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On quasi Dirichlet bounded harmonic functions

By Zenjiro KuraMocHI
(Received July 4, 1978)

In the present paper we denote by P, B, D ,H, SPH and SBH, posi-
tive, bounded, Dirichlet bounded, harmonic, superharmonic and subharmonic
respectively. Let R be a Riemann surface €O, and let {R,} : n=0,1,2, ---,
be an exhaustion with compact analytic relative boundary oR,. We call
a domain G a subdomain, if dG consists of at most an enumerably infinite
number of analytic curves clustering nowhere in R. In this note we use
simply a domain G in the meaning that G is a sum of subdomains G; such
that 39G; clusters nowhere in R. Let R* be the universal covering surface
of R and map R” onto [{/|<1. In the previous” paper we proved.

Let U(z) be an HD function in R. Then U(z) is a harmonic function

2z

U in |£]|<1, li—n}S}U(rei")fzd0< oo, {=re” and U({) is representable by

0
Poisson’s integral. This is equivalent to U(z)=U,(2)— U,(z), where U,(2)
and U,(z) are positive quasibounded harmonic function (abbreviated by
QHB).

The purpose of this paper is to extend the above theorem. Let G be
a domain, if G is compact, we denote by Hf the solution of the Dirichlet
problem with respect to the boundary value ¢(2) on 8G. If G is non com-
pact and ¢(2)=0, we denote also by Hf the least positive SPH=¢g(z) on
0G, i.e. Hj=lim H;""n, where ¢,(2) =¢(2) on dGNR, and ¢,(2z)=0 on
oR,NG.

Let G,C G, be domains. Let w,,.4(z) be an HB in GiNR,.;—G,N
(Rpp;—Ry) such that 2w, ,44(2)=0 on 9G,N Ry s+0R,:N(G1—Gy), =1 on
(Ruzi—R) NG, Then wy ,04(2) /7 wy(2) and wy(2) | : n—~oo.  This limit is
denote by w(G,N B, 2, G;) and is called H. M.? of BNG, relative to G,.
Let F be a closed set (or domain G). We denote H{” (Hfl‘)") by w(F, 2, R)
(w(G, 2, R)) simply. Let U(z) be a positive SPH. If there exists no pgsitive
HB smaller than U(z), we call U(z) a singular function. If an HP is the
limit of increasing sequence of HB functions, U(z) is called quasibounded
harmonic function (QHB). In this note we denote min (M, U(z)) by U¥(2).
Let U(z) be a function (harmonic function). If
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M
tim DIV _
M;
i. e. there exists a sequence {M;} such that Q(l]\ljh’) =a;, a;—~a. we call Ulz)

a QD(QHD) of order a denoted by a=(U) (for {M,}).

If a posistive SPH U(z) is harmonic in R except at most a set of ca-
pacity zero and is a QD and singular, we call U(z) a GG (generalized
Green function).

LEMMA 1. Let G be a domain and let Ry be a compact disc. Then

1) w(GNB,z R)=0 if and only if w(GN B, 2, R—R,)=0.

2) Let C={2€G,;: w(G,N B, 2, G)<d<1}. Then w(BNG,NG", 2, Gy
=0.

3) A positive SPH Ul(z) is singular, if and only if for any >0,
w(G.NB, 2, R)=0: G.={2€R: U(z) >¢}.

4) Let w(2)=1 on Ry and w (2)=1—w(RN B, 2z, R—R,). Then w (2
is singular.

5) Let G(z, po) be a Green function of R. Let Ulz) be singular and
D be a domain and let D;={2=R: G|z, p)>6}). Then

H2 | HY o n—oco  and H2yPe | HDy: 6—0 .

Proor. 1) and 2) are proved in the previous paper?.
3) H”f;z{ is the greatest HP in R, not larger than U¥(z). Since UM (2)
is an SPH, Hg;;lj,: n—oco. lim H’U?;;{ is the greatest HP in R not larger

than U¥(z). Hence U(z) is singular, if and only if lim H" =0 for any

M<oco. Suppose w(G,NB, 2, R)=0 for any ¢>0. Then Hgglge on dR,—
G, H%=M=Mw((R—R,) NG, 2 R) on dR,NG., whence

H <¢+ Mw((R—R)NG. 2 R).

Let n—oco and then ¢—0. Then lim H?. =0 and U(z) is singular. Suppose

Ul(z) is singular. Let 2=R,,;—(R,.;—R,)NG.. Then H?y>e on 0((Ryyi—
R,)NG). Since ew(G.N(Ruri—Ry), 2, Ryyq) is the least HP in £ larger
than ¢ on G,N(R,.;—R,),

H, = H2y = ew(G. N (Ruri— R, 2, Ry) -
Let 7— o0 and then n—oo. Then

0=lim H%, = ew(G.N B,z R =0.

Hence we have 3).
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4) Now G.={2€R: w(g)>ef={zeR: w(BNR,z, R—R)<1—¢}. We
have by 2) w(G.N B, 2, R)=0 and w/(2) is singular by 3).

5) Since U¥(z) is an SPH, H2{/ | : n—oco. Let V,(z) be an HB in
DN R, such that V,(2)=U%(2) on 6DNR, and =0 dR,ND. Then

Vale)+ H = HoY = V().
Let n—~co. Then H?”» | 0. Thus
U
lim H2 =1im V. (2) = H),, . (1)

n

Since DN D;c D and U*(z) is an SPH, by (1)

HPPs = lim HPRPs0n > lim H2% = HZ,, .
n n

Now H24" | : 6—0 and lim H)y" = H),,.
d—0

Since G(g, py) >0 in R, there exists a number §(n) such that D, DR, for
any n. Then DNR,ND;=DNR,: 6d<d(n). Hence

HP{n = H2OPs0%n > H20P > lim H2QPs
-0

Let n—oo, then H}, = lirrol H7P.
0—

THEOREM 1. Let U(z) be an HP and let Gy={2=R: U(z)>M]}.
Then Mw(Gy, 2,R) | as M—oco. S(2)=lim Mw(Gy, 2, R) (ZU(2)) is harmonic,
M=co

singular and lim w(Gy, 2, R)=0.
M=0c0
Proor. Since w(Gy, 2, R) is the least positive SPH in R not smaller
than 1 on Gy, Mw(Gy, 2, R)=U(2) in CGy. For M=M, M,w(Gy, 2, R)

<U(2) = M;= M w(Gy, 2 R) on 0Gy. This implies Mw(Gy, 2, R)| as
M—oo. Clearly Gy—boundary of R as M 7oo, S(z) =lim Mw(Gy, 2, R) is
M=c0

harmonic and

S(2) = U(z) and lim w(Gy, 2, R)=0. (1)

M=o

Let Vi(2) be an HB in R,— Gy, such that VZ(2)=0 on dGLN R, and Vi(z)=
w(Gy, 2, R) on 0R,—G;. Then by the definition of w(Gy, 2, R)

lim Vi(z) = V*(2) =0.
Let H@@‘GL(M < L) be the solution of the Dirichlet problem in R,— G, with
boundary value S%(2) on 0R,— G, and =0 on dG;NR,. Then

H?g{gﬂ < HIn 9 < Hf;;?gf,z,m =LV%i(2) and lim H;";{“’L =0. (2)
n
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By the maximum principle

H" < H?gl‘("l—}— Mw(G, 2, R) in R, .

sM =
Let n—oo and then L _7co. Then by (1) and (2), lim H7?=0. Thus S(2)

is singular and = U(z).
Let G,C G, be domains. Let w, ,,:(2) an HB in GiN\ Ry — Gy (Ryyi—

R,) such that @,,i(9)=0 on Ruwi13Gs A 0pnsi()=0 on 9Ruei) (G~ Gy

and w, »1:(2)=1 on GyN(R,;;—R,). If there exists a number 7, and M such
that D(wy, » +:(2)) =M for i=1,2, ---. Then wyn4:(2)>wn(2): i—0c0 (Smeans
convergence and convergence in Dirichlet norm), w,(2)=> a harmonic function
denoted by w(G,N B, 2, G)) called C. P? of G,N B relative to G,. Let F be
a closed set (or domain G) of G, we denote by w(F,z, G) (0(G, 2, G)
the HD function which is 1 on F (on G) and =0 on oG, and has M. D. I.
(minimal Dirichlet integral) among all harmonic functions with the same value
as o(F, 2, G) (0(G, 2, GY)) on 0F+0G,(0G+0G,). In this case we also call
w(F, 2,G,) C. P. of F relative to G;. Let w(z) be a C. P. then

S?‘i w(2) ds = D(w(2)) for almost M : 0<M<1 . (2)

3Gy

LemMmA 2. Let RO, and G;: i=1,2,-- i, be domains and U,(z) be
an HD in G;. Then there exists another exhaustion {R,} of R such that

S

Gi(OR,,

ds—0: m—o0 for any 1.

0

Let G be a domain of one component and let G be the double of G
relative to 0G. If G €0,, we denote by GES50,. Let SOz be the class
of domains such that there exists no HB vanishing on G except for capacity
zero, then it is well known the following facts? :

SO,CS0ps. G'CG and GES0,(SOyp) implies G' €.50,(SOz).
In this note if every component of G&S0,(SOxz), we denote by G&

SO,(SOyz). Then it is clear the above facts are valid.

THEOREM 2. Let G(2) be a GG. Then

1) Sup G(z)=co. Put G;={z=R:G(2)>d}. Then G,&S50, and G(z)
=0w(Gy, 2, R) in CG,.

2) S% G(z2) ds=k for every M and D(G"(2))=kM. Such const. k is
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called mass of G(z) and is denoted by WM(G(z)).
3) Let U(z) be positively harmonic except at most a set of capacity
zero and <G(2). Then U(z2) is a GG with

M(U(z) < M(G(2).
4) Let 2 be a domain in Gy: 0O<M<1. Then

D(w(@, 2 R) < M(G(2))/ M and S%w@ % R)ds <M(G(=))/ M.

aQ

Proor. 1), 2) and 3) are proved?®¥. We show 4). Let 0<d<<M. Since
G,€50,C850y3, every HB in a domain D in G, is uniquely determined by
the value on 0D, then

G(2) = (M—0) 0(Gu, 2, Go)+6 = (M—8) w(Gy, 2, Gy)+6 in G,—Gy,

whence

D(w(Gu, 2, G)) = M 57 Dg,-a,(G(2)) = M(G(2)) [(M—3).
By QCc Gy, w2, 2, G))Zw(Gy, 2, G;) and by the Dirichlet principle
D(w(2, 2, G)) < D(w(Gu, 2, G,)) < M(G(2)) [(M—3).

o2, 2, G)=w(2, 2, G5) Zw(2, 2, R) and by the definition of w(f2, 2, R)
lim w(2, 2, G,) = w(2, 2, R) .

8—0

M(G(2)

Now G,&S50,, S o(2, 2, G;) ds = const. for any C, by Lemma 2, where
.
2, 2

Hence D(w(%2, 2, R)) =

C.={zeR: of =a} : 0=a=1, hence

_S_a@ (2, 2, G,) ds = D<w(Q, 2, G,,)) = D(w (G 2, Ga)) .

a2

—Waﬂw(g’ 2, G = — 8 w(2, 2, R)=0 on 02, hence

Sai (@2 R) ds = W(G())/ M.

TueoreM 3. 1) Let Gi(2) and Gy(2) be GG, s. Then G(2)=G\(2)+
Gy(2) is a GG and M(G(2)) =M(G,(2)) +M(G,(2)).
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2) Let G(z) be a GG and let G'(z) be an HP except at most a set
of capacity zero and =G(2), then G(2)—G'(2) is a GG and
M(G(2)— G (2) = M(G(2) —M(G'(2).
Proor. 1) G(z) is evidently singular. Let Gy={2=R: G(2)>M},
Giu={2€R: Gi(z)>M}. Then
GCuDGiutGa.
D(G"(2)) g(G( 2))= D(G1< 2)+Gy(z)) = (D(Gl( )>+D(G2( >>)<2D<Gl( 2))+
%D (Gz(z))—ZMEUE(GI( 2)) + 2 MWM(G,(= )). " Hence G() is a GG and by
D(G(2)) = MIN(G(2))
M(G(2)) = 2(M(Gu(2)) +M(Gyl2)) ) -
By G,&50,C.50y5
G(2) = (M—0) w(Gy, 2, G;)+0 in Gy— Gy .

Similarly Gi(z) =(M—0) (G, 2, Gs5)+d in G;,CG,. Let Gi(2) =(M—é)
o(Giu 2, G)+6. Then by G;,E804s G;(2)=Gi(2) in G;,CG, On the
other hand, G;(z)=M=G,(z) on oG i, hence

0 §Saan Gi(2) ds = —S%@Z(z) ds < ——S*aa; Gi(2) ds = ?JJE(GAz)) (1)

Gy EG'L,M G, M

Let G*(2) = (Gy(2)+G,(2)) A+ B, where A = ]\Af 255 , B:*A%. Then

G*(2)=0=G(2) on G, and G*(2)=M on dGy. By G,&S50gz G*(2)=G(z)
in G,—Gy. Then by (1)

M(G(2) = Saa—nc(z> ds= S%G*@) ds {%‘f%)

26, 3G,

([ on (610 uta) o= (= (02(Gut2) + (Gt

a6

Let 6—0. Then M(G(2)) SM(Gy(2))+IM(Gy(2)). Now
(Mg ) (G =9)=Mo(Gur =, G By Gi=0, M{b -

3G

M Gum
o(Gi, 2, G5)ds= D (Mw(Gy, 2, Gy)) = < M—3s > D (G(z2)=
Gﬁ_GM GB_GM
M2 . Ga,m
(s ) RG@), e
M Cu

G, Fig. 1.
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Hence for any ¢>0, there exists a const. 6 >0 such that

ogMSa%w(GM, 2, G,) ds <TG () +e. (2)
a6y
G;DG,5 whence by the Dirichlet principle D(w(G u, 2, Gy5)) = D(0(Gy i, 2, G5)).
By the definition of w(G,y, 2, R), G(2)=G\(2)+ Gs(2) = Mw(Gy i, 2, R)+ Mw
(G2,M9 Z, R> 2 Mw(Gl,M’ zZ, Ga) + Mw(G2,M’ Z, G&) - Mw(Gl,ﬂb Z, Gd) + Mw(G2,M, z, GJ)
in G;, whence Mw(Gy, 2, G5)=G(2) =M= Mo (G, u, 2, G5)+ Mw (G, x, 2, G;) on

oGy

Mo (Gy, 2, G;) =0 = Mw(G, y, 2, G;)+ Mw(Gsu, 2, G;) on 0G;. (3)
Hence by G;&.S50y3z,

Mo (Gy, 2, Gs) = Mo (G, 2, Go)+ Mo(Gey, 2, Gy) in G,—Gy . (4)
By (3) and (4)

0 p p
O é Sg;w(GM, Z, Gﬁ) ds g S-a;w(Gl,M’ Z, Gﬁ) ds—l"S%O)(G&M, zZ, G5> ds .
" oG, G
" 5 : (5)
Now
0 5
O<SW(H(G@M, z, Gy) ds:—g—a—;w(Gi’M, 2, G;) ds . (6)
26, 26y

Clearly Mw (G, 2, G))=M = G,(2) on dG,y and Mo (G, y, 2, G5) = G;(2) in
G,— Gi,M and
p 0
M G0l Gn Gl sz — | G ds = m(Gits) (1)

G, M Gy, M

Hence by (7), (6), (5) and (2)
M(Gu(2)) + M (Gal)) = M(G () + 7 -

Let ¢e—0, then M(G(2)) =M (G, (2)) +M(G,(2)).
Let G(z,p) be a Green function and let p, be a fixed point in R. Put
_ Glzp)
K& 2)=Gip, po)*

quence such that {K(z, p;)} converges to a positive harmonic function de-
noted by K(z,p). Then we say that {p;} determines an ideal boundary
point p. We denote by 4x the set of all the ideal boundary points. Then
the distance d(py, p,) between p, and p, in R+ 4y is defined as

B Kz ) K(z, py)
0P ) = SUP\ T Kz, p) ~ 1+ K(z py) |

Then K(z, p)=1 at 2=p,. Let {p;} be a divergent se-
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The topology induced by this metric is called Martin’s topology®. Let N(z,p)?
be an N-Green function of R—R, We use N(z,p) instead of K(z,p) and
we have N-Martin’s topology on R—R,+4y. Also we have G-Martin’s to-
pology on R+4s; by using G(z,p). Then 4,(a=K, N, G) is compact. In
G-Martin’s topology the set of p such that G(z, p)=0 consists of only one
point.

Representation of generalized Green functions. Let G(z2) be a GG
with MM (G (2))=2r. Then there exists a uniquely determined positive mass

¢ on R such that G(z)—SG(z,p) du(p)=U(z) is an HP. Then by Theo-

rem 2 U(z) is also a GG with M(U(z))<2x. Let p, be a fixed point and
let D;={z&R:G(2,p)>0). The following discussion is simpler than the
previous one?.

Let Up,nr-r,(2) be the least non negative SPH in R larger than U(z)
on D;N(R—R,). Then Upnw-r,y(2) | Upnz(z): n—oo. Clearly Up,ns(z) is
also harmonic and a GG with M(Up,5(2)) =M (U(2)). Then

<UD5{‘]B)D50B - UDaﬂB ’ (1)

where the operation “UD,;OB from U” is Martin’s method®. Let U =U—
Up,ns. Then by U is also a GG with (U)<M(U). Now

UDﬁﬂB - (UD50B+ Ul)DaﬂB = (UpénB)DJnB—I“ UﬁyﬁnB
and

7 —
=0

Let Qy={2&R:U(2)>M}. Then by [Theorem 2, 1)
U, <Z> — Hg{gM = MU.)(&QM, Z, R) n CQM .

Let Ty(z) = Mw(2yN D, 2, R), then Ty(z)<U'(2). We show Ty(2)—0 as
M—oco. Let Tya(2) be an HB in R,—(2yND,) such that Ty,(2)=0 on
R, —(2yND;), =M on 0(2yND)NR,. Let My< M and G,(¢, 2) and G(Z, 2)
be Green functions of Ry,—(2y,ND;) and R—(2y N D;) respectively. Then

aan Gn(C 21 —aa;z‘G(C, z) on a(‘QMo ND;). Also Tua(2)/" Ty(2): n—oo, hence

Tuld) = | Tl oy GI& 2 ds = (Tulz)

m ND; )
(20N D)

Assume lim T, >0. Then there exists a sequence {M;} such that M;— oo

M—o0

and Ty~ an HP T(>0. Now Tw(3=U'(2) and TRZU(R. | UE

A 2y,NDy)
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@% G 2)ds= gMorwﬁ(z) =U'(2)<oo. Hence by Lebesgue’s theorem
: 1 ) 0 1 0
T(2)= hzm‘TMi (z)= o S hzm T, Q) o G 2)ds= o S T s
22y ND;) 22y N0y)
G(C 2)ds=T,, np,(z). Hence
T = TﬂMﬂDa for any M.

Since U'(2) is harmonic in R, Q,— boundary of R as M—co. Hence for
any n there exists a number M(n) such that 24yCR—R,: M>M(n) and

T(z) = 11211 T9M0D5<2) = TDanB<z) = /D(,mf(z) =0.

This is a contradiction. Hence
Ty(2)—0 : M—oo . (2)
w(2u N CD,, 2 R)=w(Qu, 2 R)<w0(Qy "\ Dy, 2 R)+10(2u CDy , 2 R) . By (2)
U'(2) = lim Mew(@ N CD,, 2, R) = lim Mw(Qu, 2 R). (3

Let &' <U'(po) (0" <0), then 2, =p,. Let G'(z, o) be a Green function of 0.

Then G'(2, ) <Gz, py) in CD,. Now U'(2) is a GG. Let @%,=0,CD,
Then by [Theorem 2, 4)

U,M<z) = Mw(‘QM, Z, R> Z Mw(gfm z, R) s
D(Mzw(@4 2 R)) = Doy, (U™ (2)) = MIR(U'(2) < 22 M.
2y€50, and Dg_y,, (G (2, py))< 00, where v(p,) is a neighbourhood of p,.

Hence by Lemma 2 there exists a D-exhaustion {R,) relative to w25 2, R)
in 2, —25 and G'(z, p,) in 2, such that

ds | 0 as m—oo .

0
S ’% w(Qﬁmz, R)

ds | 0 and S ’585 G' (2, po)

OB V(250 ~2) IRm 2y (4)
Put S(z)=Mw(2, 2, R). Then by Theorem 2, 4) — ainS(z)go on 0§’ and
0 — S ain-S(z) dngS (’T(;{w(*QM’ 2, R) ds=I(U'(2)), whence by G'(z, p,)
a2, 20y
<0 on 0%,

— S G’(z,po)—aa;S(z) dséﬁ?ﬁ(U'(z)) for any m.
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By (4) we have S G (2, po)%S(z) ds—0: m—oo, S S(z)—a%—G’ (2, po) ds

AR N (25— 2%) 0%, N\ Ry,

:M S %GI<2’PO> dS:—M S aa—nG,(z’P0> d5—>0: m—co fOI' S(.Z>:M

0%, NR,, RNy

on 052,

S S() oGz p ds— 0: moo.

SR 0y~ hp)

On the other hand, by S(2)=<U(2)=d on 02, S S(z)—agn*G'(z,po) ds =

a.(_)af ﬂR7n

27’ and S G (z, po)ainS(z) ds=0 by G'(z, p)=0 on d2,. Let M>U (p,)
305 Ry,

then 2, —2,5p,. Then by Green’s formula

0
G (2, 1) 3y S(2)

39%107£m+612mﬂ(!251—Q?M-H—]ffmﬂa!lﬁ’+p0

_ 5 S(z) oG (2, po ds
3D (VR oy + 3 Ry (051 = D)+ Ry 050+,
We have S(p0)§~%'<%ff>>5 +¢. Let —0 and then M—oo. Then by (3)
S(p)— U’ (po) and
mu 0
U p) = G0 <5

Thus U(2)=Up,s(2)+U'(2) and U'(2) | 0 as 6—0. Every positive har-
monic function is represented by a mass on Martin’s boundary 4dx. Let dg;
=4.ND,, then Up,nz(2) 1s represented by a mass on 4x, Hence we have.

THEOREM 4. The harmonic part of a generalized Green function with
M(G(2))<2r is represented by a mass on Udg, As a special case, if dx,=

>0

0 for any 6 >0, the harmonic part is zero.

Green potential whose total mass is bounded. We suppose G-Martin’s
topology is defined on R+4; Let g be a positive mass on R+4q We
consider

Pre)= |Gle pdutph [du=1.

Clearly if every point of 4g is regular and p#=0 in R (i.e. G(z, p)=0 for
PEAg), Pr=0.
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Lemma 3. Let 2 be a domain and let 02, be compact domain such
that 2,/ Q: n—co. Let U, be a harmonic function in Q, such that D, (U})
=M and for 2y, U,—U in 2,, for any m. Then D, (UH <M.

In fact, let G,={2€0,: U,(2)< L} and G'={2=0 U(z)<L—¢}. Then
for any given ¢>0 and m, there exist a number [(e, m) such that

(GN2W)CG,: [>1(e, m) .

U,—U implies Tax Unﬁgg U — 8 U By Fatou’s Lemma

Dafngm<U) §IIE DGfmgm<Uz) = ILm D(Uz) :ljm D(U}) = M.

Let e~0. Then since 2, is compact, lim Dyg: ne, (U)=D(UH) =M. Let m—

e—0 0
co. Then

m

DUH =M.
2
We proved

Lemma 4°. Let G be a circular rectangle {r<|z|<r, 0< arg 2<6)}
with a finite number of radial slits. Let I',= {lz] =r, 0=Zarg2<6)}, [,=
{lz| =ry, 0=<arg2=<6}. Let Ulz) be an HB in G and continuous on G+
'+ 1. Then

2dp .

log
If Ulz) is not continuous at a finite number of points on I'\+1, divide

G into some circular rectangls, then we have the same conclusion.

THEOREM 5. Let R be a Riemann surface &0, Gz, py) be a Green
Junction and let Dy={2&R: G(z, p)>d). Let Ulz) be a positive SPH
such that U(z) is harmonic in CD,=R—D,, singular and there exists a const.
a such that D(UM( N)=Ma: 0<M<oco. Then for any given M and ¢, we

can find a Compact domain Q3p, depending only on M, & and «a but not
on Ul(z) such that

H[!;JM(PO) <L3e.

Proor. At first we investigate Dgp (UM(2)). Let 0<A<A<d<«x and
let Di={2&R: 1<G(z, py)<d}. Since D, =S0,C.SOys, Hﬁ, is uniquely
determined and by the Dirichlet principle Dy, (U™ (2))ZDD;;,(H§%I) and Dep,
(UM(z»szg(Hg%'[). Let #—0. Then by Lemma 1, 5) Hg%{ang’; Now
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Hf;%[ is harmonic in Dj, whece by Fatou’s Lemma Dgp (U*)=lim ng,(Hg%'l)
A'—0
= Dpy(H{5p). Let 2—0. Then

Ma z DCD6<UM> Z DCDB(Hgﬁ”) . < 1 )

3
Let 5<—1%§;TT/[—EZ,—0( and find D, D, is non compact generally. Since D,=S0,,
w(D,N(R—R,), 2, R—0 as n—oco. Let n, be a number such that

w(DsN(R—Ru), po R)< 7 (2)
Also D1<2<5 and 1< %—)ESOQ, whence w,(2)=>G(z, py) as n—oo, where

w,(2) is an HB in DN R, such that w,(2)=4 on dD,NR,, =6 on dD;NR,

0
and %*a)n(z):O on dR,NDj. i.e. limw,(2)=2+(—2) w(D;, 2, D,). By D,&

0
SO,, S—ajz*G(z, po) ds=2m, vaaha)n(z)—»%—G(z, po) on 0D;+0D,. Let ny(>n)

Dy
be a number such that

0
ﬁnAG(z,PO) ds = 2n—c¢.

001\ Ry,
Let n; be a number such that

S 0

0
W(U,,(Z)—WG(Z,PQ ds<%: n=n;s. (3)
DRy,

Assume there exists a set I on dD;NR,, such that U%(z)>¢ on F and
S»aan- Glz,p)ds= 2= Then by (3)

) M
S_a%wn(z)dsg%f[:ngns. (4)
J
HEp=U"(2) =M and G(z, p)=0d on dD;. Hence by the definition of HSj,
Hp < %/[G(z, po) in CD; and
Hgf,agigz— on dD;, (5)

Map DN R,: n=n; onto a circular rectangle G with a finite number of

radial slits by {=exp (w.(2)+¢ @.(2)), where @,(z) is a conjugate function
of wn(z):
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0
G=le=(g =, 0<arg{=0}. 6= S 5 @n(2)ds =27
DN Ry,
3ns
Then F is mapped onto a set F, on [{|=¢’ of angular measure ZM by

4). U"(e"“)ze on F, and HSp(et)<- 2]5\4 < by (5). Hence by (1) and

Lemma 4
ZM 2 e

2
5 3(2)71'5
] A > -/ = S
5 df = 95 M =Z2Ma: F'={6

¢t F.}. This is a contradiction. Hence U"(2)<e on dD, N R,, except at

Ma= Dy, (U")= D(H2) zS

27e

most a set F on 0D, R, such that S~ Gz, py) ds< = e and U"(2)=M

on F. Let V(2) be an HB in D, such that V(z)=U"(2) on 0D, R, , and =0
on 0D;N(R—R,). Then by D,&.S0y; such V(2) is uniquely determined and

M{( o
V(p0)<5+ o S n (%PO) s = 2¢

F
Evidently V(2)+ Mw(D;N(R—R,), z, R)gHUCgQEnZ. Hence by (2) H{}Gg,m"nz<35
at p,. Let Q:Dﬁﬂan. Then 2 is a required domain.

THEOREM 6. 1) Let P* be the potential of a positive mass p on R+
dg such that Ydp=1. Then P* is singular.

2) If p4=0 on R, P* is a GG with M (P < 2.

3) As a special case, Gz, p): pE4s is a GG. i.e. Let {p) be a
sequence such that p,— boundary of R and G|z, p;) converges to an HP
Gz, p). Then G(z,p) is a GG.

Proor. 1) Lete>0, 0<¢, D,={2ER: G(z, po) >0} and let 4;,=4;N D;.
Let g, p; and py be the restriction of ¢ on R, on dg,, and on dg—dg o
respectively. Then it is well known §G(z, p) dp(p) is singular. Let U(z)
= )Gz, p)dp(p) and U'(2) =§ Gz, p) dps(p). Since Glz,p): p & R+4dq is
continuous with respect to p in any compact set in R and Ul(z) is uniformly
approximated by a sequence Un:ici Gz, p:): pi€D;NR, ¢;>0, D ¢;= Sa’pz
=a. Clearly D(U})=2zxMa and U,(z) is harmonic in CD, and singular.
Hence by for any M and ¢ there exists a compact domain
£ such that Hju(py)<e. Since 92 is compact U,(z)— U(z) on 92 and
H?\(p)<e. Also U(z) is an SPH, H;’MEH{’Z;[ for R,©>02. Then by G(p, p,)
<20: pe&Edyq and U (py) < 2e,

Hip . on < = H+U(2)<3e at z=p,.
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Then HZ%» n—oo and hm Hir ,,m<3¢ at p,. Let ¢—0, then lim

(U+l7) n

Hip ,,0=0. Thus U(z)+U' (2 and §G(z, p) du(p) is singular 2).

2) Let p=0 in R and Sdpﬁl. Then P¢={G(z, p) du(p) is approxi-
mated by a sequence U, = iciG(z, i), =1, p;eR. Evidently D(UY) =
2rM. Hence by Lemma 3 D((P“")<2zM and by 1) P* is singular. Thus
Pris a GG.

A REMARK ON 3). If Ris a compact domain, 3) is trivial, because G(z, p)
>0 if and only if p,—>p=0dR and p is irregular for the Dirichlet problem.
There is no continuum of dR containing p and G(z, p)=0 on OR—p.

Quasi Dirichlet bounded harmonic functions.

A REMARK ON DIRICHLET INTEGRALS. Let U(z) be an HD in a domain
2 and V(z) be its conjugate. 2 will be a simply connected domain £' by
cutting along some curves. Then f(2)=U+:V is a one valued analytic

function in . Then the area of f(2')= \'lf (2)|2dxdy = D(U). We take

as a local parameter {=n-+1is at 2, where n is an inner normal and s is

a tangent of C, at z: C,={2€02: U(z)=¢t}. Then DU)={{|F" (2)|ds|f (2)|dn.
, oV oU , oU ,

Now |f'(2)|=—%— 55 = o, at z&C; and [f'(2)] :‘— along C,, |f'(2)|dn=

oU

Tdn dU along the normal. Hence we have

b

LEmmA 5. D(U):SLtdt: Lt:§~aa; Uds, a:iglf Ulz), b:silp Ul(z).

LEmMMA 6. A. Let QCQ be compact domains with analytic relative
boundary. Let U(z) be an HP on Q such that U(z)=0 on QN2 and
let U'(2) be an HP on @ such that U (2)=U(z) on 02N0Q" and U (2)=
on 02 —02. Let Go={2€2: Ul)>L}, G,={:cQ : U (2)>L}, ',=3G,N A2
[,=0G,N2. Then

1) U=U(2).

2) O<S%U'd5§S%Uds and DU <D(UP).
ry 'y

o

V=

on G,NaR—I;. By Ul(z)=L on (G,—G) N2, %U'go on (G,—G.)N

Proor. 1) is evident. 2) Since U(z)=U'(2) on 02N 32, U

08, where inner normals are with respect to G and G,. Now Saa—nUds

I'r
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0 0 1 0 1o 0 ., 0 .,
=— S 87Uds’ S-EZUdsw— S a—nUdS—— S anUa’s— S anUds.
Grnie-ry

Hence

ry Grnae-rt, GrNea-ry, (G —Gynag’

OégaiU'dsésiUds.
n on
ry 'y
Let Ltzg% Uds and L;:S:—n Uds. Then L,<L, and by Lemma 5 we
Iy r,

have
L L
DUY = SL;dt < SLtdt — D(UY.
0 0

Similarly we have the following

LeEmMMA 6. B. Let 2 and ' be domains in Lemma 6. A. Let Ulz)
be an HP on Q such that U(z)=max U(z)=M on QN2 and let U (2) be
an HP on Q' such that U(2)=U(z) on 92N32 and U (2)=M on 32 — 9.
Then

1) Ulx=U(2).

o .., 0
2) OégﬁU dSéS%UdS.
ry Iy

3) DU* = D(U".

THEOREM 7. Let Ulz) be a QHD such that W(U)=a for {M;} i.e.
D(|U™)

M =aw;, ;0.
?

Then there exist positive QHD’s U, and U, with W(U)<a, W(Uy)=a for
{My} and U=U,~U, U;=zU"=max(0,U) and U,z —U": U = min (0, U).

Proor. If U(z)>0, our assertion is trivial. We suppose inf U(z)<0.
For any ¢’ >0, consider D(U) over {zER: 0<U(2)<d§'}<oo. By Lemma 5,

there exists a const. 4 such that 0<<6< ¢ and § 867 Uliz)ds=K<oo: C;={2

€R: U(z)=9}. Let D, be a disc in {sER: f](z)<0} N Ry, where n, is a
suitable number. Let U(z)=(U(z)—6)" and G,={zeR: U(z)>L}. Then 0<

Sﬁan Uds<K. In Lemma 6, A, let 2=R,N Gy, @ =R,—D,: n>n, Then

G, ~
Qc2. Let U ()=HZ=HJ>". Then U,(2)=0 on 9D, Let G, ={zc
R: U,(2)>L}. Then by Lemma 6, A, 2)
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Saan O ds < S (')‘an C’;dsgggn Ods< K. (1)

0

Since U is an SBH, HJm=% 7 as n—oo. By (1) lim H,§“7Z‘Do:i¥f< co. Let
W (2)=1—w(BNR, 2, R—D,) and w (2)=1 on D, Since U and w (2) are

IIA

a0, 3Ry~ G +3D G

harmonic on ¢D,, max Y ﬁ(z}/min(— %*w' (z)>§K’<oo. Then K'w' (2)+

2€3D, (77’1 2€0D,
U +6 is an SPH>UJr Let =R, and 2=R,NG,: Gy={2=R: U(2) >0}
and let U,:—H’]/fﬁ. Since U is an SBH,

(Ut <) Ur U< K w () + U +6< 00 .
On the other hand, by Lemma 6. A. 2)

D(U* m><D(<U+>M) < M,a; for any n.

]‘:‘72, 7L

Also by Lemma 3 D(U*M@)<hmD(U*WZ><Mm Let U=U* Then U,

1s a required functlon Slmllarly let Vi=H"_. Then V} /7V*¥<oco and
Ur—Vi= H"’” H"_=H}»=U, whence U,— Uz U, where U,=V*. Thus
we have the theorem

The operations E and I”. Let U be an HP in R. Let I[U] be the
greatest SBH not larger than U in R—R, vanishing on 0R,. Let U, be
a harmonic function in R,—R, such that U,=0 on 0R,, U,=U on oR,
and U,=U in R—R,. Then U, is an SPH, whence U,=I[U], U, | as
n—oo and lim U,=I[U]. lim U, is harmonic and <U and lim U,<I[U].

Hence 1i7an U,=I1[U]. Fromn the construction of U,, we see eaZily
I[Ul=U—-H}f"*.

Let Uy be an HP in R— R, vanishing on 0R, Let E[U] be the least posi-

tive SPH in R not smaller than U, Let U*=U,+K(1—w(BNR,z, R—

Ry))) in R—R, and K in R,, then U* is an SPH, where K=max - — 0 U(z)/

2E€0R

min fiw(RﬂB, 2, R—R,). Let U, be a function in R such that U,=Hj»

2€dR, on
in R, and U=U, in R—R,, then U, is an SBH>=U, and U, < U*< co.
Similarly as I[U] we have lim U,=E[U,] and

E[Uo] — U0+ H£;2£5]§° n R_RO .
Define E for I[U]. Let U,=H?%». then U,=Hf»— H%, where S=HE %<

U]

K(1—w(RNB,z, R—Ry)): K=max U(z). By 4) of Lemma 1, lim H%=0.
2€IR n



On quasi Dirichlet bounded harmonic functions 17

Then by Hj»=U we have EI[U]=U. Similarly we have IE[U) =U,.
Thus

EI[Ul=U and IE[E]=1U,.

If an HP U is a limit of increasing sequence of HB’s, U is called a QHB
(quasibounded harmonic function),

Lemma 7. 1).  Let U be a positive QHD in R with A(U)=a for {M,}.
Then I[U] s also a QHD and A(I[U])=a for M;+k, where k is a const.
Let U, be a positive QHD in R—R, vanishing on dR, and W(U,)=a for
{M;}, then E[U] is also a QHD with WE[U])=a for M,+F, where ¥
is a const.

2) If an HP U is singular in R, I[U] is singular in R—R, If
Us s singular in R—R, and U=0 on dR,, E[U,] is singular in R.

3) If UisaQHB, I[U] is also a QHB in R—R,. If U, is a QHB
vanishing on dR,, E[U] is a QHB in R.

4) If G(z) is a GG, I[G] is a GG in R—R, If G(2) is a GG in
R—R, vanishing on oR,, E[G] is a GG in R.

Proor. 1). Let I[U]=V and Hj7=7T. Then 0<T=<k=<K,=max

zealfo
U(z). Since T is harmonic on 9R,,

D(T)< K, < oo . (1)
{z:U(R)<L}=GiC{z: V()< L}y CGE={z: U(zx)<L+Fk}.
D(U)—2D(U, T)+D(TV=D(VH=D(U)—-2DU, T)+D(T). (2)

af &l &t af* e et
By Schwarz’s inequality
DU, T)=VD(U)D(T) . (3)

If lim D(U*)< oo, we have by (1), (2) and (3), D(V)<oco and A(U)=0=
L=00
AI[U]). If limD(U*)=o0, 2D(U%, T')/L—0 as L—oco. Hence by (2) we have
L=

lim D(UY)/L < lim D(V5/L <lim DU/ L, ,
L=o00 L=co L=oo

AU)=WU[U]) for M; and M;+k respectively.
Now E[U=Us+ Hzph and High < K,, D(Hfp%)=K;. The latter part is
proved similarly.

2) If U is singular, I[U] is clearly singular in R—R, Let U, be
singular in R—R,. E[U)] =U,+ Hii7"%. Let E[U]=T and V= Hzw%. Then

M=
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Let w'(z)=1 on R, and w'(2)=1—w(RNB,2,R—R,) in R—R,. Then
w (2) is an SPH and singular by Lemma 1, 4). Now VZK,w'(2) in R—
Ry, Ky=max E[U,]. Hence Hf»<K,HJ»—0 as n—oo. Let Hgnj,;”’o be the

2€IR

solution of Dirichlet problem with value =0 on R, and =Uj on dR,. Then

H?n <HRn 4+ Kyw' (2) in R,—R,.

o M=
Since U, is singular in R—R,, hm HRn_Ra:O whence lim HR" = Kw' (2).

llm HR@,{ is an HB and w/'(2) is smgular, whence hm HRnV:O Thus lim

0

HRn—O and E[U,] is singular. 3) is evident by the expressmn of I and E.
4) is a direct consequence of 1) and 2).

LEmMA 8. 1). Let 2 be a compact domain with analytic relative

boundary. Let P(2) be a positive continuous SPH on 9 such that —aa;P,

e -P are continuous except analytic curves in 2 and D(P" )< Ma. Let U=
H?.  Then

D(U") = Me .

2) Let P(z) be an SPH satisfying the same condition as 1) in R.
Let U,=Hp». Then U, | U and D(U"< Mu.

Proor. Let D"={2€Q: U(z)<M} and D"={2=Q: P(z)<M}. Then
D*>DY and P*(2)=M in D*— D" and D (P")=0. Since P¥(z) and U(z)

p-Mph

has the same boundary value on 0DY, by the Dirichlet principle

(D(U™ =) D(U) < D(P*) = D(P*) (= D(P¥)) .
_DM DM D’M
Thus we have 1). Let R,=2. Then by 1) DU*)Z<D(P¥)<Ma. Since
P(z) is an SPH, U, | U. By Lemma 3 we have at once 2).

QHBD functions. Let U(z) be an HP. If there exist increasing se-
quence of HB’s U,(z): n=1,2,3, --- and a sequence {M;} such that U(z)=
lim U,(z) and

DU
M;
we call U(z) a QHBD with A(U)<Za for {M;}.

We see at once by Lemma 3 U(z) is a QHD with (U)Za for {M}

and evidently U(z) is a QHB.

Fullsuperharmonic functions (FSPH)?-?. Let U(z) be an HP in R—R,

IA

a; for any n and a;—a,
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such that U(2)=0 on 9R, and D(U*)< oo : 0< M<oo. Let D be a domain
such that 6D is compact. Let Upy(z) be a function such that Un(2)=U(2)
on D and Up(z) has M. D.I. over R—D—R, among all harmonic functions
with the same value as U(z) on 9R,+dD. If for any D, Up(2)=U(z), U(z)
is called an FSPH. Then it is well known, Up(z) is given as

Un(e) = [ Nz p) dip), = TﬁrgainUD(z) a5z 5| 2 Ueas= &,

b iR, R,
where D is the closure of D with respect to N-Martin’s topology.

THEOREM 8. Let Ulz) be an HP such that U(2)=0 on R, and U(z)
is an FSPH in R—R,. Then U(2)=V(2)+G(z2), where V(z) s a QHBD

with W(V)=Za for any {M} and G(2) is a GG with MG Za: a:S%Uds.
R,

Proor. Since U(z) is an FSPH, Ur,,(2)/U(z) as m—oo. Ug, (2) is
given as URm(z):SN(z,p) dptn(p), jdpmg %S% U(z) ds:*%. Since U, (z)

IR,
is harmonic except 0R,, p,>0 only on 9R,. In any compact set in R—

Ry—0R,, Upg, () is uniformly approximated by a sequence of the form

3eiN(z p) 0 Se;<——. Clearly D((3¢,N(z, p)}*)<aM. Hence by Lemma 3

= 2r°
D(U%,) < aM. (1)
By N(z,p)=G(z p)+U(2,p): pER—R,, URm(z):SG(z,P) a’#m<P>+SU(z,P)
dpn(p). Let Pm:sG(z,p) dp,(p) and szsU(z,p) dttn(p). Then P™ and

Jm are bounded and P™ is singular, whence lim H?=0. Since Ug, (z) has

n

M. D. I. over R—R,, Jm(z)§URm(z)§ max U(z) in R—R,, and J,, is an HB.
2€0R,,
Let Ty n=H5". Since J, is harmonic, Twn=4dJn and

Hf s = Hip~Ro 4 Hn=Fs
Let n—~oc0. Then lim Hlfg;ﬁo:‘]m, Hence by Lemma 8 and by (1)
DY) =DWU#)<aM  for any m. (2)

By U, /U, Jn,J. Thus Jis a QHBD with A(J)<a for any {M}. Since
At = %, we can find a squence {#,-} such that g, —u and P»—P. Then

U(z)=P+J.
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Now  lies on only 4g, whence by Theorem 6, 2) P is a GG with M (P)=a
and we have the theorem.
The following is well known and we state without proof.

LemMA 9. Let U be an HP. Then U is divided into uniquely deter-
mined two parts, the quasibounded part U® and the singular part US and
U=U+US. This implies if HP, s U, and U, satisfy Uy=U,, then Ut =ZU¥,
U= Us.

TueoreM 9. 1). Let Ulz) be a positive QHD with A(U)=a for {M;.
Then

Ulz) = Viz)+G(z2),

where V(2) is a positive QHBD with A (V)=Za for {Mj} : M;=M;+ const.,
and G(2) is a GG with M(G(2))=Za.
2) Let Ulz) be a QHD with A(|U))=Za for {M;}. Then

Ulz) = (Vil2)+ Gil2)) — (Val2) + Gal2))

where V,(2) is a positive QHBD with W(V)=a for M,=M,;+ const., and
Gi(2) is a GG with M(G) =

3) In the representation of Ulz) in 2), if A U|)=0, Gi(2)=0 by
Theorem 2. If every boundary points of R is regular (dq,=0 for 6>0),
G;(2)=0.

4)  As a special case, if U(z) is a QHD in |2| <1, then U(z) is Poisson’s
integrable.

Proor. Let U=I[U], where I is the operation from R into R—R,.
Then by U is also a QHD in R—R, with A(U)<a for {M} :
M, = M;+max U(z). Let G,={zR—R,: U(z)>L} and let 2'=R,,;—Ry—

2€IR

GL N (Rn+i - Rn)’ ‘Q:Rn—}-i_RO_ GL-
Then 2 2Q. Let Typnu=H% and T*=H5=U. Then Tiunu=L=
max 17 nnis on GrNOR, and T*=L on 0G,N R,,;. Hence by Lemma 6, B

D(T* V< DO")<Mle;, (M;=<L).

L,n,n+17

Since U is an SPH in R—R,— G}, TL,n,nHi T, as i—o0o(< U). Let Trn=
L in G,—R,. Then TL,n is an SPH in R—R, and TL,anL as n—>oo.
Now T is an HB in R—R, and by Lemma 3 D(Tfé)éMéai: M.< L.
Clearly TL,,L,WgTL,nM for L<L and T,/7T<U as L—oo. Hence T
is a QHBD with

WT)<a  for {M}). (1)
Let S;=Lw(Gy, 2, R—R,). Then by lim .S, =S is singular and
L=oco
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S<U. (2)

By the maximum principle TL,n,n+i§U§TL,n,n+i+SL. By letting ¢— o0,
n—co and then L-—oo,

T<U<T+S. (3)
By (2), (3) and by Lemma 9 we have
U=T+S.

We show S is not only singular but also a CG. Let A.(2) = Lo(Gy, z,
R—R,). Then since Az(z) has M. D. L. over CG, with same value as Ul(z)
on dR,+0Gy,

D(AM%(2)> <D(0")< Mla; and S%A%(z) ds=a;.

R,

Consier Ay;(z) with respect to N-Martin’s topology. Clearly Aw;(2) is an

FSPH and there exists a positive mass p; such that Ay (z):SN(z, p) d(p),
Gy’

deig -%, {Sdpi} are uniformly bounded, hence there exists a sequence {z;}

such that pry—p and Ay,(2)—A(2) (clearly #=0 in R) and A(z):SN(z, )
dp(p). Hence by
Alz) = A'(2)+ A" (2),

where A’(z) is a QHBD with (A (2))<a for any {M} and A" (2) is a GG
with (A" (2))<a. By (G, 2, R—R)=Zw(GL, 2, R—R), S<A (2)+A"(2).
Also by Lemma 9 S<A"”(2). Hence by Theorem 2.3) S is an GG in
R—R, with M(S)=Za.

Now

U=E[U] =E[T]+E[S].

By E[S] is a GG in R with M(E[S])<a. Let T,=E[T,]. Then
Tp=lim Hf» and <L. By putting 2=R,—R,, 2 =R, we have by Lemma

6. A D(H)Yi< D (T <Ma;: M|<L. Also by Lemma 3
R

n Rn_Ro
D(T%) < Ma,: M,<L and T,<L. (4)
im E[T;]=1lim T,=T. Since E[T] is the least positive SPH larger than
L=c L ~ ~
[, lim E[T;]=E[T]. On the other hand, clearly lim E[T]=E[T]. Hence
L=co L
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TL/E[T]:}i:rS E[T;). Thus by (4) E[T] is a QHBD with order <a for

{M}} and we have 1). 2) is obtained by 1) and by [Theorem 7. 3) If G(2)>
0, M(G(2)) >0 and the former part is evident. By [Theorem 4, 44,=0 for
0 >0 implies G(2)=0 and 3) is proved. 4) is clear by 2) and 3).
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