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The growth of entire and meromorphic functions

By S. K. SincH and John R. BEerc
(Received May 1, 1978)

1. Let f(2) be an entire or meromorphic function. We shall denote by
C the complex plane and by €, the extended complex plane. For a=f,
let n(r, a) be the number of zeros of f(z)—a in |2| <7, where for a=oo,
n(r, co) stands for the number of poles of f(2) in |2| <r. We shall assume,
without loss of generality, that f(2) has no zeros or poles at the origin. Let
T(r)=T(r, f) be the Nevanlinna characteristic function of f(z). Let n(0, a)=
0 and let

N(r,a,f)=N{(r, a) Zgrﬁﬁt’i dr .
0
Let p be the order of f(z). If
) log *n(r,
hrii,up %ﬂ =po(af)=p(a)<p,

we call a an e. v. B. (exceptional value in the sense of Borel). If

1—lim sup ?E::;; =d(a,f)=0d(a)>0,

—>00

a is called e. v. N. (exceptional value in the sense of Nevanlinna). Also, if

7 = lim sup Tir. )

. rt

then f(z) is said to be of maximal, mean or minimal type according as r=
00, 0<r<<oo or t=0. If f(2) is an entire function, we denote as usual

M(r) = M(r, f) = max | f(z)] .

|z] =2

2. We prove

THEOREM 1. Let f(2) be an entire function of order p, (0< p< oo).
Then for every ¢>0, as r—oo

M(r+7,_ilg>~M(r). (1)

Proor : Since log M(r) is a convex function of log 7,
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log M(r):S:—Z%@ dt (2)

where w(t) is an increasing function of ¢, see [1, 27]. From (2) it follows
that

. log log M(r . log w(r
im sup 25108 2 = = lim s L

Hence, for r>r,,
w(r)<rete?,

Now,

$’+F11—+T w(t) g

1
logM(r—!—W>: . P

1

T 'r+ﬁ

:S w(t) dt+S ot w(t) dt
0 t r t

1
TR w(?)

dt.
, t

= log M(r) —}-S
Now, since w(t) is increasing, we have

1 1
gr'l-—rp_l_}_s w(t) T+—r”"1+‘

1 1
) — dt < w<r+ W)Xr e dt

1 1
= w(r—i— W) log (1 + _7?,3+—e>
1

rp+c

< w(2r)

<(erptr
—0 as r—oco.

Hence (1) follows.
We define the lower order of an entire function f(z2) by

2 =1lim inf log llog Mir) .
A ogr

For lower order 2, we have

THEOREM 2. Let f(2) be an entire function of lower order 2(0 <1< o),
then for every ¢>0, as r—oo,

M) = o(M<r+ 7_11—_» . (3)
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Proor: We may assume ¢<2 As in the proof of [Theorem 1,

log M(r) = S.T wit), dt
o [
gives
lim inf 2808 M) _ g logwl)
soo log r . log
Hence for, all »>r,,
w(r) >ri-e2,
Now
1
rt g
log M(r—i— 71:1;7) =log M(r)-l—g . # dt
> log M(r)+ w(r) log (1 + rll_, )
> log M(r)+ A7)
(since, for 0<x<1, log(1+x) > —g—) .
Hence,

log{ M<r+ ﬂ‘%)}

—> 00 as rr—00

and (3) follows.
Note: Theorem 2 can be generalized to the case i=co. Precisely, we
have

THEOREM 3. If fl(2) is an entire function of lower order oo, then for
every real a, as r— oo,
)). (4)

For the proof we may assume that «>0. As in the proof of Theorem 2,

we get
1
()

But since =00, w(r)>7r* for r>r, where 4 is arbitrarily large. Choosing

1
ra

M(r) :0(M<r+
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d>a+1, we get (4).
Note: If p=o0, A<oo, then using the same method we can show that
for all real «,

M(r)

1
ra

THEOREM 4. Let f(2) be an entire or meromorphic function for which
pi(a)<oo. Then, as r—oo, for every a>p(a),

=0.

lim inf

e M<r+

N<r+ all, ) N(r, a)+0(1). (5)

Proor: We can assume that n(0, a)=0, then

1
r+—a_1
N(r, )<N<r+ 3_1,a> S T aka g,

< N({r, a)—l—n<r+ p— ,a>log<1—l—

1
ra

< N(r, a)—{—n(r—l— ,,1_1 , a)

Now, since p;(a)<a, there exists ¢>0, so that

pi(a)+e<a, also n(r, a)<rm@t¢ for all r>r,.
Hence
1 1 ela)+e
ot e ()
o < e

—0 as r—oo,
and (5) follows.
Putting a=p, and taking p;(a)<p, we get the following.

CoroLLARY. If f(2) is an entire or meromorphic function of finite
order p, with a as an e.v. B., then

N<r+ — a> — N(r, 9+0(1).

THEOREM 5. Let f(z) be an entire function of order p(0<p< o).
Suppose for distinct a, beC, we have
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éla)=1, n(r, b) = O(r).

Then, as r—co,

1
Tt~ N{r+ e, b). (6)
Proor: By Nevanlinna second theorem,
T(r,f)<N(r,a)+N(r, b)+O(og ) .

Now, f(2) is transcendental, hence log r=0(T'(r, f)). Also N(r, a)=0(T(r, f))
since d(a)=1. Hence

T(rf)~N(r,b). (7)

Further,

= N(r, b)+A<1+ )

N( = > N b) < A(l + 7),,

—A as r—oo.

Hence
N<r+ e b>:N(r, b)+0(1).

Hence (6) follows from (7).

THEOREM 6. There does not exist any entire function satisfying si-
multaneously the conditions -

(i) M( _1>:O<M(r)>
(i1) n(:;OL_)OO as r—oo

where p is the order of f(z). (0<p< o0).

ProoF: Suppose M( 1_1 ) =O(M(r)). Then
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1
logM<r+r—3_-1—>:10gM(r)+S S dr

>log M(r)+ %7@ .
Hence, using the hypothesis,

w(r) < Bre.
So

T w(p)

r dt

log M(r) = A—}—S

<A+BS i dt

B
é A1+ —‘5—7‘” .

Hence

lim sup E&?f_(ﬁ < ‘fi )
n(r, 0)

7°

Thus f(2) is of minimal or mean. type Now, suppose —00 as r— 0o,
We can assume f(0)=1. Then, by Jensen’s theorem,

log M(r) zgi’%ol dt
0

/2 n(t 0) r n(z, 0)
—A+S ; d+Sr/2—t dt

> n<?, O) log 2.

Hence

log M1r) (% 0)1og 2
(%)

—> 00 as 7r—00.

Hence f(z) is of maximal type. Thus (i) and (ii) are incompatible.

CorROLLARY. If f(2) is an entire function of order p(0<p<oo) such that

M<r+ = ): o(M(r>),

then f(2) is of mean or minimal type.
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