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1. Introduction

Let G be a finite group and ¢ a prime. We say that G is g-closed
if G has a normal Sylow g-subgroup and g-nilpotent if G has a normal g-
complement. In this paper we prove the following theorem.

THEOREM. Let G be a finite group. Assume that G admits an auto-
morphism «a of order p, p a prime. Assume further that Cyla) is a cyclic
q-group for some odd prime q distinct from p. Then G is g-closed or g-
nilpotent. In particular G is solvable.

B. Rickman prove the case ¢>5, so we prove the case ¢g=3.

2. Preliminaries

All groups considered in this paper are assumed finite. Our notation
corresponds to that of Gorenstein [5].

(2.1) Let A be a n'-group of automorphism of the m-group G, and
suppose G or A is solvable. Then for each prime p in zn, we have

(1) A leaves invariant some S,-subgroup of G.

(2) Any two A-invariant S,-subgroups of G are conjugate by an ele-
ment of Cy(A).

(3) Any A-invariant p-subgroup of G is contained in an A-invariant
Sp-subgroup of G.

4) If H is any A-invariant normal subgroup of G, then CgyulA)
1s the image of Cyz(A) in G/H.

(2.2) (Thompson)

A p-group P posseses a characteristic subgroup C with the following
properties ;

(1) c1(C)<2 and C/Z(C) is elementary abelian.

2) [P, 1= Z(C).

3) Cp(C)=Z(C).

(4) Every nontrivial p'-automorphism of P induces a nontrivial auto-

morphism of C
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(2.3) If A is a p'-group of automorphisms of the p-group P with p odd
which acts trivially on 2,(P), then A=1.

(2.4) Let P be a p-group of class at most 2 with p odd. Then 2,(P)
is of exponent p.

(2.5) (Clifford)

Let VIF be an irreducible G-module and let H be a normal subgroup
of G. Then V is the direct sum of H-invariant subspaces V, 1<i<r,
which satisfy the following conditions;

1) V,=X;:PX®P - PXiyy, where each X;; is an irreducible H-sub-
module, 1<i<r, t is independent of i, and X;;, Xy, are isomorphic H-
modules if and only if 1=1.

(2) For x in G, the mapping n(x); V. —Vix, 1<i<r, is a permuta-
tion of the set S={Vy -+, V,} and rn induces a transitive permutation re-
presentation of G on S.

(2.6) (Thompson)

Assume G is a finite group admitting a fixed point free automorphism
of prime order. Then G is nilpotent.

(2.7) (Shult)

Let G=NQP with N>G, Q=QP, |P| is a prime, |Q| is an odd and
(10, 1P)=1, (IN], |QI)=1. Assume further that Cy(P)=1. Then [P, Q]C
Co (N).

(2.8) (Thompson Transitivity Theorem)

Let G be a group in which the centralizer of every p-element is p-
constrained. Then if A&SCN,(P), Cq(A) permutes transitively under con-
jugation the set of all maximal A-invariant q-subgroups of G for any
prime q=xp. ;

(2.9) Let G be a group in which the centralizer of every p-element
is p-constrained. Let P be an S,-subgroup of G and let A be an element
of SCN;(P). Then for any prime qxp, P normalizes some maximal A-
invariant q-subgroup of G.

(2.10) (Glauberman)

Let G be a group, and P be an S,-subgroup of G. If p=5, Px1,
and Ng(P)/Cg(P) is a p-group, then G has a factor group of order p.

Suppose p is an odd prime and P is an S,-subgroup of G. A normal
subgroup T of P is said to control strong fusion in P if T has the following
property.

“Whenever WCP, g=G, and W/C P, then there exist c€Cyx(W) and
ne Ng(T) such that cn=g¢g.”
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Define the quadratic group for the prime p to be the semidirect product
Qd(p) of a two dimentional vector space V over GF(p) by the special linear
group SL(V) on V. Let F(p) be the normalizer of some ,S,-subgroup of
Qd(p).

(2.11) (Glauberman)

If F(p) is not involved in Ng(Z(J(P))), then Z(J(P)) controls strong
Sfusion in P with respect to G.

(2.12) (Glauberman)

Let G be a non-abelian simple group. Assume that S, is not involved
in G Then. G is a JR-group, L,(q), 9=3,5(8), Ly(2"), Sz(27), Uy(2).

(2.13) (Signalizer functor theorem)

Let A be an elementary abelian p-subgroup of G of rank at least 3.
If G possesses the solvable A-signalizer functor 0, then the subgroup <6
(Cela)lac A*> of G is a solvable P -group.

(2.14) (Gorenstein, Walter)

Let G be a group with O(G)=1 and SCN3(2)#¢.  Assume further
that the centralizer of every involution of G is 2-constrained. Then O(Cq
(x)=1 for every involution x of G.

3. The structure of solvable groups satisfying the hypothesis of
the theorem

LEmMMA 3.1. Let G be a solvable group admitting an automorphism
a prime order p fixing a cyclic q-group for some odd prime q distinct
Jrom p. Then G is g-closed or g-nilpotent.

ProoF. Suppose false and G be a minimal counterexample. First of
all we prove that G=0,4(G) Cs(a). We may assume that O,(G)=1. Let
Q be a a-invariant Sg-subgroup of G. By (2. 7) we have that [Q, a]CC,
(Oy(G))Z0,(G). Hence Q=Cy(a). Let Q, be a subgroup of Q and M be
a a-invariant Hall ¢'-subgroup of N, (Qo). Let y=N;(Q,) and 2&Q, Then
W) xy =y 'xy) =y 'xy, this implies that [y*y~%, 2]=1. Since M=[M, a],
we have that [M,Q]=1. Hence Ng(Q0)/Cs(Qy) is a g-group. Hence G has
a normal ¢-complement and G =04y (G)Cq(@). Let U be a a-invariant Hall
¢ -subgroup of G. Assume [0,(G), Ul=1. Then G is g-nilpotent, a contra-
diction. So we have [0,(G), Ul#1. Hence Co,w{@)=1. Next we prove
that @(O,(G))=1. Assume ?(0,(G))#1. By the minimality of G, G/®(O,
(G)) is g-closed or g-nilpotent. Assume G/®(0,(G)) is g-closed. Then G
is g-closed, hence G/@(0,(G)) is g-nilpotent. Hence [O,(G), UlIC0(0,(G)),
it follows that [U, O,(G)]=1, a contradiction. Hence @(0,(G))=1. By the
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Frattini argument, G=0,(G) Ng(U) since G=0,,(G) Cs(a). Hence Cy,w»
(@)#1. Let (g>=2,(C4(a)), then g&NgU). By Theorem 5.2.3 of [5],
0,(G) = [0,(G), Ul X Co e (U).  Since [g, UISUNO(G) =1, [0,(G), U, U]=
1, this implies [O,(G), Ul=1, a contradiction.

4. The proof of the theorem

Let G be a minimal counterexample to the Theorem and assume g=3.

LemMa 4.1. G is simple.

ProoF. By minimality of G, G is characteristic simple. Hence G=G,
% ---X G, where the G; is non-abelian simple. Any normal non-abelian
simple subgroup of G coincide with one of the G; 1<i<n. Since Gf=G,
G*=G, for some i. Assume that Gf=G,. Then by minimality of G,
G =G,, which implies the conclusion of the Lemma 4.1. Hence we may
assume that G¢+G,. Since GIXG?X---XG‘{‘p 'CG, Cgla) is non-solvable,
which is a contradiction since Cgla) is cyclic.

LEMMA 4.2. Let Yren(G)—{2,3). Then for any r-subgroup R, of
G, Ny(R)/Ca(Ry) is a {3,r}-group whose S;-subgroups are cyclic.

Proor. Let R be a a-invariant S,-subgroup of G. Then Ng(R) is
solvable. Let V be a a-invariant Hall {3, 7} -subgroup of Ng(R). Then
[V, R]=1 since Cyr(@)=1. Let Q, be a a-invariant S;-subgroup of Ng(R).
By (2.7), [Qyal ©Cq,(R). Hence Ng(R) Co, (@) RC4(R), which implies that
Ng(R)/RC;(R) is a cyclic 3-group. Next we prove that Ng(Z(J(R)))=Ng(R).
Suppose false. If Ng(Z(J(R))) is 3-nilpotent, then Ne(Z(J(R)))=Ng(R),
a contradiction. If Ng(Z(J(R))) is 3-closed, then RCNg(Q), where Q is
a a-invariant Sy-subgroup of G, so Q,CQ. Then Ng(R)/Ce(R) is a r-group
since [Q, RICRNQ=1. By (2.10) G is non-simple, a contradiction. So
we have Ng(Z(J(R)))=Ng(R). By (2.11) Z(J(R)) controls strong fusion in
R since F(r) is not involved in Ng(Z(J(R))). Hence if xENg(R,), then
there exist c&Cg(R,) and n&Ng(Z(J(R))) such that x=cn. Hence we have
the conclusion of Lemma 4.2

LeMMma 4.3. Let X be a finite group. For each rex(X)—{2,3}, as-
sume that Ng(R)/Cs(Ro) is odd order for any r-subgroup Ry of X and that
Ly(3) and L,(7) are not involved in X. Then X is solvable.

Proor. Let X be a minimal counterexample. If there exists a non-
trivial proper normal subgroup K of X, then X/K and K is solvable since
X/K and K satisfy the hypothesis of Lemma 4.3, this implies that X is
solvable, a contradiction. So X is a minimal simple group since proper

subgroups are solvable. By N-paper X is Lylq), Sz(2") or Ls(3). By
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the hypothesis of Cemma 4. 3, X is L,(q) (g#7) or Sz(27). But Ly(q) (¢#7)
and Sz(2") have a r-group R, such that Ne(Ry)/Cy(Ry) is even order for
some rEx(X)—{2, 3}, a contradiction. Hence X is solvable.

By Lemma 4. 3 we may assume that Ly(3) or L,(7) is involved in G.
Let .S be a a-invariant S,-subgroup of G and Q be a a-invaiant S,-subgroup
of G. Let Sy, be a a-invariant subgroup of Ng;(Q)

LemMma 4.4, Ng(Q)/Ca(Q) is a non-trivial elementary 2-group and
N¢(Q) is a maximal a-invariant subgroup of G.

PROOF.  Assume that Ng(Z(J(Q)))=Ns(Q), then Ny(Z(J(Q))) is 3-
nilpotent. Hence Ng(Z(J(Q))) is F(3)-free. By (2.11) Z(J(Q)) controls
strong fusion in Q. Hence .S, is not involved in G. By (2.12) G is a JR-
group, Ly(q), ¢=3,5(8), L,(27), Sz(2), Us(2%). But such simple groups
have not an automorphism which satisfy the hypothesis of the Theorem,
a contradiction. Hence we have that Ne(Z(J(Q)))=Ns(Q). If NgQ) is
not a maximal e-invariant subgroup of G, then N¢(Q) is 3-nilpotent. Hence
Ne(Z(J(Q))) is 3-nilpotent, a contradiction. Therefore Ng(Q) is a maximal
a-invariant subgroup of G. Assume that N¢(Q)/Cy(Q) is odd order, then
we have similarly prove that .S, is not involved in G. Hence Ng(Q)/Cs(Q)
is even order. Let L be a a-invariant Hall 3’ -subgroup of Ng(Q). Then
L is nilpotent by (2.6). We set Q=Q/®(Q). By Maschke’s theorem Q=
QDOD---PQ,, where Q; is {a) L-irreducible, 1<i<n. We may assume
that Cg,(0)=1 for i=1, ---n, since Cola) is cyclic. Hence [L, Q;]=1 for i
=1,--,n. By (2.5) Q, is the direct sum of L-invariant subspace V,, 1<
i<r, such that V,=X,,®---@X,, where each X;; 1s an irreducible L-sub-
module, 1<i<#, and X;,, Xy are isomorphic L-module if and only if ;=7
Assume that 7=1, then Z(L/C.(Q,)) is a a-invariant cyclic group of even
order. Hence Cy(a) is even order, a contradiction. Since {a) induces a
transitive permutation of the set {Vi, -, V,} by (2.5), we have Qv=V,P
Ve@---PV""", where V‘{‘i coincides with one of the V, 1<i<r, for j=
0,--,p—1. Since Cy(a) is cyclic, |V,/=3, this implies that L/C.(Q) is
elementary 2-group. Hence Ne(Q)/QCs(Q) is an elementary 2-group.

LEmmMma 4.5. Crgo(@=1. In particular Ng(S) is nilpotent and {2, 3}-
group.

Proor. Suppose that Crpo(@#1. We set 2,(Cgla))=<g>, then g&
Ng(S): Let S, be a a-invariant Sy-subgroup of Ng(Q), then by Lemma 4. 4
[Se, Q]#1. By (2.2) there exists a characteristic subgroup C of Q such
that class C<2 and [S, C]#1. By (2.3) [Se, 2, (C)]+#1, and £2,(C) is of
exponent 3 by (2.4). If g& 2, (C), then [S,, 2,(C)]=1, a contradiction, hence
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g=9,(C). On the other hand [S,, g]©SNQ=1. <{a)S, acts on D=2,(C)/®
(2,(C)). Since §&Cp(Sy), a acts fixed point free on D/Cp(S,), hence [S,,
D]CSC»(S,), this implies that [S, D]=1, which implies [S,,2:(C)]=1, a con-
tracdiction. Hence Cyys(@)=1. In particular Ng(S) is nilpotent. Next
assume that Ng(S) is not {2, 3}-group, then there exists an element r&x
(Ns(S)—{2,3}. Let R be a a-invariant .S,-subgroup of G. Ng(S)=Ngx(R)

is nilpotent. By (2.10) G is non-simple, which is a contradiction.
Let P be a a-invariant Sy-subgroup of G and {g>=,(Cs(a)).

LemMA 4.6. Assume P=x1, then the followings hold ;

(i) gENa(P),

(i) Cr(g)=1.

ProoF. Assume ¢e=Ng(P), then Ng(P) is nilpotent, which implies G
is non-simple by (2.10), a contradiction. Next we prove that Cp(g)=1.
Suppose false. We set P,=Cp(g)#1. Let M be a maximal a-invariant
subgroup of G which contains Cg(g), then M is 3-closed or 3-nilpotent.
If M is 3-closed, then P,C Ng(Q), this implies that Ng(S)=Ng(P) by
4.4, a contradiction. Hence M is 3-nilpotent and we deduce that M=Ng
(P). Assume that g&Z(Q), then QC N¢(P). Hence [Q, a] SCy(P), which
implies that [2,(Z(Q)), P)J=1. Since Ng(Q) is a maximal a-invariant sub-
group of G, P,CNg&(Q), a contradiction. Hence ge&Z(Q). This implies
that [Z(Q), Pl=1. Hence PZ Ng(Q), a contradiction.

LemMa 4.7. Cg(x) is 13-nipotent for each x< P~

Proor. By taking a conjugation of xr we may assume that Cp(x) is
a Ss-subgroup of Cgz(x). Let P, be a non-trivial 13-subgroup of Cp(x). We
set Pi=<a)P, Assume that N, (Py)/Coyw(Po) is not a 13-group. Then
there exists an element ¥ such that ¥y & Ny, (Py) —Coyw(Po) and ¥ is a 13-
element. This implies that y& Ng(P)—Cg(Py). Assume that Ng(Z(J(P)))=
N4(P), then Ng(P) is nilpotent, a contradiction. Hence Ng(Z(J(P)))=Ng
(P)=Cuyp (@) PCe(P). Since F(13) is not involved in N(Z(J(P))), Z(J(P))
controls strong fusion in P. Hence there exists c&Cq(Py) and nENg(Z(J
(P))) such that y=cn. Since N¢(P)=Cyywp (a) PCs(P), we may assume ne
Crym (). By n=1 since Cp(g)=1, which contradicts the choice
of ¥. Hence Ng,wm (Po)/Cogw(P) is a 13-group. Hence Cg(x) is 13-nilpotent.

In particular Cgz(x) is 13-constrained for each x&P# by [Lemma 4.7,
Assume that P+#1 and Z(P) is cyclic, then p(=|al) is 2 or 3. Hence G
is odd order or a 3-group, a contradiction. Hence we may assume that
P=1 or Z(P) is a non-cyclic group.
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1. The case SCN;(P)+¢
LEmma 4.8. Cylx) is a {2.3}) -group for each x& P*.

Proor. Suppose false. Then there exists an element x&P¥# and r
such that r&x(Cq(x)), where =2 or 3. Since Z(P) is a non-cyclic group,
we may assume that xr&Z(P). Then P normalizes some .S,-subgroup of
Ce(x) since Cy(x) is 13-nilpotent. Let A&SCN;(P). By Transitivity Theo-
rem Cyz(A) permutes transitively under conjugation the set of all maximal
A-invariant r-subgroup. Then all maximal A-invariant r-subgroups are P-
invariant since Cg(A) C Ce(Z(P)) CNg(P). Since a permutes maximal P-
invariant 7-subgroups and the number of maximal P-invariant r-subgroups
is coprime to 13, a invariants some maximal P-invariant r-subgroup. Let
W be a <{a)P-invariant r-subgroup. If »=2, then Ng(P) is nilpotent since
Ng(P)=Ng(S), a contradiction. Next we assume r=3. Let M be a maximal
a-invariant subgroup of G which contains Ng(W). If M is 3-closed, then
PC Ng(Q), a contradiction. Hence M is 3-nilpotent and so M=N,(P). By
(2.7) [Z2(Q), a] S Cy(P). Assume that [Z(Q), a]=1, then [S,, Z(Q)]=1. Since
g€ Z(Q), S, Ql=1, a contradiction. Hence we may assume that [Z(Q),
al#1. Next we prove that Cyq, (S)=1. Suppose false. Let M be a maxi-
mal a-invariant subgroup of G which contains Ng(S,). Since Cyz (S) S M
and Ng(S) is nilpotent M is 3-closed. Hence Ng(S,)=.S,, this implies S=.5,.
Hence we see SC Ng(Q), in particular Cyq (S)#1. By Glauberman’s weakly
closed elements theorem Czp(S) is weakly closed in Q with respect to
G since Cz(S)SZ(Ng(J(Q))). Let 22,(Z(S))*. By Z*-theorem there
exists an element x(#z) of .S such that z is conjugate to 2z in G. Then
there exists an element k=G and subgroup H of S such that 2*=2x and
keENg(H), 2, x&H. Since Cyq(S) is weakly closed in S, Ng(H)=Cyz(H)
Ny, (Cz(S)) by the Frattini argument. Then we may assume k&N,
(Cz(S))ENg(Q). Hence z=2*=x, a contradiction. Hence Cjy, (S)=1.
By (2.5) 2,(Z(Q))=<a>PLa>P---P<a" ", where <a"z> is a Wedderburn
component, 0<i<p—1. Let vesSi. If av=a, (a“z)”:a“i for =1, -, p—1,
then @ =a! and (a)"" =a . We set b=a'a%, then b*=54"1 and be
[Z(Q), a]. By the Frattini argument N (<6>)=Cq¢(b) Ny (P). Hence Ng
(P) is even order, this implies Ng(S)=Ng(P), a contradiction. Hence Cg(z)
is a {2, 3} -group for each x< P*.

LemMA 4.9. Cg4(2) is solvable for every 2-element and 3-element t of
G. In particular O(Cyz(x))=1 for every involution x of G.

Proor. Let R be a a-invariant S;-subgroup of G. Assume that R+#1
and d(Z(R))<2, then p=2 or 3. Then G is odd order or 3'-group, a con-
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tradiction. Hence we may assume that R=1 or d(Z(R))>3. Assume d
(Z(R))=3. Then we can repeat the proof of Lemma 4.6, 4.7 and 4.8
verbatim with R in place of P to obtain that Cy(y) is a {2, 3}/ -group for
each y&R*. Hence C4(t) is a (7,13} -group for every 2-element and 3-
element # of G. In particular Cg(#) is solvable by Lemma 4.3. Assume
SCN;(2) =¢. Then [2,(Z(S))|<4. Hence p (=|a|) =3, a contradiction.
Hence we may assume SCN;(2)#¢. By (2.14) O(Cg(x))=1 for every invo-
lution x of G. Assume R=1.

Then Cq(z) is a {7, 13} -group for every 2-element and 3-element 7z of G is
a 7'-group. Hence is proved.

LemMMa 4.10. Oy (Cq(x)) is odd order for every element x of Q.

Proor. Suppose false. Then there exists an element x of Q* such
that Oy (Cs(x)) is even order. Since Z(Q) is non-cyclic and the centralizer
of every non-trivial 3-element is solvable, we may assume that z&Z(Q).
By (2.10) W={(Oy (Cy(x))|x=Z(Q)*> is a solvable 3'-group of G. Then
W is a-invariant and even order. Let .S, be a <{a)Q-invariant .S,-subgroup
of W. Let K be a maximal a-invariant subgroup of G which contains .S,
Q. Suppose that K is 3-nilpotent, then QC N(S), a contradiction. Hence
K is 3-closed. It follows [.S;, Q1€ S;NQ=1. Let L be a maximal a-invariant
subgroup which contains C4(S;). Then L is 3-closed. Hence Z(S)C Ngx(Q).
If Cr(Q)##1, then SCNg(Q). If 2,(Z(S)) is weakly closed in .S, then G is
a JR-group, L,(q), g=3,5(8), Ly(2"), Sz(2"), Us(2%), which is a contradiction.
Hence 2,(Z(S)) is not weakly closed in S with respect to G. Hence there
exists an element h&G such that heNg(H) and 2,(Z(S))+2,(Z(S)), H=
CUZ(S)Flkehy S S, I [H, Q]=1, then Ng(H)=Cy(H) Ny, (Q). Thus
we may assume that A& Ng(Q), this follows 2,(Z(S))*=2,(Z(S)), a contra-
diction. Hence we may assume [2,(Z(S))", Q]#1. Since 2,(Z(S)) is non-
cyclic, Q= {Co(x)|xE2,(Z(S)*>. Since [2,(Z(S))* Q]+#1, there exist ele-
ments x, Yy&2,(Z(S)) and a=Q such that [a, 2]=1 and [a,y]#1. Then
Y E0,(Cq(x)) since Cg(x) is solvable and O(Cy(x))=1, y=Z(S), S* is a
Se-subgroup of Cy(x). Hence [a, Y] C0,(Ce(x))N Q=1, a contradiction. Sup-
pose Cz(Q)=1, then we have a contradiction by a similar argument. Hence
Oy (Cg(x)) is odd order for each each z=Q*.

LemMma 4.11. G does not exist.

Proor. Since Ng(Q) acts irreducibly on 2,(Z(Q)), there exist elements
ueENs(Q) and a, b= 2,(Z(Q)) such that u centralizes (a> X <{(b> and u is an
involution. Then {a) X <{b) acts faithully on O,(Cg(«)) since Cgz(u) is solvable
and O(Cg(u))=1. Hence we may assume that there exists an element x&
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0,(Cs(w)) such that [a, 2]=1 and [b, z]#1 since O,(Ce(u))=<Co,wczmn ()]
de{a>x<{b>¥*>. Since bEO0y 4(Cy(a)) and Oy 3(Cs(a)) is odd order, [b, 2]<
Oy 3(Cg(a)) N O5(Cy(w))=1, a contradiction.

2. The case SCN, (P)=¢

Suppose P=1. Then Cqy(t) is a {7, 13}'-group for every 2-element and
3-element ¢ of G since G is a 13-group. Hence is satisfied.
By and 4. 10, we have a contradiction. Hence P+1. Suppose
Z(P) is a cyclic group, then p=7, in particular L,(7) 1s not involuved in G.
Hence we may assume that Ls(3) is involved in G. Since SCN;(P)=¢,
d,(P)<2, which yields 2,(P)SZ(P).

LemMa 4.12. gENg(Kx)) for each x=2,(P)*.

ProoF. 2,(P) is normalized by <{a)>x<{g>. By (2.5) the number of
Wedderburn components of 2,(P) with respect to {g)> is one since Cy p (@)=
1. Then 2,(P)=P@P, where P; is a {g)-isomorphic cyclic subgroup of
Q,(P) for i=1, 2, since ¢ normalizes a cyclic subgroup of £,(P). Hence ¢
normalizes every cyclic subgroup of 2,(P).

LemMma 4.13. Cy(S)=1.

Proor. Suppose false. We set Q*=Cy(S), then Q*+#1. In the first
we prove that Cgz(z) is odd order for each x&P*% Suppose false. Then
there exists an element & P* such that Cg(x) is even order. P normalizes
a Ve&.S,-subgroup of Cg(x) since Cy(x) is 13-nilpotent. Let M be a maximal
a-invariant subgroup which contains Ng(Q*). Suppose M is 3-nilpotent, then
Na(Q)=Ng(S) is nilpotent, a contradiction. Hence SCTNg(Q). If Sis abe-
lian, then G is JR-type or L,(g), ¢=3,5(8), L,(2"), a contradiction. This
follows that Cs(Q)#1 since S CCs(Q). We set 2,(F)={x)x<y), then ¥
acts fixed point free on a Hall {2, 3}-subgroup W of Cg(x) which contains
V. Because suppose false, then Cg(2,(P)) is even order or 3||Ce(2:(P))|.
If Cz(2,(P)) is even order, then we see that Ng(S)=N¢(P), a contradiction.
If 3/|Ca(2,(P))|, then we have a contradiction by a similar argument of
Lemma 4.8 Hence W is nilpotent. Since O (Cgy(x)) is solvable, VC
O3 (Ce(x)). Since WNOyug(Cy(x)) is nilpotent, V=0,(Cs(x)). Now we
prove that Cgz(V) is 13-nilpotent. Suppose false. Since a Sj-subgroup of
Ce(V) is cyclic, we may assume that Ng, o, ({2))/Cg,n(x) is not a 13-group.
Since Ng({x))=<{g>PO (Cs(x)), every S;-subgroup of Ng({x)) is written
by <g¥>U for some k& Ny((x)) and U&Ss-subgroup of Oy (Cs(x)).” Then
(gHUCCe(V)=U or <g*>U since [U, V]=1. Suppose that [¢*, V]=1, then
[g, VI=1 since kENg({x)) and V<aNg({x)). Since {g) <y is a Frobenius
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group, [y, V]=1, a contradiction. Hence every Ss-subgroup of Ng({x))Cq
(V) is contained in Oy (Cgz(x)). Then Negon (x)/Coyn(x) is a 13-group,
a contradiction. Hence Cq(V) is 13-nilpotent. By taking a conjugation of
V, we may assume that VC.S. Then Q*CC,(V) and heCy(V), where h
1s a non-trivial 13-element. Let Q, be a .S;-subgroup of C;(V) which contains
Q*. We may assume hE Ny (Q,) since Cg(V) is 13-nilpotent. Now Cs(Qy)
1s a 13 -group since Cg(Qy)SCq(Q*) and Cgz(Q*) is a a-invariant 13 -group.
By taking a conjugation of Q) we may assume that Q,CQ and Co(Q,) is
a Sg-subgroup of Cs(Q,). We set Q,=Cy(Q,), then Z(Q)CQ,. Since g=Z(Q)
Cs(Q) is a Sy-subgroup of Cy(Z(Q)). Hence Cs(Q) is a S,-subgroup of Cjy
(Q). Now Cy(Q,) is a 13-group since Ce(Q)CSCe(Z(Q)). Hence by the
Frattini argument we may assume that heNg(Cs(Q)). Since Cs(Q)#1, we
see that Ng(S)=Ng(P) is nilpotent, a contradiction. Hence we have Colx)
is odd order for each x&P* In particular C4(¢) is solvable for every in-
volution ¢ of G. By (2.14) we see that O(C,(t))=1 for every involution ¢.
But now we have a contradiction by a similar argument of [Lemma 4.9.
Hence Cy(S)=

Lemma 4.14. 2,(Z(Q))CZ(Q).

Proor. We set 9,(Q)=Q and @,(Q)=0(Q), 0,,,(Q)=?(D,(Q)), .,
(Q)=1. Let S=Ns(Q). Now we prove that <a)S, acts irreducibly on @,
(Q)/9:,:(Q), 0<i<n Suppose false. Since Cola) is cyclic, we have Cy(S,) #
1. By [Lemma 4.13 S+, Let M be a maximal a-invariant subgroup of
G which contains Ng(S), then M is 3-nilpotent, hence Ne(S)=Ng(Q), a
contradiction. Hence <{a)S, acts irreducibly on 0,(Q)/0:,,(Q), 0<i<n.
Next we consider the structure of @,(Q)=®,(Q)/®;,:(Q), 0<i<n—1. Then
class 0,(Q)<2 and 2,(@ (@:(Q)) =?,_,(Q) or &,(Q). Now the exponent of
) =3 since class @,(Q)<2. Suppose that 2,(2,(Q)) =9,(Q), then
|

=3. Since Cs,(9:;,(Q))=1, we have Cow@+#1. Hence Cj55(a)
C0,,(Q). But now Co, @10, +1(Q)( a)=1, a contradiction. Hence we see that
2(9,(Q0)=0:,,(Q). Let a=Q and la|=3. Then there exists a number j,
0<j<n, such that a=®,;(Q)—®,,,(Q). Suppose that j<n, then acs0;(Q)/
D;,.(Q). Since |a| =3, we see that ac2(0;(Q)=2;.,(Q). Hence ac®,,,(Q),

a contradiction. Hence a=®,(Q)C Z(Q), this implies 2,(Q)CZ(Q).

Lemma 4.15. Cy(x) is a 3'-group for each x=P* In particular the
centralizer of every non-trivial 3-element is solvable.

ProoF. Suppose false. Then there exists an element xE82,(P) such
that 3[|Cs(x)]. We set L=0 (Cg(x)), then Ng(<zd)=<(¢g>PL. Let A be
a Sy-subgroup of Ng({z)) which contains the element ¢g. Then {g>P acts
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on Oy 4(L)/Oy(L). But now Oy (L) = Oy (L)(ANOy 4(L)). Since |g|=3,
we have [g, A]=1 by Lemma 4.14. Hence ¢ centralizes Oy 5(L)/Oy (L).
Since {g»P is a Frobenius group, this follows that [P, O, 4(L)] Oy (L).
Hence 3||C¢(P)]. But now we have a contradiction by a similar argument
of Lemma 4. 8. Hence Cy(x) is a 3'-group for each x=P% By

4.3 the centralizer of every non-trivial 3-element is solvable.

LEMMA 4.16. Cq(x) is odd order for each x€P*. In particular Cglt)
is solvable and O(Cq(t))=1 for every involution t of G.

Proor. Suppose false. Then there exists an element x of P#* such
that an .S;-subgroup V of Cg(x) is non-trivial. Then by Lemma 4. 13 V<
Ce(x). We set 2,(P)={x>x<¥y), then y acts fixed point free on V. By
Lemma 4. 13 Cg(V) is 13-nilpotent. By taking a conjugation of V we may
assume that VC.S and Cg(V) is a S,-subgroup of Cg(V). Let Sx=Cs(V),
then Z(V)S.S*. By taking a conjugation of z, we may assume that z& N,
(§*).  Assume that Ng(S*) is solvable, then x normalizes a S,-subgroup K,
of Ng(S*). Futhermore assume that Ng(K)) is solvable, then x normalizes
a Sp-subgroup K, of Ng(K;). By a similar argument we see that 13||Ng(S)],
then N¢(S)=Ng(P), a contradiction. Hence there exists a 2-group K which
contains $* and such that Ng(K) is non-solvable. Hence Ng(K) involves
L4(3), in particular a S;-subgroup of Ng(K) is non-cyclic. By taking a con-
jugation of K we may assume that (@) X {b>CQC Ng(K). Let c&la)>x{(b)*¥,
then Cg(c) SOy (Calc)) Na(Q) since Cy(c) is solvable and £2,(Q)CZ(Q). By
the Signalizer functor theorem <Oy (Cy(d))|d=2,(Q*>=L is a a-invariant
solvable 3'-group. Suppose that L+#1. Let M be a maximal a-invariant
subgroup of G which contains QL. Suppose that M is 3-nilpotent. If L
is even order, then Ng(S)=N¢(Q), a contradiction. If L is odd order, then
we yield a contradiction by a similar argument of Lemma 4.8. Hence M is
3-closed and so LEN4(Q). Hence Cg(c) S Ng(Q). In particular K=<{Cx(c)|
ce{ay x<by*>CNgQ). Let W=Q,(Z(V)), then we may assume that WC
Ns(Q). On the other hand Cy(g;) N Cw(9:¥) CCyr(y) =1 for some conjugate
elements ¢;, ¥, of ¢, y. Hence Cu(g)DCw(g,)CW. We set |W|=2m,
then 2m>2%2 since ¥, acts fixed point free on W. Let |Cy(g)|=2", then
22 <2m.  Assume that nZm—6, then m>2n=2(m—6), this follows m =212,
a contradiction. Hence n<m—6. We set Wy=WnN Cs(Q), then |W; W;| <28,
hence [W,|>2m=6. Assume that W=W,. Then y,&Ngz(W)C Cs(W) Ng(Q).
Hence 13||Ng(Q)l, a contradiction. Hence W2W, Let veW—-W, and
X=<vyxW, Then |[Cy(g)] =2r<2m 65 2n5<|X|. But now Cg(X) is
13-nilpotent by a similar argument of Lemma 4. 13. Then Cy(v)=Cy(X)
#1 since L3(3) is involved in G and so Q is non-abelian. Let Q* be
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a Ss-subgroup of Cy(x). Since Cy(X) is 13-nilpotent, x,E Ng(Q*) for some
z, which is conjugate to x. Let Q, be a S;-subgroup of G which contains
Q*. Since Ng4(Q*) is 3-constrained by [Lemma 4. 15 and 2,(Q,)< Z(Q,),
we see Ng(Q¥)=2,(Q))Oy (Ng(Q*)). Suppose that z;&04 (Ng(Q*)), then
[2, Q¥ ] COQ*C Oy (Ng(Q*))=1, which is a contradiction by Lemma 4.15.
Hence we may assume that x,ENg(2,(Q) = Ne(Q,). Hence 13||Ng(Q)l,
then Ng(S)=Ng(P) is nilpotent, a contradiction. Hence Cg(x) is odd order
for each x&= P~

Now we see that Oy (Ci(y)) is odd order for each y&Q* by a similar
argument of [Lemma 4. 10. And by a similar argument of Lemma 4.11
we have a final contradiction. Hence the Theorem is proved.
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