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Cauchy problems for the operator of Tricomi’s type

By Masato Imar
(Received June 5, 1978; Revised October 23, 1978)

§ 1. Introduction.

In this paper we shall consider the well-posedness of the Cauchy problem
for the weakly hyperbolic partial differential operator of the second order
such that :

(1.1) P(x, D)= D; — 2y Az, zp)+ Pz, D,),

where Dx:<% ai} , % 5%), A(z, D,) is an elliptic operator whose prin-
cipal symbol is positive and P, is an arbitrary first order term. We treat
P(z, D) in the closed half space Ri1'={x; z=(x, 2'), 2 =(zp ---, Zn), 2420}
and assume that the coefficients of P(x, D) are constant for large |2'|. Note
that the principal symbol P,(z, &) of P has no critical point with respect to
(x,8) 1. e, grada.y P20 €20 for any (a9, &%), £92:0.

Oleinik proved the well-posedness of (1.1) by the energy estimate ([11]).
More generally, Ivrii proved that if the principal symbol of the weakly hy-
perbolic operator has no critical point, then the Cauchy problem is well-
posed for an aribitrary lower order term and called these operators com-
pletely regularly hyperbolic ([5], [6]). He also proved the above fact by the
energy estimate. However, in this paper, using Airy function we shall con-
struct the fundamental solution of (1.1) and give somewhat sharp results.

Airy function was used in the construction of the parameterix for the
exterior mixed problem for hyperbolic equations at a diffractive point ([2],
[4], [8], [13]). The situation is similar if the boundary surface is replaced
by the initial one, because the bicharacteristic strip (x(2), £(¢)) of P, is tangent
to the hyper-surface ;=0 in RZ*Ix(R2*\0) of order one.

Let us formulate our problem more precisely as follows : for given data
Sf(x), v(a) and v(a’), we shall consider the Cauchy problem with initial
surface xy=0 such that ;

(P(z,D)u=f(z)  in [0, T]xR",
|DZulooy=v,(2') in Ryj=0,1),

(1.2)

where T is some positive number.
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Now the purpose of the present paper is to construct the following
parameterices of (1.2).

TueoreM 1.1. There exist operators G*(x,, t), k=0, 1, with parameters
0<t< 2, < T such that

(GH(ao 1) V) () EC=([0, TIX[0, TIxR")  for VECF(RY,
(GH(zo ) V) () €C=(I0, TIX [0, T1; £ (R)  for VEE(RY
and
P(x, D) (G*(x,, 1 V)= Ré(ay 1) V,
1.3) GHay ) VI, _, = ( T+RS0) V.,
D, Gz 1) V], = (o I+ RHD) V.,

where 8% is the Kornecker delta, R*(x,t) and Rj(t) are operators with C*-
kernels of (&',Yy) depending smoothly on (x,t) and t respectively.

From the properties of these parametrices we can directly show the
propergation of singularities along null bicharacteristic strips of P, (see Lemma
3.3) and prove the next theorem.

We denote by & ([0, T] x R*) the function space :
([0, TIx RY) = {u; Di,ula, -y L2([0, T1; H, (RW), k<s},

where H,(R") is the Sobolev space. Then we obtain the following

TuroreM 1.2. Let fe_7 ([0, T] X R, v, Hyy1(R") and v, Hy 1 (R")
such that for some compact set K in R", supp fc[0, T] X K, supp v,Usupp
v,CK. Then there exists a unique solution u& & s.1([0, TIxXR") of (1.2)
which satisfies the following estimate :

< Cfl. + ]l

+CZH%ﬂW%J%gﬂ

k<s—1

Dy, u(t, +)

s+1—k

s+3

(1' 4> k<s-+1

Dk fie, )|t e,

where s is an arbitrary positive number and ||+||s is the norm of H(R")
and C depends only on K and s.
In Theorem 1 of [5], Ivrii obtained the following estimate
5 |ttt ||, <C 5 D5 e

E<s+1 k<s+1
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where ue & ,,([0, T] X R") and & is any number such that 1<«<<2. The
estimate (1.4) corresponds to the case x=1, but in his estimate the initial
data are taken by v,€ H,,,_; (j=0,1). Furthermore our consideration used
here will be also applicable to non-hyperbolic boundary-value problems (see

Melrose [9] p. 7, Osher [12]. p. 504).

§2. Phase functions and transport equations.

Let the principal symbol P, of P be &—z,Al(x, '), and consider the
eikonal equation P,(x, ¢,)=0. To solve it we must notice that on the surface
xy=0 the characteristic equation P,(x, &,&)=0 in & has double roots, and
the bicharacteristic curve z(f) of Hamilton-Jacobi equations of P, starting
from the initial surface has a singularity of cusp type there. Thus we can
not apply the usual method for strictly hyperbolic operators to this case.
However for the bicharacteristic strip (x(2), £(2)) of P, there is no singular
point, because P, dose not have critical points and it is tangent to the hyper-
surface ;=0 in R%*1X(Ry*\0) of the first order as mentioned in § 1.

Noting these facts we have the next

Lemma 2.1. There exist real functions 0(z, &), o(z, &)=C> ([0, T] x
R X R2\O) of homogeneous in & of order 1 and % respectively such that

2
?i(x, $’> :0(xs 5,) i ¥3* 10
(2.1 Py(z, 0. ) =0,
(2.2) 0(x, &) =<2, &>+0(2)
and
(2. 3) p(0,2,8)=0, 02,0, 2,8)=0.

Proor. Let Py=(&—azial(x, &) (&+ata(x, £)) where a=vA, and con-
sider the Hamilton-Jacobi equations relative to +axza(x, &) such that

2z, &) is a solution of the eikonal equation

dJCH: 1 ’ =
dxo — ixgaf'(xo, X i,P ) ,
(2. 4), o
c%r? =Faxiay(z, 25 0% and (@5 )=, ).
By the change of the variable z,=s?, (2. 4), can be rewritten in the form
UES
d;g = *2s%a, (s, 2%, p'Y),
(2.5),
dp,:t —_— !+ / 4 !+ / + 4 4
s = F2ap (B and (@) =W, 8).
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Now for (2/*(s), p'* (s)) the solution of (2. 5),, let (&' (s), P )=(2"(—s), pH(—9)).
Then (&, #') becomes a solution of (2. 5)_ and hence we solve only (2. 5),.

Let 2'*(s; ¥',&) be the solution of (2. 5+ and ¥'*(s; 2, ¢&) its inverse
mapping. Then dy'*/ds(s; «,&)=0(s?. In fact if we differentiate Y*(s;
'*(s), &) =const. with respect to s, we obtain that

X
d_ . reigy @) - YT Xt dyt '+
0="-y*(s; 2*(s),¢) = 7 ds - s 55 8.

Hence it follows from (2. 5),

ay't B oyt daT .
ds T T od T ds =)

By Taylor expansion it holds
Y(s; 2,8) =2 +sals, 2, €)
=2+ <a1 (s% &', &) +say(s?, L, f’))
= +stay(sh &, &) +sPay (2, &, &) .

Since the solution of (2. 1) is obtained by taking (2, &)=Y " (x0, 2, &), €,
we have merely to put

0(x, &) = (2 +Bas(zm, «, &), ) &)=<, &>+, &),
p(x, 5’) - (%)3 Ty <<Ct’1 (xo, Z, ¢, §,>, 5’>>% .

. 2 1
Thus setting ¢, =60+ 5 p* we have ¢,, —x}a(x, p,,)=0.

To prove (2. 3), rewrite the eikonal equation as follows :

0. T2 x2<a1’5>+x2<a1x’§>“xa(x’90+x)-

Now multiply x;% both side of this equation and tend x, to zero, then we
obtain

2 &, ., =al0,2,8)=

This proves the lemma.
For given 6, p we shall construct amplitude functions g, h as follows :

g(x’ 5,)~ jZ:Og—j<x’ 5,) ’ Ogd g—j = _] ’ g’x°=0 = 1 ’
co 1 X
(x’ 5,) Jgo j(x) S,) ’ Ol;ld h—j - — ,3_ —J
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and

(2.6) Pz, D) SC (9(x, &) —7hiz, &) el5=++) dr = O(|&]~),

*

where C, are complex contours such that;

C - I t|ez=5)  for t—oo,

|t]e 3t for t—Foo.

We remark that ¢ and » will be taken independent of C..
Let A.(x) be the integrals

(2.7) A, (x)= Soi exp (z(l;- —z-x)) dr.

Then for the usual Airy function Ai(z), it holds

2. 8) A () = 2me*E Ad(e*H( —2))

and the integrals of the left hand side (2.6) can be rewritten in the form
2.9 (958 A(o(x &) —ih(z, &) AL(p(x.8))) ¢,

where A’ (z) is the derivative of A.(x) ([10]).

The constructions of ¢ and % are analogous to Eskin’s ([2]), but for
the completeness of the description we shall give them in the following (see
also §3, §4 of [2]).

By taking a(z, &,7)=¢(z, &)—7h(x, &) the equation (2.6) follows from
the equation :

(2. 10) e-i5=7) P(z, D){a(x, €, 7) els—+)} = O(1¢'| ).
Let ¢(x, S',r)::%i —zp+6 than we have

(2.11) e ¥ P(x, D) (a(x, &, 1) e“‘)

1 & 3P,
=B g et { £ G

1 = 3P,
- —erj,k=0 0 ; 0%y, (@, $) ¢xj$k a

aao

axk

+Pi(z, §) @yt Polz ¢a) a_if -+

where a_;=¢_;—th_; and Pi(x, §) is the principal symbol of P(z, D).
Now let B(x,&,7) be a polynomial in 7, smooth with respect to (z, &),
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&€ %0 and satisfy the homogeneity ;
Bz, k&', k3r) =kmB(x,&,7)  for k>0.
If B(x, &, £4/p)=0 then there exists a polynomial B(x, &, r) such that

B(x, &,7) =i(c*—p) By(x, &, 7).

On the other hand i(z'2—p):~a%(i¢(x, g¢,7)), so after integration by parts

we see

S 1(z2—p) Ble”dz':S B, e dr
Cx

O+

where the order of aafl is m—1.

Note that P,(z, ¢s)|.—=/s = Pa(x, ¢.-)=0. Hence from the above remarks
there exists a function Q(x, &) and Py(x, ¢,)=1(z2—p) Q(x, &).
Thus the highest order term of (2.11) becomes as follows :

o1 A day, 1 2 0°P,
(2.12) : /CZ=:o 0E, (, 0, —7p1) oz, 2 j,LZ-:=0 0 08, (x, 0, —7pz) (axjx/c_fpxjxk)

0
X @yt Pi(x, 0a—700) ay— 5 (Q(a, &) ) .

Substituting F4p for z in (2. 12), we obtain the following transport equation :

1 2 6P, 09, — oh, 1 2z 0P,
R YRy RI (R AR ek MRS
X( =, xk_‘/P Oz x,) (go+‘/P he)+ Py(z, 0, +*/P 0z) (go'*“\/.l? ho)
+Q(x, &) h
Now let ai =¢,++4p h, then the equation (2. 13) is represented as follows :
1 oP oai —
(2 14)10 i Z - (xa O, —‘/P Px) 0%, (x, E ‘/P >aoi =
where

o 1 » &P, .
c(x, &, i‘/P) o J;o 08, a‘s (z, 49xiﬂ/.0 px> (&rﬂki«/p ijx/c)

+ Py (x, 0,+4p ps) .

And here the signs + are taken according to *++p but independant of con-
tours C,.
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In fact differentiating the both sides of the equation Py(z, 0,—7p,) =
i(e?—p) Q(x, &) with respect to r and replacing © by F+vp we see that

N — 1 - a_PZ — Oz
0l &)=+ 3, g5, (5 0o p -

Thus from the equation

oay 04, — 3}10 ka
oxy, ~ 0xy +4p axk 2/p ho.

(2, 14),, follows from (2.13). By the same arguments we have the following
transport equations for j>0:

1 7 aP — aaf ; , I + +
(2.14).,; 3 1;0 65: (z, 0xi‘/lo px)—ax_;- +c(x, &, i*/P) az;=f%;,

where f*; are determined by 6, p, a*, (O<k<j—1).
Now remarking that g, %0 when xy=0, we make a change of variables
such that (x), 2')—(p, 2') and find that

aa:J oP, da* dd*,
Z 05 axk +Z aEk Pz 3,0

., oP,
o e

Finally from the facts that

0P,
Z o0&, (x, 0a) 0z, =0

and

no 0tP,
j;o 0& ;05 (2, 02) Pa; 02 0

when z,=0, we see that

oP, — Ao
Z 65 <x’0 +\/‘0 px) sz— +C0(x: 5' A/p)‘?p" CO#O-

Hence we can again make a change of variables &' =2/, p=¢* and for a
fixed & we may rewrite (2.14),; in the from:

1 adi] l = /s 3&”:] + ’ Ay
(2.19)4; ; ©o 0 (T )=~ ot + K kZ::lclc (', t) Fr tein(x' t) dl; = f1;
for t>0, where ¢f(d,?) (k=0,---,n+1) are C®-functions except the zero

section and ¢ («,#)%0. Therefore we obtain solutions d*; of (2.15),;.
Now decompose d*; into odd and even functions as follows ;

ar (o, t) = g_;(«, ) +th_;(, 7).
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If ¢ is replaced by —¢ in d*,, it satisfies (2.14)_. Thus we obtain desired
9(x, &), h(z, &), if we give initial conditions d; 0 (2, 0)=1, a*;(«,0)=0 (>0
and put g—j<x’ 5,) :g—j(x,’ ‘0)’ h—j(x’ $’>:;L—J'<x,’ P)-

§ 3. Constructions of parametrices for the Chauchy problem.

Making use of ¢ and h obtained in § 2 and Airy functon, we shall
define parametrices G*(z,,t) of P containing the parameters 0<<r < 2, <T.
We abbreviate 6 and p as follows :

0(z) =0(z0, 2, ¢),  0O)=00,y,¢),
plw) =p(zo, 2',€),  plt)=pt,y,€),

o) =0 5 oHa) and () =0()+ 2 ().

Now using the above notation, define the operators G.(xp t) for VECy (R
such that :

(3.1) <Gi(xo, t) V>( Z) = Sezw(xo) ﬁ(t))( (z, &) ilqi’i<( (( ;)))

—ih(z &) G O Vi) ay gz
From (2.6) and (2.10) it is evident that
P(x, D) G, (z,,t) =0 (mod C*) .

To examine the symbols of (3.1) more precisely we prepare some lemmas.
Let a(xy, 2/,&) be a function in C=(]0, TIX R*x R*\0) for T>0. We
denote a&.S7, 2 ([0, T] X R*x R"), if we have the following estimates :

(3.2)

0233, alzo 2, §)| < C [ mmhr for |1
Lemma 3.1. It holds that

3.3 A.p(x9)),

(3.3 1AL o(z8))

and that

B4 Aol d) xewp(Fi5 b 2),
.2

} € S%03 ([0, TIXR*XR") for pl(z, &) <2

%03 ([0, T x R*x R")

(3 4); 1/A/i (p(x, 5,>> Xexp ? %(SC, '3 )) for p(x’ Sl) >1
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Proor. From (2.3) we have Co ol 3<p<Coxy| €| for some positive
C, C, By virture of this relation and the fact that the k-th derivative
A® (o) is bounded if p<2, (3.3). and (3.3)% can be proved by simple cal-
culations.

To prove (3.4),, (3.4). we will make use of the saymptotic expansion
of Airy function as follows:

2 3 1 & 3 .
(3.5) Ai(z) ~exp (— —3*zf> z‘Z<Z a,z‘f”) with q,x0,
v=0
for |z|>e¢ and —r+4e<<arg 2<m—¢,

where ¢ is a small positive number (see [10]).

Now assume that p>1 and let F(p)=A.(p) exp(—i—g—p%) From (2. 8)
and (3.5) it holds that F® (p9)=O(p"i7%). Let 2 be one of variables ', £ or
xz, then we find that

i2(Flo))= 5 F®(p) 0% pds 000

Jay |+ +lay]=]al

Since C,z,|& 3 <p<Cyx|€'|5, we have

(3. 6)

%05 (Flo)| =

3 oF, <F(k) (p)) 98, (9% -0k p)|
la, |+ Flag] = lal ¢ ¢

1871 +18""|=18]
< Z O(p—%—j—k) tj+kl$'l%(j+k)—lal

k<|a)

J<|8l

<O(elg/|.

Therefore we see that

(3.7) %%%@@m:%%«+§*pwm@wm%mﬂy
nyte =T
— |a,+z§r:aag, (3?,' ot <F<k> (p))) 0% 8 (31 p-- -k p)‘
Br+8'' =8

1

<O 9)[¢ |51

This proves (3.4),. The same argument holds for (3.4)_ and (3. 4)%.
Let .S7%,2([0, T] X Ry, X Ry, X Rz) be the set of functions such that;

5?35;1,8‘;2,3561(1?,x',y’,é’)l< C |¢[m'+% for |€]>1,

a,81,8,,1
where a=C>([0, T] X Rz X Rz, X Rz\0).
LEmMA 3.2, Let p(t)=p(t, 2, &). It holds that
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(6 @))
L exp(7i 5 (o0 —p0))
ES;(%% ([O, T] x Rz X Ry, X R”) for p()>1,

and these functions are estimated by O(t}|€'|73) when p()<2, p(t)>1 re-
spectively.

Proor. When p(#)<2, from (2.3) there exists a positive number C'
such that ¢|&|3<C’. Now (3.8), follows from (3.3). and (3.3),, because
p(t) and p(z) have equivalent growth as the coefficients of P(x, D) are con-
stant for large |Z/|.

When p(¢)>1, let F(p) be the function introduced in the previous proof

and F(p)=1/A’, (6) exp (i %,6% By the same calculation as (3.7) we find

|z.%0%,0;(tF (o) F(p))

03 3 392 (Fe) Fip) +70:0%35,3:7 (<o) Fig)
< tO(p73) ||~ 118 O(p~%)|&|~1«1+3a-
< Oz2)|g| 731 +hr

The same argument holds for the sign —. This proves the lemma,

Let y(s) be a function in C*(R*) such that y(¢)=1 for ¢=<1, y(6)=0 for
0>2. By the analogous method in Lemma 3. 1 we conclude that y(o(x)),
1—y(p(x0))ESYo,2. From Lemma 3.1, multiplying these cut off functions to
the amplitude of the integral (3. 1), we can adopt 6(x,) or ¢.(x,) as the phase
function for G.(xy,t) when p(x)<2 or p(x)>1 respectively. As the same
argument holds for f(t)and ¢, (¢), we divide G. (x,¢t) into four parts accord-
ing to the cases that p(x)) or p(¢f) are large or small. Taking admissible
phase functions corresponding to each part, we regard them as Fourier
integral operators. Now by the oscillatory integral method (see [3]) we have
that

(3. 10) (Galant) V) (2)eC([0, T]X[0, TIXR*) for VEC(RY)
and
(3.11) (Gulant) V) (2)eC=([0, TIX[0, T]; Z(RY) for V& (RY.

Let ¢.(xpt, 2,Y,&)=¢.(x) —¢.(t) and define
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Cio={(2,¥,8); purlzot, 2,9, &) =0}.
Let A; , be the image of C; , under the mapping
Cr M ={(2, 7,0, )5 o =¢us U=¢}(THRINO) x (T*R\O),
then the following lemma shows the behavior of the wave front set of

G:t (xo, t)
LEmMmMma 3. 3.

WF((Gulan t) V) (1) C i, s WF(V) .

Proor. Since to find wave fronts one needs only to examine large &,
¢. may be taken as phase functions. Indeed in the domain p(xy)<2 and
p(t)>1, we use the phase function 6(x)—¢.(t) and the cut off function
x(o(xy)) (L—yx(p(¢))). However this cut off function vanishes for large & if
Z,3%0. In the remained domains where one of p(x,) or p(¢) is less than 2,
the same argument remains valid. Thus noting ¢.(0)=60(0) we obtain the
lemma by usual method. For example see Theorem 5.1 of [7]. The proof
is complete.

Similary we have for any but fixed initial >0

WF((G.(x0t) V) (2))C AFWF(V),

where AFC(T*((0, T)x RM\0O) X (T*(R"\0) is a Lagrangean generated by
O.(xe t, 2, Y, &) with respect to (xy, 2,9, &).
Now we shall show that the operators G.(z,t) V]s,~¢ and Dy G .(x0,2) V]2 —
can be represented by pseudo-differential operators with the parameter t.
Let a(t,2,y', &) be a symbol in S7%,z and y the cut off function men-
tioned above.

LEmMaA 3.4. Let L.(t) be an operator defined for VeCg(R") as jol-

lows :

<Li<t> V) (o) = Seisb.t(t,x',y’, D alt, Yy, &)
(1=x(pt, 2, €))) Vi) dy d&

where ¢:t: (t, x,’ EI> :@i(t, x,, 5') ‘@i(ta y,, 5,)
Then there exist symbols b.(t, 2,y ,v)ESTo,2 such that

(Lo V) (@) = @ry [ b. (6,2, o) Vi) df d

Proor. Let y(o, 2,y ,&)=S51,6([0, 7% X Rz X R% X Rz). Note that if p(t) >1
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then it holds y(W¢, &, ¥/, &)eSt, :([0, TT X Ry X Ry, X R.), because t7'<<C'|£'| 7%
for some positive number C'. Therefore the assertion can be proved easily
with the aid of Lemma 7.2 and Theorem 7.6 of [7].

In the domain p(#)<2, the above lemma is shown obviously if ¢, is
replaced by 6(t)—6(z).

We denote by 7%(2), 71 (¢) the restrictions of (G.(x, t) V)(2') and (D, G.
(xg, t) V) (&) at xy=t respectively :

(ROV=Cn V] _,,

| 720 V=D,,G.(z 1 V], .,
Now it can be shown that they become pseudo-differential operators of order

2
0 and 5 respectively.

Indeed, since the order of ¢ and of A is 0 and —% respectively, the

statement for 7% (¢) follows from [Lemma 3. 1 and Lemma 3.4. For the order
of 7.(t) it may seem that its principal part is 6, () g(z, 2/, ), which is of
order 1 and vanishes at t=0. This prevents to consider the Cauchy data.
However making use of Lemma 3. 2 we can avoid this difficulty.

In fact by direct computations we have :

812 DGzt V], = [0 (6.0 2, &)+ s, phlt, 2, 2)

_zg:co (ts SC,, 5,>> ﬁij <g E?;

(8(2)
AL (o)
)

+(—ipa,glt, &, &) =i h(t, £, €)

e ) L)

where we have used the relation AY(z)=zAi(z).
From (2.2), (2.3) it follows 6, (¢, 2/,&)=0(t), p(t, £ &€)=0(t) and hence
from [Lemma 3. 2 we have that the symbols

(0 g(t, &, &)+ pa, ph(t, 2, 5’)> Al E‘%;

} Vi) dy e

ol
{1, for p)<2,
X
exp Fi5 (p10—p20)), for p(0>1

are contained in S?O% and vanish at ¢=0.
Since the contributions from A% p(t))/AL(p(¢)) are terms of order 0

. . 2
only, 7. (¢) becomes a pseudo-differential operator of order ER
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Now we denote by 7 and A matrices

_ (T‘i @), 7% (t)) 7 (/1%, 0)
7= ’ A - ’
re(0)s 720) 0, I

where 4% is the pseudo-differential operator with the symbol (14/¢'|2%. Then
the principal symbol of Ay is written in the following from at z=0:

(ff’ [3e3 Ai(0)/Ad'(0), |€'[5e75¢ Ai(0)/ A7 (0))
_pro s _'lpxo

for (2.8), (3.12) and ¢|,—o=1.
Hence if T is sufficently small Ay is elliptic for any t<[0, T]. Now

let K(¢) be its parametrix. Define the operators G*(xy,t) for VeCy (R
as follows;

& 2
3.13)  Giawt) V=(G.(zo 1), G_(z08) Kt (50 A= V) .
otV
From the previous constructions G*(x,, ¢) satisfies (1. 3). Thus Theorem 1.1
is proved.

§ 4. Construction of the fundamental solution for the Cauchy
problem.

We shall construct the fundamental solution from (1.3) and derive the
estimate (1. 4).
For feC>([0, T]; Cy(R™) we define the operator G’ as follows ;

@D G flad) =[G ) — RO — (0= R0) S, 2) .
Then from (1.3) we obtain that

[ PG f=f=WF,

|DsGA, =0 for j=0,1,

where W is the operator with C*-kernel k(x,, ¢, 2,9') such that

Zo

4.2) Wit )= (" [kt 1, 2, 0) fle ) dy e

0

To construct the inverse of (I—W) by the Neumann series >, W*, we
k=0

must insert suitable cut off functions. Let a;, a,&C7(R") such that for some
compact sets Ki€K,EK; in R", ;=1 on K, suppa;CK,, a,=1 on K, and
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supp a;C K;. Choose K, such that K, contains any bicharacteristic curve

z(t) for P, starting from some point in K, at t=0 if ¢t is smaller than 7.
It follows from Lemma 3.3,

1—ay) Gy =0 (mod C*).

Let W f=P(l—ay) G a,f+Wayf. Then W’ has the same representation as
W in (4.2) and

(4.3 W feC([0, T1; Cr(Ky),
(4. 4) Pa,G oy f=af~W'f  for feC=([0, T]; Cs(RY) .

By (4.3) the equation (I—W’)f =f can be solved in [0, T] X K, for given
f thus from (4.4) we see that for any f&C=([0, T]; Cy(K)) there exists
a solution u=C=([0, T]; C7(R™) such that

JPu:f in [0, T] XK,

l

4.5 |
Dgfou%:g:(), ]:O,l

In fact, for the solution f* of the equation (I—W’)f' =f, let u=a,G ay f*
then it satisfies (4. 5).

Now we shall prove the uniqueness of the solution of (4.5). Let P*
be the adjoint operator of P then the principal symbol of P* is as same
as that of P. Moreover from the definition (3.1) the parameterices of P*
is also smooth with respect to 0<x,<t<7T, thus the equation (4.5) can
be solved for given f&C=([0, T] x Ky) in [0, T]x K, with the initial surface
xzy=T instead of z,=0. Note that P* is strictly hyperbolic in x,>0 and
the doamin of influence of f is finite because the bicharcteristic curve x(z)
does not tangent to the surface z,=0. Hence the solution of (4.5) with
initial surface x,=7T is smooth in [0, T] X K; and vanishes identically for
large |2'|. Therefore by the usual dual argument we obtain the uniqueness
of the solution of (4.5).

Now choose K, sufficiently large for given f&C>([0, T]; C7(R") then
froin the above facts we see that there exists a uniqu solution & C>([0, T ;
Ce(R") of (4.5) in [0, T] X R for any f&C=([0, TT; CT(RY).

Furthermore from (1.3), we shall give the formula of the solution of
(1. 2) with no-zero initial data (v, v;) €C7(R").

Let K be a compact set in R* such that K contains the set supp v,U
supp v; and any bicharacteristic cuve x(¢) starting from some point in supp
v,Usupp v; at t=0 if ¢ is smaller than 7. Choose a=C7(R") such that a=1
on K. Now we define the function « such that;
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(4. 6) =3 aG¥zy 0) vk—(i R (0) v+20 Y. % (0) vk)

k=0 k=0 k=1
+G (I-W)yf,

where

S == P{ 3, 0G 0 0) v 3 aRE(0) vt 203 aRS(0) )

) k=0

Then « satisfies the equation (1.2). (See III of [I])

Finally we shall prove the estimate (1.4).

Assume that x,>¢ then there exists a positive number C such that
p(x)) >Cp(f). Recall that t<<C'|g]'~# if p(¢)<2. Thus substituting p(z,) or
f(t) for p in (3.6), we have that

(4.7) ‘?@ffg(’;‘;)g BeSE for p)<2, plx)<C+1,

an G xew(xihdm)des for sz, plz>C
and

4.7 %jfgé% X exp <ii% <p%(x0) —p? (t))) %3 ES;(%

for 5(6)>1, p(x)>=C,

~1 1 . .
where S73=S3(R:X R X R2), x, and ¢ are considered as continuous para-
meters.

These properties also hold for A7, (p(z;))/ A% (6(2)) if we take the symbol
class .S}, instead of Sy Y2
Now we rewrite the first term of (4.1) as follows

4. 8) SO Gi(xo 1) fit, o) dt = SO (Giaw ) ) ft, ) dlt

:Sx°<G+(xo, ), G_(z 1) t%K@)( 0 )t—%dt.
° S, o)

Choose X, Z€C>(R,) such that Z(e)=1 for ¢<C, 2(6)=0 for ¢>C+1 and
2(0)=1 for ¢<1, Z(0)=0 for ¢>2.

Noting X(o(z)), Z(5(t))E.5?,, we decompose G.(xy t) into the parts of
(4.7), (4.7) and (4.7)" and regard their phase functions 0(x)) —0(2), ¢ () —A(2)
and ¢, () —@.(¢) respectively. Since K(#) is a pseudo-differential operator of

2 . .
order — 3 G'(xy, t) t* becomes the sum of Fourier integral operators of
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order —1. Consequently by the L2-estimate of Fourier integral operators
q y Dby

3] (1.4) follows from (4.6) and (4. 8).
Indeed for s>0, it holds that

o)

< C“ i G*(t, 0) vy,
=0

1
72 dr
s+1

¢ 1
s+1 Is+1+CSo||G1<t’ o) e fle, 0
2 ¢ 1
< Cll b0y + Aol + Cf ||, ) =2 e
¢ 1
<Clfwlrs+Clelleg +C{. [|fte, 9], as
and from (4. 6)

IPete, ol <]

/ci:o <Dx° Gz, 0) vk)”s_{—CS:HD% G'(t, 7) t* f{(z, )

lsr‘% dr
<Clfodlos+Clloloy+Cf [ £ )

because (D, G.)(t,7) is of order 1. To estimate higher derivatives of «, note
that

PD, w= D, Pu+[P, D;] u
- onf—I_BZ(x; Dx') u+B1(x7 D.’L‘) u,

where B, is the first order differential operator in D, and B, is the second
order one in D,. Let F=D, f+B,u+Bju and apply the above argument
to (D, u, F) instead of (u,f). Then we obtain that

” +||D2 ) “s ” +C“D9 ) s+3-1
+4ﬂFnMFnﬁw
<t ol #0809 o

Iterating this procedure for positive number £ less than s, we see that

4.9)

% 1D utt, )|,y <CJ|el0, )], +C 2

k<s

e

Dk+1 0, .)l

1
k<s+1 s+5-%

1
2
T dr.

Now to obtain the estimate (1.4) we must estimate higher derivatives
of u at t=0 in the right hand side of (4.9).
Thus we shall prove that

(4. 10) DE (0, -

<Clfols+Clloillay +C 3 [|DLFO, -]

s+1-k s—j
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for k>1.
In fact, since for k=1 we have

Dz, u(0, %) = (o A(x, Da) w+Py(x, D) u+f)|
— P1<0’ x,3 D.z') u+f<0’ x'> >

z, =0

we obtain that

Diu u<0s ')

<Clvgllss3+Cllvyl 431+ C|[ £0, )

s+3-1 s+1-1

<Clf i+ Cllvrflog+C A0, )|

s

Now assume that the statement holds for any # <k. Then it follows that

+

Dk u(0, +)|

<Cy
i==1

DE9u(0, +)

s+1—+1) s+1—(k—5

I

D; £(0, )l s+1— B+ D)

|2, 110, )

S C|vo|s41 ‘|‘CH°01Hs+§+CjSZ

k-1

s—j7 7

because

\

Df¥*u(0, +) = D%, (20 A(x, Do) u+ Py(z, Dy) u+f)

Ixo =0 "

Apply (4.10) to (4.9) then we obtain (1.4). This proves Theorem 1. 2.
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