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The factorization in the commutant
of a unitary operator
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1. Introduction.

In this paper we generalize the results concerning the factorization of
positive (i . e . positive semidefintie) operator valued functions on the unit circle
to the abstract context. Let \mathscr{L} be a complex Hilbert space, U a unitary
operator on \mathscr{L} and \mathscr{F} a closed subspace of \mathscr{L} which is invariant under
U. Let \{U\}’ denote the commutant of U and \mathscr{A} the algebra consisting of
all bounded operators A in \{U\}’ such that A\mathscr{A}-\underline{\subset}\mathscr{N}\wedge We ask the follow-
ing question; which positive operator T in \{U\}’ is factorable in the sense
that T=A^{*}A for some A in \mathscr{A} ?

Let us recall a classical example. Let Z^{\nearrow} be a separable Hiblert space,
L_{l}^{2} the Hilbert space of all Lebesgue measurable \swarrow valued functions on
the unit circle having square-integrable norm, and U_{0} the bilateral shift on
L_{l}^{2} , i . e . (U_{0}f)(e^{i\theta})=e^{i\theta}f(e^{i\theta}) . Also let L_{\mathscr{H}7(l)}^{\infty} denote the algebra of all Legesgue
measurable, essentially bounded functions from the unit circle to the algebra
\mathscr{D}(\swarrow) of bounded operators on Z. and M_{F} the multiplication operator on
L_{l}^{2} by F in L_{{?}(l)}^{\infty} , i . e . (M_{F}f)(e^{i\theta})=F(e^{i\theta})f(e^{i\theta}) . It is known that the map
Farrow M_{F} is a * -isomorphism from the algebra L_{{?}(l)}^{\infty} with involution F^{*}(e^{i\theta})=

(F(e^{i\theta}))^{*} onto the commutant \{U_{0}\}’ of U_{0} . (See, for example, [6, P48 and
P50]). Let H_{l}^{2} and H_{{?}(l)}^{\infty} be the Hardy subspaces of L_{l}^{2} and L_{{?}(l)}^{\infty} respec-
tively. It is easy to see that A lies in H_{{?}(l)}^{\infty} if and only if M_{A} maps H_{l}^{2}

into itself. Thus the above question is essentially the factorization problem
for positive operator valued functions if \mathscr{L}=L_{l}^{2} , \mathscr{A}=H_{l}^{2} and U=U_{0} .

The above question was considered by Page and Gellar, in [5] and [2].
In [5], Page studies the invertibility of an operator PA|\mathscr{A}’ . where A lies
in \{U\}’ and P is the orthogonal projection of \mathscr{L} onto \mathscr{A}- , and showed
that every invertible positive operator in \{U\}’ is factorable. Subsequently
Gellar and Page [2] generalized this result, but only in an unsatisfactory
way.

In the present paper we first prove a theorem which gives necessary
and sufficient conditions for factorability. This contains the theorem of
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Gellar and Page, and Lowdenslager’s characterization [3, P117, Lemma] for
factorability of operator valued functions. Then we generalize Deviratz’
factorization theorem for operator valued functions having invertible values
a. e . ([3] and [8]), and the operator generalization ([7] and [8]) of the Fejer-
Riesz theorem on the factorization of trigonometric polynomials.

The author wishes to thank Prof. T. Ando and Prof. T. Nakazi for
many helpful conversations,

2. Factorization theorem.

Lemma 1. Let T\in\{U\}’ and A\in \mathscr{A} . Then T^{*}T=A^{*}A if and only if
T=VA where V is a partial isometry in \{U\}’ with initial space (A\mathscr{L})^{-}

PROOF. Let T^{*}T=A^{*}A . Then the operator V defined by V(Af)=Tf
for all f\in \mathscr{L} and V|(A\mathscr{L})^{\perp}=0 is a partial isometry with initial space (A\mathscr{L})^{-}-

The operator V commutes with U because (A\mathscr{L})^{-} is a reducing subspace
of U. The converse is obvious.

By Lemma 1 our question is equivalent to the following; Which opera-
tor T\in\{U\}’ can be factored in the form T=VA, where A\in \mathscr{A} and V is
a partial isometry in \{U\}’ with initial space (A\mathscr{L})^{-}?

Lemma 2. Let T\in\{U\}’ and ,A a reducing subspace for U. Then
there exists a partial isometry V\in\{U\}’ with initial space (T–A)^{-} and final
space contained in \mathscr{M} . If further T|_{-}\wedge \mathscr{M} is one-tO-One, then the final space
of V is equal to \mathscr{M} .

PROOF. Let P be the orthogonal projection of \mathscr{L} onto ,\mathscr{M} . Let TP=
WQ be the polar decomposition of TP, so W is a partial isometry with
initial space (Ker TP)^{\perp} , and Q is positive. Since TP is in the von Neumann
algebra \{U\}’ , W lies in \{U\}’ Setting V=W^{*}.

’ we complete the proof of
Lemma.

When \mathscr{A} is a reducing subspace of U, the answer to our question is
the following ;

COROLLARY 1. If {?} is a reducing subspace of U, then every operator
T\in\{U\}’ can be factored T=VA, where A\in,\mathscr{A} and V is a partial isometry
in \{U\}’ with initial space (A\mathscr{L})^{-} .

PROOF. By Lemma 2 we obtain a partial isometry W_{1}\in\{U\}’ such that
(Ker W_{1})^{\perp}=(T\mathscr{A})^{-} and Im W_{1}\underline{\subset}\mathscr{A} (In denoting the range.) Let P be the
orthogonal projection onto (T\mathscr{L})^{-}O-(T\mathscr{A})^{-}- Since T commutes with U^{*}

as well as U, the subspace (T\mathscr{L})^{-}O-(T{?})^{-} is U reducing and P\in\{U\}’ .
We apply Lemma 2 to PT\in\{U\}’ and a U reducing subspace \mathscr{L}O-\neg{?} to
obtain a partial isometry W_{2}\in\{U\}’ such that (Ker W_{2})^{\perp}=(PT(\mathscr{L}O-{?}))^{-}=
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(T\mathscr{L})^{-}O-(T\overline{\mathscr{A}})^{-} and Im W_{2}\subseteq \mathscr{L}O-\mathscr{N} We set V=W_{1}^{*}+W_{2}^{*} and A=V^{*}T

Since the initial spaces of W_{1} and W_{2} are mutually orthogonal and so are
their final spaces, V^{*} is a partial isometry whose initial space is equal to
(Ker W_{1})^{\perp}\oplus(KerW_{2})^{\perp}=(T^{-}\mathscr{L})^{-} Also A\mathscr{N}=W_{1}T_{t}\mathscr{A}\subseteq \mathscr{A}^{c} Clearly V and
A are in \{U\}’ . This completes the proof.

We call an operator A outer if A lies in \mathscr{A} and A satisfies (A\sim \mathscr{A})^{\perp}\cap

{?}=(A\mathscr{L})^{\perp}\cap{?} Let \mathscr{L} , \mathscr{A}’ and U be L_{l}^{2} , H_{l}^{2} and U_{0} respectively. Then
it is easy to see that if A is an outer function in H_{{?}(l)}^{\infty}([3], [8]) , then the
multiph.cation operator M_{A} is outer in the above sense.

In [2], Gellar and Page proved the following theorem; Let T\in\{U\}’

If there exists an invertible operator X\in\{U\}’ such that XT\in,\mathscr{A} , then T=
VA where A is outer and V is a partial isometry in \{U\}’ with initial space

(A\mathscr{L})^{-}

We weaken the condition of Gellar and Page to obtain a necessary
and sufficient condition for factorabih.ty.

THEOREM 1. Let T\in\{U\}’ . The following statements are equivalent.
(i) T=VA where A\in \mathscr{A} and V is a partial isometry in \{U\}’ with

initial space (A\mathscr{L})^{-} .
(ii) There exists an operator X\in\{U\}’ such that XT\in \mathscr{A} and X|(T_{-}\mathscr{A})^{-}

is one-tO-One.

(iii) There exists an one-tO-One operator Y from \bigcap_{n=0}U^{n}(T\cdot"’{?}\nearrow)^{-} into
\infty

\bigcap_{n=0}U^{n}{?} such that YU=UY on \bigcap_{n=0}U^{n}(T\mathscr{A})^{-} .

(iv) T=VA where A is outer and V is a partial isometry in \{U\}’

with initial space (A\mathscr{L})^{-}-

PROOF. (iv) implies (i) ; This is trivial.
(i) implies, (ii); Take V^{*} for X in (ii).

(ii) implies (iii); For X in (ii), X| \bigcap_{n=0}U^{n}(T\mathscr{A})^{-} is one-t0-0ne, and

X( \bigcap_{n=0}^{\infty}U^{n}(T{?})^{-})=\bigcap_{n=0}^{\infty}XU^{n}(T\mathscr{A}^{c)^{-}=\bigcap_{n=0}U^{n}X(T\mathscr{A}")^{-\underline{\subset}}\bigcap_{n=0}^{\infty}U^{n}\mathscr{A}’\infty

Hence X|\cap U^{n}(T\mathscr{A}’)^{-} meets the requirement on Y in (iii).
n=0

(iii) implies (iv) ; Since \mathscr{A}
“ and (T{?})^{-} are invariant under U, U|\mathscr{F}

and U|(T{?})^{-} are isometries on {?} and (T_{c}\mathscr{K})^{-} respectively. From the
Wold decompositions of isometries U|\mathscr{A}^{c\swarrow} and U|(T\mathscr{F})_{:}^{-} we have the follow-
ing decomposition;

\mathscr{A}=(\sum_{n=0}^{\infty}\oplus U^{n}\swarrow)\oplus \mathscr{F}^{\cdot} ,
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where\swarrow^{\nearrow}=\mathscr{A}O-U\mathscr{A}’ , \mathscr{F}=\bigcap_{n=0}U^{n}\mathscr{A},\cdot and U|\mathscr{F} is unitary ;
and

(T \mathscr{A})^{-}=(\sum_{n=0}^{\infty}\oplus U^{n}\mathscr{I}_{1})\oplus \mathscr{F}_{1} ,

where \swarrow_{1}^{\nearrow}=(T\mathscr{F})^{-}O-U(T\mathscr{A})^{-}- \mathscr{F}_{1}=\bigcap_{n=0}U^{n}(T\mathscr{A})^{-} . and U|\mathscr{F}_{1} is unitary.
Let \mathscr{A}_{-\infty} denote the smallest reducing subspace for U that contains \mathscr{F} ;

\mathscr{F}_{-\infty}=(\sum_{n=-\infty}^{\infty}\oplus U^{n}\swarrow)\oplus \mathscr{F}

Then

\mathscr{L}=(\mathscr{L}O-\mathscr{A}_{-\infty})\oplus(\sum_{n=-\infty}^{\infty}\oplus U^{n}\swarrow)\oplus \mathscr{F}\eta
,

and

(T \mathscr{L})^{-}=((T\mathscr{L})^{-}O-(T\mathscr{A}_{-\infty})^{-})\oplus(\sum_{n=-\infty}^{\infty}\oplus U^{n}\swarrow_{1}’)\oplus \mathscr{F}_{1}

Let Q be the orthogonal projection of \mathscr{S}_{-} onto (T\prime \mathscr{L})^{-}O-(T\mathscr{A}_{-\infty})^{-}

Since (T\mathscr{L})^{-}O-(T\mathscr{F}_{-\infty})^{-} is a reducing subspace of U, Q\in\{U\}’ . We apply
Lemma 2 to QT\in\{U\}’ and a U reducing subspace \mathscr{L} – \mathscr{A}_{-\infty} to obtain a
partial isometry W_{1}\in\{U\}’ such that (Ker W_{1})^{\perp}=(QT(\mathscr{L}O-\mathscr{F}_{-\infty}))^{-}=(T\mathscr{L})^{-}

O-(T\mathscr{A}_{-\infty})^{-} and Im W_{1}\subseteq \mathscr{L}O-\mathscr{A}_{-\infty} .
From observations similar to the ones used in the proof of [2, TheO-

rem 2], we know that \dim\swarrow_{1}\leq\dim\swarrow Therefore there exists an isometry
W_{2} mapping z_{1}^{\mathscr{L}} into \swarrow We extend W_{2} to a partial isometry on \mathscr{L} by
defining W_{2}(U^{n}f)=U^{n}(W_{2}f) for each f\in\swarrow_{1} and n=0, \pm 1 , \pm 2 , \cdots and W_{2}=

0 on \mathscr{L}O-(\sum_{n=-\infty}^{\infty}\oplus U_{n}\mathscr{S}_{1}) . Clearly (Ker W_{2})^{\perp}= \sum_{n=-\infty}^{\infty}Q+U^{n}\swarrow_{1} , Im W_{2} \subseteq\sum_{n=-\infty}^{\infty}

\oplus U^{n}\swarrow . and W_{2}\in\{U\}’-

Let us extend Y in (iii) to \mathscr{L} by defining Y=0 on - \mathscr{F}_{1}^{\perp} . Then Y is
in \{U\}’ Applying Lemma 2 to Y and \mathscr{A}_{1}" , we obtain a partial isometry
W_{3}\in\{U\}’ with initial space contained in \mathscr{F} and final space r\mathscr{F}_{1} because
Im Y\underline{\subset}\mathscr{F} and Y|\mathscr{F}_{1} is one-t0-0ne.

We now set V=W^{\gamma_{1}*}+W_{2}^{*}+W_{3} and A=V^{*}T. The clearly V^{*} is a
partial isometry in \{U\}’ with initial space (T\mathscr{L})^{-},\cdot and so T=VA. Taking
account of the initial spaces and final spaces of W_{1} , W_{2} and W_{3} , it is easily
checked that A is outer. Therefore (iii) implies (iv).

By Lemma 1 we obtain the following theorem equivalent to Theorem 1.
THEOREM 1’ Let T be a positive operator in \{U\}’ The following
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statements are equivalent.
(i) T is factorable.
(ii) There exists an operator X\in\{U\}’ such that XT^{1/2}\in,\mathscr{A} and X|

(T^{1/2}\mathscr{A})^{-} is one-tO-One.

(iii) There exists an one-tO-One operator Y from \bigcap_{n=0}U_{n}(T^{1/2}\mathscr{F})^{-} into
\infty

\bigcap_{n=0}U^{n}\mathscr{A} such that YU=UY on \bigcap_{n=0}U^{n}(T^{1/2}\mathscr{A})^{-}

(iv) T=A^{*}A where A is outer.

The following lemma shows that we have only to consider the case
where the smallest reducing subspace \mathscr{A}_{-\infty} for U containing \mathscr{A} is equal
to \mathscr{L} .

Lemma 3. Let T be a positive operator in \{U\}’ and P_{-\infty} the orthO-
gonal projection of \mathscr{L} onto \mathscr{A}_{-\infty} . Then T is factorable if and only if
P_{-\infty}TP_{-\infty} is.

PROOF. Let T=A^{*}A for some A\in \mathscr{A}’ . Then P_{-\infty}TP_{-\infty}=(AP_{-\infty})^{*}

(AP_{-\infty}) , and clearly AP_{-\infty}\in,\mathscr{A} . Hence P_{-\infty}TP_{-\infty} is factorable.
Conversely, suppose that P_{-\infty}TP_{-\infty} is factorable, so there is a partial

isometry W_{1} with initial space (T^{1/2}P_{-\infty}\mathscr{L})^{-} such that W_{1}T^{1/2}P_{-\infty}\in.\mathscr{A} , by
Lemma 1. As in the proof of Theorem 1, we use Lemma 2 to obtain
a partial isometry W_{2}\in\{U\}’ with initial space (T^{1/2}\mathscr{L})O-(T^{1/2}P_{-\infty}\mathscr{L})^{-} and
final space contained in \mathscr{L}O-P_{-\infty}\mathscr{L} . We define W by W=W_{1}+W_{2} . Then
W is a partial isometry in \{U\}’ with initial space (T^{1/2}\mathscr{L})^{-} such that WT^{1/2}\in

\mathscr{A} , and so T is factorable by Lemma 1.
REMARK. Let V be an isometry on a Hibert space \mathscr{A} . Moore, RO-

senblum and Rovnyak proved a theorem [4, Theorem 4] which characterized
the product A^{*}A where A commutes with V. It turns out that our TheO-
rem 1’ is quivalent to [4, Theorem 4] under Lemma 3 and the following
fact (see [1, Theorem 2] and its proof.): Let V be an isometry on a Hilbert
space \mathscr{F} and U the minimal unitary extension of V on a Hilbert space
\mathscr{F} . Let P be the orthogonal projection of \mathscr{F} onto \mathscr{A} . Then an operator
T on \mathscr{A} satisfies V^{*}\backslash TV=T if and only if there exists an operator \tilde{T}\in\{U\}’

such that T=P\tilde{T}|\mathscr{A} . In this case, moreover, (i) T is positive if and only
if \tilde{T} is positive, and (ii) T=A^{*}A for some A\in\{V\}’ if and only if \tilde{T}=A^{*}A

for some \tilde{A}\in\{U\}’ such that \tilde{A}\mathscr{A}\subseteq \mathscr{A}r

3. Applications.

Let F be a positive operator valued function in L_{{?}(l)}^{\infty} whose values are
invertible a . e. . The Devinatz theorem (see e . g . [2, p119]) asserts that if
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log ||F(e^{i\theta})^{-1}||^{-1} is integrable, then F is factorable, that is, F(e^{i\theta})=A^{*}(e^{i\theta})

A(e^{i\theta})a . e . for some A\in H_{{?}(l)}^{\infty} .

From the fact that F_{1}(e^{i\theta})\geq F_{2}(e_{1}^{i\theta\backslash }a. e . if and only if M_{F_{1}}\geq M_{F_{2}} for
F_{1} , F_{2}\in L_{{?}(l)}^{\infty} , it follows for a positive operator valued function F\in L_{{?}(l)}^{\infty}

that F has invertible values a . e . if and only if M_{F}\geq M_{wI} where w is a
bounded positive (non-zero) scalar function and I is the identity operator
on \swarrow And clearly M_{wI} is one-t0-0ne operator in the double commutant
\{U_{0}\}’ of U_{0} .

Returning to the general case, let us consider the factorability of an
operator T\in\{U\}’ for which there exists an one-t0-0ne positive operator
D\in\{U\}’ such that D\leq T

THEOREM 2. Let T be a positive operator in \{U\}’ and D an one-tO-

one positive operator in \{U\}’ such that D\leq T Assume that there exists
an one-tO-One factorable operator T_{1}\in\{U\}’ such that T_{1}\leq T Then T is

factorable.
PROOF. Since T_{1} is factorable, T_{1}=A_{1}^{*}A_{1} for some A_{1}\in \mathscr{A} . For each

f\in \mathscr{L} , we have ||A_{1}f||=||T_{1}^{1/2}f||\leq||T^{1/2}f|| because T_{1}\leq T , and so we can
define a bounded operator X by X(T^{1/2}f)=A_{1}f for f\in \mathscr{L}_{-} and X|(T^{1/2}\mathscr{L})^{\perp}=0 .
Then XT^{1/2}\in A’ and X commutes with U because T^{1/2} and A_{I}\in\{U\}’ By
Theorem 1’ it is now enough to show that X|T^{1/2}\mathscr{A})^{-} is one-t0-0ne. If
Xg=0 for some g\in(T^{1/2}\mathscr{A})^{-},\cdot then there is a sequence \{f_{n}\} in \mathscr{A} such that
T^{1/2}f_{n}arrow g and A_{1}f_{n}arrow 0 . Since T_{1}=A_{1}^{*}A_{1} , T_{1}^{1/2}f_{n}arrow 0 . Since T\geq D, there is a
vector h\in \mathscr{L} such that D^{1/2}f_{n}arrow h . Then T_{1}^{1/2}h= \lim_{narrow\infty}T_{1}^{1/2}D^{1/2}f_{n}=\lim_{narrow\infty}D^{1/2}T_{1}^{1/2}f_{n}

(because D^{1/2}\in\{U\}’ ) =0 , so h=0 because T_{1} is one-t0-0ne. Hence we have
D^{1/2}g= \lim D^{1/2}T^{1/2}f_{n}=\lim T^{1/2}D^{1/2}f_{n}=0 , and g=0 because D is one-t0-0ne.
Thereforenarrow\infty X|(T^{1/2}\mathscr{A})^{-}isnarrow\infty one-t0-0ne. This completes the proof.

The following corollary is an abstract generalization of the Devinatz
theorem.

COROLLARY 2. Let T be a positive operator in \{U\}’ If there exists
an one-tO-One factorable operator D in \{U\}’ such that D\leq T. then T is

factorable.
Our last theorem contains the operator generalization ([7] and [8]) of

the Fejer-Riesz theorem which asserts that every positive trigonometric poly-
nomial w is of the form w=|f|^{2} , where f is a analytic trigonometric poly-
nomial of degree equal to the one of w.

THEOREM 3. Let T be a positive operator in \{U\}’ . Assume that there
exists an operator X\in\{U\}’ such that XT\in \mathscr{A} and X|(T\mathscr{A})^{-} is one-tO-One.

Then T is factorable and its outer factor A satisfies XA^{*}\in \mathscr{A} .
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PROOF. We can assume, without loss of generality, that T\leq I. By
assumption and Theorem 1’. T^{2}=A_{1}^{*}A_{1} for some A_{1}\in_{-}\mathscr{A} . Since T\geq T^{2}=

A_{1}^{*}A_{1} (because T\leq I), we have an operator X_{1}\in\{U\}’ such that X_{1}T^{1/2}=A_{1} .
From T^{2}=A_{1}^{*}A_{1} and (T^{1/2}\mathscr{L})^{-}=(KerT^{1/2})^{\perp} , it follows that X_{1}|(T^{1/2}\mathscr{L})^{-} is
one-t0-0ne. Therefore T satisfies the condition (ii) of Theorem 1’, so T is
factorable.

Let T=A^{*}A where A is outer. Then we have XA^{*}(Af)=XTf\in \mathscr{A}

for all f\in \mathscr{F} . If f\in \mathscr{F}\cap(A\mathscr{A})^{\perp} then f\in(A\mathscr{L})^{\perp} , so XA^{*}f=0 . Hence
\mathscr{A} is invariant for XA^{*} and XA^{*}\in \mathscr{A} .

Now the operator generalization of the Fejer-Riesz theorem follows
immediately. In fact, let F be a positive operator valued trigometric poly-
nomial of degree N. Then the multiplication operator M_{F} satisfies the as-
sumption in Theorem 3 with X=M_{e^{iN\theta}I} (the multiplication operator by e^{iN\theta}I).
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