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1. Introduction

In [4] and [5], one of the authors of the present note considered the
relation between the F. and M. Riesz theorem and the structures of locally
compact abelian (LCA) groups. In this note, we shall refine these results
in a more general setting.

Let G be a LCA group with the algebraically ordered dual \hat{G}=\Gamma- If
there exists a semi-group P of \Gamma such that

(AO 1) P\cup(-P)=\Gamma

(AO 2) P\cap(-P)= {0},

then \Gamma is called algebraically ordered, and P is called a semi-group with
(AO)-conditions.

Let M_{P}^{\alpha}(G) be the set of all analytic measures with respect to P.
Here a measure \mu on G is analytic w. r. to P if and only if the Fourier
transformation \hat{\mu} is vanishing outside P. L^{1}(G) denotes the space of all
integrable functions with respect to the Haar measure on G.

The main result is: If 0\neq M_{P}^{\alpha}(G)\subset L^{1}(G) , then G must be isomorphic
to one of the following

R\cross D or T\cross D

where R is the reals, T the torus and D some devisible discrete abelian
group.

We express our hearty thanks to Professor J. Inuoue who has given
important ideas in order to prove the theorems.

2. Main theorems

Let G be a LCA group with the algebraically ordered dual \Gamma=\hat{G} so that
there exists a semi-group P of \Gamma with (AO)-conditions. Then \Lambda=\overline{P}\cap(\overline{-P})

is a closed subgroup of \Gamma It is easy to see that \Lambda is the boundary of P
and -P respectively.

* H. Yamaguchi is the same person as H. Otaki.
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Lemma 1. Let F be a compact subgroup of \Gamma Then \Lambda contains F.
PROOF. F\cap P is a semigroup with (AO)-conditions in F. Since F is

compact, F\cap P is dense in F. (cf. Lemma 1 of [5]). Hence, F\subset\overline{P} and simi-
larly F\subset(\overline{-P}) .

Lemma 2. Let \gamma\in\Gamma\backslash \Lambda . Then, there exists an open set V\ni\gamma with
V+\Lambda\subset P\backslash \{0\} or V+\Lambda\subset-P\backslash \{0\} .

PROOF. It \gamma\in P\backslash \Lambda , then there exists an open set V\ni\gamma such that V\subset

P\backslash \Lambda . In this case, we have V+\Lambda\subset P\backslash \{0\} . If \gamma\in-P\backslash \Lambda , then there exists
an open set V\ni\gamma with V+\Lambda\subset-P\backslash \{0\} . q . e . d .

Lemma 3. Let \tilde{P}=\{[\gamma];[\gamma]=\gamma+\Lambda\subset P\}\cup[0] . Then, \tilde{P} is a closed semi-
group with (AO)-conditions in \Gamma/\Lambda . Moreover \pi(P)=\tilde{P} and \pi( – P)=-\tilde{P}

where \pi is a natural homomorphism \Gammaarrow\Gamma/\Lambda .
This is an easy consequence of Lemma 2.

Lemma 4. If \{0\}\neq M_{P}^{\alpha}(G)\subset L^{1}(G) , then \Gamma/\Lambda is isomorphic to R or Z.
PROOF. If \Gamma/\Lambda is not isomorphic to R or Z, then there exists a measure

\mu on (\hat{\Gamma/\Lambda})=\Lambda^{\perp} (annihilator of \Lambda) with \mu\in M_{P}[mathring]_{\approx}(\Lambda^{\perp}) and \hat{\mu}\not\in C_{o}(\Gamma/\Lambda) (cf. [4]).
Since \mu is considered as a measure on G, and the Fourier transform \hat{\mu} is
vanishing outside P and \tilde{\mu}\not\in C_{0}(\Gamma) by Lemma 3, we have a contradicition.

Lemma 5. Under the assumption of Lemma 4, \Gamma\equiv\Lambda\cross R or \Gamma\equiv\Lambda\cross Z.
PROOF. By structure theorem ([3], (24.30) Theorem), \Gamma\equiv R^{k}\cross F(k :

integer) where F contains an open compact subgroup. If \Gamma/\Lambda\equiv R , then
R\cong\Gamma/\Lambda\supset(R^{k}+\Lambda)/\Lambda\cong R^{k}/(\Lambda\cap R^{k}) . Since S=R^{k}/\Lambda\cap R^{k} is isomorphic to a
closed subgroup of R and is not discrete, we have (i) S\equiv R or (ii) S\equiv 0 .

Assume (i) is occured, then R^{k}\cong R\cross(\Lambda\cap R^{k}) . Hence, \Gamma\equiv R\cross(\Lambda\cap R^{k})\cross F.
Since \Lambda\cap[R\cross\{0\}\cross\{0\}]=\{0\} , and \Gamma/\Lambda\cong R , we have \Gamma\equiv R\cross\Lambda .

In the case (ii), \Lambda\supset R^{k} and so R\cong\Gamma/\Lambda\cong(\Gamma/R^{k})/(\Lambda/R^{k})\equiv F/\Lambda/R^{k}) . But,
this is a contradiction, since F has an open compact subgroup.

If \Gamma/\Lambda\cong Z, then it is clear that \Gamma\equiv\Lambda\cross Z.
We state now the main theorem.

THEOREM 1. Let G a LCA group with the algebraically ordered
dual \Gamma=\hat{G}, and let P be a semi group with (AO)-conditions of \Gamma If \{0\}\neq

M_{P}^{a}(G)\subset L^{1}(G) , then G is isomorphic to one of both R\cross D or T\cross D where
D is a divisible discrete group.

PROOF. By Lemma 5, \Gamma\cong\Lambda\cross H where H\cong R or Z. We have only to
prove that \Lambda is compact. Remark now that G=\hat{\Gamma}\cong H^{\perp}\cross\Lambda^{\perp},\hat{H}^{\perp}=\Lambda and
(\hat{\Lambda}^{\perp})=H. Assume that \Lambda is not compact, then there exists a \nu\in M(H^{\perp})

(measure on H^{\perp}) with \hat{\nu}\not\subset C_{0}(\Lambda) . By Lemma 2, there exists a \gamma\in H and an
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open set V\exists\gamma with V+\Lambda\subset P\backslash \{0\} . Hence, there exists a non zero \rho\in L^{1}(\Lambda^{\perp})

with supp \hat{\rho}\subset V\cap H. Putting \mu=\nu\cross\rho , we have

supp \hat{\mu}\subset\Lambda+V\subset P and \hat{\mu}\not\in C_{0}(\Gamma)(

Hence \mu\in M_{P}^{a}(G)\backslash L^{1}(G) . This is a contradiction.
REMARK 1. Theorem 1 in ([5]) is an immediate consequence of TheO-

rem 1 of this paper.
REMARK 2. Let F be a compact abelian torsion-free group.

(1) If P is a semigroup with (AO)-conditions of R\cross E, and if P is not
dense in R\cross F, then P is either

\{(x,f)\in R\cross F;x>0 . or x=0 and f\geqq_{P}0\}

or

\{(x,f)\in R\cross F;x<0 . or x=0 and f\geqq_{P}0\}

Here ‘> ’ denotes the usual order of R and ‘\geqq_{P}
’ denotes the order of F

induced by the semigroup P.

(2) Let P be a semigroup with (AO)-conditions of Z\cross F. If P is not
dense in Z\cross F, then P is either

\{(n,f)\in Z\cross F;n>0,\cdot or n=0 and f\geqq_{P}0\}

or

\{(n,f)\in Z\cross F;n<0 , or n=0 and f\geqq_{P}0\}

THEOREM 2. Suppose G is one of both T\cross D and R\cross D, where D
is a discrete abelian group such that \hat{D} is torsion-free. Assume that P
is a semigroup of \hat{G} with (AO)-conditions such that it is not dense in \hat{G}.
Then, M_{P}^{a}(G)\subset L^{1}(G) .

Indeed, when G is either T or R this is the F. and M. Riesz theorem.
The proof is given in Proposition A of [5] for G=T\cross D. The latter case
can be proved in the same way as the case G=T\cross D .

3. Denseness of a semigroup with (AO)-conditions

An abelian group G is algebraically ordered if and only if it is torsion-
free, since every group G can be considered as a discrete group (c. f . 8. 1.
2 of [6] ) . Therefore, these two terms are synonymous.

PROPOSITION 1. Let R be the additive group of the real numbers.
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There exists a dense subset of which is a semigroup with (AO)-conditions.

PROOF. Let \{e_{\lambda}\}_{\lambda\in\Lambda} be a Hamel basis of R with respect to the rational
number field. We can assume that every e_{\lambda} is positive. We introduce a
linear order in 41. Every x\in R is written into the following:

x= \sum_{k=1}^{n}\alpha_{k}e_{\lambda_{k}} ; \lambda_{1}>\lambda_{2}>\cdots>\lambda_{n} ,

where \alpha_{k} is a rational number for k=1,2, \cdots , n . Let P= \{x;x=\sum_{k=1}^{n}\alpha_{k}e_{\lambda_{k}} ;

\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n} and \alpha_{1}>0\}\cup\{0\}

Then it is easy to see that P is a semigroup with (AO)-conditions in R.
An order induced by P is known as the lexicographic order. But P con-
tains not only positive numbers, but also negative numbers. So, it is easy
see that P is dense in R by the usual topology.

PROPOSITION 2. Let G_{1} and G_{2} be LCA groups with semigroups P_{1}

and P_{2} with (AO)-conditions. If P_{1} is dense in G_{1} , then there exists in
G=G_{1}\cross G_{2} a dense semigroup P with (AO)-conditions. If P_{1} is not dense
in G_{1} , then there exists a semigroup P with (AO)-conditions which is not
dense in G=G_{1}\cross G_{2} .

PROOF. We construct a linear order by lexicographic method in G=
G_{1}\cross G_{2} so that g_{1}+g_{2}\geqq g_{1}’+g_{2}’ means that g_{1}-g_{1}’\in P_{1}/\{0\} or \{g_{1}=g_{1}’, g_{2}\geqq g_{2}’\} .
Then the semigroup induced by this linear order satisfies above conditions.

THEOREM 3. Let \Gamma be a nondiscrete locally compact abelian torsion-
free group. Then there exists a dense subset which is a semigroup with
(AO)-conditions.

PROOF. By structure theorem ([3], (24. 30) Theorem), \Gamma\cong R^{n}\cross F, where
n is a nonnegative integer and F is a LCA group with a compact open
subgroup F_{0} . By Propositions 1 and 2, we can easily construct a semigroup
with the required condition if n\geqq 1 . Therefore we will prove the case n=
0, i. e, \Gamma\cong F. The proof of this case calls for Zorn’s lemma. Since \Gamma is
not discrete, it follows that F_{0}\neq\{0\} .

Let \mathscr{F} denote the set of the following pairs (\Lambda, P):\Lambda is an open sub-
group which includes F_{0} as a subgroup. P is a dense subset of \Lambda which is
a semigroup with (AO)-conditions. \overline{\mathscr{F}} is not empty because F_{0} has such a
semigroup. For (\Lambda_{1}, P_{1}) , (\Lambda_{2}, P_{2})\in \mathscr{F},\cdot define (\Lambda_{1}, P_{1})\leqq(\Lambda_{2}, P_{2}) if and only if
\Lambda_{1}\subset\Lambda_{2} and P_{1}\subset P_{2} . By this ”\leqq ”, ^{o^{-}} is partially ordered.

Let \{\Lambda_{\alpha}, P_{a})\}_{\alpha\in I} be a totally ordered subset of \mathscr{F} Let \Lambda_{0} and P_{0} denote
\bigcup_{a\in I}\Lambda_{\alpha} and \bigcup_{\alpha\in I}P_{a} respectively. Then \Lambda_{0} is an open subgroup of \Gamma and F_{0}\subset
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\Lambda_{0} . It is easy to check that P_{0} is a semigroup with (AO)-conditions and
P_{0} is dense in \Lambda_{0} . Thus, (\Lambda_{0}, P_{0})\in \mathscr{F} and (\Lambda_{\alpha}, P_{\alpha})<(\Lambda_{0}, P_{0}) for every \alpha\in I.
By Zorn’s lemma, there exists a maximal element (\Lambda_{*}, P_{*})\in \mathscr{F} It is suffi-
cient to show \Lambda_{*}=\Gamma in order to prove the theorem. We suppose \Lambda_{*\overline{\equiv}}-\Gamma

and derive a contradiction. First, consider the case that \Gamma/\Lambda_{*} is not a tor-
sion group. There exists an element \gamma_{0}\in\Gamma (but \gamma_{0}\not\in\Lambda_{*} ) such that n\gamma_{0}+

\Lambda_{*}\neq\Lambda_{*} for every natural number n . Thus, the open subgroup [\gamma_{0}, \Lambda_{*}] ge-
nerated by \gamma_{0} and \Lambda_{*} is isomorphic to Z\cross\Lambda_{*} . Let P=\{(n, \gamma)\in[\gamma_{0}, \Lambda_{*}] ;
\gamma\in P_{*}\backslash \{0\} , n\in Z\}\cup\{(n, 0)\in[\gamma_{0}, \Lambda_{*}] ; n\geqq 0\} . Then P is a semigroup with
(AO)-conditions which is dense in [\gamma_{0}, \Lambda_{*}] . That is, ([\gamma_{0}, \Lambda_{*}], P) belongs to
\mathscr{F} and (\Lambda_{*}, P_{*})_{\neq}<([\gamma_{0}, \Lambda_{*}], P) . This contradicts the maximality of (\Lambda_{*}, P_{*}) .
If \Gamma/\Lambda_{*} is a torison group, define a semigroup P as follows:

P= {\gamma\in\Gamma;n\gamma\in P_{*} for some positive integer n satisfying n\gamma+\Lambda_{*}=\Lambda_{*} }.
Then, since \Gamma is torsion-free, P is a semigroup with (AO)-conditions.

Since P\supset P_{*} and P_{*} is dense in \Lambda_{*},\overline{P}\cap(\overline{-P)}\supset\Lambda_{*} . If we suppose that P
is not dense in \Gamma . there exists \gamma\in\Gamma with \gamma+\Lambda_{*}\subset P by Lemma 2. Since
there exists a positive number n with n\gamma\in\Lambda_{*} , it follows that P_{*}=\Lambda_{*}\cap P

\supset n(\gamma+\Lambda_{*})=\Lambda_{*} . This is impossible. Hence, P is dense in \Gamma This im-
plies that (\Gamma, P)\in\swarrow _{r} and (\Lambda_{*}, P_{*})<(\underline{arrow}\Gamma_{J}P) , contradicting the maximality of
(\Lambda_{*}, P_{*}) . Q. E. D.

PROPOSITION 3. Suppose \Gamma is a locally compact abelian torsion-free
group and \Gamma\equiv R^{n}\cross F, where n is a nonnegative integer and F is a LCA
group which has a compact open subgroup F_{0} . Then there is a semigroup
P with (AO)-conditions of \Gamma which is not dense in \Gamma in n\geqq 1 .

In case n=0, such a semigroup exists if and only if \Gamma/F_{0} is not a
torsion group.

PROOF. If n\geqq 1 , it is easy to construct a such semigroup P by pr0-

position 1. Thus we consider the case n=0. If \Gamma/F_{0} is a torsion group,
then a semigroup S with (AO)-conditions of \Gamma is always dense in \Gamma by the
fact that every semigroup with (AO)-conditions in a compact group is always
dense, because for every \gamma\in\Gamma there exists an integer n such that \{\gamma+F_{0}\}\cup

\{z\gamma+F_{0}\}\cup\cdots\cup\{n\gamma+F_{0}\} is a compact open subgroup of \Gamma Hence, \Gamma/F_{0} is
not a torsion group if there exists a semigroup P with (AO)-conditions not
dense in \Gamma Now, we prove the converse.

Let \swarrow, = { \gamma+F_{0} ; O(\gamma+F_{0})<\infty in \Gamma/F_{0}} where O(\gamma+F_{0}) denotes the
order of the coset in \Gamma/F_{0} , and let F_{0,\mathscr{H}}\propto=\cup\{\gamma+F_{0} ; \gamma+F_{0}\in,\mathscr{B}^{-}\} . By the
hypothesis, F_{0,\mathscr{H}}\neq\Gamma Furthermore, \Gamma/F_{0’ \mathscr{H}} is torsion-free, as we can prove
in the following way. Suppose that there exist \gamma_{0}\not\in F_{0,Z} and an integer
n>1 such that n\gamma_{0}+F_{0,{?}}. =F_{0,\mathscr{H}} . Then n\gamma_{0}+F_{0}=\gamma+F_{0} for some , \gamma+F_{0}\in\swarrow_{f}^{_{l}},
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and mn\gamma_{0}+F_{0}=F_{0} where m=O(\gamma+F_{0}) in \Gamma/F_{0} . This implies \gamma_{0}+F_{0}\in \mathscr{F}

This is a contradiction.
Now, we can take a semigroup P_{1} with (AO)-conditions of F_{0,\mathscr{H}} , since

F_{0,ff} is a torsion free group.
Since \Gamma/F_{0,\mathscr{H}} is torsion-free, there exists a semigroup P_{2} with (AO)-

conditions of \Gamma/F_{0,\mathscr{H}} .
Let P=\{\gamma\in\Gamma;[\gamma]\in P_{2}\backslash \{[0]\}\}\cup P_{1} , where [\gamma] denotes the coset of \gamma in

\Gamma/F_{0,\swarrow\propto_{P}} . Then P is a semigroup with (AO)-conditions which is not dense
in \Gamma Q. E. D.
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