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§ 1. Introduction.

One of the authers has proved the following theorems (K. Yamauchi
(61, [8)-

THEOREM A. In a compact orientable Riemannian manifold with
non-positive constant scalar curvature, an infinitesimal projective transfor-
mation is necessarily an infinitesimal isometry.

THEOREM B. Let M be a compact, orientable and simply connected
n-dimensional (n=3) Riemannian manifold with constant scalar curvature
R. If M admits a non-isometric infinitesimal projective transformation,
then M is isometric to a sphere of radius yn(n—1)/R.

It is natural to consider the Kaehlerian analogues corresponding to the
above theorems. In this paper, we shall investigate the infinitesimal holo-
morphically projective transformations in compact Kaehlerian manifolds with
constant scalar curvature and prove the following theorems.

THEOREM 1. In a compact Kaehlerian manifold with non-positive
constant scalar curvature, an infinitesimal holomorphically projective trans-
formation is necessarily an infinitesimal isometry.

THEOREM 2. Let M be a compact and simply connected n-dimensional
(n=2m=4) Kaehlerian manifold with constant scalar curvature R. If M
admits a non-isometric infinitesimal holomorphically projective transforma-
tion, then M is holomorphically isometric to a complex m-dimensional pro-
jective space with the Fubini-Study metric of constant holomorphic sectional
curvature R/m (m—+1).

T. Kashiwada announced [Theorem 1. However the proof given in
turned to be incomplete.

In this paper, we assume that the Riemannian manifolds under considera-
tion are connected, differentiable and of dimension =3.
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§ 2. Preliminaries.

Let M be a Kaehlerian manifold of real dimension n(n=2m>4). Then
the Riemannian metric g;; and the complex structure J;* satisfy the following

equations :
(2. 1) JeJr= -6, gbansz-“:Qﬁ’
VyJ#=0, Veg;;=0,
where V, denotes the operator of covariant differentiation with respect to
g ji.

Let R;;" be the Riemannian curvature tensor and put Rt =R,;® (Ricci
tensor), R:=¢"* Ry, (scalar curvature) and H,;: =J*R,. Then we can easily
verify that these tensors satisfy the following identities :

(2- 2) RkjiaJah — Rkjtthia s Rkjih, - RkjbaJitha >
Rji:Rbanina’ Hji+Hijzoy
Hji = Hbanb J= _<1/2> Jba'Rbaji - Jbaijia .

An infinitesimal isometry or a Killing vector field X* is defined by

(2.3) :Zng@-EVin—l—VinZO,

where =y denotes the operator of Lie differentiation with respect to X.
In a compact orientable Riemannian manifold, a necessary and sufficient
condition for a vector field X" to be an infinitesimal isometry is

(2. 4) V,X*=0
and
(2.5) Vol Xi+RAX*=0.

An infinitesimal affine transformation X" is defined by
h
ji
where {]hz} is the Christoffel’s symbol.

(2. 6) ._,z’X{ }szViXthRtha:o,

In a compact orientable Riemannian manifold, an infiitesimal affine transfor-
mation is necessarily an infinitesimal isometry.

An infinitesimal homorphically projective transformation or, for simplicity,
an infinitesimal HP-transformation X* is defined by

(2.7) xx{ th} = Fy00+F.of —Fod pJp—Fodod
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where F; is a certain vector.

In this case, we shall call F; the associated vector of the transformation.
If F, vanishes, then the infinitesimal HP-transformation reduces to an affin
one.

Contracting (2. 7) with respect to h and i, we get

(2. 8) V7, Xe=(n+2) F;,

which shows that the associated vector is gradient.
A vector field X" is called contravariant analytic or, for simplicity, ana-
lytic, if it satisfies

(2 9) %Xz]ihz __JiaVaXh_{_JahViXa:O.

Transvecting (2.7) with ¢!, we have (2.5). In a compact Kaehlerian
manifold, (2. 5) is equivalent to (2. 9), whence an infinitesimal HP-transforma-
tion. is analytic.

For a vector field X" and tensor field Y;* the following identities are
well known :

<2 10) ngx{ﬁ}—VJxX{é}:gXRknh’
(2.11) £4V; Yih_Vj;?fXYih =Yz ;ZX{]-};} — Y :ZX{]C-IZ-} .

Using these identities for the infinitesimal analytic HP-transformation
X" with the associated vector F;, we obtain the following identities :

(2.12) Vep,F"+R,*F*=0,
(2.13) 2R, Fe= —P*(4f),
_1
n-+2
(2. 14) JV Fo+JV,F; =0,

(2. 15) ZLxRjy=—(n+2)V;F;,

and

(2. 16) ZLxR, = —0,V;F;+6V, Fi+J . JaV;F,

—J PV Fo—2J0 2V Fy .

where f: = V,X* and Af: =V°V,.f,

§ 3. Proofs of theorems.

LemMA 1. If a compact Kaehlerian manifold M with constant scalar
curvature R admits an infinitesimal HP-transformation X", then there exists
the following formula:
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2R
(3.1) If=—-——-f,
e o= L7
weref.—n+2 o X%
Proor. From (2.7), (2.14), Ricci identity and Bianchi identity, we have
(3.2) 0=0"Wol; Xit Rapje X~ F5Gjs—F; Qo+ Fa i3 J ji + Fod £ J3)

= (Rapji— 2Ry jia) V? X*— RV ; X*+ Rj*V, X; — (Vo R ;i) X
—(df)g; =V F;+V Fod 2dy; .
Operating /7 to the above equation, we obtain
(3.3) 0= —2F; Ry, V? X©
=ViRpa L 9"
=l (4f)+2RF;,

whence ndf+2Rf is constant.
Then we have

2R
Y=-=7
because of
(3. 4) SMAfdo:g fdo=0,
where do denotes the volume element of M. Q.E.D.
Proor orF THEOREM 1.
Since
(3.5) dp*=2pdp+2F*p) Vo p)
for any function p on M, it follows
(3.6) SM(V“p) Vop) do = —SMpApdo-
From (3.6) and Lemma 1, we have
2
(3.7) S FaFado:iS fodo.
M n Ju

So, if R is non-positive, then F; vanishes. This means X" is an infinitesimal
affine transformation and consequently an infinitesimal isometry by the com-
pactness of M. Q.E.D.

M. Obata announced and S. Tanno proved the following
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LemMMA 2. Let M be a complete and simply connected Kaehlerian
manifold. In order for M to admit a non-constant function p satisfying

(3.8) ViViVip+(c/4) (20, 005+ 1094 +Vi09;—Vapd I 4
_ValeaJk'» — 0

for some positive constant c, it is necessary and sufficient that M is holo-
morphically isometric to a complex projective space with Fubini-Study
metric of constant holomorphic sectional curvature c.

LemMma 3. Let M be a compact Kaehlerian manifold with constant

scalar curvature R. If M admits an infinitesimal HP-transformation X,

2R ) X .. )
then Y”: :WX’Z—{-F" is an infinitesimal isomeiry and consequently

F" is an infinitesimal HP-transformation.

Proor. Using Lemma 1, we have

2R
(3. 9) V.Y ZWVQX +Af
2R 2R
BT A

On the other hand, we have
(3.10) Ve, Y+ R2Y*=0,

because X" and F" are analytic.
Thus Y” is an infinitesimal isometry and it is clear that F” is an infinitesimal
HP-transformation. Q. E.D.

ProoF oF THEOREM 2.
Using Lemma 3 and Lemma 1, we have

2
B.1) PP Fi=—RauF— o

—72+—2)<Fkgji+Fjgki—FaJk“Jﬁ

_‘Fa, Jja Jk%) .
Since F; is gradient, using (3. 11), we have

(3.12) 0=F,V;F,—V,V.F,

2R
- ‘2RakﬁFa— W(Fjgu_Figkj_2FaJkaJﬁ

—FoJ 2 dy+FoJody) .

Substituting this result into (3.11), we obtain
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R
(3 13) VkV]F1,+W(ZFkgﬂ—*“F‘]gkz—{_Fzgk]"‘FaJ]asz

'—Fa,Jia'ka) — O .

Since X" is non-isometric, R is positive. Therefore, from Lemma 2,
2 was proved. Q.E.D.
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