On quasi Dirichlet bounded harmonic functions

By Zenjiro Kuramochi (Received July 4, 1978)

In the present paper we denote by P, B, D, H, SPH and SBH, positive, bounded, Dirichlet bounded, harmonic, superharmonic and subharmonic respectively. Let R be a Riemann surface $\oplus O_g$ and let $\{R_n\}: n=0,1,2,\cdots$, be an exhaustion with compact analytic relative boundary ∂R_n . We call a domain G a subdomain, if ∂G consists of at most an enumerably infinite number of analytic curves clustering nowhere in R. In this note we use simply a domain G in the meaning that G is a sum of subdomains G_i such that $\Sigma \partial G_i$ clusters nowhere in R. Let R^∞ be the universal covering surface of R and map R^∞ onto $|\zeta| < 1$. In the previous paper we proved.

Let U(z) be an HD function in R. Then U(z) is a harmonic function $U(\zeta)$ in $|\zeta| < 1$, $\overline{\lim_{r \to 1}} \int_0^{2\pi} |U(re^{i\theta})|^2 \, d\theta < \infty$, $\zeta = re^{i\theta}$ and $U(\zeta)$ is representable by Poisson's integral. This is equivalent to $U(z) = U_1(z) - U_2(z)$, where $U_1(z)$ and $U_2(z)$ are positive quasibounded harmonic function (abbreviated by QHB).

The purpose of this paper is to extend the above theorem. Let G be a domain, if G is compact, we denote by H_g^G the solution of the Dirichlet problem with respect to the boundary value g(z) on ∂G . If G is non compact and $g(z) \ge 0$, we denote also by H_g^G the least positive $SPH \ge g(z)$ on ∂G , i. e. $H_g^G = \lim_n H_{g_n}^{G \cap R_n}$, where $g_n(z) = g(z)$ on $\partial G \cap R_n$ and $g_n(z) = 0$ on $\partial R_n \cap G$.

Let $G_2 \subset G_1$ be domains. Let $w_{n,n+i}(z)$ be an HB in $G_1 \cap R_{n+i} - G_2 \cap (R_{n+i} - R_n)$ such that $w_{n,n+i}(z) = 0$ on $\partial G_1 \cap R_{n+i} + \partial R_{n+i} \cap (G_1 - G_2)$, = 1 on $(R_{n+i} - R_n) \cap G_2$. Then $w_{n,n+i}(z) \nearrow w_n(z)$ and $w_n(z) \downarrow : n \to \infty$. This limit is denote by $w(G_2 \cap B, z, G_1)$ and is called $H.M.^2$ of $B \cap G_2$ relative to G_1 . Let F be a closed set (or domain G). We denote $H_1^{CF}(H_1^{CG})$ by w(F, z, R) (w(G, z, R)) simply. Let U(z) be a positive SPH. If there exists no positive HB smaller than U(z), we call U(z) a singular function. If an HP is the limit of increasing sequence of HB functions, U(z) is called quasibounded harmonic function (QHB). In this note we denote min (M, U(z)) by $U^M(z)$. Let U(z) be a function (harmonic function). If

$$\lim_{M=\infty} rac{D(|U(z)|^M)}{M} = lpha < \infty$$
 ,

i. e. there exists a sequence $\{M_i\}$ such that $\frac{D(|U|^{M_i})}{M_i} = \alpha_i, \alpha_i \rightarrow \alpha$. we call U(z) a QD(QHD) of order α denoted by $\alpha = \mathfrak{A}(U)$ (for $\{M_i\}$).

If a posistive $SPH\ U(z)$ is harmonic in R except at most a set of capacity zero and is a QD and singular, we call U(z) a GG (generalized Green function).

Lemma 1. Let G be a domain and let R_0 be a compact disc. Then

- 1) $w(G \cap B, z, R) = 0$ if and only if $w(G \cap B, z, R R_0) = 0$.
- 2) Let $G^{\mathfrak{d}} = \{ z \in G_1 : w(G_2 \cap B, z, G_1) < \delta < 1 \}$. Then $w(B \cap G_2 \cap G^{\mathfrak{d}}, z, G_1) = 0$.
- 3) A positive SPH U(z) is singular, if and only if for any $\varepsilon > 0$, $w(G_{\varepsilon} \cap B, z, R) = 0$: $G_{\varepsilon} = \{z \in R : U(z) > \varepsilon\}$.
- 4) Let w'(z)=1 on \bar{R}_0 and $w'(z)=1-w(R\cap B,z,R-R_0)$. Then w'(z) is singular.
- 5) Let $G(z, p_0)$ be a Green function of R. Let U(z) be singular and D be a domain and let $D_{\delta} = \{z \in R : G(z, p_0) > \delta\}$. Then

$$H_{U^{M}}^{D\cap R_{n}}\downarrow H_{U^{M}}^{D}\colon n{
ightarrow}\infty \quad and \quad H_{U^{M}}^{D\cap D_{\delta}}\downarrow H_{U^{M}}^{D}\colon \delta{
ightarrow}0$$
.

PROOF. 1) and 2) are proved in the previous paper2.

3) $H_{vM}^{R_n}$ is the greatest HP in R_n not larger than $U^M(z)$. Since $U^M(z)$ is an SPH, $H_{vM}^{R_n} \downarrow : n \to \infty$. $\lim_n H_{vM}^{R_n}$ is the greatest HP in R not larger than $U^M(z)$. Hence U(z) is singular, if and only if $\lim_n H_{vM}^{R_n} = 0$ for any $M < \infty$. Suppose $w(G_{\varepsilon} \cap B, z, R) = 0$ for any $\varepsilon > 0$. Then $H_{vM}^{R_n} \le \varepsilon$ on $\partial R_n - G_{\varepsilon}$, $H_{vM}^{R_n} \le M = Mw((R - R_n) \cap G_{\varepsilon}, z, R)$ on $\partial R_n \cap G_{\varepsilon}$, whence

$$H^{R_n}_{UM} \leq \varepsilon + Mw((R-R_n) \cap G_{\varepsilon}, z, R)$$
.

Let $n\to\infty$ and then $\varepsilon\to 0$. Then $\lim_n H^{R_n}_{vM}=0$ and U(z) is singular. Suppose U(z) is singular. Let $\Omega=R_{n+i}-(R_{n+i}-R_n)\cap G_{\varepsilon}$. Then $H^2_{vM}>\varepsilon$ on $\partial((R_{n+i}-R_n)\cap G_{\varepsilon})$. Since $\varepsilon w(G_{\varepsilon}\cap (R_{n+i}-R_n), z, R_{n+i})$ is the least HP in Ω larger than ε on $G_{\varepsilon}\cap (R_{n+i}-R_n)$,

Let $i \rightarrow \infty$ and then $n \rightarrow \infty$. Then

$$0=\lim_n H^{R_n}_{U^M} \geq \varepsilon w(G_{\epsilon} \cap B, z, R) = 0$$
.

Hence we have 3).

- 4) Now $G_{\varepsilon} = \{z \in R : w'(z) > \varepsilon\} = \{z \in R : w(B \cap R, z, R R_0) < 1 \varepsilon\}$. We have by 2) $w(G_{\varepsilon} \cap B, z, R) = 0$ and w'(z) is singular by 3).
- 5) Since $U^{\mathtt{M}}(z)$ is an SPH, $H_{UM}^{D \cap R_n} \downarrow : n \rightarrow \infty$. Let $V_n(z)$ be an HB in $D \cap R_n$ such that $V_n(z) = U^{\mathtt{M}}(z)$ on $\partial D \cap R_n$ and = 0 $\partial R_n \cap D$. Then

$$V_n(\mathbf{z}) + H_{\mathcal{U}^M}^{R_n} \ge H_{\mathcal{U}^M}^{\mathcal{D} \cap R_n} \ge V_n(\mathbf{z})$$
 .

Let $n\to\infty$. Then $H_{nM}^{R_n}\downarrow 0$. Thus

$$\lim_{n} H_{UM}^{D \cap R_{n}} = \lim_{n} V_{n}(z) = H_{UM}^{D}. \tag{1}$$

Since $D \cap D_{\delta} \subset D$ and $U^{M}(z)$ is an SPH, by (1)

$$H_{\scriptscriptstyle UM}^{\scriptscriptstyle D\cap D_\delta}=\lim_n\,H_{\scriptscriptstyle UM}^{\scriptscriptstyle D\cap D_\delta\cap R_n}\geqq\lim_n\,H_{\scriptscriptstyle UM}^{\scriptscriptstyle D\cap R_n}=H_{\scriptscriptstyle UM}^{\scriptscriptstyle D}\,.$$

Now $H_{UM}^{D\cap D_{\delta}}\downarrow: \delta \rightarrow 0$ and $\lim_{\delta \rightarrow 0} H_{UM}^{D\cap D_{\delta}} \geq H_{UM}^{D}$.

Since $G(z, p_0) > 0$ in R, there exists a number $\delta(n)$ such that $D_{\delta(n)} \supset R_n$ for any n. Then $D \cap R_n \cap D_{\delta} = D \cap R_n$: $\delta \leq \delta(n)$. Hence

$$H_{\scriptscriptstyle UM}^{\scriptscriptstyle D\cap R_n} = H_{\scriptscriptstyle UM}^{\scriptscriptstyle D\cap D_\delta\cap R_n} \geqq H_{\scriptscriptstyle UM}^{\scriptscriptstyle D\cap D_\delta} \geqq \lim_{\delta\to 0} \, H_{\scriptscriptstyle UM}^{\scriptscriptstyle D\cap D_\delta} \, .$$

Let $n \to \infty$, then $H_{UM}^p = \lim_{\delta \to 0} H_{UM}^{p \cap D_{\delta}}$.

THEOREM 1. Let U(z) be an HP and let $G_M = \{z \in R : U(z) > M\}$. Then $Mw(G_M, z, R) \downarrow$ as $M \to \infty$. $S(z) = \lim_{M \to \infty} Mw(G_M, z, R) \ (\leq U(z))$ is harmonic, singular and $\lim_{M \to \infty} w(G_M, z, R) = 0$.

PROOF. Since $w(G_M, z, R)$ is the least positive SPH in R not smaller than 1 on G_M , $Mw(G_M, z, R) \leq U(z)$ in CG_M . For $M_1 \leq M_2$, $M_2w(G_{M_2}, z, R) \leq U(z) = M_1 = M_1w(G_{M_1}, z, R)$ on ∂G_{M_1} . This implies $Mw(G_M, z, R) \downarrow$ as $M \to \infty$. Clearly $G_M \to \text{boundary of } R$ as $M \nearrow \infty$, $S(z) = \lim_{M \to \infty} Mw(G_M, z, R)$ is harmonic and

$$S(z) \leq U(z)$$
 and $\lim_{M=\infty} w(G_M, z, R) = 0$. (1)

Let $V_n^L(z)$ be an HB in R_n-G_L such that $V_n^L(z)=0$ on $\partial G_L\cap R_n$ and $V_n^L(z)=w(G_L,z,R)$ on ∂R_n-G_L . Then by the definition of $w(G_L,z,R)$

$$\lim_{n} V_{n}^{L}(z) = V^{L}(z) = 0.$$

Let $H_{SM}^{R_n-G_L}(M < L)$ be the solution of the Dirichlet problem in $R_n - G_L$ with boundary value $S^{M}(z)$ on $\partial R_n - G_L$ and =0 on $\partial G_L \cap R_n$. Then

$$\check{H}_{s^{M}}^{R_{n}-G_{L}} \leq \check{H}_{s}^{R_{n}-G_{L}} \leq \check{H}_{Lw(G_{L},z,R)}^{R_{n}-G_{L}} = LV_{n}^{L}(z) \ \text{ and } \lim_{n} \check{H}_{s^{M}}^{R_{n}-G_{L}} = 0 \ . \quad (2)$$

By the maximum principle

$$H_{S^M}^{R_n} \leq H_{S^M}^{R_n - G_L} + M w(G_L, z, R)$$
 in R_n .

Let $n\to\infty$ and then $L \nearrow \infty$. Then by (1) and (2), $\lim_n H^{n_n}_{SM} = 0$. Thus S(z) is singular and $\leq U(z)$.

Let $G_2 \subset G_1$ be domains. Let $\omega_{n,n+i}(z)$ an HB in $G_1 \cap R_{n+i} - G_2 \cap (R_{n+i} - R_n)$ such that $\omega_{n,n+i}(z) = 0$ on $R_{n+i} \cap \partial G_1$, $\frac{\partial}{\partial n} \omega_{n,n+i}(z) = 0$ on $\partial R_{n+i} \cap (G_1 - G_2)$ and $\omega_{n,n+i}(z) = 1$ on $G_2 \cap (R_{n+i} - R_n)$. If there exists a number n_0 and M such that $D(\omega_{n_0,n_0+i}(z)) \leq M$ for $i = 1, 2, \cdots$. Then $\omega_{n,n+i}(z) \Rightarrow \omega_n(z) : i \to \infty$ (\Rightarrow means convergence and convergence in Dirichlet norm), $\omega_n(z) \Rightarrow$ a harmonic function denoted by $\omega(G_2 \cap B, z, G_1)$ called $C.P.^2$ of $G_2 \cap B$ relative to G_1 . Let F be a closed set (or domain G) of G_1 , we denote by $\omega(F, z, G_1)$ ($\omega(G, z, G_1)$) the HD function which is 1 on F (on G) and G_1 and has G_1 and G_2 in G_2 and G_3 and G_4 and has G_4 in G_4 and G_5 in G_6 and G_7 and G_8 in G_9 and G_9 in G_9 and G_9 are G_9 and G_9 are G_9 and G_9 and G_9 and G_9 are G_9 and G_9 are G_9 and G_9 and G_9 are G_9 and G_9 are G_9 and G_9 are G_9 and G_9 are G_9 are G_9 and G_9 are G_9 are G_9 and G_9 are G_9 and G_9 are G_9 and G_9 are G_9 are G_9 are G_9 are G_9 and G_9 are G_9 are

$$\int_{\partial G_M} \frac{\partial}{\partial n} \, \omega(z) \, ds = D(\omega(z)) \qquad \text{for almost } M \colon 0 < M < 1 \; . \tag{2}$$

Lemma 2. Let $R \in O_g$ and G_i : $i=1, 2, \dots$ i_0 be domains and $U_i(z)$ be an HD in G_i . Then there exists another exhaustion $\{R_m\}$ of R such that

$$\int_{G_i \cap \partial R_m} \left| \frac{\partial}{\partial n} U_i(z) \right| ds \rightarrow 0 : m \rightarrow \infty \quad \text{for any } i.$$

Let G be a domain of one component and let \widetilde{G} be the double of G relative to ∂G . If $\widetilde{G} \in O_g$, we denote by $G \in SO_g$. Let SO_{HB} be the class of domains such that there exists no HB vanishing on ∂G except for capacity zero, then it is well known the following facts²⁾:

$$SO_g \subset SO_{HB}$$
. $G' \subset G$ and $G \in SO_g(SO_{HB})$ implies $G' \in SO_g(SO_{HB})$.

In this note if every component of $G \in SO_g(SO_{HB})$, we denote by $G \in SO_g(SO_{HB})$. Then it is clear the above facts are valid.

Theorem 2. Let G(z) be a GG. Then

- 1) Sup $G(z) = \infty$. Put $G_{\delta} = \{z \in R : G(z) > \delta\}$. Then $G_{\delta} \in SO_g$ and $G(z) = \delta w(G_{\delta}, z, R)$ in CG_{δ} .
 - 2) $\int_{\partial G_M} \frac{\partial}{\partial n} G(z) ds = k$ for every M and $D(G^M(z)) = kM$. Such const. k is

called mass of G(z) and is denoted by $\mathfrak{M}(G(z))$.

3) Let U(z) be positively harmonic except at most a set of capacity zero and $\leq G(z)$. Then U(z) is a GG with

$$\mathfrak{M}ig(U(z)ig) \leq \mathfrak{M}ig(G(z)ig)$$
 .

4) Let Ω be a domain in $G_M: 0 < M < 1$. Then

$$Dig(w(\Omega,\mathbf{z},R)ig) \leq \mathfrak{M}ig(G(\mathbf{z})ig)ig/M \ \ and \ \int\limits_{\partial\Omega} \frac{\partial}{\partial n} \, w(\Omega,\mathbf{z},R) \ ds \leq \mathfrak{M}ig(G(\mathbf{z})ig)ig/M \, .$$

PROOF. 1), 2) and 3) are proved^{1),4)}. We show 4). Let $0 < \delta < M$. Since $G_{\delta} \in SO_{g} \subset SO_{HB}$, every HB in a domain D in G_{δ} is uniquely determined by the value on ∂D , then

$$G(z) = (M - \delta) \omega(G_M, z, G_\delta) + \delta = (M - \delta) \omega(G_M, z, G_\delta) + \delta \text{ in } G_\delta - G_M$$

whence

$$D\big(\operatorname{w}(G_{\mathit{M}}, \mathbf{z}, G_{\mathit{\delta}}) \big) = \frac{1}{(M - \delta)^2} D_{G_{\delta} - G_{\mathit{M}}} \big(G(\mathbf{z}) \big) = \mathfrak{M} \big(G(\mathbf{z}) \big) \big/ (M - \delta) \; .$$

By $\Omega \subset G_M$, $\omega(\Omega, z, G_\delta) \leq \omega(G_M, z, G_\delta)$ and by the Dirichlet principle

$$D(\omega(\Omega, z, G_{\delta})) \leq D(\omega(G_{M}, z, G_{\delta})) \leq \mathfrak{M}(G(z))/(M-\delta)$$
.

 $\omega(\Omega, z, G_{\delta}) = w(\Omega, z, G_{\delta}) \leq w(\Omega, z, R)$ and by the definition of $w(\Omega, z, R)$

$$\lim_{\delta \to 0} w(\Omega, z, G_{\delta}) = w(\Omega, z, R).$$

Hence $D(w(\Omega, z, R)) \leq \frac{\mathfrak{M}(G(z))}{M}$.

Now $G_{\delta} \in SO_{g}$, $\int_{C_{\alpha}} \frac{\partial}{\partial n} \omega(\Omega, z, G_{\delta}) ds = \text{const.}$ for any C_{α} by Lemma 2, where $C_{\alpha} = \{z \in R : \omega(\Omega, z, G_{\delta}) = \alpha\} : 0 \leq \alpha \leq 1$, hence

$$-\int_{\frac{\partial}{\partial D}} \frac{\partial}{\partial n} \omega(\Omega, z, G_{\delta}) ds = D(\omega(\Omega, z, G_{\delta})) \leq D(\omega(G_{\mathtt{M}}, z, G_{\delta})).$$

$$-\frac{\partial}{\partial n} w(\Omega, \mathbf{z}, G_{\mathbf{d}}) \geq -\frac{\partial}{\partial n} w(\Omega, \mathbf{z}, R) \geq 0 \text{ on } \partial\Omega, \text{ hence}$$

$$-\int_{\Omega} \frac{\partial}{\partial n} w(\Omega, z, R) ds \leq \mathfrak{M}(G(z))/M.$$

THEOREM 3. 1) Let $G_1(z)$ and $G_2(z)$ be GG, s. Then $G(z) = G_1(z) + G_2(z)$ is a GG and $\mathfrak{M}(G(z)) = \mathfrak{M}(G_1(z)) + \mathfrak{M}(G_2(z))$.

2) Let G(z) be a GG and let G'(z) be an HP except at most a set of capacity zero and $\leq G(z)$, then G(z)-G'(z) is a GG and

$$\mathfrak{M}\left(G(\mathbf{z})-G'\left(\mathbf{z}\right)\right)=\mathfrak{M}\left(G(\mathbf{z})\right)-\mathfrak{M}\left(G'\left(\mathbf{z}\right)\right).$$

Proof. 1) G(z) is evidently singular. Let $G_M = \{z \in R : G(z) > M\}$, $G_{i,M} = \{z \in R : G_i(z) > M\}.$ Then

$$G_M \supset G_{1,M} + G_{2,M}$$
.

$$\begin{split} &D(G^{\mathit{M}}(\mathbf{z})) \!=\! \underset{CG_{\mathit{M}}}{D}(G(\mathbf{z})) \!=\! \underset{CG_{\mathit{M}}}{D}(G_{1}(\mathbf{z}) + G_{2}(\mathbf{z})) \! \leq \! 2(\underset{CG_{\mathit{M}}}{D}(G_{1}(\mathbf{z})) + \underset{CG_{\mathit{M}}}{D}(G_{2}(\mathbf{z}))) \leq \! 2\underset{CG_{1,\mathit{M}}}{D}(G_{1}(\mathbf{z})) + 2M\mathfrak{M}(G_{2}(\mathbf{z})). \end{split} \\ & + \underset{CG_{2,\mathit{M}}}{D}(G_{2}(\mathbf{z})) = \! 2M\mathfrak{M}(G_{1}(\mathbf{z})) + 2M\mathfrak{M}(G_{2}(\mathbf{z})). \end{split} \\ \text{Hence } G(\mathbf{z}) \text{ is a } GG \text{ and by } G(G_{2}(\mathbf{z})) = \mathsf{M}(G_{2}(\mathbf{z})) + \mathsf{M}(G_{2}(\mathbf{z})) + \mathsf{M}(G_{2}(\mathbf{z})). \end{split}$$
 $D(G^{M}(z)) = M\mathfrak{M}(G(z))$

$$\mathfrak{M}(G(z)) \leq 2(\mathfrak{M}(G_1(z)) + \mathfrak{M}(G_2(z))).$$

By $G_{\delta} \in SO_{q} \subset SO_{HB}$

$$G(z) = (M - \delta) \omega(G_M, z, G_\delta) + \delta \text{ in } G_\delta - G_M.$$

Similarly $G_i(z) = (M - \delta) \omega(G_{i,M}, z, G_{i,\delta}) + \delta$ in $G_{i,\delta} \subset G_{\delta}$. Let $\widetilde{G}_i(z) = (M - \delta)$ $\omega(G_{i,M}, z, G_{\delta}) + \delta$. Then by $G_{i,\delta} \in SO_{HB}$, $\tilde{G}_i(z) \geq G_i(z)$ in $G_{i,\delta} \subset G_{\delta}$. On the other hand, $\tilde{G}_i(z) = M = G_i(z)$ on $\partial G_{i,M}$, hence

$$0 \leq \int_{\partial G_{\delta}} \frac{\partial}{\partial n} \widetilde{G}_{i}(z) ds = -\int_{\partial G_{i,M}} \frac{\partial}{\partial n} \widetilde{G}_{i}(z) ds \leq -\int_{\partial G_{i,M}} \frac{\partial}{\partial n} G_{i}(z) ds = \mathfrak{M}\left(G_{i}(z)\right). \quad (1)$$

Let $G^*(z) = (\tilde{G}_1(z) + \tilde{G}_2(z)) A + B$, where $A = \frac{M - \delta}{M - 2\delta}$, $B = \frac{-\delta M}{M - 2\delta}$. $G^*(z) = \delta = G(z)$ on ∂G_{δ} and $G^*(z) \ge M$ on ∂G_{M} . By $G_{\delta} \in SO_{HB}$, $G^*(z) \ge G(z)$ in $G_{\delta} - G_{M}$. Then by (1)

$$\begin{split} \mathfrak{M}\!\left(G(\mathbf{z})\right) &= \int_{\partial G_{\delta}} \frac{\partial}{\partial n} \, G(\mathbf{z}) \, ds \leq \int_{\partial G_{\delta}} \frac{\partial}{\partial n} \, G^*(\mathbf{z}) \, ds = \left(\frac{M - \delta}{M - 2\delta}\right) \\ & \left(\int_{\partial G_{\delta}} \frac{\partial}{\partial n} \left(\tilde{G}_1(\mathbf{z}) + \tilde{G}_2(\mathbf{z})\right)\right) ds \leq \left(\frac{M - \delta}{M - 2\delta}\right) \left(\mathfrak{M}\!\left(G_1(\mathbf{z})\right) + \mathfrak{M}\!\left(G_2(\mathbf{z})\right)\right) \, . \end{split}$$

Let
$$\delta \to 0$$
. Then $\mathfrak{M}(G(z)) \leq \mathfrak{M}(G_1(z)) + \mathfrak{M}(G_2(z))$. Now $\left(\frac{M}{M-\delta}\right)(G(z)-\delta) = M\omega(G_M, z, G_\delta)$. By $G_\delta \in SO_g$, $M \int_{\partial G_\delta} M \frac{\partial}{\partial n}$ $\omega(G_M, z, G_\delta) ds = D_{G_\delta - G_M}(M\omega(G_M, z, G_\delta)) = \left(\frac{M}{M-\delta}\right)^2 D_{G_\delta - G_M}(G(z)) = \left(\frac{M^2}{M-\delta}\right) \mathfrak{M}(G(z))$, $i. e.$

$$M \int_{\partial G_\delta} \omega(G_M, z, G_\delta) ds = \left(\frac{M}{M-\delta}\right) \mathfrak{M}(G(z)).$$

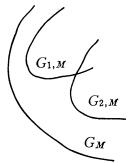


Fig. 1.

Hence for any $\varepsilon > 0$, there exists a const. $\delta > 0$ such that

$$0 \leq M \int_{\partial G_{\delta}} \frac{\partial}{\partial n} \omega(G_{M}, z, G_{\delta}) ds \leq \mathfrak{M}(G(z)) + \varepsilon.$$
 (2)

 $G_{\delta} \supset G_{i,\delta}$, whence by the Dirichlet principle $D(\omega(G_{i,M}, z, G_{i,\delta})) \ge D(\omega(G_{i,M}, z, G_{\delta}))$. By the definition of $w(G_{i,M}, z, R)$, $G(z) = G_1(z) + G_2(z) \ge Mw(G_{1,M}, z, R) + Mw(G_{2,M}, z, R) \ge Mw(G_{1,M}, z, G_{\delta}) + Mw(G_{2,M}, z, G_{\delta}) = M\omega(G_{1,M}, z, G_{\delta}) + M\omega(G_{2,M}, z, G_{\delta})$ in G_{δ} , whence $M\omega(G_{M}, z, G_{\delta}) = G(z) = M \ge M\omega(G_{1,M}, z, G_{\delta}) + M\omega(G_{2,M}, z, G_{\delta})$ on ∂G_{M} .

$$M\omega(G_{\mathtt{M}}, \mathbf{z}, G_{\delta}) = 0 = M\omega(G_{\mathtt{1},\mathtt{M}}, \mathbf{z}, G_{\delta}) + M\omega(G_{\mathtt{2},\mathtt{M}}, \mathbf{z}, G_{\delta}) \text{ on } \partial G_{\delta}.$$
 (3)

Hence by $G_{\delta} \in SO_{HB}$,

$$M\omega(G_{\mathtt{M}}, \mathbf{z}, G_{\delta}) \geq M\omega(G_{\mathtt{1},\mathtt{M}}, \mathbf{z}, G_{\delta}) + M\omega(G_{\mathtt{2},\mathtt{M}}, \mathbf{z}, G_{\delta}) \text{ in } G_{\delta} - G_{\mathtt{M}}.$$
 (4)

By (3) and (4)

$$0 \leq \int_{\partial G_{\delta}} \frac{\partial}{\partial n} \omega(G_{\mathtt{M}}, z, G_{\delta}) ds \geq \int_{\partial G_{\delta}} \frac{\partial}{\partial n} \omega(G_{\mathtt{1},\mathtt{M}}, z, G_{\delta}) ds + \int_{\partial G_{\delta}} \frac{\partial}{\partial n} \omega(G_{\mathtt{2},\mathtt{M}}, z, G_{\delta}) ds.$$
(5)

Now

$$0 < \int_{\partial G_{\delta}} \frac{\partial}{\partial n} \omega(G_{i,M}, z, G_{\delta}) ds = -\int_{\partial G_{i,M}} \frac{\partial}{\partial n} \omega(G_{i,M}, z, G_{\delta}) ds.$$
 (6)

Clearly $M\omega(G_{i,\mathtt{M}},\mathbf{z},G_{\delta})=M=G_{i}(\mathbf{z})$ on $\partial G_{i,\mathtt{M}}$ and $M\omega(G_{i,\mathtt{M}},\mathbf{z},G_{\delta})\leqq G_{i}(\mathbf{z})$ in $G_{\delta}-G_{i,\mathtt{M}}$ and

$$-M\int_{\partial G_{i,M}} \frac{\partial}{\partial n} \omega(G_{i,M}, z, G_{\delta}) ds \geq -\int_{\partial G_{i,M}} \frac{\partial}{\partial n} G_{i}(z) ds = \mathfrak{M}(G_{i}(z)). \quad (7)$$

Hence by (7), (6), (5) and (2)

$$\mathfrak{M}\big(G_{\scriptscriptstyle 1}(z)\big) + \mathfrak{M}\big(G_{\scriptscriptstyle 2}(z)\big) \leqq \mathfrak{M}\big(G(z)\big) + \frac{\varepsilon}{M} \;.$$

Let $\varepsilon \to 0$, then $\mathfrak{M}(G(z)) = \mathfrak{M}(G_1(z)) + \mathfrak{M}(G_2(z))$.

Let G(z, p) be a Green function and let p_0 be a fixed point in R. Put $K(z, p) = \frac{G(z, p)}{G(p, p_0)}$. Then K(z, p) = 1 at $z = p_0$. Let $\{p_i\}$ be a divergent sequence such that $\{K(z, p_i)\}$ converges to a positive harmonic function denoted by K(z, p). Then we say that $\{p_i\}$ determines an ideal boundary point p. We denote by \mathcal{L}_K the set of all the ideal boundary points. Then the distance $\delta(p_1, p_2)$ between p_1 and p_2 in $R + \mathcal{L}_K$ is defined as

$$\delta(p_{\scriptscriptstyle 1},p_{\scriptscriptstyle 2}) = \sup_{\scriptscriptstyle z \in R_{\scriptscriptstyle 0}} \left| \frac{K(z,p_{\scriptscriptstyle 1})}{1+K(z,p_{\scriptscriptstyle 1})} - \frac{K(z,p_{\scriptscriptstyle 2})}{1+K(z,p_{\scriptscriptstyle 2})} \right|.$$

The topology induced by this metric is called Martin's topology⁵⁾. Let $N(z,p)^{2)}$ be an N-Green function of $R-R_0$. We use N(z,p) instead of K(z,p) and we have N-Martin's topology on $R-R_0+\Delta_N$. Also we have G-Martin's topology on $R+\Delta_G$ by using G(z,p). Then $\Delta_\alpha(\alpha=K,N,G)$ is compact. In G-Martin's topology the set of p such that G(z,p)=0 consists of only one point.

Representation of generalized Green functions. Let G(z) be a GG with $\mathfrak{M}(G(z))=2\pi$. Then there exists a uniquely determined positive mass μ on R such that $G(z)-\int G(z,p)\,d\mu(p)=U(z)$ is an HP. Then by Theorem 2 U(z) is also a GG with $\mathfrak{M}(U(z))\leq 2\pi$. Let p_0 be a fixed point and let $D_{\delta}=\{z\in R: G(z,p_0)>\delta\}$. The following discussion is simpler than the previous one⁴⁾.

Let $U_{D_{\delta}\cap(R-R_n)}(z)$ be the least non negative SPH in R larger than U(z) on $D_{\delta}\cap(R-R_n)$. Then $U_{D_{\delta}\cap(R-R_n)}(z)\downarrow U_{D_{\delta}\cap B}(z): n\to\infty$. Clearly $U_{D_{\delta}\cap B}(z)$ is also harmonic and a GG with $\mathfrak{M}(U_{D_{\delta}\cap B}(z))\leq \mathfrak{M}(U(z))$. Then

$$(U_{D_{\delta}\cap B})_{D_{\delta}\cap B} = U_{D_{\delta}\cap B}, \qquad (1)$$

where the operation " $U_{D_{\delta} \cap B}$ from U" is Martin's method⁵. Let $U' = U - U_{D_{\delta} \cap B}$. Then by Theorem 2 U' is also a GG with $\mathfrak{M}(U') \leq \mathfrak{M}(U)$. Now

$$U_{D_{\delta} \cap B} = (U_{D_{\delta} \cap B} + U')_{D_{\delta} \cap B} = (U_{D_{\delta} \cap B})_{D_{\delta} \cap B} + U'_{D_{\delta} \cap B}$$

and

$$U'_{D_{\delta}\cap B}=0$$
.

Let $\Omega_M = \{z \in R : U'(z) > M\}$. Then by Theorem 2, 1)

$$U'(z) = H_M^{C\Omega_M} = M_W(\Omega_M, z, R)$$
 in $C\Omega_M$.

Let $T_{M}(z) = M_{\mathcal{W}}(\Omega_{M} \cap D_{\delta}, z, R)$, then $T_{M}(z) \leq U'(z)$. We show $T_{M}(z) \to 0$ as $M \to \infty$. Let $T_{M,n}(z)$ be an HB in $R_{n} - (\Omega_{M} \cap D_{\delta})$ such that $T_{M,n}(z) = 0$ on $\partial R_{n} - (\Omega_{M} \cap D_{\delta})$, = M on $\partial (\Omega_{M} \cap D_{\delta}) \cap R_{n}$. Let $M_{0} < M$ and $G_{n}(\zeta, z)$ and $G(\zeta, z)$ be Green functions of $R_{n} - (\Omega_{M_{0}} \cap D_{\delta})$ and $R - (\Omega_{M_{0}} \cap D_{\delta})$ respectively. Then $\frac{\partial}{\partial n} G_{n}(\zeta, z) \uparrow \frac{\partial}{\partial n} G(\zeta, z)$ on $\partial (\Omega_{M_{0}} \cap D_{\delta})$. Also $T_{M,n}(z) \nearrow T_{M}(z) : n \to \infty$, hence

$$T_{\mathbf{M}}(\mathbf{z}) = \frac{1}{2\pi} \int_{\partial(\mathbf{Q}_{\mathbf{M}_0} \cap D_{\delta})} T_{\mathbf{M}}(\zeta) \frac{\partial}{\partial n} G(\zeta, \mathbf{z}) \, ds = \left(T_{\mathbf{M}}(\mathbf{z}) \right)_{\mathbf{Q}_{\mathbf{M}_0} \cap D_{\delta}}.$$

Assume $\varlimsup_{M\to\infty} T_M>0$. Then there exists a sequence $\{M_i\}$ such that $M_i\to\infty$ and $T_{M_i}\to$ an HP T(z)>0. Now $T_{M_i}(z)\leqq U'(z)$ and $T(z)\leqq U'(z)$. $\int\limits_{\partial(\Omega_{M_0}\cap D_{\delta})} U'(\zeta)$

$$\frac{\partial}{\partial n}G(\zeta,z)\,ds = U'_{\varrho_{M_0}\cap D_\delta}(z) \leq U'(z) < \infty$$
. Hence by Lebesgue's theorem

$$T(z) = \lim_{i} T_{M_{i}}(z) = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} \lim_{i} T_{M_{i}}(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) ds = \frac{1}{2\pi} \int_{\partial(\Omega_{M_{0}} \cap D_{\delta})} T(\zeta) \frac{\partial}{\partial n} G(\zeta, z) dz$$

 $G(\zeta, z) ds = T_{\varrho_{M_{\alpha}} \cap D_{\delta}}(z)$. Hence

$$T = T_{g_M \cap D_\delta}$$
 for any M .

Since U'(z) is harmonic in R, $\Omega_M \to \text{boundary of } R$ as $M \to \infty$. Hence for any n there exists a number M(n) such that $\Omega_M \subset R - R_n : M > M(n)$ and

$$T(\mathbf{z}) = \lim_{\substack{M = \infty}} T_{\mathcal{Q}_M \cap D_{\delta}}(\mathbf{z}) \leqq T_{D_{\delta} \cap B}(\mathbf{z}) \leqq U'_{D_{\delta} \cap B}(\mathbf{z}) = 0 \ .$$

This is a contradiction. Hence

$$T_{M}(z) \rightarrow 0: M \rightarrow \infty.$$
 (2)

 $w(\Omega_{M} \cap C\overset{\circ}{D}_{\delta}, z, R) \leq w(\Omega_{M}, z, R) \leq w(\Omega_{M} \cap D_{\delta}, z, R) + w(\Omega_{M} \cap C\overset{\circ}{D}_{\delta}, z, R)$. By (2)

$$U'(z) = \lim_{M=\infty} Mw(\Omega_M \cap C\overset{\circ}{D_{\delta}}, z, R) = \lim_{M=\infty} Mw(\Omega_M, z, R). \tag{3}$$

Let $\delta' < U'(p_0)$ ($\delta' < \delta$), then $\Omega_{\delta'} \ni p_0$. Let $G'(z, p_0)$ be a Green function of $\Omega_{\delta'}$. Then $G'(z, p_0) < G(z, p_0)$ in CD_{δ} . Now U'(z) is a GG. Let $\Omega_M^{\delta} = \Omega_M \cap CD_{\delta}^{\circ}$. Then by Theorem 2, 4)

$$egin{aligned} U'^{M}(\mathbf{z}) &= Mw(\Omega_{\mathbf{M}},\,\mathbf{z},\,R) \geqq Mw(\Omega_{\mathbf{M}}^{\delta},\,\mathbf{z},\,R) \;, \ D\Big(Mw(\Omega_{\mathbf{M}}^{\delta},\,\mathbf{z},\,R)\Big) \leqq D_{\mathcal{C}\mathcal{Q}_{\mathbf{M}}}\Big(U'^{M}(\mathbf{z})\Big) = M\mathfrak{M}\Big(U'(\mathbf{z})\Big) \leqq 2\pi M \;. \end{aligned}$$

 $\Omega_{\delta'} \in SO_g$ and $D_{R-v(p_0)}(G'(z,p_0)) < \infty$, where $v(p_0)$ is a neighbourhood of p_0 . Hence by Lemma 2 there exists a D-exhaustion $\{R_m\}$ relative to $w(\Omega_M^{\delta}, z, R)$ in $\Omega_{\delta'} - \Omega_M^{\delta}$ and $G'(z,p_0)$ in $\Omega_{\delta'}$ such that

$$\int_{\partial R_m \cap (\Omega_{\delta'} - \Omega_M^{\delta})} \left| \frac{\partial}{\partial n} w(\Omega_M^{\delta}, \mathbf{z}, R) \right| ds \downarrow 0 \text{ and } \int_{\partial R_m \cap \Omega_{\delta'}} \left| \frac{\partial}{\partial n} G'(\mathbf{z}, p_0) \right| ds \downarrow 0 \text{ as } m \to \infty.$$

$$(4)$$

Put $S(z) = Mw(\Omega_M^{\delta}, z, R)$. Then by Theorem 2, 4) $-\frac{\partial}{\partial n}S(z) \ge 0$ on $\partial \Omega_M^{\delta}$ and $0 \le -\int_{\partial \Omega_M^{\delta}} \frac{\partial}{\partial n}S(z) ds \le M\int_{\partial \Omega_M} \frac{\partial}{\partial n}w(\Omega_M, z, R) ds = \mathfrak{M}(U'(z))$, whence by $G'(z, p_0) \le \delta$ on $\partial \Omega_M^{\delta}$.

$$-\int\limits_{\partial \mathscr{Q}_{M}^{\delta}\cap R_{m}}G'(z,p_{0})\frac{\partial}{\partial n}S(z)\;ds\leqq \delta\mathfrak{M}\big(U'(z)\big)\qquad\text{for any m .}$$

By (4) we have
$$\int_{\partial R_m \cap (\Omega_{\delta'} - \Omega_M^{\delta})} G'(z, p_0) \frac{\partial}{\partial n} S(z) ds \to 0 : m \to \infty, \int_{\partial \Omega_M^{\delta} \cap R_m} S(z) \frac{\partial}{\partial n} G'(z, p_0) ds$$

$$= M \int_{\partial \Omega_M^{\delta} \cap R_m} \frac{\partial}{\partial n} G'(z, p_0) ds = -M \int_{\partial R_m \cap \Omega_M^{\delta}} \frac{\partial}{\partial n} G'(z, p_0) ds \to 0 : m \to \infty \text{ for } S(z) = M$$
on $\partial \Omega_M^{\delta}$.

$$\int_{\partial R_m \cap (\Omega_{\delta'} - \Omega^{\delta}_{M})} S(z) \frac{\partial}{\partial n} G'(z, p_0) ds \rightarrow 0 : m \rightarrow \infty.$$

On the other hand, by $S(z) \leq U'(z) = \delta'$ on $\partial \Omega_{\delta'}$, $\int_{\partial \Omega_{\delta'} \cap R_m} S(z) \frac{\partial}{\partial n} G'(z, p_0) ds \leq 2\pi \delta'$ and $\int_{\partial \Omega_{\delta'} \cap R_m} G'(z, p_0) \frac{\partial}{\partial n} S(z) ds = 0$ by $G'(z, p_0) = 0$ on $\partial \Omega_{\delta'}$. Let $M > U'(p_0)$ then $\Omega_{\delta'} - \Omega_M^{\delta} \equiv p_0$. Then by Green's formula

$$\begin{split} &\int\limits_{\partial \mathcal{Q}_{M}^{0} \cap R_{m}+\partial R_{m} \cap (\mathcal{Q}_{\delta'}-\mathcal{Q}_{M}^{\delta})+R_{m} \cap \partial \mathcal{Q}_{\delta'}+p_{0}} G'(z,p_{0}) \frac{\partial}{\partial n} S(z) \, ds \\ &= \int\limits_{\partial \mathcal{Q}_{M}^{\delta} \cap R_{m}+\partial R_{m} \cap (\mathcal{Q}_{\delta'}-\mathcal{Q}_{M}^{\delta})+R_{m} \cap \partial \mathcal{Q}_{\delta'}+p_{0}} S(z) \frac{\partial}{\partial n} \, G'(z,p_{0}) \, ds \, . \end{split}$$

We have $S(p_0) \leq \frac{\mathfrak{M}(U'(z)) \delta}{2\pi} + \delta'$. Let $\delta' \to 0$ and then $M \to \infty$. Then by (3) $S(p_0) \to U'(p_0)$ and

$$U'(p_0) \leq \frac{\mathfrak{M}(U'(z)) \delta}{2\pi} \leq \delta.$$

Thus $U(z) = U_{D_{\delta} \cap B}(z) + U'(z)$ and $U'(z) \downarrow 0$ as $\delta \rightarrow 0$. Every positive harmonic function is represented by a mass on Martin's boundary Δ_K . Let $\Delta_{K,\delta} = \Delta_K \cap \bar{D}_{\delta}$, then $U_{D_{\delta} \cap B}(z)$ is represented by a mass on $\Delta_{K,\delta}$. Hence we have.

Theorem 4. The harmonic part of a generalized Green function with $\mathfrak{M}(G(z)) \leq 2\pi$ is represented by a mass on $\bigcup_{\delta>0} \Delta_{K,\delta}$. As a special case, if $\Delta_{K,\delta} = 0$ for any $\delta > 0$, the harmonic part is zero.

Green potential whose total mass is bounded. We suppose G-Martin's topology is defined on $R+\Delta_G$. Let μ be a positive mass on $R+\Delta_G$. We consider

$$P^{\mu}(z)=\int G(z,p)\;d\mu(p), \qquad \int d\mu=1\;.$$

Clearly if every point of Δ_G is regular and $\mu=0$ in R (i. e. G(z,p)=0 for $p \in \Delta_G$), $P^{\mu}=0$.

Lemma 3. Let Ω be a domain and let Ω_n be compact domain such that $\Omega_n \nearrow \Omega: n \to \infty$. Let U_n be a harmonic function in Ω_n such that $D_{\Omega_n}(U_n^L) \leq M$ and for Ω_m , $U_n \to U$ in Ω_m for any m. Then $D_{\Omega}(U^L) \leq M$.

In fact, let $G_n = \{z \in \Omega_n : U_n(z) < L\}$ and $G^{\epsilon} = \{z \in \Omega : U(z) < L - \epsilon\}$. Then for any given $\epsilon > 0$ and m, there exist a number $l(\epsilon, m)$ such that

$$(G^{\varepsilon} \cap \Omega_m) \subset G_l : l > l(\varepsilon, m)$$
.

 $U_n \rightarrow U$ implies $\frac{\partial}{\partial x} U_n \rightarrow \frac{\partial U}{\partial x}$ and $\frac{\partial}{\partial y} U_n \rightarrow \frac{\partial}{\partial y} U$. By Fatou's Lemma

$$D_{G^{\mathfrak s}\cap \mathfrak Q_m}(U) \leqq \varliminf_{\iota} D_{G^{\mathfrak s}\cap \mathfrak Q_m}(U_{\mathfrak l}) \leqq \varliminf_{\iota} D_{\mathfrak q_{\mathfrak l}}(U_{\mathfrak l}) = \varliminf_{\iota} D(U_{\mathfrak l}^{\scriptscriptstyle L}) \leqq M\,.$$

Let $\varepsilon \to 0$. Then since Ω_m is compact, $\lim_{\varepsilon \to 0} D_{G^{\varepsilon} \cap \Omega_m}(U) = D(U^L) \leq M$. Let $m \to \infty$. Then

$$D(U^L) \leq M$$
.

We proved

Lemma 4⁶⁾. Let G be a circular rectangle $\{r_1 \leq |z| \leq r_2, 0 \leq \arg z \leq \Theta\}$ with a finite number of radial slits. Let $\Gamma_1 = \{|z| = r_1, 0 \leq \arg z \leq \Theta\}$, $\Gamma_2 = \{|z| = r_2, 0 \leq \arg z \leq \Theta\}$. Let U(z) be an HB in G and continuous on $G + \Gamma_1 + \Gamma_2$. Then

$$D\!\left(U(\mathbf{z})\right)\!\ge\! \frac{1}{\log\frac{r_2}{r_1}}\int\limits_0^\theta\! \left|U(r_1e^{i\theta})\!-\!U(r_2e^{i\theta})\right|^2d\theta\;.$$

If U(z) is not continuous at a finite number of points on $\Gamma_1 + \Gamma_2$, divide G into some circular rectangle, then we have the same conclusion.

Theorem 5. Let R be a Riemann surface $\oplus O_g$, $G(z, p_0)$ be a Green function and let $D_{\delta} = \{z \in R : G(z, p_0) > \delta\}$. Let U(z) be a positive SPH such that U(z) is harmonic in $CD_{\kappa} = R - D_{\kappa}$, singular and there exists a const. α such that $D(U^{\mathbb{M}}(z)) \leq M\alpha : 0 < M < \infty$. Then for any given M and ε , we can find a compact domain $\Omega \ni p_0$ depending only on M, κ and α but not on U(z) such that

$$H_{\scriptscriptstyle UM}^{\scriptscriptstyle \Omega}(p_{\scriptscriptstyle 0})\!<\!3\varepsilon$$
 .

PROOF. At first we investigate $D_{CD_{\delta}}(U^{M}(z))$. Let $0 < \lambda' < \lambda < \delta < \kappa$ and let $D_{\lambda}^{\delta} = \{z \in R : \lambda < G(z, p_{0}) < \delta\}$. Since $D_{\lambda'} \in SO_{g} \subset SO_{HB}$, $H_{U^{M}}^{D_{\lambda'}^{\delta}}$ is uniquely determined and by the Dirichlet principle $D_{D_{\lambda'}^{\delta}}(U^{M}(z)) \geq D_{D_{\lambda'}^{\delta}}(H_{U^{M}}^{D_{\lambda'}^{\delta}})$ and $D_{CD_{\delta}}(U^{M}(z)) \geq D_{D_{\lambda}^{\delta}}(H_{U^{M}}^{D_{\lambda'}^{\delta}})$. Let $\lambda' \to 0$. Then by Lemma 1, 5) $H_{U^{M}}^{D_{\lambda'}^{\delta}} \to H_{U^{M}}^{CD_{\delta}}$. Now

 $H_{U^{M}}^{p_{\lambda'}^{\delta}}$ is harmonic in $D_{\lambda'}^{\delta}$, where by Fatou's Lemma $D_{CD_{\delta}}(U^{M}) \geq \lim_{\lambda' \to 0} D_{D_{\lambda'}^{\delta}}(H_{U^{M}}^{p_{\lambda'}^{\delta}})$ $\geq D_{D_{\delta}^{\delta}}(H_{U^{M}}^{CD_{\delta}})$. Let $\lambda \to 0$. Then

$$M\alpha \ge D_{CD_{\delta}}(U^{\mathtt{M}}) \ge D_{CD_{\delta}}(H_{U^{\mathtt{M}}}^{CD_{\delta}}).$$
 (1)

Let $\delta < \frac{3\pi\varepsilon^3}{16M^2\alpha}$ and find D_{δ} , D_{δ} is non compact generally. Since $D_{\delta} \in SO_g$, $w(D_{\delta} \cap (R-R_n), z, R) \rightarrow 0$ as $n \rightarrow \infty$. Let n_1 be a number such that

$$w(D_{\delta}\cap(R-R_{n_1}),p_0,R)<\frac{\varepsilon}{M}\;. \tag{2}$$

Also $D_{\lambda}\left(\lambda < \delta \text{ and } \lambda < \frac{\delta \varepsilon}{2M}\right) \in SO_g$, whence $\omega_n(z) \Rightarrow G(z, p_0)$ as $n \to \infty$, where $\omega_n(z)$ is an HB in $D_{\lambda}^{\delta} \cap R_n$ such that $\omega_n(z) = \lambda$ on $\partial D_{\lambda} \cap R_n$, $=\delta$ on $\partial D_{\delta} \cap R_n$ and $\frac{\partial}{\partial n} \omega_n(z) = 0$ on $\partial R_n \cap D_{\lambda}^{\delta}$. i. e. $\lim_n \omega_n(z) = \lambda + (\delta - \lambda) \omega(D_{\delta}, z, D_{\lambda})$. By $D_{\delta} \in SO_g$, $\int_{\partial D_{\delta}} \frac{\partial}{\partial n} G(z, p_0) ds = 2\pi$, $\frac{\partial}{\partial n} \omega_n(z) \to \frac{\partial}{\partial n} G(z, p_0)$ on $\partial D_{\delta} + \partial D_{\lambda}$. Let $n_2(>n_1)$ be a number such that

$$\int_{\partial D_{\delta} \cap R_{n_2}} \frac{\partial}{\partial n} G(z, p_0) ds \ge 2\pi - \varepsilon.$$

Let n_3 be a number such that

$$\int_{\partial D_{\delta} \cap R_{n}} \left| \frac{\partial}{\partial n} \omega_{n}(z) - \frac{\partial}{\partial n} G(z, p_{0}) \right| ds < \frac{\pi \varepsilon}{2M} : n \ge n_{3}.$$
 (3)

Assume there exists a set F on $\partial D_{\delta} \cap R_{n_{z}}$ such that $U^{M}(z) > \varepsilon$ on F and $\int_{0}^{\infty} \frac{\partial}{\partial n} G(z, p_{0}) ds \ge \frac{2\pi\varepsilon}{M}.$ Then by (3)

$$\int_{\mathbb{R}} \frac{\partial}{\partial n} \omega_n(z) \, ds \ge \frac{3\pi\varepsilon}{2M} : n \ge n_3. \tag{4}$$

 $H_{U^{M}}^{CD_{\delta}} = U^{M}(z) \leq M$ and $G(z, p_{0}) = \delta$ on ∂D_{δ} . Hence by the definition of $H_{U^{M}}^{CD_{\delta}}$, $H_{U^{M}}^{CD_{\delta}} \leq \frac{M}{\delta} G(z, p_{0})$ in CD_{δ} and

$$H_{\mathcal{D}^{M}}^{CD_{\delta}} \leq \frac{M\lambda}{\delta}$$
 on ∂D_{λ} , (5)

Map $D_{\lambda}^{s} \cap R_{n}$: $n \ge n_{3}$ onto a circular rectangle G with a finite number of radial slits by $\zeta = \exp(\omega_{n}(z) + i \ \widetilde{\omega}_{n}(z))$, where $\widetilde{\omega}_{n}(z)$ is a conjugate function of $\omega_{n}(z)$,

$$G = \left\{ e^{\lambda} \leqq |\zeta| \leqq e^{\delta}, \ 0 \leqq \arg \zeta \leqq \Theta \right\}. \quad \Theta = \int_{\partial D_{\delta} \cap R_{n}} \frac{\partial}{\partial n} \omega_{n}(z) \ ds \leqq 2\pi \ .$$

Then F is mapped onto a set F_{ζ} on $|\zeta| = e^{\delta}$ of angular measure $\geq \frac{3\pi\varepsilon}{2M}$ by (4). $U^{M}(e^{\delta+i\theta}) \geq \varepsilon$ on F_{ζ} and $H^{CD_{\delta}}_{UM}(e^{\lambda+i\theta}) \leq \frac{\lambda M}{\delta} < \frac{\varepsilon}{2}$ by (5). Hence by (1) and Lemma 4

$$M\alpha \leq D_{CD_{\delta}}(U^{\mathtt{M}}) \geq D(H_{vM}^{CD_{\delta}}) \geq \int_{F'} \frac{\left|U^{\mathtt{M}}(e^{\delta+i\theta}) - \frac{\lambda M}{\delta}\right|^2}{\delta - \lambda} d\theta \geq \frac{3\left(\frac{\varepsilon}{2}\right)^2 \pi \varepsilon}{2\delta M} \geq 2M\alpha : F' = \{\theta : e^{\delta+i\theta} \in F_{\zeta}\}.$$
 This is a contradiction. Hence $U^{\mathtt{M}}(z) < \varepsilon$ on $\partial D_{\delta} \cap R_{n_{2}}$ except at most a set F on $\partial D_{\delta} \cap R_{n_{2}}$ such that $\int_{F} \frac{\partial}{\partial n} G(z, p_{0}) ds < \frac{2\pi\varepsilon}{M}$ and $U^{\mathtt{M}}(z) \leq M$ on F . Let $V(z)$ be an HB in D_{δ} such that $V(z) = U^{\mathtt{M}}(z)$ on $\partial D_{\delta} \cap R_{n_{2}}$, and $O(z) = 0$ on $\partial D_{\delta} \cap (R - R_{n_{2}})$. Then by $D_{\delta} \in SO_{HB}$ such $V(z)$ is uniquely determined and $O(z) = 0$.

$$V(p_0) < \varepsilon + \frac{M}{2\pi} \int_{R} \frac{\partial}{\partial n} G(z, p_0) ds \leq 2\varepsilon$$
.

Evidently $V(z)+Mw(D_{\delta}\cap(R-R_{n_2}),z,R)\geq H_{U^M}^{C_{\delta}\cap R_{n_2}}$. Hence by (2) $H_{U^M}^{G_{\delta}\cap R_{n_2}}<3\varepsilon$ at p_0 . Let $\Omega=D_{\delta}\cap R_{n_2}$. Then Ω is a required domain.

Theorem 6. 1) Let P^{μ} be the potential of a positive mass μ on R+ Δ_G such that $\int d\mu = 1$. Then P^{μ} is singular.

- 2) If $\mu=0$ on R, P^{μ} is a GG with $\mathfrak{M}(P^{\mu})\leq 2\pi$.
- 3) As a special case, $G(z, p): p \in \Delta_G$ is a GG. i. e. Let $\{p_0\}$ be a sequence such that $p_i \rightarrow$ boundary of R and $G(z, p_i)$ converges to an HP G(z, p). Then G(z, p) is a GG.

PROOF. 1) Let $\varepsilon > 0$, $\delta < \varepsilon$, $D_{\delta} = \{z \in R : G(z, p_{0}) > \delta\}$ and let $\Delta_{G,\delta} = \Delta_{G} \cap \bar{D}_{\delta}$. Let μ_{1} , μ_{2} and μ_{3} be the restriction of μ on R, on $\Delta_{G,2\delta}$ and on $\Delta_{G} - \Delta_{G,2\delta}$ respectively. Then it is well known $\int G(z,p) \, d\mu_{1}(p)$ is singular. Let $U(z) = \int G(z,p) \, d\mu_{2}(p)$ and $U'(z) = \int G(z,p) \, d\mu_{3}(p)$. Since $G(z,p): p \in R + \Delta_{G}$ is continuous with respect to p in any compact set in R and U(z) is uniformly approximated by a sequence $U_{n} = \sum_{i=1}^{n} c_{i} G(z,p_{i}): p_{i} \in D_{\delta} \cap R, c_{i} > 0, \sum_{i=1}^{n} c_{i} = 0$ and singular. Hence by Theorem 5 for any M and ε there exists a compact domain ε such that $H_{UM}^{\Omega}(p_{0}) < \varepsilon$. Since $\partial \Omega$ is compact $U_{n}(z) \to U(z)$ on $\partial \Omega$ and $U_{i}(z) \to U(z)$ is an SPH, $U_{i}(z) \to U(z)$ for $U_{i}(z) \to U(z)$ and $U_{i}(z) \to U(z)$ is an $U_{i}(z) \to U(z)$ is an $U_{i}(z) \to U(z)$ on $U_{i}(z) \to U(z)$ is an $U_{i}(z) \to U(z)$ is an $U_{i}(z) \to U(z)$ on $U_{i}(z) \to U(z)$ is an $U_{i}(z) \to U(z)$ is an $U_{i}(z) \to U(z)$ on $U_{i}(z) \to U(z)$ on $U_{i}(z) \to U(z)$ is an $U_{i}(z) \to U(z)$

$$H^{\scriptscriptstyle R_n}_{\scriptscriptstyle (U+U')}{}^{\scriptscriptstyle M} \leq H^{\scriptscriptstyle R_n}_{\scriptscriptstyle U}{}^{\scriptscriptstyle M} + U'(z) {<\,} 3\varepsilon \quad {\rm at} \quad z = p_{\scriptscriptstyle 0}\,.$$

Then $H^{R_n}_{(U+U')^M}\downarrow: n\to\infty$ and $\lim_n H^{R_n}_{(U+U')^M} < 3\varepsilon$ at p_0 . Let $\varepsilon\to 0$, then $\lim_n H^{R_n}_{(U+U')^M} = 0$. Thus U(z) + U'(z) and $\int G(z,p) \, d\mu(p)$ is singular 2).

2) Let $\mu=0$ in R and $\int d\mu=1$. Then $P^{\mu}=\int G(z,p)\,d\mu(p)$ is approximated by a sequence $U_n=\sum\limits_{i=1}^n c_iG(z,p_i), \ \sum\limits_{i=1}^n c_i=1, \ p_i\in R$. Evidently $D(U_n^M)=2\pi M$. Hence by Lemma 3 $D((P^{\mu})^M)\leq 2\pi M$ and by 1) P^{μ} is singular. Thus P^{μ} is a GG.

A REMARK ON 3). If R is a compact domain, 3) is trivial, because G(z, p) > 0 if and only if $p_i \rightarrow p \in \partial R$ and p is irregular for the Dirichlet problem. There is no continuum of ∂R containing p and G(z, p) = 0 on $\partial R - p$.

Quasi Dirichlet bounded harmonic functions.

A REMARK ON DIRICHLET INTEGRALS. Let U(z) be an HD in a domain Ω and V(z) be its conjugate. Ω will be a simply connected domain Ω' by cutting along some curves. Then f(z)=U+iV is a one valued analytic function in Ω' . Then the area of $f(\Omega')=\int\limits_{\Omega}|f'(z)|^2dxdy=D(U)$. We take as a local parameter $\zeta=n+is$ at z, where n is an inner normal and s is a tangent of C_t at $z:C_t=\{z\in\Omega:U(z)=t\}$. Then $D(U)=\int\int |f'(z)|ds|f'(z)|dn$. Now $|f'(z)|=\frac{\partial V}{\partial s}=\frac{\partial U}{\partial n}$ at $z\in C_t$ and $|f'(z)|=\left|\frac{\partial U}{\partial n}\right|$ along C_t , $|f'(z)|dn=\frac{\partial U}{\partial n}dn=dU$ along the normal. Hence we have

Lemma 5.
$$D(U) = \int_a^b L_t dt$$
: $L_t = \int_{\mathcal{C}_t} \frac{\partial}{\partial n} U ds$, $a = \inf_z U(z)$, $b = \sup_z U(z)$.

Lemma 6. A. Let $\Omega \subset \Omega'$ be compact domains with analytic relative boundary. Let U(z) be an HP on $\bar{\Omega}$ such that U(z)=0 on $\partial\Omega \cap \Omega'$ and let U'(z) be an HP on $\bar{\Omega}'$ such that U'(z)=U(z) on $\partial\Omega \cap \partial\Omega'$ and U'(z)=0 on $\partial\Omega' - \partial\Omega$. Let $G_L = \{z \in \Omega : U(z) > L\}$, $G'_L = \{z \in \Omega' : U'(z) > L\}$, $\Gamma_L = \partial G_L \cap \bar{\Omega}$ $\Gamma'_L = \partial G'_L \cap \bar{\Omega}'$. Then

1) $U(z) \leq U'(z)$.

$$2) \quad 0 < \int_{\Gamma_L'} \frac{\partial}{\partial n} \, U' \, ds \leq \int_{\Gamma_L} \frac{\partial}{\partial n} \, U ds \quad and \quad D(U'^L) \leq D(U^L).$$

PROOF. 1) is evident. 2) Since U(z) = U'(z) on $\partial \Omega \cap \partial \Omega'$, $\frac{\partial}{\partial n} U' \ge \frac{\partial}{\partial n} U$ on $\bar{G}_L \cap \partial \Omega - \Gamma_L$. By U'(z) = L on $(\bar{G}'_L - \bar{G}_L) \cap \partial \Omega'$, $\frac{\partial}{\partial n} U' \ge 0$ on $(\bar{G}'_L - \bar{G}_L) \cap \partial \Omega'$, where inner normals are with respect to G_L and G'_L . Now $\int_{\Gamma_L} \frac{\partial}{\partial n} U ds$

$$= -\int\limits_{\vec{a}_L \cap \partial \mathcal{Q} - \Gamma_L} \frac{\partial}{\partial n} \, U \, ds, \ \int\limits_{\Gamma_L'} \frac{\partial}{\partial n} \, U' \, ds = -\int\limits_{\vec{a}_L' \cap \partial \mathcal{Q} - \Gamma_L'} \frac{\partial}{\partial n} \, U' \, ds = -\int\limits_{\vec{a}_L \cap \partial \mathcal{Q} - \Gamma_L} \frac{\partial}{\partial n} \, U' \, ds - \int\limits_{(\vec{a}_L' - \vec{a}_L) \cap \partial \mathcal{Q}'} \frac{\partial}{\partial n} \, U' \, ds.$$
 Hence

$$0 \leq \int_{\Gamma_{I}'} \frac{\partial}{\partial n} U' ds \leq \int_{\Gamma_{L}} \frac{\partial}{\partial n} U ds.$$

Let $L_t = \int_{\Gamma_t} \frac{\partial}{\partial n} U ds$ and $L'_t = \int_{\Gamma'_t} \frac{\partial}{\partial n} U' ds$. Then $L'_t \leq L_t$ and by Lemma 5 we have

$$D(U'^L) = \int\limits_0^L L_t' dt \leqq \int\limits_0^L L_t dt = D(U^L)$$
 .

Similarly we have the following

Lemma 6. B. Let Ω and Ω' be domains in Lemma 6. A. Let U(z) be an HP on $\bar{\Omega}$ such that $U(z)=\max U(z)=M$ on $\partial\Omega\cap\Omega'$ and let U'(z) be an HP on $\bar{\Omega}'$ such that U'(z)=U(z) on $\partial\Omega\cap\partial\Omega'$ and U'(z)=M on $\partial\Omega'-\bar{\Omega}$. Then

- 1) $U'(z) \leq U(z)$.
- $2) \quad 0 \leq \int_{\Gamma_L'} \frac{\partial}{\partial n} U' ds \leq \int_{\Gamma_L} \frac{\partial}{\partial n} U ds.$
- 3) $D(U^{\prime\prime}) \leq D(U^{\prime\prime})$.

Theorem 7. Let U(z) be a QHD such that $\mathfrak{A}(U)=\alpha$ for $\{M_i\}$ i.e. $\frac{D(|U|^{M_i})}{M_i}=\alpha_i, \ \alpha_i{\rightarrow}\alpha.$

Then there exist positive QHD's U_1 and U_2 with $\mathfrak{A}(U_1) \leq \alpha$, $\mathfrak{A}(U_2) \leq \alpha$ for $\{M_i\}$ and $U = U_1 - U_2$, $U_1 \geq U^+ = \max(0, U)$ and $U_2 \geq -U^- : U^- = \min(0, U)$.

PROOF. If U(z)>0, our assertion is trivial. We suppose $\inf U(z)<0$. For any $\delta'>0$, consider D(U) over $\{z\in R:\ 0< U(z)<\delta'\}<\infty$. By Lemma 5, there exists a const. δ such that $0<\delta<\delta'$ and $\int\limits_{C_\delta}\frac{\partial}{\partial n}U(z)\,ds=K<\infty:\ C_\delta=\{z\in R:\ U(z)=\delta\}$. Let D_0 be a disc in $\{z\in R:\ U(z)<0\}\cap R_{n_0}$, where n_0 is a suitable number. Let $\tilde{U}(z)=(U(z)-\delta)^+$ and $\tilde{G}_L=\{z\in R:\ \tilde{U}(z)>L\}$. Then $0<\int\limits_{\delta\tilde{G}_0}\frac{\partial}{\partial n}\,\tilde{U}\,ds\leqq K$. In Lemma 6, A, let $\Omega=R_n\cap\tilde{G}_0$, $\Omega'=R_n-D_0:\ n>n_0$. Then $\Omega\subset\Omega'$. Let $\tilde{U}_n'(z)=H_{\tilde{D}}^{\Omega'}=H_{\tilde{D}}^{R_n-D_0}$. Then $\tilde{U}_n'(z)=0$ on ∂D_0 . Let $\tilde{G}_L'=\{z\in R:\ \tilde{U}_n'(z)>L\}$. Then by Lemma 6, A, 2)

$$\int_{\partial D_0} \frac{\partial}{\partial n} \, \tilde{U}'_n ds \leq \int_{\partial R_n - \tilde{G}_0 + \partial D_0} \frac{\partial}{\partial n} \, \tilde{U}'_n ds \leq \int_{\partial \tilde{G}_0} \frac{\partial}{\partial n} \, \tilde{U} ds \leq K. \tag{1}$$

Since \tilde{U} is an SBH, $H_{\tilde{\sigma}}^{R_n-D_0}\nearrow$ as $n\to\infty$. By (1) $\lim_n H_{\tilde{\sigma}}^{R_n-D_0}=\widetilde{U}<\infty$. Let $w'(z)=1-w(B\cap R,z,R-D_0)$ and w'(z)=1 on \bar{D}_0 . Since \widetilde{U} and w'(z) are harmonic on ∂D_0 , $\max_{z\in\partial D_0}\frac{\partial}{\partial n}\widetilde{U}(z)/\min_{z\in\partial D_0}\Big(-\frac{\partial}{\partial n}\,w'(z)\Big)\leqq K'<\infty$. Then $K'w'(z)+\widetilde{U}+\delta$ is an $SPH\geqq U^+$. Let $\Omega'=R_n$ and $\Omega=R_n\cap G_0: G_0=\{z\in R: U(z)>0\}$ and let $U_n^*=H_{n+1}^{R_n}$. Since U^+ is an SBH,

$$(U^{+} \leq) U_{n}^{*} \nearrow U^{*} \leq K' w'(z) + \widetilde{U} + \delta < \infty$$
.

On the other hand, by Lemma 6. A. 2)

$$D(U_n^{*M_i}) \leq D(U_n^{*M_i}) \leq M_i \alpha_i$$
 for any n .

Also by Lemma 3 $D(U^{*M_i}) \leq \lim_{n} D(U^{*M_i}_n) \leq M_i \alpha_i$. Let $U_1 = U^*$. Then U_1 is a required function. Similarly let $V_n^* = H_{-U}^{R_n}$. Then $V_n^* \nearrow V^* < \infty$ and $U_n^* - V_n^* = H_{-U}^{R_n} - H_{-U}^{R_n} = U$, whence $U_1 - U_2 = U$, where $U_2 = V^*$. Thus we have the theorem.

The operations E and I^n . Let U be an HP in R. Let I[U] be the greatest SBH not larger than U in $R-R_0$ vanishing on ∂R_0 . Let U_n be a harmonic function in R_n-R_0 such that $U_n=0$ on ∂R_0 , $U_n=U$ on ∂R_n and $U_n=U$ in $R-R_n$. Then U_n is an SPH, whence $U_n \ge I[U]$, $U_n \downarrow$ as $n\to\infty$ and $\lim_n U_n \ge I[U]$. $\lim_n U_n$ is harmonic and $\lim_n U_n \le I[U]$. Hence $\lim_n U_n = I[U]$. From the construction of U_n , we see easily

$$I[U] = U - H_U^{R-R_0}.$$

Let U_0 be an HP in $R-R_0$ vanishing on ∂R_0 . Let $E[U_0]$ be the least positive SPH in R not smaller than U_0 . Let $U^*=U_0+K(1-w(B\cap R,z,R-R_0))$ in $R-R_0$ and K in R_0 , then U^* is an SPH, where $K=\max_{z\in\partial R_0}\frac{\partial}{\partial n}U_0(z)/\min_{z\in\partial R_0}\frac{\partial}{\partial n}w(R\cap B,z,R-R_0)$. Let U_n be a function in R such that $U_n=H_{U_0}^{R_n}$ in R_n and $U=U_0$ in $R-R_n$, then U_n is an $SBH\geqq U_0$ and $U_n\nearrow\leqq U^*<\infty$. Similarly as I[U] we have $\lim_{z\to R_0}U_0=\lim_{z\to R_0}U_0=\lim_{z\to$

$$E[U_0] = U_0 + H_{E[U_0]}^{R-R_0}$$
 in $R - R_0$.

Define E for I[U]. Let $U_n = H_{I[U]}^{R_n}$ then $U_n = H_{U}^{R_n} - H_{S}^{R_n}$, where $S = H_{U}^{R-R_0} \le K(1 - w(R \cap B, z, R - R_0))$: $K = \max_{z \in \partial R_0} U(z)$. By 4) of Lemma 1, $\lim_n H_{S}^{R_n} = 0$.

Then by $H_U^{R_n} = U$ we have EI[U] = U. Similarly we have $IE[U_0] = U_0$. Thus

$$EI[U] = U$$
 and $IE[E_0] = U_0$.

If an HP U is a limit of increasing sequence of HB's, U is called a QHB (quasibounded harmonic function),

LEMMA 7. 1). Let U be a positive QHD in R with $\mathfrak{A}(U)=\alpha$ for $\{M_i\}$. Then I[U] is also a QHD and $\mathfrak{A}(I[U])=\alpha$ for M_i+k , where k is a const. Let U_0 be a positive QHD in $R-R_0$ vanishing on ∂R_0 and $\mathfrak{A}(U_0)=\alpha$ for $\{M_i\}$, then E[U] is also a QHD with $\mathfrak{A}(E[U])=\alpha$ for M_i+k' , where k' is a const.

- 2) If an HP U is singular in R, I[U] is singular in $R-R_0$. If U_0 is singular in $R-R_0$ and U=0 on ∂R_0 , $E[U_0]$ is singular in R.
- 3) If U is a QHB, I[U] is also a QHB in $R-R_0$. If U_0 is a QHB vanishing on ∂R_0 , E[U] is a QHB in R.
- 4) If G(z) is a GG, I[G] is a GG in $R-R_0$. If G(z) is a GG in $R-R_0$ vanishing on ∂R_0 , E[G] is a GG in R.

PROOF. 1). Let I[U] = V and $H_U^{R-R_0} = T$. Then $0 \le T \le k \le K_1 = \max_{z \in \partial R_0} U(z)$. Since T is harmonic on ∂R_0 ,

$$D(T) \leq K_1 < \infty . \tag{1}$$

 $\{z: U(z) < L\} = G_v^L \subset \{z: \ V(z) < L\} \subset G_v^{L+k} = \{z: \ U(z) < L+k\}.$

$$D(U) - 2D(U,T) + D(T) \leq D(V^{L}) \leq D(U) - 2D(U,T) + D(T) \ . \tag{2} \)$$

By Schwarz's inequality

$$D(U,T) \le \sqrt{D(U)D(T)}. \tag{3}$$

If $\lim_{L=\infty} D(U^L) < \infty$, we have by (1), (2) and (3), $D(V) < \infty$ and $\mathfrak{A}(U) = 0 = \mathfrak{A}(I[U])$. If $\lim_{L=\infty} D(U^L) = \infty$, $2D(U^L, T)/L \to 0$ as $L \to \infty$. Hence by (2) we have

$$\lim_{L=\infty}D(U^{\!\scriptscriptstyle L})/L \leqq \lim_{L=\infty}D(V^{\!\scriptscriptstyle L})/L \leqq \lim_{L=\infty}D(U^{\!\scriptscriptstyle L+k})/L$$
 ,

 $\mathfrak{A}(U) = \mathfrak{A}(I[U])$ for M_i and $M_i + k$ respectively.

Now $E[U_0] = U_0 + H_{E[U_0]^0}^{R-R}$ and $H_{E[U_0]^0}^{R-R} \le K_2$, $D(H_{E[U_0]^0}^{R-R}) \le K_3$. The latter part is proved similarly.

2) If U is singular, I[U] is clearly singular in $R-R_0$. Let U_0 be singular in $R-R_0$. $E[U_0]=U_0+H_{E[U_0]}^{R-R_0}$. Let $E[U_0]=T$ and $V=H_{E[U_0]}^{R-R_0}$. Then

$$H_{T^{M}}^{R_{n}} \leq H_{U_{0}^{M}}^{R_{n}} + H_{V}^{R_{n}}$$
.

Let w'(z)=1 on \bar{R}_0 and $w'(z)=1-w(R\cap B,z,R-R_0)$ in $R-R_0$. Then w'(z) is an SPH and singular by Lemma 1, 4). Now $V \subseteq K_4 w'(z)$ in $R-R_0$, $K_3 = \max_{z \in \partial R_0} E[U_0]$. Hence $H_V^{R_n} \subseteq K_4 H_{W'}^{R_n} \to 0$ as $n \to \infty$. Let $H_{U_0}^{R_n-R_0}$ be the solution of Dirichlet problem with value =0 on ∂R_0 and $=U_0^M$ on ∂R_n . Then

$$H_{\sigma_0 M}^{R_n} \le \acute{H}_{\sigma_0 M}^{R_n - R_0} + K_4 w'(z)$$
 in $R_n - R_0$.

Since U_0 is singular in $R-R_0$, $\lim_n H_{\mathcal{U}_0M}^{R_n-R_0}=0$, whence $\lim_n H_{\mathcal{U}_0M}^{R_n} \leq K_4 \mathcal{W}(z)$. $\lim_n H_{\mathcal{U}_0M}^{R_n}$ is an HB and $\mathcal{W}(z)$ is singular, whence $\lim_n H_{\mathcal{U}_0M}^{R_n}=0$. Thus $\lim_n H_{\mathcal{U}_0M}^{R_n}=0$ and $E[U_0]$ is singular. 3) is evident by the expression of I and E. 4) is a direct consequence of 1) and 2).

Lemma 8. 1). Let Ω be a compact domain with analytic relative boundary. Let P(z) be a positive continuous SPH on $\overline{\Omega}$ such that $\frac{\partial}{\partial x}P$, $\frac{\partial}{\partial y}P$ are continuous except analytic curves in Ω and $D(P^{\text{M}}) \leq M\alpha$. Let $U = H_P^a$. Then

$$D(U^{\mathtt{M}}) \leq M\alpha$$
.

2) Let P(z) be an SPH satisfying the same condition as 1) in R. Let $U_n = H_P^{R_n}$. Then $U_n \downarrow U$ and $D(U^{\mathtt{M}}) \leqq M\alpha$.

PROOF. Let $D^{\mathtt{M}} = \{z \in \Omega : U(z) < M\}$ and $D^{\mathtt{M}} = \{z \in \Omega : P(z) < M\}$. Then $D^{\mathtt{M}} \supset D^{\mathtt{M}}$ and $P^{\mathtt{M}}(z) = M$ in $D^{\mathtt{M}} - D^{\mathtt{M}}$ and $D^{\mathtt{M}}(z) = 0$. Since $P^{\mathtt{M}}(z)$ and U(z) has the same boundary value on $\partial D^{\mathtt{M}}$, by the Dirichlet principle

$$\left(D(U^{\mathit{M}})=\right) \underset{D^{\mathit{M}}}{D}(U) \leqq \underset{D^{\mathit{M}}}{D}(P^{\mathit{M}}) = \underset{D^{\mathit{M}}}{D}(P^{\mathit{M}}) \left(=D(P^{\mathit{M}})\right).$$

Thus we have 1). Let $R_n = \Omega$. Then by 1) $D(U_n^M) \leq D(P^M) \leq M\alpha$. Since P(z) is an SPH, $U_n \downarrow U$. By Lemma 3 we have at once 2).

QHBD functions. Let U(z) be an HP. If there exist increasing sequence of HB's $U_n(z)$: $n=1,2,3,\cdots$ and a sequence $\{M_i\}$ such that $U(z)=\lim U_n(z)$ and

$$rac{D(U_n^{M_i})}{M_i} \leq lpha_i$$
 for any n and $lpha_i {
ightarrow} lpha$,

we call U(z) a QHBD with $\mathfrak{A}(U) \leq \alpha$ for $\{M_i\}$.

We see at once by Lemma 3 U(z) is a QHD with $\mathfrak{A}(U) \leq \alpha$ for $\{M_i\}$ and evidently U(z) is a QHB.

Full superharmonic functions $(FSPH)^{2),5}$. Let U(z) be an HP in $R-R_0$

such that U(z)=0 on ∂R_0 and $D(U^{M})<\infty:0< M<\infty$. Let D be a domain such that ∂D is compact. Let $U_D(z)$ be a function such that $U_D(z)=U(z)$ on D and $U_D(z)$ has M. D. I. over $R-D-R_0$ among all harmonic functions with the same value as U(z) on $\partial R_0+\partial D$. If for any D, $U_D(z)\leq U(z)$, U(z) is called an FSPH. Then it is well known, $U_D(z)$ is given as

$$U_{\scriptscriptstyle D}(z) = \int\limits_{\scriptscriptstyle \overline{\scriptscriptstyle D}} N(z,p) \; d\mu(p), \; \int \! d\mu = rac{1}{2\pi} \int\limits_{\partial R_0} \! rac{\partial}{\partial n} \, U_{\scriptscriptstyle D}(z) \; ds \leq rac{1}{2\pi} \int\limits_{\partial R_0} \! rac{\partial}{\partial n} \, U(z) \; ds = rac{lpha}{2\pi} \, ,$$

where \bar{D} is the closure of D with respect to N-Martin's topology.

Theorem 8. Let U(z) be an HP such that U(z)=0 on ∂R_0 and U(z) is an FSPH in $R-R_0$. Then U(z)=V(z)+G(z), where V(z) is a QHBD with $\mathfrak{A}(V) \leq \alpha$ for any $\{M\}$ and G(z) is a GG with $\mathfrak{M}(G) \leq \alpha$: $\alpha = \int_{\mathbb{R}^2} \frac{\partial}{\partial n} U ds$.

PROOF. Since U(z) is an FSPH, $U_{R_m}(z) \nearrow U(z)$ as $m \to \infty$. $U_{R_m}(z)$ is given as $U_{R_m}(z) = \int N(z,p) \ d\mu_m(p)$, $\int d\mu_m \le \frac{1}{2\pi} \int_{\partial R_0} \frac{\partial}{\partial n} U(z) \ ds = \frac{\alpha}{2\pi}$. Since $U_{R_m}(z)$ is harmonic except ∂R_m , $\mu_m > 0$ only on ∂R_m . In any compact set in $R - R_0 - \partial R_m$, $U_{R_m}(z)$ is uniformly approximated by a sequence of the form $\sum c_i N(z, p_i) : \sum c_i \le \frac{\alpha}{2\pi}$. Clearly $D((\sum c_i N(z, p_i))^M) \le \alpha M$. Hence by Lemma 3

$$D(U_{R_m}^{\mathsf{M}}) \leq \alpha M. \tag{1}$$

By N(z,p)=G(z,p)+U(z,p): $p\in R-R_0$, $U_{R_m}(z)=\int G(z,p)\ d\mu_m(p)+\int U(z,p)\ d\mu_m(p)$. Let $P^m=\int G(z,p)\ d\mu_m(p)$ and $J_m=\int U(z,p)\ d\mu_m(p)$. Then P^m and J_m are bounded and P^m is singular, whence $\lim_n H^{R_n}_{p^m}=0$. Since $U_{R_m}(z)$ has $M.\ D.\ I.$ over $R-R_m$, $J_m(z)\leq U_{R_m}(z)\leq \max_{z\in\partial R_m} U(z)$ in $R-R_m$ and J_m is an HB. Let $T_{m,n}=H^{R_n-R_0}_{J_m}$. Since J_m is harmonic, $T_{m,n}=J_m$ and

$$H_{U_{R_m}}^{R_n-R_0} = H_{P^m}^{R_n-R_0} + H_{J_m}^{R_n-R_0}$$
.

Let $n\to\infty$. Then $\lim_n H_{U_{R_m}}^{R_n-R_0}=J_m$. Hence by Lemma 8 and by (1)

$$D(J_m^{\mathit{M}}) \leq D(U_{R_m}^{\mathit{M}}) \leq \alpha M \qquad \text{for any } m. \tag{2}$$

By $U_{R_m} \nearrow U$, $J_m \nearrow J$. Thus J is a QHBD with $\mathfrak{A}(J) \leq \alpha$ for any $\{M\}$. Since $\int d\mu_m \leq \frac{\alpha}{2\pi}$, we can find a squence $\{\mu_{m'}\}$ such that $\mu_{m'} \to \mu$ and $P^{m'} \to P$. Then

$$U(z)=P+J$$
.

Now μ lies on only Δ_G , whence by Theorem 6, 2) P is a GG with $\mathfrak{M}(P) \leq \alpha$ and we have the theorem.

The following is well known and we state without proof.

Lemma 9. Let U be an HP. Then U is divided into uniquely determined two parts, the quasibounded part U^Q and the singular part U^S and $U=U^Q+U^S$. This implies if HP, s U_1 and U_2 satisfy $U_1 \ge U_2$, then $U_1^Q \ge U_2^Q$, $U_1^S \ge U_2^S$.

Theorem 9. 1). Let U(z) be a positive QHD with $\mathfrak{A}(U) \leq \alpha$ for $\{M_i\}$. Then

$$U(z) = V(z) + G(z)$$
,

where V(z) is a positive QHBD with $\mathfrak{A}(V) \leq \alpha$ for $\{M'_i\}$: $M'_i = M_i + \text{const.}$, and G(z) is a GG with $\mathfrak{M}(G(z)) \leq \alpha$.

2) Let U(z) be a QHD with $\mathfrak{A}(|U|) \leq \alpha$ for $\{M_i\}$. Then

$$U(\mathbf{z}) = \left(V_{\mathbf{1}}(\mathbf{z}) + G_{\mathbf{1}}(\mathbf{z})\right) - \left(V_{\mathbf{2}}(\mathbf{z}) + G_{\mathbf{2}}(\mathbf{z})\right)$$
 ,

where $V_i(z)$ is a positive QHBD with $\mathfrak{A}(V_i) \leq \alpha$ for $M_i = M_i + \text{const.}$, and $G_i(z)$ is a GG with $\mathfrak{M}(G_i) \leq \alpha$.

- 3) In the representation of U(z) in 2), if $\mathfrak{A}(|U|)=0$, $G_i(z)=0$ by Theorem 2. If every boundary points of R is regular $(\Delta_{G,\delta}=0 \text{ for } \delta>0)$, $G_i(z)=0$.
- 4) As a special case, if U(z) is a QHD in |z| < 1, then U(z) is Poisson's integrable.

PROOF. Let $\tilde{U}=I[U]$, where I is the operation from R into $R-R_0$. Then by Lemma 7 \tilde{U} is also a QHD in $R-R_0$ with $\mathfrak{A}(\tilde{U}) \leq \alpha$ for $\{M_i'\}: M_i' = M_i + \max_{z \in \partial R_0} U(z)$. Let $G_L = \{z \in R - R_0: \tilde{U}(z) > L\}$ and let $\Omega' = R_{n+i} - R_0 - G_L \cap (R_{n+i} - R_n), \ \Omega = R_{n+i} - R_0 - G_L$.

Then $\Omega' \supset \Omega$. Let $\tilde{T}_{L,n,n+i} = H^{\Omega'}_{\tilde{\sigma}^L}$ and $\tilde{T}^* = H^{\Omega}_{\tilde{\sigma}} = \tilde{U}$. Then $\tilde{T}_{L,n,n+i} = L = \max \tilde{T}_{L,n,n+i}$ on $G_L \cap \partial R_n$ and $T^* = L$ on $\partial G_L \cap R_{n+i}$. Hence by Lemma 6, B

$$D(\widetilde{T}_{L,n,n+i}^{\mathit{M}_{i}})\! \leq\! D(\widetilde{U}^{\mathit{M}_{i}'})\! \leq\! M_{i}'\alpha_{i},\; (M_{i}'\! \leq\! L)$$
 .

Since \tilde{U} is an SPH in $R-R_0-G_L$, $\tilde{T}_{L,n,n+i}\downarrow \tilde{T}_{L,n}$ as $i\to\infty(\leqq \tilde{U})$. Let $\tilde{T}_{L,n}=L$ in G_L-R_n . Then $\tilde{T}_{L,n}$ is an SPH in $R-R_0$ and $\tilde{T}_{L,n}\downarrow \tilde{T}_L$ as $n\to\infty$. Now \tilde{T}_L is an HB in $R-R_0$ and by Lemma 3 $D(\tilde{T}_L^{M'_i})\leqq M'_i\alpha_i\colon M'_i\leqq L$. Clearly $\tilde{T}_{L,n,n+i}\leqq \tilde{T}_{L',n,n+i}$ for L< L' and $\tilde{T}_L\nearrow \tilde{T}\leqq \tilde{U}$ as $L\to\infty$. Hence \tilde{T} is a QHBD with

$$\mathfrak{A}(\tilde{T}) \leq \alpha$$
 for $\{M'_i\}$. (1)

Let $S_L = Lw(G_L, z, R - R_0)$. Then by Theorem 1 $\lim_{L=\infty} S_L = S$ is singular and

$$S \leq \tilde{U}$$
. (2)

By the maximum principle $\tilde{T}_{L,n,n+i} \leq \tilde{U} \leq \tilde{T}_{L,n,n+i} + S_L$. By letting $i \to \infty$, $n \to \infty$ and then $L \to \infty$,

$$\tilde{T} \leq \tilde{U} \leq \tilde{T} + S$$
. (3)

By (2), (3) and by Lemma 9 we have

$$\tilde{U} = \tilde{T} + S$$
.

We show S is not only singular but also a CG. Let $A_L(z) = L\omega(G_L, z, R-R_0)$. Then since $A_L(z)$ has M. D. I. over CG_L with same value as $\widetilde{U}(z)$ on $\partial R_0 + \partial G_L$,

$$Dig(A_{ extit{ extit{M}}_i'}(extit{ extit{z}})ig) \leqq D(ilde{U}^{ extit{ extit{M}}_i'}) \leqq M_i'lpha_i \quad ext{and} \quad \int_{\partial R_0} rac{\partial}{\partial n} \, A_{ extit{ extit{M}}_i'}(extit{ extit{z}}) \, ds \leqq lpha_i \, .$$

Consier $A_{M_i'}(z)$ with respect to N-Martin's topology. Clearly $A_{M_i'}(z)$ is an FSPH and there exists a positive mass μ_i such that $A_{M_i'}(z) = \int_{\bar{G}_{M_i'}} N(z, p) \ d\mu_i(p)$,

 $\int d\mu_i \leq \frac{\alpha_i}{2\pi}$, $\left\{\int d\mu_i\right\}$ are uniformly bounded, hence there exists a sequence $\{\mu_{i'}\}$ such that $\mu_{i'} \to \mu$ and $A_{M'_i}(z) \to A(z)$ (clearly $\mu = 0$ in R) and $A(z) = \int N(z, p) d\mu(p)$. Hence by Theorem 8

$$A(z) = A'(z) + A''(z)$$
,

where A'(z) is a QHBD with $\mathfrak{A}(A'(z)) \leq \alpha$ for any $\{M\}$ and A''(z) is a GG with $\mathfrak{M}(A''(z)) \leq \alpha$. By $\omega(G_L, z, R - R_0) \geq \omega(G_L, z, R - R_0)$, $S \leq A'(z) + A''(z)$. Also by Lemma 9 $S \leq A''(z)$. Hence by Theorem 2.3) S is an GG in $R - R_0$ with $\mathfrak{M}(S) \leq \alpha$.

Now

$$U = E[\tilde{U}] = E[\tilde{T}] + E[S]$$
.

By Lemma 7 E[S] is a GG in R with $\mathfrak{M}(E[S]) \leq \alpha$. Let $T_L = E[\tilde{T}_L]$. Then $T_L = \lim_n H_{\tilde{T}_L}^{R_n}$ and $\leq L$. By putting $\Omega = R_n - R_0$, $\Omega' = R_n$, we have by Lemma 6. A $D((H_{\tilde{T}_L}^{R_n})^{M'_i} \leq D(\tilde{T}_L^{M'_i}) \leq M'_i \alpha_i : M'_i \leq L$. Also by Lemma 3

$$D(T_L^{M'_i}) \leq M'_i \alpha_i : M'_i \leq L \text{ and } T_L \leq L.$$
 (4)

 $\lim_{L \to \infty} E[\tilde{T}_L] \ge \lim_{L \to \infty} \tilde{T}_L = \tilde{T}. \text{ Since } E[\tilde{T}] \text{ is the least positive } SPH \text{ larger than } \tilde{T}, \lim_{L \to \infty} E[\tilde{T}_L] \ge E[\tilde{T}]. \text{ On the other hand, clearly } \lim_{L \to \infty} E[\tilde{T}_L] \le E[\tilde{T}]. \text{ Hence } \tilde{T} = 0$

 $T_L \nearrow E[\tilde{T}] = \lim_{L=\infty} E[\tilde{T}_L]$. Thus by (4) $E[\tilde{T}]$ is a QHBD with order $\leq \alpha$ for $\{M_i'\}$ and we have 1). 2) is obtained by 1) and by Theorem 7. 3) If G(z) > 0, $\mathfrak{M}(G(z)) > 0$ and the former part is evident. By Theorem 4, $\Delta_{G,\delta} = 0$ for $\delta > 0$ implies G(z) = 0 and 3) is proved. 4) is clear by 2) and 3).

References

- [1] KURAMOCHI, Z.: On the existence of harmonic functions on Riemann surfaces.

 Osaka Math. J. 7, 23-27 (1955).
- [2] KURAMOCHI, Z.: Potentials on Riemann surfaces. J. Fac. Sci. Hokkaido Univ. 16, 5-79 (1962).
- [3] KURAMOCHI, Z.: Mass distributions on the ideal boundaries of abstract Riemann surfaces. I. Osaka Math. J. 8, 119–138 (1956).
- [4] KURAMOCHI, Z.: On harmonic functions representable by Poisson's integral. Osaka Math. J. 10, 103-117 (1958).
 - KURAMOCHI, Z.: On the existence of functions of Evans's type: J. Fac. Sci. Hokkaido Univ. 19, 1–27 (1965).
- [5] MARTIN, R. S.: Minimal positive harmonic functions. Trans. Am. Math. Soc. 49, 137-172 (1941).
 - CONSTANTINESCU, C. and CORNEA, A: Ideale Ränder Riemannscher Flächen. Springer (1963).
- [6] KURAMOCHI, Z.: On the behaviour of analytic functions on abstract Riemann surfaces. Osaka Math. J. 7, 109-127 (1955).
- [7] KURAMOCHI, Z.: Relations between harmonic dimensions. Proc. Japan. Acad. 30, 576-580 (1954).

Department of Mathematics Hokkaido University