 4,) (det 4) =1,

(5Y (det 4,) (det A) A(det A,) (det 45) =1,

where /Y denotes the largest common inner divisor of scalar function z
and ¥ in H*®. Setting

(6) XZ-:PNAHH(@) and

(6Y - Y, =P, 4|H(N) for 1=1,2,

{X,, X} and {Y,, Y,} are complete injective families satisfying the following
relations :

(7) X;S@) =S(N)X; and

(8) SO Y,=Y,S(N) for i=1,2.

This implies .S(6)<.S(N) (cf. [6].

To every subspace € of 9 (f), invariant for .S(6), there corresponds an
unique factorization 0#=6@,0, of 6§ such that 6, is an k2 Xm inner matrix and
0, is an n Xk inner matrix (n=k=m) satisfying

L =0, {HZ@&H%} =0, H;O0H.

In this case S(0)|® and Pg:S(6)|®* are unitarily equivalent to S(6,) and
S(8y), respectively. For this discussion see [7].

Let M be an mXm normal inner matrix over H®. Then, in [8], we
showed that, in order that a factorization M= M, M, corresponds to a sub-
space hyperinvariant for .S(M), it is necessary and sufficient that both M,
and M, are m X m normal inner matrices.

3. Jordan operator

Let N= [ 0 ] be an nXm normal inner matrix over H>, that is, M is

an 7 X m normal inner matrix over H*. Then S(N) on §(N) are identified
with
S(M)DSp-m on MJDH;_,,
where (S,_.h)(2)=2h(2) for A in H2_,.
Let N be a hyperinvariant subspace for S(N). Then it is clear that
N is decomposed to the direct sum,

R=NRDN,,

where %, is a subspace of 9 (M), hyperinvariant for S(Mj, and N, is a
subspace of H?_,,, hyperinvariant for S,_,. In this case we have the fol-
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lowing lemma.

LEMMA 1. For %, and N, which are hyperinvariant for S(M) and
So_ms Tespectively, in order that the direct sum N=TDN, is hyperinvariant
for S(N), it is necessary and sufficient that WN,={0} or there exists an inner

function ¢ such that YWo=¢H?:_,, and W24 (S(M))  (M).

Proor. An operator X:[?l 11:12] commutes with S(N), ¢f and only
21 22

if Yy Satisfy the following conditions :
Y11S(M) :S(M} Ylls Y12Sn—m: S(M)Ym,
Y21S(M):Sn-mY21 and Y22Sn—m:Sn-—mY22-
Since S(Mj*—0 as n—> o0 and S,_, is isometry, we have Y,;=0. Thus
if N,={0}, then it follows that XNRCEN for every X commuting S(N). By
the lifting theorem (cf. [5], [7]), a bounded operator Y;, from H;_, to
H(M) intertwines S,_, and S(M), if and only if there is an mX(n—m)
matrix £ over H® such that Y,,=Py92. Thus, if %%=¢H:_, and N;2¢
(S(M)) O (M) for some inner function ¢, then we have
XN = (Y, N+ Y12¢H73—m) &) Y22¢H3—m
C W+ Pul¢H: ) DoH: .,
= (Rt ¢ (S(M)) & (M) D$H:
; ml@qu'Z——m = %
for every X commuting with S(N).

Conversely suppose N=N,PN, is hyperinvariant for S(N), and N,+{0}.
Then by there exists an inner function ¢ such that We=¢H._,. Let
Q, =1,2,---,m) be the m x(n—m) matrix such that the (j, k£)-th entry of
2, is 1 for (j,k)=(;, 1) and O for (j, k)+#(7, 1). Setting

0
each X; commutes with S(N), hence we have ;2 nZ YioH:_,=PydHL=
i=1
¢ (S(M)) H (M). This completes the proof.

THEOREM 1. In order that a factorization N=N,N, of N into the
product of an nXk inner matriz N, and an kXm inner matrix N, (n=k
>m) corresponds to a hyperinvariant subspace N for S(N), it is necessary
and sufficient that N, and N, are normal matrices satisfying (i) or (ii):

(1) k=m, |

0 Y,
Xz:[ O] and Yi:PMQi’
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M, 0
(ii) k=n and N, has the form -------- oo

ProoF. First, assume that k=m, and both N, and N, are normal inner
7

matrices. Then, setting N2=l]\042], it follows that N, {H2ON, H,f,}ZZ\/IQ{H,f,
©N, H;} is hyperinvariant for S(M) (see [8]). Therefore, by Lemma 1, it

is hyperinvariant for S(N). Next, assume that N, and N, are normal

1\041} Then we have

R=N,{H.ON,H;} = M, {H,OM, H2}P¢pH?_,, .
Normality of M, and M, implies that M,{H2OM,H?2} is hyperinvariant for
S(M). On the other hand, normality of N, implies M;H22¢H?, and hence

we have

matrices satisfying (ii). Set N1:[

M;H,OMH,, 2¢(S(M)9 (Mj.
Thus from we deduce that R is hyperinvariant for S(N).

Conversely, first, assume that N=9,P{0} is hyperinvariant for .S(N),
and N=N,N, is the factorization corresponding to 9. Since S(N)N=
S(MJIN, is of class Cy, S(N,) is of class C, (cf. 2). This implies that N,

is an mXm inner matrix, that is, k=m. Setting Nz———[AI{z], where M, is
an m X m matrix and I an (n—m)X m matrix, we have
M= M,N,, ', = M {HON,H: and I'H:={0}.

Since I'=0 and N, is inner, it follows that M, is inner. Thus the hyperin-
variance of ; corresponding to M=DM,N, implies that M, and N, are m
Xm normal inner matrices. Next assume that W=RNPsH2_,, and R,

6 (S (M) H (M). Clearly we have
P;1S(N)| R = Py S(M)|I @DS(@ Ln_n),

where 9! denotes the orthogonal complement of N, in § (M. Since the

right-hand operator is of class C, (page 129 of [7]), S(N, is of class C,.

This implies that N, is an #n X7 matrix; i.e., k=n. To the hyperinvariant

subspace N; for S(M) there corresponds a factorization M= M,M,, where
M, 0

o g

and N{:[A(;[l], it is clear that N=Nj;N; and N=N, {H}SON];HZ2}. From

M, and M, are m X m normal inner matrices. Thus setting NQZ[
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the uniqueness of the factorization of N into product of two inner matri-

ces corresponding to (hyper) invariant subspace 9, only this factorization
N=N,Nj corresponds to RN, that is, N,=N, and N,=N,. Since

M, {HLO M, Hz) = 2,24 (S(M)) 2 (M) = Py ¢ H?,

we have M,H.2O@H? ; this implies that every entry of M, is a divisor of
¢. Therefore N, is an nXn normal inner matrix. Hence N, and N, are
normal inner matrices satisfying (ii).

4. Lattice isomorphism

Let @ be an nXm inner matrix and N be the corresponding normal
inner matrix. Set

(9) a(E):\Z/{ZXE: ZS(6) = S(N) Z}
and
(10) B =\ (Wh: WS(N)= S(o) W

for each subspace € and M hyperinvariant for S(f) and S(N), respectively,
where \V®; denotes the minimum subspace including all €. Since S(6)%

S(N), it is clear that «(8) is the non trivial hyperinvarinat subspace for
S(N), if & is non trivial.

LEMMA 2. If 0=80,0, is the factorization corresponding to a non trivial
hyperinvariant subspace & for S(0), then 0, is an mXm inner matriz, or
0, is an nXn inner matrix.

Proor. Let S(ﬂ)Z[Tl *] and S(N)z[S1 )

0 T, 0 S,
corresponding to 9 ()=8PLL and H(N)=a (QPa (¥, respectively. Theo-
rem 1 implies that S; or S, is of class C,. First, suppose u(S;)=0 for
some % in H”. For the bounded operator X, given by (6) and every f in
€, in virtue of (3), it follows that

Xu(T)f=X, u(S(a)) F=Pyd,Pyuf = Pyd,uf,
= Pyud f=u (S(N)) X, f=0.

] be the triangulations

Since X; is an injection, we have u (7,)f=0, which implies that 7} is of
class C,, that is, 6, is an m X m inner matrix. Next suppose .S; is of class
C,, hence so is S*. For Y; given by (6 and every Z such that ZS(6)=
S(N) Z, in virtue of (8), Y;Z commutes with .S(¢); this implies Y;Z8C & and
hence Y;a(Q 2 Thus we have Y@ Ca(R)L. From this and (8), for each
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h in 24, it follows that
Y¥Tyh=8rYrh for i=1,2.
From this we can deduce that
Y¥u(TH h=u(Sy) YFh for every w in H*,
(see chap 3). Since Y19 (N)V YO (N)=9 (6), we have u (TF)=0 for «

satisfying « (S5)=0. Therefore 6, is an nX#n inner matrix. This completes
the proof.

The following theorem implies that the mapping a:8-—a (2 is iso-
morphism from the lattice of hyperinvariant subspaces for .S(f) onto that
for S(N), and its inverse is given by f:RN—pN).

THEOREM 2. For X; and Y, (i=1,2) given by (6) and (6),
(11) a (=X 8V X8 and B-a(@=2,
(12) B =Y NRVY, N and a-f(N) =N,

where & and N are arbitrary hyperinvariant subspaces for S(0) and S(N),
respectively.

Proor. Let 6=6,, and N=N,N,; be the factorizations of # and N
corresponding to € and «(%), respectively. Then the proof of
implies that both 6, and N, are kX m matrices and both 6, and N, are nXx
k matrices, where k=n or k=m. Since X;¥Ca (¥ and Y,a (R Z8, it clearly
follows that

4,0, H; S N, H; and AZNzH/%;ezH/z,'

which guarantee the existence of kX k& matirces A; and B; over H* satisfying

(13) 4,6,=N,A; and 4;N,=86,B;.
This and (3) implies that

(13y A;0,=N,4; and B;N,=6,1,.
By (13) we have

(14) 4,4:6,=0,B, A,,

and by (13)

14) B, A0, = 6,4/ 4,.

Thus, if £=n, then det A; is a divisor of (det 4;) (det 4}), and if k=m then
det A; is a divisor of (det 4,) (det 4}). To prove the first relation of (11),
suppose that
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feEa(®O{X VXY .
Then fis orthogonal to 4,6,H?\/ 4,6,H?. On the other hand f€a (¥) implies
the existence of ¢ belonging to H}ON,H? such that f=N,. Thus for
every h in H}, we have for i=1, 2
(15) 0=(f, 4:6,h) = (N9, Ny A; h) = (g, A; ).
If k=n, then, by (5) and Beurling’s theorem
A H; 2(det A;) HY, 2 (det 4,) (det 47) H,

induce A;H?\ A;H?!=H? and hence ¢g=0. If k=m, then it follows that
from (13) and (4) det N, is a divisor of dy, and that A;H22D(det 4,) (det
A7) HY ; this implies, by (4), NyH2\/ A;H:=H?. Consequently we have g=
0. Thus we showed that if k=n, then a(®)=X,2V X;®, and if k=m, then
a(®)=X,8=X,8. The rest is proved in a similar way. Thus we can con-
clude the proof.

CoROLLARY 1. Let 0 be an nXm (n>m) inner matrix over H®. Then
Sfor any non constant scalar inner function ¢, ¢ (S(6) D (0) is a non trivial
hyperinvariant subspace for S(6).

Proor. Since {X;, X3} is a complete injective family, it is clear that

a(8(S(0) D(6) = ¢(SIN) D (N).
The following relation :
O (M)DgH: . 24(S(N)) D (N) 2 {0} DpH:-,
implies that ¢(S(N)) §(N) is trivial and hence so ¢ (S(6) D (6) is by The-

orem 2.

CoroLLARY 2. Kg(S(0)={hcD(0): ¢(SO) h=0} is a non trivial hy-
perinvariant subspace for S(0) if and only if ¢ Ndn+1.

Proor. It is clear that K¢ (S(0) is hyperinvariant for S(6) and

a(Kp(S(0))) = Kp(S(N)) = K (S(M)) D {0} .
Since, by the definition, we have d,=det M, we must show that
K¢(S(M))={0} if and only if @gA(det M)=1.
But this results have already been proved in [3].

5. Restricted operators

For an arbitrary subspace & of 9 (6) we define the subspace o (¥ of
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D (N) by

(15) ad () =X 28V X:28.

Similarly define the subspace § (:) of H (6) by

(16) BN =Y NRVY,N for a subspace N of H (N).

Then by ad (®)=a(®) if  is hyperinvariant for S(6).

THEOREM 3. Let & be a hyperinvariant subspace for S(6). If ¥ is
a subspace of 8, hyperinvariant for S(0)|%, then o (&) is a subspace of
o (R), hyperinvariant for S(N)|d (&) and B (d (¥))=¥.

Proor. Let 6=6,0, and N=N,N, be the factorization of § and N cor-
responding to £ and o« () =a (), respectively.

8 =6, (H:O6, H2)

implies that 6,9 (6, is unitary from $(f,) onto L. Hence, in virtue of
(S@)]2) (6.9 62) = (6] (80) (S(6)).

it follows that (6,]9 (6,)~! ¥ is hyperinvariant for S(f,). Now for A; and
B; given by (13), from or (14). (det A;) (det B;) is a divisor of (det 4,)
(det 47 or (det 4;) (det 4}). Thus by (5) or (5 we have

(17) (det A,) (det B,) A(det A,) (det B,) =1.
It is easy to show that for X=Py A;|9 (6,
X1(0.] 9 (60) 72 v X3(0] B (0) '

is hyperinvariant for S(N,), by making use of (13), (4) and (17), as we
have shown by making use of (3), (4), (5) and (6). Since N,|$
(N,) is unitary from $ (N,) onto o« (¥)=a (),

(SIN)|a(2)) (Ne| © (VD) = (N

() S(N)
implies that
N (X1(6:] 9 (60) "2 v X2(0| 9 (6))'¥)
= Nu(Pr, A, (6|9 (6)) ¥\ Py, Ay(65 (6)) ')
= Py N, A (66| (6)) "2V Py N, A, (669 (6))'%
= Py 4,0,(0:] 9 (6)) ¥\ P ds65(6,| 9 (6)) "%
=Py 4@V Py = X, ¥V X =d (2)
is hyperinvariant for S(N)|d/ (8). £ (« (¥))=¥¢ is proved by the same way
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as [Theorem 2. Thus we complete the proof.
The same argument as the proof of yields.

THEOREM 3. Let M be a hyperinvariant subspace for S(N). If W
1s a subspace of N, hyperinvariant for S(N)|M, then B (W) is a subspace
of B (M), hyperinvariant for S(@)|f (N), and o« (B (N))=N.

THEOREM 4. Let & be a subspace hyperinvariant for S(0). Then &
ts a subspace of 9 (0), hyperinvariant for S(6), if it is a subspace of L,
hyperinvariant for S(0)|L.

Proor. Set o« ()= and o ({)=a(Y)=N. implies that
W is hyperinvariant for S(N)|R. Let N=N,N, be the factorization of N
corresponding to N. Then (N, (N,)"1N is a subspace of D (N,), hyperin-
variant for S(N,). Since N, is a kXm (k=n or k=m) normal inner matrix
over H*™, by there is an /X m normal inner matrix N/ and an

kX[ normal inner matrix N} such that
N,=NiN{ and (N,|©(N))' = Nj (HION{HE) ,
where n=k=I=m, and [=m or I=n. It is easy to show that N,N} and
N satisfy the condition (i) or the condition (ii) of [Theorem 1; this implies
that
N =N, N, {H;QN| H}}
is hyperinvariant for S(N). Thus
ﬁ(%l) — ‘8/ (m/) — ‘8/ (ar (8’)) =
is hyperinvariant for S(f). Thus we conclude the proof.

Now, we determine a particular hyperinvariant subspace ¥« for S(6)
by the following relation :

L ={hED(6): SOh—0 as n—oo} ([7] P. 73).
Then, from a(84)S9H (M) and B(H (M)SL*, it follows that a(Ly)=9 (M).
THEOREM b. Let & be a subspace hyperinvariant for S(6). In order
that if & is a subspace of &, hyperinvariant for S(6), then & is hyperin-

variant for S(0)|8, it is necessary and sufficient that there is a function ¢
in H® such that

8=¢(S00)9(0) or L=¢(S0)DO)NLs.

ProoF. SurricIENCY. Case a: suppose ¥=¢(S(0) 9 (0) and hence
a(B)=¢(S(N)) O (N). Let N=N,N,; be the factorization corresponding to
a(g)' Then szdlag (¢1’ ) ¢m, ¢, T ¢>, where ¢z:¢/\¢z for 121’ 2, e, M.
Set ¢=¢, u; and ¢;=¢,v; for i=1,2,---,m. Then it follows that for i=
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B B Dit1 PDir1
Gir1 = PAPis1 = G ts NPy Us & _¢1<u1/\vl i )

Since u;/\v;=1, this implies that

(18) ¢;;1 Av;=1.

Let € be a subspace of 8, hyperinvariant for S(f). Then there is the fac-
torization N;=N}N/, where N] is a kX m inner matrix and N} is an nXk
inner matrix, such that a (¥)=N,Nj{H:EON{H?.} (see P. 291). The hy-
perinvariance of a(¥) implies that N,N} and N/ are normal inner matrices
satisfying (i) or (ii) of [Theorem 1. First, assume (. Then Nj is an mXm
normal inner matrix and hence N} is an nXm inner matrix. From the

normalities of N,N}, and N, we can deduce that N} has the form [Aol],

where M’ =diag (¢, t5, ***, tm). Since ¢;t; is a divisor of ¢;, it follows that ¢

is a divisor of v; and, by (18), g[:;;rl/\t =1. Then normality of N,N, implies
T

that there is an inner function w; such that w;= M From t,w;= Pivt

¢1, ¢1,

ti+1, it follows that #; is a divisor of #,,. Thus Nj is normal. Hence N,
a(¥)=N{H:ON|HZ2} is hyperinvariant for S(N,). Therefore a(¥) is hy-
perinvariant for S(N)a (). Consequently g («(¥))=p(a(¥))=& is hyperin-
variant for S(0)|® Next assume that N,N} and Nj satisfy (ii). Then we
have N}=diag(t;, -+, tm, t, -+, t), for inner functions #;,#, -+, ¢, and ¢. It is
proved as above that ¢; is a divisor of #;,; for i=1,2,.--,m—1. Since ¢n
tn is a divisor of ¢t, t, is a divisor of u,t. On the other hand since ¢, is
a divisor of v, and vpAun=1, t, is a divisor of . Thus it follows that
N} is normal. Consequently in the same way as above we can deduce that
¥ is hyperinvariant for .S(6)|<.

Case b: suppose £=¢(5(0)) O (6)N¥«. Then by and a (2x)
=9 (M) we have

a(® =¢(S(N)) ®(N)N D (M) =¢(S(M)) 9 (M),

because a is a lattice isomorphism. Let N=N,N, be the factorization cor-
responding to a(®). Then it follows that

M,
N2 = [ 02] Wlth M2 dlag (¢1, ¢2, tt ¢m) ’

where ¢, =¢A¢; for 1=1,2,---,m. Let & be a subspace of &, hyperin-
variant for S(f), and N,= N’N’ be the factorization of N, such that N=
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(N,N3) Ni is the factorization of N corresponding to « (¥)=a(¥). The hy-
perinvariance of a(¥) for .S(N) implies that N,N} and N} are normal inner
matrices satidfying (i). In the same way as Case a it follows that N} is an
mX m normal inner matrix. Therefore it is simple to show that & is hy-
perinvariant for S(6)|%.

NEcEssiTY. Let ¥ be the hyperinvariant subspace for .S(f) such that
¥ is hyperinvariant for S(0)|®, if € is a subspace of £, hyperinvariant for
S(0). Then, for every subspace W of a(®) such that N is hyperinvariant
for S(N), it follows from [Theorem 3 that 8(W)=g (W) is hyperinvariant
for S(0)|8. Hence, by [Theorem 3, % =d (8 (W) is hyperinvariant for S
(N)|a(®). Let N=N,N, be the factorization corresponding to a(®). Then
N, and N, are normal inner matrices.

Case d' : assume that N, and N, have the form

N, = dlag (51, &y ’Em) and
M,
N2=[ 02] with M, = diag (i, 9, ***, m) .

Then it follows that »; and &; satisfy (18), that is 7}—:7“— and &; are relatively

prime. In fact, if it were not true, then we have

0="THL 5 _Si i #1 for some j: 1<j<i, &=1.
7713 E]—l

Set

M = diag (1, -+, Dj_1, 95O, Dys1®, =, D@, Yip1s **y Ym)

& ¢ &
N, dag< 1:")51 1y—]"%1_7'°" P )EH—I"")E’m)
M/

and Ng:[ 02]. It is clear that W=Nj,{H:ON,H?2} is a subspace of a(%).

Since N| and N} are normal inner matrices, by N is hyperin-
variant for S(N). However,

(V2| © (V)" N3 (NY) = diag (1, -+, 1, @, -+, @, 1,++1) © (N
implies that % is not hyperinvariant for S(N)|a(®). Thus we have Tiv1 -

§&=1. Since &; is a divisor of &, it follows that

M\ = A\ (9:€) = 77z<?7—:n/\5z> =
Thus we have

a(8) = 7 (S(M)) § (M) = 7, (S(N)) H (N) N § (M).
Consequently 8=y, (S(0)) © (6) N Lx.
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Case & : assume that N, and N, are normal inner matrices satisfying
(ii). In this case, we can show
8=¢(5(0))9(0) for some ¢ in H~
in the same way as Case . Thus we complete the proof of
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