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\S 1. Introduction.

One of the authers has proved the following theorems (K. Yamauchi
[6], [8] ) .

THEOREM A. In a compact orientable Riemannian manifold with
non-positive constant scalar curvature, an infifinitesimal projective transfor-
mation is necessarily an infifinitesimal isometry.

THEOREM B. Let M be a compact, orientable and simply connected
n-dimensional (n\geqq 3) Riemannian manifold with constant scalar curvature
R. If M admits a non-isometric infifinitesimal projective transformation,
then M is isometric to a sphere of radius\mapsto n(n-1)/R.

It is natural to consider the Kaehlerian analogues corresponding to the
above theorems. In this paper, we shall investigate the infinitesimal hol0-
morphically projective transformations in compact Kaehlerian manifolds with
constant scalar curvature and prove the following theorems.

THEOREM 1. In a compact Kaehlerian manifold with non-positive
constant scalar curvature, an infifinitesimal holomorphically projective trans-

formation is necessarily an infifinitesimal isometry.

THEOREM 2. Let M be a compact and simply connected n-dimensional
(n=2m\geqq 4) Kaehlerian manifold with constant scalar curvature R. If M
admits a non-isometric infifinitesimal holomorphically projective transforma-
tion, then M is holomorphically isometric to a complex m-dimensional prO-

jective space with the Fubini-Study metric of constant holomorphic sectional
curvature R/m(m+1) .

T. Kashiwada announced Theorem 1. However the proof given in
[2] turned to be incomplete.

In this paper, we assume that the Riemannian manifolds under consider
tion are connected, differentiable and of dimension \geqq 3 .
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\S 2. Preliminaries.

Let M be a Kaehlerian manifold of real dimension n(n=2m\geqq 4) . Then
the Riemannian metric g_{ji} and the complex structure J_{i}^{h} satisfy the following
equations :

(2. 1) J_{i}^{a}J_{a^{h}}=-\delta_{i}^{h} , g_{ba}J_{j}^{b}J_{i}^{a}=g_{ji} .
\nabla_{k}J_{i}^{h}=0 , \nabla_{k}g_{ji}=0\dot{\prime}

where \nabla_{k} denotes the operator of covariant differentiation with respect to
g_{ji} .

Let R_{kji^{h}} be the Riemannian curvature tensor and put R_{ji} :=R_{aji^{a}} (Ricci
tensor), R:=g^{ba}R_{ba} (scalar curvature) and H_{ji} :=J_{j}^{a}R_{ai} . Then we can easily
verify that these tensors satisfy the following identities:
(2. 2) R_{kji^{a}}J_{a^{h}}=R_{kja^{h}}J_{i}^{a} , R_{kjih}=R_{kjba}J_{i}^{b}J_{hj}^{a}

R_{ji}=R_{ba}J_{j}^{b}J_{i}^{a} , H_{ji}+H_{ij}=0 ,\cdot

H_{ji}=H_{ba}J_{j}^{b}J_{i}^{a}=-(1/2)J^{ba}R_{baji}=J^{ba}R_{bjia} .

An infinitesimal isometry or a Killing vector field X^{h} is defined by

(2. 3) \mathscr{L}_{X}g_{ji}\equiv\nabla_{j}X_{i}+\nabla_{i}X_{j}=0 ,

where \mathscr{L}_{X}. denotes the operator of Lie differentiation with respect to X^{h} .
In a compact orientable Riemannian manifold, a necessary and sufficient
condition for a vector field X^{h} to be an infinitesimal isometry is
(2. 4) \nabla_{a}X^{a}=0

and

(2. 5) \nabla^{a}\nabla_{a}X^{h}+R_{a^{h}}X^{a}=0

An infinitesimal affine transformation X^{h} is defined by

(2. 6) \mathscr{L}_{X}\{\begin{array}{l}hji\end{array}\}\equiv\nabla_{j}\nabla_{i}X^{h}+R_{aji^{h}}X^{a}=0 ,

where \{\begin{array}{l}hji\end{array}\} is the Christoffel’s symbol.

In a compact orientable Riemannian manifold, an infiitesimal affine transfor-
mation is necessarily an infinitesimal isometry.

An infinitesimal homorphically projective transformation or, for simplicity,
an infinitesimal HP transformation X^{h} is defined by

(2. 7) \mathscr{L}_{X}\{\begin{array}{l}hji\end{array}\}=F_{j}\delta_{i}^{h}+F_{i}\delta_{j}^{h}-F_{a}J_{j}^{a}J_{i}^{h}-F_{a}J_{i}^{a}J_{j}^{h} ,
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where F_{i} is a certain vector.
In this case, we shall call F_{i} the associated vector of the transformation.
If F_{i} vanishes, then the infinitesimal HP-transformation reduces to an affin
one.
Contracting (2. 7) with respect to h and i, we get

(2. 8) \nabla_{j}\nabla_{a}X^{a}=(n+2)F_{j} .

which shows that the associated vector is gradient.
A vector field X^{h} is called contravariant analytic or, for simplicity, ana-

lytic, if it satisfies

(2. 9) \mathscr{L}_{X}J_{i}^{h}\equiv-J_{i}^{a}\nabla_{a}X^{h}+J_{a^{h}}\nabla_{i}X^{a}=0

Transvecting (2. 7) with g^{ji} , we have (2. 5). In a compact Kaehlerian
manifold, (2. 5) is equivalent to (2. 9), whence an infinitesimal HP-transforma-
tion is analytic.

For a vector field X^{h} and tensor field Y_{i}^{h} , the following identities are
well known :

(2. 10) \nabla_{k}\mathscr{L}_{X}\{\begin{array}{l}hji\end{array}\}-\nabla_{j}\mathscr{L}_{X}\{\begin{array}{l}hki\end{array}\}=\mathscr{L}_{X}R_{kji}^{h} ,

(2. 11) \mathscr{L}_{X}\nabla_{j}Y_{i}^{h}-\nabla_{j}\mathscr{L}_{X}Y_{i}^{h}=Y_{i}^{a}\mathscr{L}_{X}\{\begin{array}{l}hja\end{array}\}-Y_{a}^{h}\mathscr{L}_{X}\{_{ji}^{a}\}

Using these identities for the infinitesimal analytic HP-transformation
X^{h} with the associated vector F_{i} , we obtain the following identities:

(2. 12) \nabla^{a}\nabla_{a}F^{h}+R_{a^{h}}F^{a}=0 .
(2. 13) 2R_{a}^{h}F^{a}=-\nabla^{h}(\Delta f) ,

where f:= \frac{1}{n+2}\nabla_{a}X^{a} and \Delta f:=\nabla^{a}\nabla_{a}f,

(2. 14) J_{j}^{a}\nabla_{i}F_{a}+J_{i}^{a}\nabla_{a}F_{j}=0 :

(2. 15) \mathscr{L}_{X}R_{ji}=-(n+2)\nabla_{j}F_{i} ,

and
(2. 16) \mathscr{L}_{X}R_{kji^{h}}=-\delta_{k}^{h}\nabla_{j}F_{i}+\delta_{j}^{h}\nabla_{k}F_{i}+J_{k}^{h}J_{i}^{a}\nabla_{j}F_{a}

-J_{j^{h}}J_{i}^{a}\nabla_{k}F_{a}-2J_{i}^{h}J_{j}^{a}\nabla_{k}F_{a} .

\S 3. Proofs of theorems.

Lemma 1. If a compact Kaehlerian manifold M with constant scalar
curvature R admits an infifinitesimal HP-transformation X^{h}, then there exists
the following formula:
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(3. 1) \Delta f=-\frac{2R}{n}f’\neg

where f:= \frac{1}{n+2}\nabla_{a}X^{a} .

PROOF. From (2. 7), (2. 14), Ricci identity and Bianchi identity, we have

(3. 2) 0=\nabla^{b}(\nabla_{b}\nabla_{j}X_{i}+R_{abji}X^{a}-F_{b}g_{ji}-F_{j}g_{bi}+F_{a}J_{b}^{a}J_{ji}+F_{a}J_{j}^{a}J_{bi})

=(R_{abji}-2R_{bjia})\nabla^{b}X^{a}-R_{ai}\nabla_{j}X^{a}+R_{j}^{a}\nabla_{a}X_{i}-(\nabla_{a}R_{ji})X^{a}

-(\Delta f)g_{ji}-\nabla_{i}F_{j}+\nabla^{b}F_{a}J_{j}^{a}J_{bi} .

Operating \nabla^{j} to the above equation, we obtain

(3. 3) 0=-2\nabla_{i}R_{ba}\nabla^{b}X^{a}

=\nabla_{i}R_{ba}\mathscr{L}_{X}g^{ba}

=n\nabla_{i}(\Delta f)+2RF_{i} ,

whence n\Delta f+2Rf is constant.
Then we have

\Delta f=-\frac{2R}{n}f

because of

(3. 4) \int_{M}\Delta fd\sigma=\int_{M}fd\sigma=0’.

where da denotes the volume element of M. Q. E. D.
PROOF OF THEOREM 1.
Since

(3. 5) \Delta\rho^{2}=2\rho\Delta\rho+2(\nabla^{a}\rho)(\nabla_{a}\rho)

for any function \rho on M, it follows

(3. 6) \int_{M}(\nabla^{a}\rho)(\nabla_{a}\rho)d\sigma=-\int_{M}\rho\Delta\rho d\sigma

From (3. 6) and Lemma 1, we have

(3. 7) \int_{M}F^{a}F_{a}d\sigma=\frac{2R}{n}\int_{M}f^{2}d\sigma .

So, if R is non-positive, then F_{i} vanishes. This means X^{h} is an infinitesimal
affine transformation and consequently an infinitesimal isometry by the com-
pactness of M. Q. E. D.

M. Obata [3] announced and S. Tanno [5] proved the following
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Lemma 2. Let M be a complete and simply connected Kaehlerian
manifold. In order for M to admit a non-constant function \rho satisfying

\langle 3. 8) \nabla_{k}\nabla_{j}\nabla_{i}\rho+(c/4)(2\nabla_{k}\rho g_{ji}+\nabla_{j}\rho g_{ki}+\nabla_{i}\rho g_{kj}-\nabla_{a}\rho J_{j}^{a}J_{ki}

-\nabla_{a}\rho J_{i}^{a}J_{kj})=0

for some positive constant c, it is necessary and sufficient that M is holO-
morphically isometric to a complex projective space with Fubini-Study
metric of constant holomorphic sectional curvature c.

Lemma 3. Let M be a compact Kaehlerian manifold xvith constant
scalar curvature R. If M admits an infifinitesimal HP-transformation X^{h} ,

2R
then Y^{h}

:=X^{h}+F^{h}\overline{n(n+2)} is an infifinitesimal isometry and consequently
F^{h} is an infifinitesimal HP-transformation.

PROOF. Using Lemma 1, we have

(3. 9) \nabla_{a}Y^{a}=\frac{2R}{n(n+2)}\nabla_{a}X^{a}+\Delta f

= \frac{2R}{n}f-\frac{2R}{n}f=0

On the other hand, we have

(3. 10) \nabla^{a}\nabla_{a}Y^{h}+R_{a^{h}} Y^{a}=0 ,

because X^{h} and F^{h} are analytic.
Thus Y^{h} is an infinitesimal isometry and it is clear that F^{h} is an infinitesimal
HP-transformation. Q. E. D.

PROOF OF THEOREM 2.
Using Lemma 3 and Lemma 1, we have

(3. 11) \nabla_{k}\nabla_{j}F_{i}=-R_{akji}F^{a}-\frac{2R}{n(n+2)}(F_{k}g_{ji}+F_{j}g_{ki}-F_{a}J_{k}^{a}J_{ji}

-F_{a}J_{j}^{a}J_{ki})t

Since F_{i} is gradient, using (3. 11), we have

(3. 12) 0=\nabla_{k}\nabla_{j}F_{i}-\nabla_{k}\nabla_{i}F_{j}

=-2R_{akji}F^{a}- \frac{2R}{n(n+2)}(F_{j}g_{ki}-F_{i}g_{kj}-2F_{a}J_{k}^{a}J_{ji}

-F_{a}J_{j}^{a}J_{ki}+F_{a}J_{i}^{a}J_{kj})

Substituting this result into (3. 11), we obtain
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(3. 13) \nabla_{k}\nabla_{j}F_{i}+\frac{R}{n(n+2)}(2F_{k}g_{ji}+F_{j}g_{ki}+F_{i}g_{kj}-F_{a}J_{j}^{a}J_{ki}

-F_{a}J_{i}^{a}J_{kj})=0

Since X^{h} is non-isometric, R is positive. Therefore, from Lemma 2, Theorem
2 was proved. Q. E. D.
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