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Partially admissible shifts on linear topological spaces

By Yasuji TAKAHASHI
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§ 1. Introduction

Quasi-invariant cylinder measures on real Banach spaces were studied
in by W. Linde. On the other hand, partially admissible shifts of meas-
ures on real linear spaces were studied in and by R. M. Dudley,
and in case of Hilbert spaces more complete results were given in by
A. V. Skorohod.

In this paper we introduce partially admissible shifts of cylinder measures
on real linear topological spaces. The definition generalizes the notion of
partially admissible shifts of measures. Section 3 contains some results on
partially admissible shifts of cylinder measures. The main result of this
section is the following theorem.

TueoREM. Let FCE be linear topological spaces, and p be a cylinder
measure on E. Suppose that the inclusion map F—E be continuous, and
1<p<oo. Also suppose that one of the following two conditions be satisfied:

(1) Fc M, and the linear topological space F is barrelled,

(2) FN ]\7[# is second category in F,
where we denote by M, the set of partially admissible shifts of the cylinder
measure p1. Then there exists a neighbourhood V of zero in F such that
the inequality

1/p

sup| (2%, x>|§<SE|<x*, x>|pdp(x)> for all x*cE*

€V

holds.

This generalizes the results of W. Linde and D. Xia [25]. Further-
more, using this theorem, it is shown that a Banach space E is isomorphic
to a Hilbert space iff it admits a cylinder measure g of type 2 such that
M, is second category in E. The remainder parts of this section generalize
the results of R. M. Dudley [4], and W. Linde [8].

In Section 4 we study the partially admissible shifts of measures, and
then our results generalize the ones of A. V. Skorohod and D. Xia [25].

Throughout the paper, we assume that linear spaces are with real coefhi-
cients.
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§ 2. Basic definitions and well known results

1°. p-absolutely summing operators and .« ,-spaces

Let £ and F be Banach spaces, and denote their dual spaces by E*
and F*, respectively. Let 1<p<oo.

A sequence {x;} with values in E is called weakly p-summable if for
each x*&E*, the sequence {z*(x)} &l,.

A sequence {z;} with values in E is called absolutely p-summable if
the sequence {||zi||} €,.

DeFiNiTION 2.1.1. A linear operator 7 from E into F is called p-
absolutely summing if for each {z;} CE which is weakly p-summable, {T°
(z;)} CF is absolutely p-summable.

We shall say “absolutely summing” instead of “l-absolutely summing”.

The following theorems are due to J. S. Cohen. For the definitions
of p*-strongly summing operators and <£,-spaces; see and [9].

TueoreMm 2.1.1. (c.f. [2])

Let 1/p+1/p*=1. A linear operator T from E into F is p*-strongly
summing iff the adjoint operator T* from F* into E* is p-absolutely sum-
ming.

THeEOREM 2.1.2. (c.f. [2])

Let E be a Banach space which is isomorphic to the dual of an
< p-space. For any Banach space F and an operator T from E into F,
if T is p-absolutely summing then the adjoint operator T* from F* into
E* is p-absolutely summing.

REMARK 2.1.1. It is easily seen that if E is isomorphic to the quotient
space of the dual of an =£,-space then Theorem 2.1.2. is true. For the
related results ; see [20].

It is well known (c.f. [12]) that if an operator T from E into F is
p-absolutely summing then it is g-absolutely summing (for 1=<p=<g< o).
Hence, if an operator 7 from E into F is p*-strongly summing then it is
g*-strongly summing (for 1<g*=<p*=<oo).

Prorosition 2.1.1. (c.f. [12])

Let H be a Hilbert space and E be a Banach space. For a linear
operator T from H into E the followings are equivalent.

(1) T is p-absolutely summing (for 1<p<2).

(2) There exists a Hilbert space G such that

H—G—FE
U %
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T=VoU where the linear operators U is of Hilbert-Schmidt type and V
is continuous, respectively.

An operator T from E into F is said to be Hilbertian if there exist
a Hilbert space H and continuous linear operators A: E—~H and B: H-F

such that T'=BoA.

CorOLLARY 2.1.1. If a linear operator T from E into F is p-abso-
lutely summing (for 1=<p=2), then it is Hilbertian.

PorprosiTiON 2.1.2. (c.f. [3], [10])

Any continuous linear operator from <L.-space into <£i-space is 2-
absolutely summing. Hence, it is Hilbertian.

COROLLARY 2.1.2. Let E be a Banach space which is isomorphic to
a quotient space of ZL.-space. Then any continuous linear operator from
E into < -space is Hilbertian.

Next, we shall give a necessary and sufficient condition such that a
Banach space E is isometric to a subspace of L,(y), for some measure p.
The key notion here is that of a negative definite function.

DerINITION 2.1.2. A function f from a linear space X into the non-
negative reals is said to be negative definite if f(0)=0, f(x)=f(—x) for all
z€ X and

Zn] If(xi—xj) aa; <0
7=

for every choice of {z}?,CX, and every choice of scalars {a;}7_; with
n
Z a; — 0 .
i=1

THEOREM 2.1.3. (c.f. [1])
Let 1<p=<2. A Banach space E is isometric to a subspace of L,(),
for some measure p, tff the map x—||x||? is negative definite.

COROLLARY 2.1.3. Let 1<p=<2. Let E be a linear space and
be a seminorm on E. Denote the associated Banach space of the seminormed
space (E, ||+]|) by E. If the map x—||z||? is negative definite, then E is iso-
metric to a subspace of L,(p), for some measure p.

It is well known that if f is negative definite then f* is also negative
definite for every 0<a=<1. Thus we have

CoROLLARY 2.1.4. Let 1Zq<p=2. Then L,(y) is isometric to a
subspace of L,(v) for some measure v.

REMARK 2.1.2. Since every <£,-space (for 1=p<oo) is isomorphic
to a subspace of L,(y) for some measure g (c.f. [10]), hence by the above
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corollary, every & ,-sapce (for 1<p<2) is isomorphic to a subspace of L,(p)
for some measure .
2°. Partially admissible shifts of cylinder measures and measures

Let E be a real linear topological space, and denote the dual space of
E by E*.

First, we introduce partially admissible shifts of cylinder measures. For
the definition of cylinder sets and cylinder measures, and the related results :

If a cylinder measure g is given on E, then y, (for x&E) denotes the
cylinder measure on E defined by

U(Z) = p(Z—x) for any cylinder set Z of E.

DEFINITION 2.2.1. An element x€E is called an admissible shift for
the cylinder measure p if for any ¢>0 there is a 6>0 such that

ﬂx(Z)<5
for any cylinder set Z of E for which

n(Z)<o.

The set of admissible shifts of the cylinder measure g will be denoted
by M,.

DEFINITION 2.2.2. An element z€E is called a partially admissible
shift for the cylinder measure g if there is an ¢>0 and >0 such that

ta(Z°) >e
for any cylinder set Z of E for which

w(Z)<é,

where Z¢ denotes the complement of Z in E.

The set of partially admissible shifts of the cylinder measure w will be
denoted by M.,.

It is easily seen that M,C M, but in general M, does not coincide
with M.

REMARK 2.2.1. In general, the cylinder measure p is not ¢-additive.
But if it happens that g is ¢-additive, then using well known technique, we
can extend y to a probability measure on the g-algebra generated by cylinder
sets. Then, it is easily seen that an element x=E is an admissible shift
for the measure g in a sense of Definition 2.2 1. iff 4, is absolutely con-
tinuous with respect to g, and also seen that an element x&E is a partially
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admissible shift for the measure g in a sense of [Definition 2.2.2 iff g,

contains a component absolutely continuous with respect to g. Thus, in
case of measures Definition 2.2.1. and Definition 2.2, 2. coincide with the
definitions of Skorohod, respectively (c.f. [16]).

Next, we introduce the continuity of cylinder measures.

For a cylinder measure ¢ on E, the Fourier transform f of g is defined

by

flax*) = 3 e*e2 du(x) for ¥ E*.

E

Let ¢ be a linear topology on E*, and denote a linear topological space
E* equipped with the topology = by E¥.

DerinITION 2.2.3. The cylinder measure p is said to be continuous
with respect to ¢ if the function f(x*) is continuous on EF.

ProposiTioN 2. 2. 1. (c.f. [25])

The cylinder measure p is continuous with respect to t iff for any
e >0 there exists a neighbourhood V of zero in EX such that

p{a] [<a, o[>1))<e  for all z+eV.

Now, we shall show examples of a linear topology r such that the
cylinder measure p is continuous with respect to .

On E*, we let 7, be the topology of convergence in pg-cylinder measure,
metrized by the semimetric

* Nk
d(x*,y*):SE 15&;*“’3;9@;*%” dp(z)  for x*,y*EE* .

Then, it is easily seen that the cylinder measure g is continuous with
respect to 7,, namely fi(x*) is a continuous function on E;‘; . In the ensuing
discussions, we denote the linear topological space E* equipped with the
topology ¢, by E; instead of EI.

Another example is the following.

Let 1<p<oo. Define

]|, = (SE|<x* of dy(x))l/p for x* S Ex.

Here, if ||x*||,<oco for all £*<E* then ||x*||, is a seminorm on E*. Denote
the seminormed space E* equipped with the seminorm ||+||, by Ej, and
denote the associated Banach space of the seminormed space E} by E:.
Then, obviously the identity map Ef—E* is continuous, so we have that p
is continuous with respect to the seminorm

e
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Now, let 1<p=<2. Then, the above example gives that of a negative
definite function. Indeed, the map x*—||z*||5 is negative definite. Thus,
by [Corollary 2.1.3, we have that Ef is isometric to a subspace of L,(»)
for some measure v.

Finally, we introduce the cylinder measure of type p (1<p<co).
Let E be a real Banach space.

DErINITION 2.2.4. A cylinder measure ¢ on E is of type p if there
is a constant C such that

(] J<at o dp@)” cran or al axepx.

REMARK 2. 2. 2.

(1) Let 1=¢g=p<oco. If pis type p then p is type gq.

(2) Let 1=p<oco. If g is type p then, by the previous arguments,
¢ is continuous with respect to the seminorm

» and so it is continuous
with respect to the norm topology of E*.

(3) Let 1=<p=<2. If pis type p then E* is isometric to a subspace
of L,(v) for some measure v.

§ 3. The cylinder measure case

In this section we shall discuss the partially admissible shifts of cylinder
measures. Let E be a real linear topological space, and denote the dual
space of E by E*. For an element x=E, define

ex(x*) =< x*, x> for x* E*.

ProrositioN 3.1. Let p be a cylinder measure on E, and let © be
a linear topology on E* such that p is continuous with respect to ©. Then
for each x& ]\7[,,, e, 1s a continuous linear functional on EZ*.

Proor. Let x& M, Then, from the definition of M,, there exists an
e>0 and >0 such that p,(Z° >e for every cylinder set Z of E for which
u(Z)<é. Here, we may assume that 0<<d<e<Il.

On the other hand, since the cylinder measure g is continuous with
respect to r, hence there exists a neighbourhood V of zero in E¥ such that

e({y| [Kat w|>1))<o for all axeV.
For each z*&V, put
Zo =y [<e 0 [>1]
Then, u(Z,)<d& implies that p,(Z%)>e. Since p(E)=1, hence it is
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easily seen that there exists an element 2&E such that the inequalities

l(x*, z>| =<1 and l<x*, z+x>| =1
holds.
From this it follows

|<a, x>| <2 for all z¥xEV.

This shows that e, is continuous on E¥, and we complete the proof.

CoroLLARY 3.1. For each x&M,, e, is a continuous linear functional
on EY.

By the same method as the proof of Proposition 3. 1., we have

ProrosiTioN 3.2. Let p be a cylinder measure on E. If a sequence
of cylinder sets Z, of E satisfies that

then, the following inclusion

holds.

Let H be a real Hilbert space, and let py be a canonical Gaussian
cylinder measure on H. Then, gy is a quasi-invariant cylinder measure

c.f. [8]), and hence M,=H, in particular, ]\A/fy:H. Thus, we have

CoROLLARY 3.2. If a sequence of cylinder sets Z, of H satisfies that
hm py(Zy) =1,

then the identity

H—=

T Cs

(Zn—Zy)

1

holds.

Now, let # be a cylinder measure on E, and let 1<p<co. Recall that
l|lz*||, (for £*=E*) be defined by

|||l = (SE|<:¢* x>|pdp(x)>l/p for t¥SE*.
Let U, and US be defined by
Up={z*€E*|||2*|, <1} and Up={zcE||<z*, 2|1
for all 2*cU,.



Partially admissible shifts on linear topological spaces 157

Then, we have the following.
Lemma 3.1. M,c L_OJOnU;B.
n=1

ProOF. Assume the contrary. Then, there exists an element xeM,
and sequence x}fe<U, such that the inequality

<x:’ x>|>n (71:1, 2,)
holds.

» hence tends to zero in

p-cylinder measure. Thus, by [Corollary 3. 1., we have

<—7ll*x,’$, x>'-——0.

That is a contradiction, and we complete the proof.

By this lemma, we obtain the following main theorem. That generalizes
a result of Linde [8]. We prove it for partially admissible shifts of cylinder
measures instead of admissible shifts of cylinder ones.

: 1 .
Since 7x;’§ tends to zero with respect to

lim

n—o0

THEOREM 3.1. Let FCE be linear topological spaces, and p be a
cylinder measure on E. Suppose that the inclusion map F—E be continuous,
and 1=p<co. Then we have the followings.

(1) If FCM, and the linear topological space F 1s barrelled, then
there exists a neighbourhood V of zero in F such that the inequality

supl<x*, x>|§ \lx*|l,  for all x*=E*
xeV

holds.

2) If Fn ]\71# 1s second category in F, then there exists a negihbourhood
V of zero in F such that the inequality

supl(x*, x>l <|lx*||,  for all x*EE*
xeV

holds.

Proor. (1): It is easily seen that the set U! is convex, balanced and
closed in E. Since the inclusion map F—E is continuous, hence by Lemma
3.1, FNU, is a barrel in F.

Thus, by the assumption of F, there exists a neighbourhood V of zero
in I such that VcCUJ.

This shows that the inequality holds for V, and we complete the proof.

(2): The assertion can be proved in a similar way as in the proof of
(1), so we omit it.
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REMARK 3.1. Let I be a o-algebra of subsets of E which is invariant
under E (i.e. for any z€E and any ZE€®F, Z—z2<=F holds), and contains
all cylinder sets in E, and let ¢ be a non-trivial (i.e. g(E)>0) measure on
(E,%). Then Theorem 3.1. is also true.

Thus, our theorem generalizes a result of Xia [25], and then we proved
it for partially admissible shifts instead of admissible shifts.

PROPOSITION 3.3. Let 1<p<2. Let FCE be Banach spaces, and let
the inclusion map T : F—E be continuous. If there exists a cylinder meas-
ure p of type p on E such that F( M, is second category in F, then the
adjoint map T*: EX—F* can be decomposed as follows ;

E¥——G—— F*

T*=KoJ where G is a Banach space which is isomorphic to a subspace
of L,(v) for some measure v, and J and K are continuous linear maps,
respectively.

Proor. Let ¢ be a cylinder measure of type p on E such that FN M,
is second category in F. Then, by Theorem 3. 1., there exists positive con-
stants C; and C, such that the inequalities

| T* || pe = Gy |2¥]]p < Cof ||| for 2*eE*

holds.
Thus, it is easily seen that the adjoint map 7*: E*—F* can be de-
composed as follows ;

T*=KoJ where the natural maps J and K are continuous.
Since a Banach space E% is isometric to a subspace of L,(v), for some
measure v (c.f. Remark 2.2.2.), hence we complete the proof.

ReEMARK 3.2. In the above proposition, if 2<p<oo, then g is of type
2. Hence the adjoint map 7*: E*—F* is Hilbertian.

CorOLLARY 3.3. Let E be a reflexive Banach space, and F be a closed
subspace of E. If there exists a cylinder measure p of type p (1=p=2)
on E such that FN\ M, is second category in F, then F is isomorphic to
a quotient space of the dual of L,(v) for some measure v.

CorROLLARY 3.4. Let E be a Banach space, and F be a closed subspace
of E. If there exists a cylinder measure p of type 2 on E such that FN M,
is second category in F, then F is isomorphic to a Hilbert space.
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ExaMpLE 3.1. Let 1=p<2, or 2<p<co. Let F be an infinite dimen-
sional closed subspace of /,, and let ¢ be a cylinder measure of type 2 on
l,, Then, FN' M, is first category in F.

ProoOF. Assume the contrary. Then by [Corollary 3.4., F is isomor-
phic to a Hilbert space. However, /, does not contain any infinite dimen-

sional closed subspace which is isomorphic to a Hilbert space (c.f. [10]).
That is a contradiction.

ExaMpPLE 3.2. Let 2<p=oco. Let pu be a cylinder measure of type
2 on I, Then [,N M, is first category in I,
Proor. Assume the contrary. Then, by Renark 3.2., the inclusion

map : l,—1, is Hilbertian, and so by the theorem of Pitt [14], it is com-
pact. That is a contradiction.

The following theorem is essentially the same as a result of Linde [8].

THEOREM 3.2. A Banach space E is isomorphic to a Hilbert space
iff there exists a cylinder measure p of type 2 on E such that M, is second
category in K.

Proor. By [Corollary 3.4, and the result of Linde [8], it is obvious.

ProrosiTION 3.4. Let FCE be Banach spaces, and the inclusion map
Jrom F into E be continuous. Suppose that E is isomorphic to a subspace
of &i-space. Also suppose that there exists a cylinder measure p of type
1 on E such FC M, is second category in F. Then, the inclusion map T :
F—E is Hilbertian.

Proor. By [Proposition 3. 3|, the adjoint map 7*: E*¥*—F* can be de-
composed as follows ;

E*

» G — F*
J K

T*=KoJ where G is a Banach space which is isomorphic to a subspace
of L,(v) for some measure v, and J and K are continuous linear maps,
respectively.

Since E* is isomorphic to a quotient space of £.-space, hence by
Corollary 2.1. 2., the map J is Hilbertian. Thus the map T: F—E is Hil-
bertian, and that completes the proof.

As an easy consequence of [Proposition 3.4, we have

CoroLLARY 3.5. Let E be a Banach space which is isomorphic to
a subspace of <£,-space, and let F be a closed subspace of E. Suppose that
there exists a cylinder measure y of type 1 on E such that FN\ M, is second
category in F. Then F is isomorphic to a Hilbert space.
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ExampLE 3.3. Let 1=p<2.

(1) Let ¢ be a cylinder measure of type 1 on [, Then, 4N M, is
first category in /.

(2) Let F be an infinite dimensional closed subspace of /,, and let x be
a cylinder measure of type 1 on Z,. Then, FN M, is first category in F.

Proor. (1): Assume the contrary. Since [, is isomorphic to a sub-
space of £,-space (c.f. [10]), hence it follows from [Proposition 3.4. that
the inclusion map: /;—/, is Hilbertian, and so it is compact (c. f. [14]). That

is a contradiction.
(2) Assume the contrary. Then, it follows from [Corollary 3.5 that
F is isomorphic to a Hilbert space. However [, does not contain any in

finitite dimensional closed subspace which is isomorphic to a Hilbert space
(c.f. [10]). That is a contradiction.

§ 4. The measure case

In this section we shall discuss the partially admissible shifts of measures.

THEOREM 4.1. Let FCE be linear topological spaces, and let the
inclusion map: F—E be continuous. Suppose that E is a separable linear
metric space. Also suppose that there exists a finite Borel measure p (non-
trivial) on E such that FN\ M, is second category in F. Then, there exists
a neighbourhood V of zero in F such that V is precompact in E.

ProOOF. Since E is a separable linear metric space, hence it follows
(c. f. [25]) that there exists a sequence of precompact sets B, in E such that

lim p(B,) = p(E) .

n—oo

Hence, by [Proposition 3.2, we have

M,cU(B,—B,).

fee]
=1

Let K, be a closure of the set (B,—B,) in E. Then, K, is closed and
precompact in E.

Since the inclusion map: F—E is continuous, and FN M, is second
category in F, it follows that FN K, is closed in F and the set .S defined by

S= U(FNK,)

is second category in F.
From this it follows that there exists n such that FN K, contains some
open set in F. Hence it follows that there exists a neighbourhood V of
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zero in F such that V is precompact in E. That completes the proof.

CoROLLARY 4.1. Let E be a separable linear metric space. If there
exists a finite Borel measure pu (non-trivial) on E such that M, is second
category in E, then E is finite dimensional.

Proor. Since locally precompact linear topological space is finite di-

mensional (c.f. [22]), hence by [Theorem 4. 1. we complete the proof.

REMARK 4.1. Let E be a complete separable linear metric space, and
t be a finite Borel measure (non-trivial) on E. If E is infinite dimensional,
then by the above corollary M, can not coincide with E. Namely, there
exists an element x in E such that g and g, are mutually singular.

From now on, we assume that a linear space E be infinite dimensional
and a Borel measure g on E be non-trivial.

REMARK 4.2. If a Banach space E is separable, then it is obvious
that [Theorem 4. 1. and [Corollary 4] 1. are true. However, if E is not sepa-
rable, then in general Theorem 4.1. is not true (for example E=L).

On the other hand, Skorohod [16] has shown that if E is a Hilbert
space, then [Theorem 4. 1. and [Corollary 4] 1. are true.

In the ensuing discussions, we shall show that for any reflexive Banach
space E [Theorem 4 1. is true, and for any Banach space E [Corollary 4 1.

1s true.

THEOREM 4. 2. Let E be a Banach space, F be a barrelled space and T
be a continuous linear map from F into E. Let p be a finite Borel meas-
ure on E, and suppose that T(F)CM,. Then, the map T can be decomposed
as follows ;

F G E
J K

T=KodJ where G is a Banach space, J is a continuous linear map and
K is a co-strongly summing map, respectively.
Moreover if a Banach space E is reflexive, then the map T is compact.
Before proving the above theorem, we give the following notation.
The normed space Ez: Let E be a locally convex Hausdorff space,
and B a bounded convex balanced subset of E. Let Ez be the vector sub-
space of E spanned by B; note that B is absorbing subset of Ej; For
xE Ejg, define

||xllz =1inf |4] .
r€AB

Then, ||z|[z is a norm on Ejz, and we obtain a normed space Ej equipped
with the norm

B-
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It is well known that the inclusion map : Ez—E is continuous, moreover,
if the set B is complete, then Ej is a Banach space (c.f. [22]).
Now, we return to the proof of Theorem 4. 2..

Proor. We may assume that g satisfies the condition
[, 2l duz)< oo
for otherwise, we can replace p by the equivalent measure
t(A) :SAexp <—HxH> du(x) for Borel set A in E

which certainly satisfies this condition, and M,= M,
Recall that the seminorm ||+||; on E* be defined as follows;

= :SE|<x*, o|dplz)  for s*eE*.

Let U, and U° be defined as before (c.f. §3. Lemma 3.1.). Then,
it is easily seen that U? is a bounded convex balanced complete subset of
E. Hence, Ey is a Banach space and the inclusion map: Ey—FE is con-
tinuous.

It follows from [Theorem 3. 1. that M#CEU(I), and so by the assumption
we get T(F)C Ey.

Now we prove that the map J: F—Eyg is continuous, where J is defined
by Jx=Tz for x=F.

Denote the inclusion map: Ey—FE by K. Then, T=KoJ. Since the
maps T and K are continuous, and K is one-to-one, hence it follows from
Proposition 17.2. in that the graph of J is closed in FXEp. Thus,
by the closed graph theorem (c.f. [24]), J is continuous from F into Ep.

Next, we prove that the map K: Ey—FE is co-strongly summing.

In order to prove this, by Theorem 2.1.1, we may show that the
adjoint map K*: E*—(Ey* is absolutely summing.

By the definition of U}, for x*&E* we have

[[K* ¥l ey = sup |CK* 2%, 2|
er?

= 51610p0l<x*, :C>l = x¥]r .

Let {x*} be a weakly summable sequence in E*, then it is easily seen
that there exists a positive constant C such that

oo

2

n=1

{xf¥, x>|§C||xH for all z€E.
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Hence, we have

2 IK* e < 3 122

=[.2
<C| llzll du(z)< oo

(at, 2| dp(a)

This shows that the map K*: E*—(Eyg)* is absolutely summing. Thus
we have the first assertion.

Finally, we prove the second assertion. Suppose that a Banach space
E is reflexive. Then, by the first argument, we may show that the map
K: Ey—E is compact, and it is equivalent to that the adjoint map K*:
E*—(Eyg* is compact.

Let {z;} be a bounded sequence in E* Since E is reflexive, hence
by Eberlein’s theorem there exists a subsequence {zv,} of {x}} and x*E*
such that w*—lim Xy, =k,

Jooo
Thus, by the first argument and Lebesgue’s dominated convergence
theorem, we have

fim || K* 2 — K 2%y 0 < E@SJ@:}.—;C*, | dulz) =0

j—oo

This shows that the map K*: E*—(Eyo)* is compact, and we complete
the proof.

REMARK 4.3. In the above theorem, it is easily seen that we can
replace the condition “F is barrelled and T(F)CM,” by the condition “7-1
(M) is second category in F”.

Since a oo-strongly summing operator from a Banach space into a
Hilbert space is decomposed through a Hilbert-Schmidt operator, we have
the following corollary. That generalizes the results of Xia and the
author [19].

CoROLLARY 4.2. Let H be a Hilbert space, and p be a finite Borel
measure on H. Then the following (1) and (2) holds.

(1) There exists a Hilbert space G such that

M,cGcH

where the inclusion map: G—H is of Hilbert-Schmidt type.

(2) Let F be a linear subspace of H such that FC M, Suppose that
F atself is barrelled, and the inclusion map T : F—H is continuous. Then,
there exists a Hilbert space G such that
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FcGcH
J K

T=KoJ where the inclusion maps J is continuous and K is of Hilbert-
Schmidt type, respectively.

COROLLARY 4.3. Let E be a Banach space which is isomorphic to
a subspace of £i-space. Let @ be a linear subspace of E, and suppose
that @ itself is a complete a-Hilbert space with respect to the sequence of
inner products (&, Y)n, n=1,2, ---.

Also, suppose that the inclusion map T : O—E is continuous. For
each n, let @, denote the completion of @ with respect to the inner product
(2, Y)n. Then the following implication (1)=>(2) holds.

(1) There exists a finite Borel measure p on E such that Q)ﬂ]\NJ# is
second category in Q.

(2)  There exists n such that the inclusion map T : O—E can be extended
to a Hilbert-Schmidt map from @, into E.

Proor. Assume that condition (1). Then, by the remark of
4. 2., there exists n such that the map 7 can be extended to a co-strongly
summing map from @, into E. Since a Banach space E is isomorphic to
a subspace of .#;-space, it follows from [Theorem 2 1.1., Theorem 2.1.2.
and [Proposition 2. 1. 1. that the map 7' : @®,—E can be decomposed through
a Hilbert-Schmidt map. That completes the proof.

Finally, we obtain the following corollaries. These generalize the results
of Skorohod [16].

COROLLARY 4.4. Let E be a Banach space, and let p be a finite Borel
measure on E. Then, the following (1) and (2) holds.

(1) M, is first category in E.

(2) If the Banach space E is reflexive, then for any infinite dimen-
sional closed subspace F of E, FO\ M, is first category in F.

ProOF. (2): Assume the contrary. Then, by the remark of
4. 2., the inclusion map: F—E is compact. This shows that the Banach

space F is locally compact, and it follows that F is finite dimensional. That
is a contradiction.

(1): Assume the contrary. Since we may assume that the measure
p is of type 2 (c.f. the proof of Theorem 4.2), it follows from
3.2. that E is isomorphic to a Hilbert space. Hence, E is reflexive, and
so by (2) that is a contradiction.

COROLLARY 4.5. Let E be a Fréchet space, and p be a finite Borel
measure on E. Then, there exists an element x in E such that p and p,
are mutually singular.
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Proor. Assume the contrary. Since by the theorem of Sato the
measure ¢ has a Banach support G, here the inclusion map: G—E is con-
tinuous, and it follows from [Proposition 3. 2. and the closed graph theorem
(c.f. [24]) that E is isomorphic to a Banach space G. Thus, from

4. 4. that is a contradiction.
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