
Hokkaido Mathematical Journal Vol. 9 (1980) p. 36-45

Stability of G-unfoldings

By Shy\={u}ichi IZUMIYA
(Received December 26, 1978)

\S 0. Introduction

In [4], R. Thom has presented the problem to study the bifurcation
of singularities of G-invariant functions. (Where G is a compact Lie group).
In realtion to this problem, G. Wassermann has classified singularities with
compact abelian symmetry and their universal G-unfoldings ([6]). But, from
the view point of “Catastrophe theory” we must classify stable G-unfoldings
instead of universal G-unfoldings.

In this paper, we will prove the equivalence of these notions of G-
unfoldings. Once this is proved, the list of universal G-unfoldings in [6]
can be exchanged for stable G-unfoldings.

The main result of this paper will be formulated in \S 1. Preliminary
facts about G-invariant functions and jet bundles are contained in \S 2. Proof
of the main result will be given in \S 3.

All functions and actions of Lie group should be smooth.

\S 1. Formulation of the result

Let G be a compact Lie group which acts linearly on R^{n} . We shall
denote C^{\infty}(R^{n}) the set of all C^{\infty} functions over R^{n} ; C_{0}^{\infty}(R^{n}) the set of all
C^{\infty}-function germs at 0. We shall set \mathfrak{R}l_{0}^{\infty}(R^{n}) :=\{f\in C_{0}^{\infty}(R^{n})|f(0)=0\} .
Then C_{0}^{\infty}(R^{n}) is an R-algebra in the usual way, and \mathfrak{M}_{0}^{\infty}(R^{n}) is its unique
maximal ideal.

A function f\in C^{\infty}(R^{n}) will be said to be G-invariant if f(gx)=f(x)
for any x\in R^{n} and g\in G . The set of G-invariant functions over R^{n} will be
denoted by C^{G}(R^{n}) and the set of all G-invariant function germs at 0 denoted
by C_{0}^{G}(R^{n}) ; it is a subalgebra of C_{0}^{\infty}(R^{n}) , and \mathfrak{M}_{0}^{G}(R^{n}) :=C_{0}^{G}(R^{n})\cap \mathfrak{M}_{0}^{\infty}(R^{n})

is its unique maximal ideal.
Let f:(R^{n}, a)-arrow(R, c) and h:(R^{n}, a’)-arrow(R, c’) be germs of G-invariant

functions at a and a’(f(a)=c, f(a’)=c’) . We shall say f is G-right equiva-
lent to h (and we shall write f\sim_{G}h) if there is a equivariant diffeomorphism
germ \phi:(R^{n}, a)-arrow(R^{n}, a’) such that f=h\circ\phi+(c-c’) .

DEFNITION 1. 1. Let f\in \mathfrak{M}_{0}^{G}(R^{n}) . We say f is strongly k-determined
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if for any h\in \mathfrak{M}_{0}^{G}(R^{n}) such that f-h\in \mathfrak{M}_{0}^{\infty}(R^{n})^{k+1}\cap G_{0}^{G}(R^{n}) we have f\sim_{G}h .
We say f is strongly fifinitely determined if f is strongly k determined for
some integer k.

Let f:(R^{n}, a)-arrow(R, c) be a G-invariant function germ. An r-dimen-
sional G-unfolding of f is a G-invariant function germ F:(R^{n}\cross R^{r}, (a, b))-

arrow(R, c) such that F(x, b)=f(x) , (where G acts on R^{r} trivially).

DEFINITION 1. 2. Let f\in \mathfrak{M}_{0}^{G}(R^{n}) , F be a r-dimensional G-unfolding of

f, and H be a s-dimensional G-unfolding of f.
A G-f-morphism from H to F is a triple \Phi=(\phi, \psi, \alpha) , where \phi:(R^{n}\cross

R^{s} , (0, 0))-arrow(R^{n}, 0) is a G-equivariant map germ, \psi:(R^{s}, 0)-arrow(R^{r}, 0) is
a smooth map germ, and \alpha\in \mathfrak{M}_{0}^{\infty}(R^{s}) satisfying the following conditions:

(i) for x\in R^{n} we have \phi(x, O)=x

(ii) for x\in R^{n} , u\in R^{s} we have

H(x, u)=F(\phi(x, u), \psi(u))+\alpha(u) .
We shall write \Phi=(\phi, \psi, \alpha) : Harrow F.
The G-f-morphism \Phi=(\phi, \psi, \alpha):Harrow F will be called a G-f-isomorphism

if there is a G-f-morphism \Phi’=(\phi’, \psi’, \alpha’):Farrow H such that \psi^{-1}=\psi’ . -\alpha=\alpha’ .
and (\phi\cross \psi)^{-1}=\phi’X\psi’ .

DEFINITION 1. 3. Let f\in \mathfrak{M}_{0}^{G}(R^{n}) , and let F be a G-unfolding of f.
We say F is universal if for any G-unfolding H of f there exists a G-
morphism of F to H.

DEFINITION 1. 4. Let f:(R^{n}, a)-arrow(R, c) and h:(R_{ a}^{n’},)-arrow(R, c’) be
G-invariant function germs. Let F:(R^{n}\cross R^{r}, (a, b))-arrow(R, c) and H:(R^{n}\cross R^{r} ,
(a’, b’))-arrow(R, c’) be G-unfoldings of f and h respectively. We say F and
H are G-equivalent if the following hold:

There exist
1) \phi:(R_{ a}^{n’},)-arrow(R^{n}, a) : equivariant diffeomorphism germ
2) \Phi : (R^{n}\cross R^{r}, (a’,\eta b’))-arrow(R^{n}, a) : equivariant map germ
3) \psi:(R^{r}, b’)-arrow(R^{r}, b) : diffeomorphism germ
4) \alpha:(R^{r}, b’)-arrow(R, c -- c’) : smooth function germ such that

a) \Phi(x, b’)=\phi(x) for x\in R^{n}

b) H(x, u)=F(\Phi(x, u), \psi(u))+\alpha(u) for x\in R^{n} and u\in R^{r} .
REMARK: Let f and h be G-invariant function germs which are G-right

equivalent. Let F be a G-unfolding of f. Then there exist a G-unfolding
H of h such that it is G-equivalent to F.

DEFINITION 1. 5. Let f\in \mathfrak{M}_{0}^{G}(R^{n}) and let F\in C_{0}^{G}(R^{n}\cross R^{r}) be a G-unfold-



38 S. Izumiya

ing of f. We shall say F is stable if for every representative \tilde{F} of F defined
on U there is a neighbourhood N_{G}(\tilde{F}) of \tilde{F} in C^{G}(U) (with the C^{\infty}-topology)
such that for every \tilde{H}\in N_{G}(\tilde{F}) there is a point (x_{0}, u_{0})\in U such that
H:(R^{n}\cross R^{r}, (x_{0}, u_{0}))- - (R,\tilde{H}(x_{0}, u_{0})) is G-equivalent to F as a G-unfolding.

Now we are ready to state the main result of this paper.

THEOREM 1. 6. Let f\in \mathfrak{M}_{0}^{G}(R^{n}) and F\in C_{0}^{G}(R^{n}\cross R^{r}) be a G-unfolding
off. Suppose f is strongly k-determined, then the following statements are
equivalent :

(a) F is a stable G-unfolding
(b) F is an universal G-unfolding.

\S 2. Preliminaries

In which we recall some preliminary facts about G-invariant functions.

A) Equivariant vector fifields and the Jacobian ideal.
Let \Gamma_{0}^{\infty}(TR^{n}) be the space of germs of vector field at 0 on R^{n} . A

germ \xi\in\Gamma_{0}^{\infty}(TR^{n}) is equivariant if it is equivariant with respect to the induced
action on TR^{n} from the action on R^{n} . Let \Gamma_{0}^{\infty}(TR^{n})^{G} be the space of germs
of equivariant vector field at 0 on R^{n} .

We define J(f):=df(\Gamma_{0}^{\infty}(TR^{n})) and J_{G}(f):=df(\Gamma_{0}^{\infty}(TR^{n})^{G}) for f\in G_{0}^{G}(R^{n}) .
It is easy to show these sets are ideals in C_{0}^{\infty}(R^{n}) and C_{0}^{G}(R^{n}) respectively.

The ideal J(f) is called the Jacobian ideal of f, and J_{G}(f) is called
the GJacobian ideal of f.

We also define an ideal \tilde{J}_{G}(f):= {df(\xi)|\xi\in\Gamma_{0}^{\infty}(TR^{n})^{G} and \xi(0)=0}, which
we call the reduced GJacobian ideal of f.

B) k-jets.
Let k be a non-negative integer. We denote by J^{k}(R^{n}, R) the k-jet bundle

over R^{n}\cross R . Then we have a canonical decomposition J^{k}(R^{n}, R)\cong J^{k}(n, 1)\cross

R^{n}\cross R, where J^{k}(n, 1) is the set of all k-jets at 0 of elements in \mathfrak{M}_{0}^{\infty}(R^{n}) .
Let \pi_{k} : \mathfrak{M}_{0}^{\infty}(R^{n})arrow J^{k}(n, 1) be the natural map defined by \pi_{k}(f):=j^{k}f(0) .
We observe that J^{k}(n, 1) is a finite dimensional vector space over R and

G acts on J^{k}(n, 1) by

g(j^{k}f(0)) :=j^{k}(f\circ g^{-1})(0)

where g\in G and f\in \mathfrak{M}_{0}^{\infty}(R^{n}) .
Since the action of G on J^{k}(n, 1) is defined by derivative, it is a linear

action. Hence, the fixed point set J_{G}^{k}(n, 1) of this action is a linear subspace
of J^{k}(n, 1) .
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Now let J_{G}^{k}(R^{n}, R) be the subspace of J^{k}(R^{n}, R) comprising k-jets of
local invariant function, then we have J_{G}(n, 1)\cross(R^{n})^{G}\cross R\subset J_{G}^{k}(R^{n}, R) via
the canonical decomposition of J^{k}(R^{n}, R) , (where (R^{n})^{G} denotes a fixed poin-
set of G on R^{n}).

Defined L_{G}^{k}(n) :=\{j^{k}\phi(0)|\phi:(R^{n}, 0)-arrow(R^{n}, 0) : equivariant map germ,
which is non-singular at 0}. Then L_{G}^{k}(n) is a Lie group; moreover we
define an action of L_{G}^{k}(n) on J_{G}^{k}(n, 1) by

(j^{k}\phi(0))(j^{k}f(0)) :=j^{k}(f\circ\phi^{-1})(0)

Let z\in J_{G}^{k}(n, 1) . We denote by L_{G}(n)(z) the L_{G}(n) orbit of z.

REMARK: Let f\in \mathfrak{M}_{0}^{G}(R^{n}) . Suppose f is strongly k-determined. Let
h : (R^{n}, a)-arrow(R, c) be a G-invariant function germ, where a\in(R^{n})^{G} . If
j^{k}h(a)\in L_{G}(n)(j^{k}f(0))\cross(R^{n})^{G}\cross R, then we have f\sim_{G}h .

We now have the formula for the tangent space at z:=j^{k}f(0) to the
orbit L_{G}(n)(z) .

Lemma 2. 1. (Beer [1]). Let f\in \mathfrak{M}_{0}^{G}(R^{n}) and \pi_{k}^{G} :=\pi_{k}|\mathfrak{M}_{0}^{G}(R^{n}) . Then
we have

T_{z}(L_{G}(n)(z))=\pi_{k}^{G}(\tilde{J}_{G}(f))

COROLLARY 2. 2. Let f\in \mathfrak{M}_{0}^{G}(R^{n}) . If f is strongly k -determined then

\mathfrak{M}_{0}^{\infty}(R^{n})^{k+1}\cap C_{0}^{G}(R^{n})\subset\tilde{J}_{G}(f)1

C) Infifinitesimally universal G-unfoldings.
Let f\in \mathfrak{M}_{0}^{G}(R^{n}) and let F\in C_{0}^{G}(R^{n}\cross R^{r}) be a G-unfolding of f. Denote

the coordinate of R^{r} by (u_{1}, \cdots, u_{r}) . We shall say F is infifinitesimally uni-

versal if 1, \{\frac{\partial f}{\partial u_{1}}|R^{n}\cross 0\} , \cdots , \{\frac{\partial f}{\partial u_{r}}|R^{n}\cross 0\} generate C_{0}^{G}(R^{n})/J_{G}(f) as an R-

vector space.
We now have the following fundamental result for G-unfoldings.
THEOREM 2. 5. (Beer [1], Po\’enaru [2]).

Let f\in \mathfrak{M}_{0}^{G}(R^{n}) .
(i) f has universal G-unfoldings if and only if f is strongly fifinitely

determined.
(ii) Any two universal G-unfoldings off of same unfolding dimension

are G-f-isomorphic.
(iii) If F\in C_{0}^{G}(R^{n}\cross R^{r}) is a G-unfolding off, then F is infifinitesimally

universal if and only if it is universal.
As an easy consequence, iff is strongly fifinitely determined, and b_{1} , \cdots ,
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b_{s}\in \mathfrak{M}_{0}^{G}(R^{n}) are representatives of a basis of \mathfrak{M}_{0}^{G}(R^{n})/(J_{G}(f)\cap \mathfrak{M}_{0}^{G}(R^{n})) , then
the s-dimensional G-unfolding

H(x, u) :=f(x)+u_{1}b_{1}(x)+\cdots+u_{s}b_{s}(x)

(x\in R^{n}, (u_{1}, \cdots, u_{s})\in R^{s}) is an universal G-unfolding.

\S 3. Proof of Theorem 1. 6.

We shall say two G-unfoldings are weakly G-equivalent if all conditions
in Definition 1. 4 hold except that \phi , \Phi are equivariant.

Let f\in \mathfrak{M}_{0}^{G}(R^{n}) and let F\in C_{0}^{G}(R^{n}\cross R^{r}) be a G-unfoldings of f. We say
that F is weakly stable if for every invariant open neighbourhood U of
0\in R^{n}\cross R^{r} and every representative \tilde{F} of F defined on U there is a neigh-
bourhood N_{G}(\tilde{F}) of \tilde{F} in C^{G}(U) (with C^{\infty} -topology) such that

H :(R^{n}\cross R^{r} , (x_{0}, u_{0}))- – (R,\tilde{H}(x_{0}, u_{0}))

is weakly G-equivalent to F as a G-unfolding.
We will prove Theorem 1. 6 as the following form.
THEOREM 1. 6. Let f\in \mathfrak{M}_{0}^{G}(R^{n}) and F\in C_{0}^{G}(R^{n}\cross R^{r}) be a G-unfolding

off. Suppose f is strongly k-determined, then the following statements are
equivalent:

(a) F is a stable G-unfolding.
(b) F is a weakly stable G-unfolding.
(c) F is an universal G-unfolding.
(d) F is an infifinitesimally universal G-unfolding.
It is clear that (a) implies (b). By Theorem 2. 5 (iii), (c) and (d) are

equivalent.
Now we shall show first that (b) implies (d).
Let s be a non-negative integer. Let

j_{1}^{s}F:R^{n}\cross R^{r}arrow J^{s}(R^{n}, R)

be an extension of F defined by j_{1}^{s}F(x, u):=j^{s}(F_{u})(x) , where F_{u} : R^{n}arrow R

is a G-invariant function which is defined by F_{u}(x):=F(x, u) .
Let O^{s}(f) be the orbit of j^{s}f(0) defined by the action of invertible

jets over R^{n} (not necessary equivariant jets).
We now have a canonical decompositions :

T_{z}(J^{s}(R^{n}, R))=J^{s}(R^{n}, R)=R^{n}\cross P(n, 1) .

where z:=j^{s}f(0) and P^{s}(n, 1) denote the set of polynomial functions of degree
s . Let P_{G}^{s}(n, 1) be the set of G-invariant polynomial functions in P^{s}(n, 1) .
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Then we need the following lemma.
Lemma 3. 1. Let f\in \mathfrak{M}_{0}^{G}(R^{n}) and let F\in C_{0}^{G}(R^{n}\cross R^{r}) an weakly stable

G-unfolding off. For any non-negative integer s, we have

(*) d(j_{1}^{s}F)_{(0,0)}(T_{(0,0)}(R^{n}\cross R^{r}))+T_{z}(O^{s}(f))\supset\{0\}\cross P_{G}^{s}(n, 1)

PROOF. Let p\in P_{G}^{s}(n, 1) . Suppose that p\not\in Image(d(j_{1}^{s}F)_{(0,0)})+T_{z}(O^{s}(f)) ,
let V be a neighbourhood of z in J^{s}(R^{n}, R) , let D\subset Image(d(j_{1}^{s}F)_{(0,0)}) be
a complement of Image(d(j_{1}^{s}F)_{(0,0)})\cap T_{z}(O^{s}(f)) and M be a closed submani-
fold in V which contains O^{s}(f)\cap V and transverse to \{p\}\oplus D, where \{p\}

denotes a line through p;M always exists for sufficiently small V.
Let H(x, u, t)=F_{t}(x, u):=F(x, u)+tp(x) , then j_{1}^{s}H is transverse to M

at (0, 0, 0).
Then, there exist a neighbourhood U of 0\in R^{n}\cross R^{r} and a positive

integer \epsilon such that:
i) j_{1}^{s}H is transversal to M over M\cross(-\epsilon\epsilon)

ii) dim ( Image(d(j_{1}^{s}H)_{(x,u,t)})\geq\dim(Image(d(j_{1}^{s}F)_{(0,0)})+1 for (x, u, t)\in U\cross

(-\epsilon\epsilon) .
Since F is weakly stable, there exists a positive number \epsilon such that if

t\in(-\epsilon\epsilon) , there exists (x, u)\in U such that germ of F_{t} at (x, u) is weakly
G-equivalent to germ of F at (0, 0) as G-unfoldings. Hence, germ of (F_{t})_{u}

at x is right equivalent (not necessary G-right equivalent) to germ of f at
0; in particular

j_{1}^{s}(F_{t})(x, u)\in O^{s}(f)\cap V

Let M’ :=(j_{1}^{s}H)^{-1}(M) , which is a submanifold of U\cross(-\epsilon\epsilon) and let t_{0}\in

(-\epsilon\epsilon) be a regular value of a restriction to M’ of the projection: U\cross(-\epsilon\epsilon)arrow

(-\epsilon\epsilon) .
Then j_{1}^{s}(F_{t_{0}})(x, u)\in M and

dim (Image(d(j_{1}^{s}H)_{(x,u,t)})=\dim(Image(d(j_{1}^{s}F_{t_{0}})_{(x,u)}) ;

hence

dim (Image(d(j_{1}^{s}F_{t_{0}})_{(x,u)}))\geq\dim(Image(d(j_{1}^{s}F)_{(0,0)}))+1

This is imposible if a germ of (F_{t_{0}}) at (x, u) and a germ of F at (0, 0) are
weakly G-equivalent.

This completes the proof. Q. E. D.

PROOF OF (d) FROM (b). Using the formula for the tangent space ([5],

p41 , p63\sim p65) , the relation (^{*}) in Lemma 3. 1 means the following:
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df(\Gamma_{0}^{\infty}(TR^{n}))+V_{F}+\mathfrak{M}_{0}^{\infty}(R^{n})^{S}\supset C_{0}^{G}(R^{n}) .

where V_{F} denote the R-vector space generated by

1, \frac{\partial F}{\partial u_{1}}|R^{n}\cross 0 , \cdots , \frac{\partial F}{\partial u_{r}}|R^{n}\cross 0

Taking an average over G, we have:
J_{G}(f)+V_{F}+\mathfrak{M}_{0}^{\infty}(R^{n})^{s}\cap C_{0}^{G}(R^{n})=C_{0}^{G}(R^{n})

Since f is strongly k-determined,

J_{G}(f)\supset \mathfrak{M}_{0}^{\infty}(R^{n})^{k+1}\cap C_{0}^{G}(R^{n})t (Corollary 2. 2).

Hence, let s be a positive integer with s\geq k+1 , then

J_{G}(f)+V_{F}=C_{0}^{G}(R^{n})

This completes the proof. Q. E. D.
For the proof of (a) from (c) and (d), we need the following lemma.
Lemma 3. 2. Let f\in \mathfrak{M}_{0}^{G}(R^{n}) and let F\in C_{0}^{G}(R^{n}\cross R^{r}) be a G-unfolding

of f. Suppose f is strongly k-determined, then the following statements
are equivalent :

(1) F is an infifinitesimally universal G-unfolding.
(2) d(j_{1}^{k}F)_{(0,0)}(T_{(0,0)}(R^{n}\cross R^{r}))+T_{z}(J_{G}^{k}(n, 1)^{\perp}\cross L_{G}^{k}(n1(z)\cross(R^{n})^{G}\cross R)=T_{z}

(J^{k}(n, 1)\cross R^{n}\cross R) .
Where z:=j^{k}f(0) , and J_{G}^{k}(n, 1)^{\perp}is the orthogonal complement of J_{G}^{k}(n, 1)

in J^{k}(n, 1) , (in certain invariant Riemannian metric).

PROOF. First, we prove that (1) implies (2).

Denote the coordinate of R^{n}\cross R by (x_{1}, \cdots, x_{n}, u_{1}, \cdots, u_{r}) .
Since T_{(0,0)}(R^{n}\cross R^{r}) is generated by \frac{\partial}{\partial x_{1}}, \cdots , \frac{\partial}{\partial x_{n}} , \frac{\partial}{\partial u_{1}}, \cdots , \frac{\partial}{\partial u_{r}} over R,

then d(j_{1}^{k}F)_{(0,0)}(T_{(0,0)}(R^{n}\cross R^{r})) is generated by

j^{k}( \frac{\partial f}{\partial x_{i}})(0) , i=1 , \cdots , n ,

j^{k}( \frac{\partial F}{\partial u_{j}}|R^{n}\cross 0)(0) , j=1 , \cdots , r ,

\frac{\partial}{\partial x_{i}}|_{0} , i=1 , \cdots , n’.

\frac{\partial}{\partial u_{j}}|_{0} , i=1 , \cdots , r

over R. (See [5], p63\sim p64).
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Now, the space T_{z}(J_{G}^{k}(n, 1)^{\perp}\cross L_{G}^{k}(n)(z)\cross(R^{n})^{G}\cross R) is generated by

T_{z}(J_{G}^{k}(n, 1)^{\perp}) , T_{(0,0)}((R^{n})^{G}\cross R) . and \pi_{k}^{G}(\iota\tilde{7}_{G}(f)) over R\tau

Since F is infinitesimally universal, we have

\pi_{k}^{G} ( \tilde{J}(f)+V_{F}+\langle\frac{\partial f}{\partial x_{i}}|i=1 , \cdots , n\rangle)\supset T_{z}J_{G}^{k}(n, 1)\oplus R ,

where \langle\frac{\partial f}{\partial x_{i}}|i=1 , \cdots , n\rangle denotes the vector space which is generated by

\frac{\partial f}{\partial x_{1}} , \cdots , \frac{\partial f}{\partial x_{n}} over R.

Hence, we have

d(j_{1}^{k}F)_{(0,0)}(T_{(0,0)}(R^{n}\cross R^{r}))+T_{z}(J_{G}^{k}(n, 1)^{\perp}\cross L_{G}^{k}(n)(z)\cross(R^{n})^{G}\cross R)

=T_{z}(J^{k}(n, 1)\cross R^{n}\cross R)

Using the same method as above, we can also proved the converse.
Q. E. D.

REMARK: i) The condition (2) in Lemma 3. 2 means that the mapping
j_{1}^{k}F:R^{n}\cross R^{r}-J^{k}(R^{n}, R) is transeverse to the submanifold

J_{G}^{k}(n, 1)^{\perp}\cross L_{G}^{k}(n)(z)\cross(R^{n})^{G}\cross R at (0, 0)\in R^{n}\cross R^{r}

ii) Let (x_{0}, u_{0})\in(R^{n})^{G}\cross R^{r} . Since the local situation about (x_{0}, u_{0}) as
a G-space is same as about (0, 0) , the assertion of Lemma 3. 2 is still valid
for (x_{0}, u_{0}) .

PROOF OF (a) FROM (c) AND (d). Let U be an invariant neighbourhood
of O\in R^{n}\cross R^{r} , and let \tilde{F}\in C^{G}(U) be a representative of F.

We now define the neighbourhood N(\tilde{F}) of \tilde{F} in C^{\infty}(U) as follows:

N(\tilde{F}) :=\{\tilde{H}\in C^{\infty}(U)|

There exists (x_{0}, u_{0})\in U such that
j_{1}^{k}\tilde{H}(x_{0}, u_{0})\in J_{G}^{k}(n, 1)^{\perp}\cross L_{G}^{k}(n)(z)\cross(R^{n})^{G}\cross R

and

d(j_{1}^{k}\tilde{H})_{(x_{0},u_{0})}(T_{(x_{0},u_{0})}(R^{n}\cross R^{r}))+T_{w}(J_{G}^{k}(n, 1)^{\perp}\cross L_{G}(n)(z)\cross

\cross(R^{n})^{G}\cross R)=T_{w}(J_{k}(n, 1)\cross R^{n}\cross R) , where w:=j_{1}^{k}\tilde{H}(x_{0}, u_{0}).\}

By the above remark i), N(\tilde{F}) is an open neighbourhood of \tilde{F} in C^{\infty}(U)

(with C^{\infty}-topology).
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Let N_{G}(\tilde{F}):=N(\tilde{F})\cap C_{G}(U) .
If \tilde{H}\in N_{G}(\tilde{F}) , then there exists (x_{0}, u_{0})\in U such that

j_{1}^{k}\tilde{H}(x_{0}, u_{0})\in J_{G}^{k}(n, 1)^{\perp}\cross L_{G}(n)(z)\cross(R^{n})^{G}\cross R .

Hence, (x_{0}, u_{0})\in(R^{n})^{G}\cross R . Since \tilde{H} is G-invariant then
j_{1}^{k}\tilde{H}(x_{0}, u_{0})\in\{0\}\cross L_{G}^{k}(n)(z)\cross(R^{n|G},\cross R .

Let h:=\tilde{H}_{u_{0}} , then j^{k}h(0)\in L_{G}^{k}(n)(z)\cross(R^{n})^{G}\cross R . Since f is strongly
k-determined, then we have f\sim_{G}h . Hence, there exists an equivariant dif-
feomorphism germ

\phi:(R^{n}, 0)-arrow(R^{n},x_{0})

such that

f(x)=h\circ\phi(x)-x_{0} .

We now define a G-unfolding

H’ : (R^{n}\cross R^{r} , (x_{0}, u_{0}))--(R, h(x_{0}))

by

H’(x, u) :=\tilde{H}(\phi(x), u_{0}+u)-x_{0}

for (x, u)\in U.
Then H’ is a G-unfolding of f such that H’ and H are G-equivalent.

By the above remark ii), H is infinitesimally universal at (x_{0}, u_{0})\in R^{n}\cross R .
Hence, H’ is an infinitesimally universal G-unfolding of f. On the other
hand, by the uniqueness of infinitesimally universal G-unfoldings of same
unfolding dimension (Theorem 2. 5 ii)) , H’ and F are
G-/-isomorphic. Hence, H and F are G-equivalent.

This completes the proof. Q. E. D.
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