Finite groups admitting an automorphism of prime order I

By Hiroshi Fukushima (Received April 18, 1978; Revised October 4, 1978)

1. Introduction

Let G be a finite group and q a prime. We say that G is q-closed if G has a normal Sylow q-subgroup and q-nilpotent if G has a normal q-complement. In this paper we prove the following theorem.

Theorem. Let G be a finite group. Assume that G admits an automorphism α of order p, p a prime. Assume further that $C_G(\alpha)$ is a cyclic q-group for some odd prime q distinct from p. Then G is q-closed or q-nilpotent. In particular G is solvable.

B. Rickman [8] prove the case $q \ge 5$, so we prove the case q = 3.

2. Preliminaries

All groups considered in this paper are assumed finite. Our notation corresponds to that of Gorenstein [5].

- (2.1) Let A be a π' -group of automorphism of the π -group G, and suppose G or A is solvable. Then for each prime p in π , we have
 - (1) A leaves invariant some S_p -subgroup of G.
- (2) Any two A-invariant S_p -subgroups of G are conjugate by an element of $C_G(A)$.
- (3) Any A-invariant p-subgroup of G is contained in an A-invariant S_{p} -subgroup of G.
- (4) If H is any A-invariant normal subgroup of G, then $C_{G/H}(A)$ is the image of $C_G(A)$ in G/H.
 - (2.2) (Thompson)

A p-group P posseses a characteristic subgroup C with the following properties;

- (1) $c1(C) \leq 2$ and C/Z(C) is elementary abelian.
- (2) $[P, C] \subseteq Z(C)$.
- $(3) \quad C_P(C) = Z(C).$
- (4) Every nontrivial p'-automorphism of P induces a nontrivial automorphism of C

- (2.3) If A is a p'-group of automorphisms of the p-group P with p odd which acts trivially on $\Omega_1(P)$, then A=1.
- (2.4) Let P be a p-group of class at most 2 with p odd. Then $\Omega_1(P)$ is of exponent p.

(2. 5) (Clifford)

Let V/F be an irreducible G-module and let H be a normal subgroup of G. Then V is the direct sum of H-invariant subspaces V_i , $1 \le i \le r$, which satisfy the following conditions;

- (1) $V_i = X_{i1} \oplus X_{i2} \oplus \cdots \oplus X_{it}$, where each X_{ij} is an irreducible H-submodule, $1 \leq i \leq r$, t is independent of i, and X_{ij} , $X_{i'j'}$ are isomorphic H-modules if and only if i=i'.
- (2) For x in G, the mapping $\pi(x)$; $V_i \rightarrow V_i x$, $1 \le i \le r$, is a permutation of the set $S = \{V_1, \dots, V_r\}$ and π induces a transitive permutation representation of G on S.

(2.6) (Thompson)

Assume G is a finite group admitting a fixed point free automorphism of prime order. Then G is nilpotent.

(2.7) (Shult)

Let G=NQP with $N \triangleright G$, $Q \triangleright QP$, |P| is a prime, |Q| is an odd and (|Q|, |P|)=1, (|N|, |Q|)=1. Assume further that $C_N(P)=1$. Then $[P, Q]\subseteq C_Q(N)$.

(2.8) (Thompson Transitivity Theorem)

Let G be a group in which the centralizer of every p-element is p-constrained. Then if $A \in SCN_3(P)$, $C_G(A)$ permutes transitively under conjugation the set of all maximal A-invariant q-subgroups of G for any prime $q \neq p$.

(2.9) Let G be a group in which the centralizer of every p-element is p-constrained. Let P be an S_p -subgroup of G and let A be an element of $SCN_3(P)$. Then for any prime $q \neq p$, P normalizes some maximal A-invariant q-subgroup of G.

(2. 10) (Glauberman)

Let G be a group, and P be an S_p -subgroup of G. If $p \ge 5$, $P \ne 1$, and $N_G(P)/C_G(P)$ is a p-group, then G has a factor group of order p.

Suppose p is an odd prime and P is an S_p -subgroup of G. A normal subgroup T of P is said to control strong fusion in P if T has the following property.

"Whenever $W \subseteq P$, $g \in G$, and $W^g \subseteq P$, then there exist $c \in C_G(W)$ and $n \in N_G(T)$ such that cn = g."

Define the quadratic group for the prime p to be the semidirect product Qd(p) of a two dimentional vector space V over GF(p) by the special linear group SL(V) on V. Let F(p) be the normalizer of some S_{ρ} -subgroup of Qd(p).

(2.11) (Glauberman)

If F(p) is not involved in $N_G(Z(J(P)))$, then Z(J(P)) controls strong fusion in P with respect to G.

(2.12) (Glauberman)

Let G be a non-abelian simple group. Assume that S_4 is not involved in G. Then, G is a JR-group, $L_2(q)$, $q\equiv 3$, 5 (8), $L_2(2^n)$, $S_2(2^n)$, $U_3(2^n)$.

(2.13) (Signalizer functor theorem)

Let A be an elementary abelian p-subgroup of G of rank at least 3. If G possesses the solvable A-signalizer functor θ , then the subgroup $\langle \theta | (C_G(a)) | a \in A^{\sharp} \rangle$ of G is a solvable p'-group.

(2.14) (Gorenstein, Walter)

Let G be a group with O(G)=1 and $SCN_3(2)\neq \phi$. Assume further that the centralizer of every involution of G is 2-constrained. Then $O(C_G(x)=1)$ for every involution x of G.

3. The structure of solvable groups satisfying the hypothesis of the theorem $\frac{1}{2}$

Lemma 3.1. Let G be a solvable group admitting an automorphism α prime order p fixing a cyclic q-group for some odd prime q distinct from p. Then G is q-closed or q-nilpotent.

Proof. Suppose false and G be a minimal counterexample. First of all we prove that $G=O_{q,q'}(G)$ $C_G(\alpha)$. We may assume that $O_q(G)=1$. Let Q be a α -invariant S_q -subgroup of G. By (2.7) we have that $[Q,\alpha]\subseteq C_G(O_{q'}(G))\subseteq O_{q'}(G)$. Hence $Q=C_Q(\alpha)$. Let Q_0 be a subgroup of Q and M be a α -invariant Hall q'-subgroup of $N_G(Q_0)$. Let $y\in N_G(Q_0)$ and $x\in Q_0$. Then $(y^{-1})^\alpha xy^\alpha=(y^{-1}xy)^\alpha=y^{-1}xy$, this implies that $[y^\alpha y^{-1},x]=1$. Since $M=[M,\alpha]$, we have that $[M,Q_0]=1$. Hence $N_G(Q_0)/C_G(Q_0)$ is a q-group. Hence G has a normal q-complement and $G=O_{q,q'}(G)C_G(\alpha)$. Let Q be a Q-invariant Hall Q'-subgroup of Q. Assume $Q_q(G)$, Q=1. Then Q is Q-nilpotent, a contradiction. So we have $Q_q(G)$ 0, Q=1. Hence $Q_q(G)$ 1 is Q-nilpotent. Assume $Q(Q_q(G))=1$ 2. By the minimality of Q0, Q0 is Q1. Then Q2 is Q3 is Q3-closed, hence Q4. Thence Q4. Thence Q4. Thence Q5 is Q5-closed, hence Q6. Thence Q6. Thence Q6. Thence Q6. Thence Q6. Thence Q9. The Q9 is Q9-closed. Thence Q9 is Q9-closed, hence Q9. Thence Q9 is Q9-nilpotent. Hence Q9. The Q9 is Q9-closed. Thence Q9-closed, hence Q9-closed. Thence Q9-closed. Hence Q9-closed. H

Frattini argument, $G = O_q(G) \ N_G(U)$ since $G = O_{q,q'}(G) \ C_G(\alpha)$. Hence $C_{N_G(U)}(\alpha) \neq 1$. Let $\langle g \rangle = \Omega_1(C_G(\alpha))$, then $g \in N_G(U)$. By Theorem 5. 2. 3 of [5], $O_q(G) = [O_q(G), U] \times C_{O_q(G)}(U)$. Since $[g, U] \subseteq U \cap O_q(G) = 1$, $[O_q(G), U, U] = 1$, this implies $[O_q(G), U] = 1$, a contradiction.

4. The proof of the theorem

Let G be a minimal counterexample to the Theorem and assume q=3. Lemma 4.1. G is simple.

PROOF. By minimality of G, G is characteristic simple. Hence $G = G_1 \times \cdots \times G_n$ where the G_i is non-abelian simple. Any normal non-abelian simple subgroup of G coincide with one of the G_i $1 \le i \le n$. Since $G_1^{\alpha} \rhd G$, $G_1^{\alpha} = G_i$ for some i. Assume that $G_1^{\alpha} = G_1$. Then by minimality of G, $G = G_1$, which implies the conclusion of the Lemma 4.1. Hence we may assume that $G_1^{\alpha} \neq G_1$. Since $G_1 \times G_1^{\alpha} \times \cdots \times G_1^{\alpha^{p-1}} \subseteq G$, $C_G(\alpha)$ is non-solvable, which is a contradiction since $C_G(\alpha)$ is cyclic.

Lemma 4.2. Let $\forall r \in \pi(G) - \{2, 3\}$. Then for any r-subgroup R_0 of G, $N_G(R_0)/C_G(R_0)$ is a $\{3, r\}$ -group whose S_3 -subgroups are cyclic.

PROOF. Let R be a α -invariant S_r -subgroup of G. Then $N_G(R)$ is solvable. Let V be a α -invariant Hall $\{3,r\}'$ -subgroup of $N_G(R)$. Then [V,R]=1 since $C_{VR}(\alpha)=1$. Let Q_0 be a α -invariant S_3 -subgroup of $N_G(R)$. By (2.7), $[Q_0,\alpha]\subseteq C_{Q_0}(R)$. Hence $N_G(R)$ $C_{Q_0}(\alpha)$ $RC_G(R)$, which implies that $N_G(R)/RC_G(R)$ is a cyclic 3-group. Next we prove that $N_G(Z(J(R)))=N_G(R)$. Suppose false. If $N_G(Z(J(R)))$ is 3-nilpotent, then $N_G(Z(J(R)))=N_G(R)$, a contradiction. If $N_G(Z(J(R)))$ is 3-closed, then $R\subseteq N_G(Q)$, where Q is a α -invariant S_3 -subgroup of G, so $Q_0\subseteq Q$. Then $N_G(R)/C_G(R)$ is a r-group since $[Q_0,R]\subseteq R\cap Q=1$. By (2.10) G is non-simple, a contradiction. So we have $N_G(Z(J(R)))=N_G(R)$. By (2.11) Z(J(R)) controls strong fusion in R since F(r) is not involved in $N_G(Z(J(R)))$. Hence if $x\in N_G(R_0)$, then there exist $c\in C_G(R_0)$ and $n\in N_G(Z(J(R)))$ such that x=cn. Hence we have the conclusion of Lemma 4.2.

Lemma 4.3. Let X be a finite group. For each $r \in \pi(X) - \{2, 3\}$, assume that $N_G(R_0)/C_G(R_0)$ is odd order for any r-subgroup R_0 of X and that $L_3(3)$ and $L_2(7)$ are not involved in X. Then X is solvable.

PROOF. Let X be a minimal counterexample. If there exists a non-trivial proper normal subgroup K of X, then X/K and K is solvable since X/K and K satisfy the hypothesis of Lemma 4.3, this implies that X is solvable, a contradiction. So X is a minimal simple group since proper subgroups are solvable. By N-paper [11] X is $L_2(q)$, $Sz(2^n)$ or $L_3(3)$. By

the hypothesis of Lemma 4.3, X is $L_2(q)$ $(q \neq 7)$ or $Sz(2^n)$. But $L_2(q)$ $(q \neq 7)$ and $Sz(2^n)$ have a r-group R_0 such that $N_G(R_0)/C_G(R_0)$ is even order for some $r \in \pi(X) - \{2, 3\}$, a contradiction. Hence X is solvable.

By Lemma 4.3 we may assume that $L_3(3)$ or $L_2(7)$ is involved in G. Let S be a α -invariant S_2 -subgroup of G and Q be a α -invariant S_3 -subgroup of G. Let S_0 be a α -invariant subgroup of $N_G(Q)$.

Lemma 4.4. $N_G(Q)/C_G(Q)$ is a non-trivial elementary 2-group and $N_G(Q)$ is a maximal α -invariant subgroup of G.

Proof. Assume that $N_G(Z(J(Q))) \supseteq N_G(Q)$, then $N_G(Z(J(Q)))$ is 3-Hence $N_G(Z(J(Q)))$ is F(3)-free. By (2.11) Z(J(Q)) controls strong fusion in Q. Hence S_4 is not involved in G. By (2.12) G is a JRgroup, $L_2(q)$, $q\equiv 3, 5 (8)$, $L_2(2^n)$, $Sz(2^n)$, $U_3(2^n)$. But such simple groups have not an automorphism which satisfy the hypothesis of the Theorem, Hence we have that $N_G(Z(J(Q))) = N_G(Q)$. If $N_G(Q)$ is a contradiction. not a maximal α -invariant subgroup of G, then $N_G(Q)$ is 3-nilpotent. Hence $N_{G}(Z(J(Q)))$ is 3-nilpotent, a contradiction. Therefore $N_{G}(Q)$ is a maximal α -invariant subgroup of G. Assume that $N_G(Q)/C_G(Q)$ is odd order, then we have similarly prove that S_4 is not involved in G. Hence $N_G(Q)/C_G(Q)$ is even order. Let L be a α -invariant Hall 3'-subgroup of $N_G(Q)$. Then L is nilpotent by (2.6). We set $\bar{Q}=Q/\Phi(Q)$. By Maschke's theorem $\bar{Q}=$ $\bar{Q}_0 \oplus \bar{Q}_1 \oplus \cdots \oplus \bar{Q}_n$, where \bar{Q}_i is $\langle \alpha \rangle L$ -irreducible, $1 \leqslant i \leqslant n$. We may assume that $C_{\overline{\varrho}_i}(\alpha)=1$ for $i=1,\cdots n$, since $C_{\overline{\varrho}}(\alpha)$ is cyclic. Hence $[L,\overline{Q}_i]=1$ for i=1, ..., n. By (2.5) \bar{Q}_0 is the direct sum of L-invariant subspace V_i , $1 \le$ $i \leq r$, such that $V_i = X_{i1} \oplus \cdots \oplus X_{it}$, where each X_{ij} is an irreducible L-submodule, $1 \leq i \leq t$, and X_{ij} , $X_{i'j'}$ are isomorphic L-module if and only if i=i'. Assume that r=1, then $Z(L/C_L(Q_0))$ is a α -invariant cyclic group of even order. Hence $C_G(\alpha)$ is even order, a contradiction. Since $\langle \alpha \rangle$ induces a transitive permutation of the set $\{V_1, \dots, V_r\}$ by (2.5), we have $\bar{Q}_0 = V_1 \oplus$ $V_1^{\alpha} \oplus \cdots \oplus V_1^{\alpha^{p-1}}$, where $V_1^{\alpha^j}$ coincides with one of the V_i , $1 \leqslant i \leqslant r$, for j = $0, \dots, p-1$. Since $C_{Q_0}(\alpha)$ is cyclic, $|V_1|=3$, this implies that $L/C_L(Q)$ is elementary 2-group. Hence $N_G(Q)/QC_G(Q)$ is an elementary 2-group.

Lemma 4.5. $C_{N_G(S)}(\alpha) = 1$. In particular $N_G(S)$ is nilpotent and $\{2, 3\}$ -group.

PROOF. Suppose that $C_{N_G(S)}(\alpha) \neq 1$. We set $\Omega_1(C_G(\alpha)) = \langle g \rangle$, then $g \in N_G(S)$. Let S_0 be a α -invariant S_2 -subgroup of $N_G(Q)$, then by Lemma 4. 4 $[S_0, Q] \neq 1$. By (2.2) there exists a characteristic subgroup C of Q such that class $C \leq 2$ and $[S_0, C] \neq 1$. By (2.3) $[S_0, \Omega_1(C)] \neq 1$, and $\Omega_1(C)$ is of exponent 3 by (2.4). If $g \notin \Omega_1(C)$, then $[S_0, \Omega_1(C)] = 1$, a contradiction, hence

 $g \in \Omega_1(C)$. On the other hand $[S_0, g] \subseteq S \cap Q = 1$. $\langle \alpha \rangle S_0$ acts on $D = \Omega_1(C)/\Phi(\Omega_1(C))$. Since $\bar{g} \in C_D(S_0)$, α acts fixed point free on $D/C_D(S_0)$, hence $[S_0, D] \subseteq C_D(S_0)$, this implies that $[S_0, D] = 1$, which implies $[S_0, \Omega_1(C)] = 1$, a contracdiction. Hence $C_{N_G(S)}(\alpha) = 1$. In particular $N_G(S)$ is nilpotent. Next assume that $N_G(S)$ is not $\{2, 3\}$ -group, then there exists an element $r \in \pi(N_G(S)) - \{2, 3\}$. Let R be a α -invariant S_r -subgroup of G. $N_G(S) = N_G(R)$ is nilpotent. By (2.10) G is non-simple, which is a contradiction.

Let P be a α -invariant S_{13} -subgroup of G and $\langle g \rangle = \Omega_1(C_G(\alpha))$.

LEMMA 4.6. Assume $P \neq 1$, then the followings hold;

- (i) $g \in N_G(P)$,
- (ii) $C_P(g) = 1$.

PROOF. Assume $g \notin N_G(P)$, then $N_G(P)$ is nilpotent, which implies G is non-simple by (2.10), a contradiction. Next we prove that $C_P(g)=1$. Suppose false. We set $P_0=C_P(g)\neq 1$. Let M be a maximal α -invariant subgroup of G which contains $C_G(g)$, then M is 3-closed or 3-nilpotent. If M is 3-closed, then $P_0\subseteq N_G(Q)$, this implies that $N_G(S)=N_G(P)$ by Lemma 4.4, a contradiction. Hence M is 3-nilpotent and we deduce that $M=N_G(P)$. Assume that $g\in Z(Q)$, then $Q\subseteq N_G(P)$. Hence $[Q,\alpha]\subseteq C_Q(P)$, which implies that $[\Omega_1(Z(Q)),P_0]=1$. Since $N_G(Q)$ is a maximal α -invariant subgroup of G, $P_0\subseteq N_G(Q)$, a contradiction. Hence $g\notin Z(Q)$. This implies that [Z(Q),P]=1. Hence $P\subseteq N_G(Q)$, a contradiction.

Lemma 4.7. $C_G(x)$ is 13-nipotent for each $x \in P^{\sharp}$.

PROOF. By taking a conjugation of x we may assume that $C_P(x)$ is a S_{13} -subgroup of $C_G(x)$. Let P_0 be a non-trivial 13-subgroup of $C_P(x)$. We set $P_1 = \langle x \rangle P_0$. Assume that $N_{C_G(x)}(P_0)/C_{C_G(x)}(P_0)$ is not a 13-group. Then there exists an element y such that $y \in N_{C_G(x)}(P_0) - C_{C_G(x)}(P_0)$ and y is a 13'-element. This implies that $y \in N_G(P_1) - C_G(P_1)$. Assume that $N_G(Z(J(P))) \supseteq N_G(P)$, then $N_G(P)$ is nilpotent, a contradiction. Hence $N_G(Z(J(P))) = N_G(P) = C_{N_G(P)}(\alpha) PC_G(P)$. Since F(13) is not involved in $N_G(Z(J(P)))$, Z(J(P)) controls strong fusion in P. Hence there exists $c \in C_G(P_1)$ and $n \in N_G(Z(J(P)))$ such that y = cn. Since $N_G(P) = C_{N_G(P)}(\alpha) PC_G(P)$, we may assume $n \in C_{N_G(P)}(\alpha)$. By Lemma 4.6 n = 1 since $C_P(g) = 1$, which contradicts the choice of y. Hence $N_{C_G(x)}(P_0)/C_{C_G(x)}(P_0)$ is a 13-group. Hence $C_G(x)$ is 13-nilpotent.

In particular $C_G(x)$ is 13-constrained for each $x \in P^{\#}$ by Lemma 4.7. Assume that $P \neq 1$ and Z(P) is cyclic, then $p(=|\alpha|)$ is 2 or 3. Hence G is odd order or a 3'-group, a contradiction. Hence we may assume that P=1 or Z(P) is a non-cyclic group.

1. The case $SCN_3(P) \neq \phi$

LEMMA 4.8. $C_G(x)$ is a $\{2,3\}'$ -group for each $x \in P^{\#}$.

Proof. Suppose false. Then there exists an element $x \in P^{\#}$ and rsuch that $r \in \pi(C_G(x))$, where r=2 or 3. Since Z(P) is a non-cyclic group, we may assume that $x \in Z(P)$. Then P normalizes some S_r -subgroup of $C_G(x)$ since $C_G(x)$ is 13-nilpotent. Let $A \in SCN_3(P)$. By Transitivity Theorem $C_G(A)$ permutes transitively under conjugation the set of all maximal A-invariant r-subgroup. Then all maximal A-invariant r-subgroups are Pinvariant since $C_G(A) \subseteq C_G(Z(P)) \subseteq N_G(P)$. Since α permutes maximal Pinvariant r-subgroups and the number of maximal P-invariant r-subgroups is coprime to 13, α invariants some maximal P-invariant r-subgroup. Let W be a $\langle \alpha \rangle P$ -invariant r-subgroup. If r=2, then $N_G(P)$ is nilpotent since $N_G(P) = N_G(S)$, a contradiction. Next we assume r=3. Let M be a maximal α -invariant subgroup of G which contains $N_G(W)$. If M is 3-closed, then $P \subseteq N_G(Q)$, a contradiction. Hence M is 3-nilpotent and so $M = N_G(P)$. By (2.7) $[Z(Q), \alpha] \subseteq C_Q(P)$. Assume that $[Z(Q), \alpha] = 1$, then $[S_0, Z(Q)] = 1$. Since $g \in Z(Q)$, $[S_0, Q] = 1$, a contradiction. Hence we may assume that [Z(Q)], $\alpha \neq 1$. Next we prove that $C_{Z(Q)}(S_0)=1$. Suppose false. Let M be a maximal α -invariant subgroup of G which contains $N_G(S_0)$. Since $C_{Z(Q)}(S_0) \subseteq M$ and $N_G(S)$ is nilpotent M is 3-closed. Hence $N_S(S_0) = S_0$, this implies $S = S_0$. Hence we see $S \subseteq N_G(Q)$, in particular $C_{Z(Q)}(S) \neq 1$. By Glauberman's weakly closed elements theorem [2] $C_{Z(Q)}(S)$ is weakly closed in Q with respect to G since $C_{Z(Q)}(S) \subseteq Z(N_G(J(Q)))$. Let $z \in \Omega_1(Z(S))^{\sharp}$. By Z*-theorem there exists an element $x(\neq z)$ of S such that x is conjugate to z in G. Then there exists an element $k \in G$ and subgroup H of S such that $z^k = x$ and $k \in N_G(H)$, z, $x \in H$. Since $C_{Z(Q)}(S)$ is weakly closed in S, $N_G(H) = C_G(H)$ $N_{N_G(H)}(C_{Z(Q)}(S))$ by the Frattini argument. Then we may assume $k \in N_G$ $(C_{Z(Q)}(S))\subseteq N_G(Q)$. Hence $z=z^k=x$, a contradiction. Hence $C_{Z(Q)}(S_0)=1$. By (2.5) $\Omega_1(Z(Q)) = \langle a \rangle \oplus \langle a^{\alpha} \rangle \oplus \cdots \oplus \langle a^{\alpha^{p-1}} \rangle$, where $\langle a^{\alpha^i} \rangle$ is a Wedderburn component, $0 \le i \le p-1$. Let $v \in S_0^{\sharp}$. If $a^v = a^{-1}$, $(a^{\alpha^i})^v = a^{\alpha^i}$ for $i = 1, \dots, p-1$, then $a^{vv^{\alpha}}=a^{-1}$ and $(a^{\alpha})^{vv^{\alpha}}=a^{-\alpha}$. We set $b=a^{-1}a^{\alpha}$, then $b^{w}=b^{-1}$ and $b\in$ $[Z(Q), \alpha]$. By the Frattini argument $N_G(\langle b \rangle) = C_G(b) N_{N_G(\langle b \rangle)}(P)$. Hence $N_G(\langle b \rangle) = C_G(b) N_{N_G(\langle b \rangle)}(P)$. (P) is even order, this implies $N_G(S) = N_G(P)$, a contradiction. Hence $C_G(x)$ is a $\{2,3\}'$ -group for each $x \in P^{\sharp}$.

Lemma 4.9. $C_G(t)$ is solvable for every 2-element and 3-element t of G. In particular $O(C_G(x))=1$ for every involution x of G.

PROOF. Let R be a α -invariant S_7 -subgroup of G. Assume that $R \neq 1$ and $d(Z(R)) \leq 2$, then p=2 or 3. Then G is odd order or 3'-group, a con-

tradiction. Hence we may assume that R=1 or $d(Z(R))\geqslant 3$. Assume $d(Z(R))\geqslant 3$. Then we can repeat the proof of Lemma 4.6, 4.7 and 4.8 verbatim with R in place of P to obtain that $C_G(y)$ is a $\{2,3\}'$ -group for each $y\in R^{\sharp}$. Hence $C_G(t)$ is a $\{7,13\}'$ -group for every 2-element and 3-element t of G. In particular $C_G(t)$ is solvable by Lemma 4.3. Assume $SCN_3(2)=\phi$. Then $|\Omega_1(Z(S))|\leqslant 4$. Hence $p(=|\alpha|)=3$, a contradiction. Hence we may assume $SCN_3(2)\neq \phi$. By (2.14) $O(C_G(x))=1$ for every involution x of G. Assume R=1.

Then $C_G(t)$ is a $\{7, 13\}'$ -group for every 2-element and 3-element t of G is a 7'-group. Hence Lemma 4.9 is proved.

Lemma 4.10. $O_{3'}(C_G(x))$ is odd order for every element x of Q^{\sharp} .

Proof. Suppose false. Then there exists an element x of $Q^{\#}$ such that $O_{3'}(C_G(x))$ is even order. Since Z(Q) is non-cyclic and the centralizer of every non-trivial 3-element is solvable, we may assume that $x \in Z(Q)$. By (2.10) $W = \langle O_{3'}(C_G(x)) | x \in Z(Q)^{\sharp} \rangle$ is a solvable 3'-group of G. W is α -invariant and even order. Let S_1 be a $\langle \alpha \rangle Q$ -invariant S_2 -subgroup of W. Let K be a maximal α -invariant subgroup of G which contains S_1 Suppose that K is 3-nilpotent, then $Q \subseteq N_G(S)$, a contradiction. K is 3-closed. It follows $[S_1, Q] \subseteq S_1 \cap Q = 1$. Let L be a maximal α -invariant subgroup which contains $C_G(S_1)$. Then L is 3-closed. Hence $Z(S) \subseteq N_G(Q)$. If $C_{Z(S)}(Q) \neq 1$, then $S \subseteq N_G(Q)$. If $\Omega_1(Z(S))$ is weakly closed in S, then G is a JR-group, $L_2(q)$, $q \equiv 3, 5(8)$, $L_2(2^n)$, $S_2(2^n)$, $U_3(2^n)$, which is a contradiction. Hence $\Omega_1(Z(S))$ is not weakly closed in S with respect to G. Hence there exists an element $h \in G$ such that $h \in N_G(H)$ and $\Omega_1(Z(S))^h \neq \Omega_1(Z(S))$, H = $\langle \mathcal{Q}_1(Z(S))^k | k \in \langle h \rangle \rangle \subseteq S$. If [H,Q] = 1, then $N_G(H) = C_G(H) N_{N_G(H)}(Q)$. Thus we may assume that $h \in N_G(Q)$, this follows $\Omega_1(Z(S))^h = \Omega_1(Z(S))$, a contradiction. Hence we may assume $[\Omega_1(Z(S))^h, Q] \neq 1$. Since $\Omega_1(Z(S))$ is noncyclic, $Q = \langle C_Q(x) | x \in \Omega_1(Z(S))^{h\sharp} \rangle$. Since $[\Omega_1(Z(S))^h, Q] \neq 1$, there exist elements $x, y \in \Omega_1(Z(S))^h$ and $a \in Q$ such that [a, x] = 1 and $[a, y] \neq 1$. $y \in O_2(C_G(x))$ since $C_G(x)$ is solvable and $O(C_G(x)) = 1$, $y \in Z(S)^h$, S^h is a S_2 -subgroup of $C_G(x)$. Hence $[a,y]\subseteq O_2(C_G(x))\cap Q=1$, a contradiction. Suppose $C_{Z(S)}(Q)=1$, then we have a contradiction by a similar argument. Hence $O_{3'}(C_G(x))$ is odd order for each each $x \in Q^{\sharp}$.

LEMMA 4.11. G does not exist.

PROOF. Since $N_S(Q)$ acts irreducibly on $\Omega_1(Z(Q))$, there exist elements $u \in N_S(Q)$ and $a, b \in \Omega_1(Z(Q))$ such that u centralizes $\langle a \rangle \times \langle b \rangle$ and u is an involution. Then $\langle a \rangle \times \langle b \rangle$ acts faithully on $O_2(C_G(u))$ since $C_G(u)$ is solvable and $O(C_G(u))=1$. Hence we may assume that there exists an element $x \in S_1(Q)$

 $O_2(C_G(u))$ such that [a, x] = 1 and $[b, x] \neq 1$ since $O_2(C_G(u)) = \langle C_{O_2(C_G(u))}(d) | d \in \langle a \rangle \times \langle b \rangle^{\sharp} \rangle$. Since $b \in O_{3',3}(C_G(a))$ and $O_{3',3}(C_G(a))$ is odd order, $[b, x] \subseteq O_{3',3}(C_G(a)) \cap O_2(C_G(u)) = 1$, a contradiction.

2. The case $SCN_3(\mathbf{P}) = \phi$

Suppose P=1. Then $C_G(t)$ is a $\{7, 13\}'$ -group for every 2-element and 3-element t of G since G is a 13'-group. Hence Lemma 4.9 is satisfied. By Lemma 4.9 and 4.10, we have a contradiction. Hence $P \neq 1$. Suppose Z(P) is a cyclic group, then p=7, in particular $L_2(7)$ is not involved in G. Hence we may assume that $L_3(3)$ is involved in G. Since $SCN_3(P) = \phi$, $d_n(P) \leq 2$, which yields $\Omega_1(P) \subseteq Z(P)$.

Lemma 4.12. $g \in N_G(\langle x \rangle)$ for each $x \in \Omega_1(P)^{\sharp}$.

PROOF. $\Omega_1(P)$ is normalized by $\langle \alpha \rangle \times \langle g \rangle$. By (2.5) the number of Wedderburn components of $\Omega_1(P)$ with respect to $\langle g \rangle$ is one since $C_{\varrho_1(P)}(\alpha) = 1$. Then $\Omega_1(P) = P_1 \oplus P_2$, where P_i is a $\langle g \rangle$ -isomorphic cyclic subgroup of $\Omega_1(P)$ for i = 1, 2, since g normalizes a cyclic subgroup of $\Omega_1(P)$. Hence g normalizes every cyclic subgroup of $\Omega_1(P)$.

Lemma 4.13. $C_Q(S) = 1$.

PROOF. Suppose false. We set $Q^* = C_Q(S)$, then $Q^* \neq 1$. In the first we prove that $C_G(x)$ is odd order for each $x \in P^{\sharp}$. Suppose false. there exists an element $x \in P^{\#}$ such that $C_{G}(x)$ is even order. P normalizes a $V \in S_2$ -subgroup of $C_G(x)$ since $C_G(x)$ is 13-nilpotent. Let M be a maximal α -invariant subgroup which contains $N_G(Q^*)$. Suppose M is 3-nilpotent, then $N_G(Q) = N_G(S)$ is nilpotent, a contradiction. Hence $S \subseteq N_G(Q)$. If S is abelian, then G is JR-type or $L_2(q)$, $q \equiv 3, 5(8)$, $L_2(2^n)$, a contradiction. follows that $C_s(Q) \neq 1$ since $S' \subseteq C_s(Q)$. We set $\Omega_1(P) = \langle x \rangle \times \langle y \rangle$, then y acts fixed point free on a Hall $\{2,3\}$ -subgroup W of $C_G(x)$ which contains V. Because suppose false, then $C_{G}(\Omega_{1}(P))$ is even order or $3||C_{G}(\Omega_{1}(P))|$. If $C_G(\Omega_1(P))$ is even order, then we see that $N_G(S) = N_G(P)$, a contradiction. If $3||C_G(\Omega_1(P))|$, then we have a contradiction by a similar argument of Lemma 4.8. Hence W is nilpotent. Since $O_{13'}(C_G(x))$ is solvable, $V\subseteq$ Since $W \cap O_{\{2,3\}}(C_G(x))$ is nilpotent, $V = O_2(C_G(x))$. Now we $O_{\{2,3\}}(C_G(x)).$ prove that $C_G(V)$ is 13-nilpotent. Suppose false. Since a S_{13} -subgroup of $C_G(V)$ is cyclic, we may assume that $N_{C_G(V)}(\langle x \rangle)/C_{C_G(V)}(x)$ is not a 13-group. Since $N_G(\langle x \rangle) = \langle g \rangle PO_{13'}(C_G(x))$, every S_3 -subgroup of $N_G(\langle x \rangle)$ is written by $\langle g^k \rangle U$ for some $k \in N_G(\langle x \rangle)$ and $U \in S_3$ -subgroup of $O_{13'}(C_G(x))$. Then $\langle g^k \rangle U \subset C_G(V) = U$ or $\langle g^k \rangle U$ since [U, V] = 1. Suppose that $[g^k, V] = 1$, then [g, V] = 1 since $k \in N_G(\langle x \rangle)$ and $V \triangleleft N_G(\langle x \rangle)$. Since $\langle g \rangle \langle y \rangle$ is a Frobenius

group, [y, V] = 1, a contradiction. Hence every S_3 -subgroup of $N_G(\langle x \rangle)C_G$ $(V) \ \ \text{is contained in} \ \ O_{\mathbf{13'}}(C_G(x)). \quad \ \text{Then} \ \ N_{C_G(V)}(\langle x \rangle)/C_{C_G(V)}(x) \ \ \text{is a 13-group,}$ a contradiction. Hence $C_G(V)$ is 13-nilpotent. By taking a conjugation of V, we may assume that $V\subseteq S$. Then $Q^*\subseteq C_G(V)$ and $h\in C_G(V)$, where his a non-trivial 13-element. Let Q_0 be a S_3 -subgroup of $C_G(V)$ which contains Q^* . We may assume $h \in N_G(Q_0)$ since $C_G(V)$ is 13-nilpotent. Now $C_G(Q_0)$ is a 13'-group since $C_G(Q_0) \subseteq C_G(Q^*)$ and $C_G(Q^*)$ is a α -invariant 13'-group. By taking a conjugation of Q_0 , we may assume that $Q_0 \subseteq Q$ and $C_Q(Q_0)$ is a S_3 -subgroup of $C_G(Q_0)$. We set $Q_1 = C_Q(Q_0)$, then $Z(Q) \subseteq Q_1$. Since $g \in Z(Q)$ $C_S(Q)$ is a S_2 -subgroup of $C_G(Z(Q))$. Hence $C_S(Q)$ is a S_2 -subgroup of $C_G(Q)$ (Q_1) . Now $C_G(Q_1)$ is a 13'-group since $C_G(Q_1) \subseteq C_G(Z(Q))$. Hence by the Frattini argument we may assume that $h \in N_G(C_S(Q))$. Since $C_S(Q) \neq 1$, we see that $N_G(S) = N_G(P)$ is nilpotent, a contradiction. Hence we have $C_G(x)$ is odd order for each $x{\in}P^{\sharp}$. In particular $C_{G}(t)$ is solvable for every involution t of G. By (2.14) we see that $O(C_G(t))=1$ for every involution t. But now we have a contradiction by a similar argument of Lemma 4.9. Hence $C_Q(S)=1$.

LEMMA 4.14. $\Omega_1(Z(Q)) \subseteq Z(Q)$.

Proof. We set $\Phi_0(Q) = Q$ and $\Phi_1(Q) = \Phi(Q)$, $\Phi_{i+1}(Q) = \Phi(\Phi_i(Q))$, $\Phi_{n+1}(Q) = \Phi(Q)$ (Q)=1. Let $S_0=N_S(Q)$. Now we prove that $\langle \alpha \rangle S_0$ acts irreducibly on Φ_i Suppose false. Since $C_Q(\alpha)$ is cyclic, we have $C_Q(S_0) \neq$ $(Q)/\Phi_{i+1}(Q), 0 \le i \le n$ 1. By Lemma 4.13 $S \neq S_0$. Let M be a maximal α -invariant subgroup of G which contains $N_G(S_0)$, then M is 3-nilpotent, hence $N_G(S) = N_G(Q)$, a Hence $\langle \alpha \rangle S_0$ acts irreducibly on $\Phi_i(Q)/\Phi_{i+1}(Q)$, $0 \le i \le n$. contradiction. Next we consider the structure of $\overline{\varPhi_i(Q)} = \varPhi_i(Q)/\varPhi_{i+2}(Q)$, $0 \le i \le n-1$. Then class $\overline{\varPhi_i(Q)} \leq 2$ and $\Omega_1(\overline{\varPhi_i(Q)}) = \overline{\varPhi_{i-1}(Q)}$ or $\overline{\varPhi_i(Q)}$. Now the exponent of $\Omega_1(\overline{\varPhi_i(Q)}) = 3 \text{ since class } \overline{\varPhi_i(Q)} \leq 2. \text{ Suppose that } \Omega_1(\overline{\varPhi_i(Q)}) = \overline{\varPhi_i(Q)}, \text{ then } \Omega_1(\overline{\varPhi_i(Q)}) = \overline{\varPhi_i(Q)}, \text{ then$ $|C_{\overline{\varphi_i(Q)}}(\alpha)|=3. \quad \text{Since } C_{S_0}(\overline{\varphi_{i+1}(Q)})=1, \text{ we have } C_{\overline{\varphi_{i+1}(Q)}}(\alpha)\neq 1. \quad \text{Hence } C_{\overline{\varphi_i(Q)}}(\alpha)\neq 1.$ $\subseteq \overline{\Phi_{i+1}(Q)}$. But now $C_{\Phi_i(Q)/\Phi_{i+1}(Q)}(\alpha)=1$, a contradiction. Hence we see that $Q_1(\overline{\Phi_i(Q)}) = \overline{\Phi_{i+1}(Q)}$. Let $a \in Q$ and |a| = 3. Then there exists a number j, $0 \leq j \leq n, \text{ such that } a \in \varPhi_j(Q) - \varPhi_{j+1}(Q). \quad \text{Suppose that } j < n, \text{ then } a \in \varPhi_j(Q) / 2 \leq n$ $\Phi_{j+2}(Q)$. Since |a|=3, we see that $a\in \mathcal{Q}_1(\Phi_j(Q))=\Phi_{j+1}(Q)$. Hence $a\in \Phi_{j+1}(Q)$, a contradiction. Hence $a \in \Phi_n(Q) \subseteq Z(Q)$, this implies $\Omega_1(Q) \subseteq Z(Q)$.

Lemma 4.15. $C_G(x)$ is a 3'-group for each $x \in P^{\#}$. In particular the centralizer of every non-trivial 3-element is solvable.

Proof. Suppose false. Then there exists an element $x \in \mathcal{Q}_1(P)$ such that $3||C_G(x)|$. We set $L = O_{13'}(C_G(x))$, then $N_G(\langle x \rangle) = \langle g \rangle PL$. Let A be a S_3 -subgroup of $N_G(\langle x \rangle)$ which contains the element g. Then $\langle g \rangle P$ acts

on $O_{3',3}(L)/O_{3'}(L)$. But now $O_{3',3}(L) = O_{3'}(L)(A \cap O_{3',3}(L))$. Since |g| = 3, we have [g,A] = 1 by Lemma 4.14. Hence g centralizes $O_{3',3}(L)/O_{3'}(L)$. Since $\langle g \rangle P$ is a Frobenius group, this follows that $[P,O_{3',3}(L)] \subseteq O_{3'}(L)$. Hence $3||C_G(P)||$. But now we have a contradiction by a similar argument of Lemma 4.8. Hence $C_G(x)$ is a 3'-group for each $x \in P^{\sharp}$. By Lemma 4.3 the centralizer of every non-trivial 3-element is solvable.

Lemma 4.16. $C_G(x)$ is odd order for each $x \in P^{\sharp}$. In particular $C_G(t)$ is solvable and $O(C_G(t))=1$ for every involution t of G.

Proof. Suppose false. Then there exists an element x of $P^{\#}$ such that an S_2 -subgroup V of $C_G(x)$ is non-trivial. Then by Lemma 4.13 $V \lhd$ $C_G(x)$. We set $\Omega_1(P) = \langle x \rangle \times \langle y \rangle$, then y acts fixed point free on V. Lemma 4.13 $C_G(V)$ is 13-nilpotent. By taking a conjugation of V we may assume that $V \subseteq S$ and $C_S(V)$ is a S_2 -subgroup of $C_G(V)$. Let $S^* = C_S(V)$, then $Z(V)\subseteq S^*$. By taking a conjugation of x, we may assume that $x\in N_G$ (S^*) . Assume that $N_G(S^*)$ is solvable, then x normalizes a S_2 -subgroup K_1 of $N_{G}(S^{*})$. Futhermore assume that $N_{G}(K_{1})$ is solvable, then x normalizes a S_2 -subgroup K_2 of $N_G(K_1)$. By a similar argument we see that $13||N_G(S)|$, then $N_G(S) = N_G(P)$, a contradiction. Hence there exists a 2-group K which contains S^* and such that $N_{\mathcal{G}}(K)$ is non-solvable. Hence $N_{\mathcal{G}}(K)$ involves $L_3(3)$, in particular a S_3 -subgroup of $N_G(K)$ is non-cyclic. By taking a conjugation of K we may assume that $\langle a \rangle \times \langle b \rangle \subseteq Q \subset N_g(K)$. Let $c \in \langle a \rangle \times \langle b \rangle^{\sharp}$, then $C_G(c) \subseteq O_{3'}(C_G(c)) N_G(Q)$ since $C_G(c)$ is solvable and $\Omega_1(Q) \subseteq Z(Q)$. the Signalizer functor theorem $\langle O_{3'}(C_G(d))|d\in\Omega_1(Q)^{\sharp}\rangle = L$ is a α -invariant solvable 3'-group. Suppose that $L\neq 1$. Let M be a maximal α -invariant subgroup of G which contains QL. Suppose that M is 3-nilpotent. If L is even order, then $N_G(S) = N_G(Q)$, a contradiction. If L is odd order, then we yield a contradiction by a similar argument of Lemma 4.8. Hence M is 3-closed and so $L\subseteq N_G(Q)$. Hence $C_G(c)\subseteq N_G(Q)$. In particular $K=\langle C_K(c)|$ $c \in \langle a \rangle \times \langle b \rangle^{\sharp} \rangle \subseteq N_{G}(Q)$. Let $W = \Omega_{1}(Z(V))$, then we may assume that $W \subseteq \Omega_{1}(Z(V))$ $N_{\mathcal{S}}(Q)$. On the other hand $C_{\mathcal{W}}(g_1) \cap C_{\mathcal{W}}(g_1^{y_1}) \subseteq C_{\mathcal{W}}(y_1) = 1$ for some conjugate elements g_1 , y_1 of g, y. Hence $C_W(g_1) \oplus C_W(g_1^{y_1}) \subseteq W$. We set $|W| = 2^m$, then $2^m \ge 2^{12}$ since y_1 acts fixed point free on W. Let $|C_W(g_1)| = 2^n$, then $2^{2n} \le 2^m$. Assume that $n \ge m-6$, then $m \ge 2n \ge 2(m-6)$, this follows $m \ge 12$, a contradiction. Hence $n \le m-6$. We set $W_0 = W \cap C_S(Q)$, then $|W; W_0| \le 2^6$, hence $|W_0| \ge 2^{m-6}$. Assume that $W = W_0$. Then $y_1 \in N_G(W) \subseteq C_G(W) N_G(Q)$. Hence $13||N_G(Q)|$, a contradiction. Hence $W \supseteq W_0$. Let $v \in W - W_0$ and $X = \langle v \rangle \times W_0$. Then $|C_W(g_1)| = 2^n \le 2^{m-6} \le 2^{m-5} \le |X|$. But now $C_G(X)$ is 13-nilpotent by a similar argument of Lemma 4.13. Then $C_Q(v) = C_Q(X)$ $\neq 1$ since $L_3(3)$ is involved in G and so Q is non-abelian. Let Q^* be a S_3 -subgroup of $C_G(x)$. Since $C_G(X)$ is 13-nilpotent, $x_1 \in N_G(Q^*)$ for some x_1 which is conjugate to x. Let Q_0 be a S_3 -subgroup of G which contains Q^* . Since $N_G(Q^*)$ is 3-constrained by Lemma 4.15 and $\Omega_1(Q_0) \subseteq Z(Q_0)$, we see $N_G(Q^*) \rhd \Omega_1(Q_0) O_{3'}(N_G(Q^*))$. Suppose that $x_1 \in O_{3'}(N_G(Q^*))$, then $[x_1, Q^*] \subseteq Q^* \subset O_{3'}(N_G(Q^*)) = 1$, which is a contradiction by Lemma 4.15. Hence we may assume that $x_1 \in N_G(\Omega_1(Q_0)) = N_G(Q_0)$. Hence $13||N_G(Q)|$, then $N_G(S) = N_G(P)$ is nilpotent, a contradiction. Hence $C_G(x)$ is odd order for each $x \in P^*$.

Now we see that $O_{3'}(C_G(y))$ is odd order for each $y \in Q^{\#}$ by a similar argument of Lemma 4.10. And by a similar argument of Lemma 4.11 we have a final contradiction. Hence the Theorem is proved.

References

- [1] M. J. COLLINS: Finite Groups admitting almost fixed point free automorphisms, Proceedings of Symposia in Pure Mathematics, Volume XXI, Amer. Math. Soc.
- [2] G. GLAUBERMAN: Weakly closed elements of Sylow subgroups, Math. Zeit, 107 (1968), 1-20.
- [3] G. GLAUBERMAN: A sufficient condition for p-stability, Proc. London Math. Soc, 25 (1972), 253-287.
- [4] G. GLAUBERMAN: Global and Local Properties of Finite Groups, "Finite Simple Groups," edited by M. B. Powell and G. Higman. Academic Press, London and New York, 1971.
- [5] D. GORENSTEIN: Finite Groups, Harper and Row, New York, 1968.
- [6] D. GORENSTEIN: Centralizers of Involutions in Finite Simple Groups, "Finite Simple Groups," See [4].
- [7] D. M. GOLDSCHMIDT: Solvable Signalizer Functor on Finite Groups, J. Algebra, 21 (1972), 137-148.
- [8] B. RICKMAN: Groups admitting an automorphism of prime order fixing a cyclic subgroup of prime power order, Quart. J. Math, Oxford (2) 26 (1975), 47-59.
- [9] E. SHULT: On groups admitting fixed point free operator groups, I'll. J. Math, 9 (1965), 702-720.
- [10] J. G. THOMPSON: Finite groups with fixed point free automorphisms of prime order, Proc. Nat. Acad. Sci, 45 (1959), 578-581.
- [11] J. G. THOMPSON: Non-solvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968). 383-437.

Hiroshi Fukushima
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo, Japan