Stability of G-unfoldings

By Shyūichi IZUMIYA (Received December 26, 1978)

§ 0. Introduction

In [4], R. Thom has presented the problem to study the bifurcation of singularities of G-invariant functions. (Where G is a compact Lie group). In realtion to this problem, G. Wassermann has classified singularities with compact abelian symmetry and their universal G-unfoldings ([6]). But, from the view point of "Catastrophe theory" we must classify stable G-unfoldings instead of universal G-unfoldings.

In this paper, we will prove the equivalence of these notions of G-unfoldings. Once this is proved, the list of universal G-unfoldings in [6] can be exchanged for stable G-unfoldings.

The main result of this paper will be formulated in $\S 1$. Preliminary facts about G-invariant functions and jet bundles are contained in $\S 2$. Proof of the main result will be given in $\S 3$.

All functions and actions of Lie group should be smooth.

§ 1. Formulation of the result

Let G be a compact Lie group which acts linearly on \mathbb{R}^n . We shall denote $C^{\infty}(\mathbb{R}^n)$ the set of all C^{∞} -functions over \mathbb{R}^n ; $C_0^{\infty}(\mathbb{R}^n)$ the set of all C^{∞} -function germs at 0. We shall set $\mathfrak{M}_0^{\infty}(\mathbb{R}^n):=\{f\in C_0^{\infty}(\mathbb{R}^n)|f(0)=0\}$. Then $C_0^{\infty}(\mathbb{R}^n)$ is an \mathbb{R} -algebra in the usual way, and $\mathfrak{M}_0^{\infty}(\mathbb{R}^n)$ is its unique maximal ideal.

A function $f \in C^{\infty}(\mathbf{R}^n)$ will be said to be G-invariant if f(gx) = f(x) for any $x \in \mathbf{R}^n$ and $g \in G$. The set of G-invariant functions over \mathbf{R}^n will be denoted by $C^G(\mathbf{R}^n)$ and the set of all G-invariant function germs at 0 denoted by $C_0^G(\mathbf{R}^n)$; it is a subalgebra of $C_0^{\infty}(\mathbf{R}^n)$, and $\mathfrak{M}_0^G(\mathbf{R}^n) := C_0^G(\mathbf{R}^n) \cap \mathfrak{M}_0^{\infty}(\mathbf{R}^n)$ is its unique maximal ideal.

Let $f: (\mathbf{R}^n, a) \longrightarrow (\mathbf{R}, c)$ and $h: (\mathbf{R}^n, a') \longrightarrow (\mathbf{R}, c')$ be germs of G-invariant functions at a and a'(f(a)=c, f(a')=c'). We shall say f is G-right equivalent to h (and we shall write $f \sim_G h$) if there is a equivariant diffeomorphism germ $\phi: (\mathbf{R}^n, a) \longrightarrow (\mathbf{R}^n, a')$ such that $f = h \circ \phi + (c - c')$.

Definition 1.1. Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$. We say f is strongly k-determined

if for any $h \in \mathfrak{M}_0^G(\mathbf{R}^n)$ such that $f - h \in \mathfrak{M}_0^\infty(\mathbf{R}^n)^{k+1} \cap G_0^G(\mathbf{R}^n)$ we have $f \sim_G h$. We say f is strongly finitely determined if f is strongly k-determined for some integer k.

Let $f: (\mathbf{R}^n, a) \longrightarrow (\mathbf{R}, c)$ be a G-invariant function germ. An r-dimensional G-unfolding of f is a G-invariant function germ $F: (\mathbf{R}^n \times \mathbf{R}^r, (a, b)) \longrightarrow (\mathbf{R}, c)$ such that F(x, b) = f(x), (where G acts on \mathbf{R}^r trivially).

DEFINITION 1.2. Let $f \in \mathfrak{M}_0^G(\mathbb{R}^n)$, F be a r-dimensional G-unfolding of f, and H be a s-dimensional G-unfolding of f.

A *G-f-morphism* from *H* to *F* is a triple $\Phi = (\phi, \phi, \alpha)$, where $\phi : (\mathbf{R}^n \times \mathbf{R}^s, (0, 0)) - \to (\mathbf{R}^n, 0)$ is a *G*-equivariant map germ, $\phi : (\mathbf{R}^s, 0) - \to (\mathbf{R}^r, 0)$ is a smooth map germ, and $\alpha \in \mathfrak{M}_0^{\infty}(\mathbf{R}^s)$ satisfying the following conditions:

- (i) for $x \in \mathbb{R}^n$ we have $\phi(x, 0) = x$
- (ii) for $x \in \mathbb{R}^n$, $u \in \mathbb{R}^s$ we have

$$H(x, u) = F(\phi(x, u), \psi(u)) + \alpha(u)$$
.

We shall write $\Phi = (\phi, \phi, \alpha) : H \rightarrow F$.

The G-f-morphism $\Phi = (\phi, \psi, \alpha) : H \to F$ will be called a G-f-isomorphism if there is a G-f-morphism $\Phi' = (\phi', \psi', \alpha') : F \to H$ such that $\phi^{-1} = \psi', -\alpha = \alpha'$, and $(\phi \times \psi)^{-1} = \phi' \times \psi'$.

DEFINITION 1.3. Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$, and let F be a G-unfolding of f. We say F is *universal* if for any G-unfolding H of f there exists a G-morphism of F to H.

DEFINITION 1.4. Let $f: (\mathbf{R}^n, a) \longrightarrow (\mathbf{R}, c)$ and $h: (\mathbf{R}^n, a') \longrightarrow (\mathbf{R}, c')$ be G-invariant function germs. Let $F: (\mathbf{R}^n \times \mathbf{R}^r, (a, b)) \longrightarrow (\mathbf{R}, c)$ and $H: (\mathbf{R}^n \times \mathbf{R}^r, (a', b')) \longrightarrow (\mathbf{R}, c')$ be G-unfoldings of f and h respectively. We say F and H are G-equivalent if the following hold:

There exist

- 1) $\phi: (\mathbf{R}^n, a') \longrightarrow (\mathbf{R}^n, a)$: equivariant diffeomorphism germ
- 2) $\Phi: (\mathbf{R}^n \times \mathbf{R}^r, (a', b')) \longrightarrow (\mathbf{R}^n, a):$ equivariant map germ
- 3) $\phi: (\mathbf{R}^r, b') \longrightarrow (\mathbf{R}^r, b):$ diffeomorphism germ
- 4) $\alpha: (\mathbf{R}^r, b') \longrightarrow (\mathbf{R}, c c')$: smooth function germ such that
 - a) $\Phi(x, b') = \phi(x)$ for $x \in \mathbb{R}^n$
 - b) $H(x, u) = F(\Phi(x, u), \phi(u)) + \alpha(u)$ for $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^r$.

REMARK: Let f and h be G-invariant function germs which are G-right equivalent. Let F be a G-unfolding of f. Then there exist a G-unfolding H of h such that it is G-equivalent to F.

Definition 1.5. Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$ and let $F \in C_0^G(\mathbf{R}^n \times \mathbf{R}^r)$ be a G-unfold-

ing of f. We shall say F is *stable* if for every representative \tilde{F} of F defined on U there is a neighbourhood $N_G(\tilde{F})$ of \tilde{F} in $C^G(U)$ (with the C^∞ -topology) such that for every $\tilde{H} \in N_G(\tilde{F})$ there is a point $(x_0, u_0) \in U$ such that $H: (\mathbf{R}^n \times \mathbf{R}^r, (x_0, u_0)) \longrightarrow (\mathbf{R}, \tilde{H}(x_0, u_0))$ is G-equivalent to F as a G-unfolding. Now we are ready to state the main result of this paper.

THEOREM 1.6. Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$ and $F \in C_0^G(\mathbf{R}^n \times \mathbf{R}^r)$ be a G-unfolding of f. Suppose f is strongly k-determined, then the following statements are equivalent:

- (a) F is a stable G-unfolding
- (b) F is an universal G-unfolding.

§ 2. Preliminaries

In which we recall some preliminary facts about G-invariant functions.

A) Equivariant vector fields and the Jacobian ideal.

Let $\Gamma_0^{\infty}(T\mathbf{R}^n)$ be the space of germs of vector field at 0 on \mathbf{R}^n . A germ $\xi \in \Gamma_0^{\infty}(T\mathbf{R}^n)$ is equivariant if it is equivariant with respect to the induced action on $T\mathbf{R}^n$ from the action on \mathbf{R}^n . Let $\Gamma_0^{\infty}(T\mathbf{R}^n)^G$ be the space of germs of equivariant vector field at 0 on \mathbf{R}^n .

We define $J(f) := df(\Gamma_0^{\infty}(T\mathbf{R}^n))$ and $J_G(f) := df(\Gamma_0^{\infty}(T\mathbf{R}^n)^G)$ for $f \in G_0^G(\mathbf{R}^n)$. It is easy to show these sets are ideals in $C_0^{\infty}(\mathbf{R}^n)$ and $C_0^G(\mathbf{R}^n)$ respectively.

The ideal J(f) is called the $Jacobian\ ideal$ of f, and $J_G(f)$ is called the G-jacobian ideal of f.

We also define an ideal $\tilde{J}_G(f) := \{df(\xi) | \xi \in \Gamma_0^{\infty}(T\mathbf{R}^n)^G \text{ and } \xi(0) = 0\}$, which we call the reduced G-jacobian ideal of f.

B) k-jets.

Let k be a non-negative integer. We denote by $J^k(\mathbf{R}^n, \mathbf{R})$ the k-jet bundle over $\mathbf{R}^n \times \mathbf{R}$. Then we have a canonical decomposition $J^k(\mathbf{R}^n, \mathbf{R}) \cong J^k(n, 1) \times \mathbf{R}^n \times \mathbf{R}$, where $J^k(n, 1)$ is the set of all k-jets at 0 of elements in $\mathfrak{M}_0^{\infty}(\mathbf{R}^n)$.

Let $\pi_k: \mathfrak{M}_0^{\infty}(\mathbf{R}^n) \to J^k(n, 1)$ be the natural map defined by $\pi_k(f) := j^k f(0)$.

We observe that $J^k(n, 1)$ is a finite dimensional vector space over R and G acts on $J^k(n, 1)$ by

$$g(j^k f(0)) := j^k (f \circ g^{-1}) (0)$$

where $g \in G$ and $f \in \mathfrak{M}_0^{\infty}(\mathbf{R}^n)$.

Since the action of G on $J^k(n, 1)$ is defined by derivative, it is a linear action. Hence, the fixed point set $J_G^k(n, 1)$ of this action is a linear subspace of $J^k(n, 1)$.

Now let $J_G^k(\mathbf{R}^n, \mathbf{R})$ be the subspace of $J^k(\mathbf{R}^n, \mathbf{R})$ comprising k-jets of local invariant function, then we have $J_G(n, 1) \times (\mathbf{R}^n)^G \times \mathbf{R} \subset J_G^k(\mathbf{R}^n, \mathbf{R})$ via the canonical decomposition of $J^k(\mathbf{R}^n, \mathbf{R})$, (where $(\mathbf{R}^n)^G$ denotes a fixed poinset of G on \mathbf{R}^n).

Defined $L_G^k(n) := \{j^k \phi(0) | \phi : (\mathbf{R}^n, 0) - \to (\mathbf{R}^n, 0) : equivariant map germ, which is non-singular at <math>0\}$. Then $L_G^k(n)$ is a Lie group; moreover we define an action of $L_G^k(n)$ on $J_G^k(n, 1)$ by

$$\left(j^k\phi(0)\right)\left(j^kf(0)\right):=j^k(f\circ\phi^{-1})\left(0\right).$$

Let $z \in J_G^k(n, 1)$. We denote by $L_G(n)(z)$ the $L_G(n)$ -orbit of z.

REMARK: Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$. Suppose f is strongly k-determined. Let $h: (\mathbf{R}^n, a) \longrightarrow (\mathbf{R}, c)$ be a G-invariant function germ, where $a \in (\mathbf{R}^n)^G$. If $j^k h(a) \in L_G(n) (j^k f(0)) \times (\mathbf{R}^n)^G \times \mathbf{R}$, then we have $f \sim_G h$.

We now have the formula for the tangent space at $z := j^k f(0)$ to the orbit $L_G(n)(z)$.

Lemma 2.1. (Beer [1]). Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$ and $\pi_k^G := \pi_k | \mathfrak{M}_0^G(\mathbf{R}^n)$. Then we have

$$T_zig(L_G(n)\left(z
ight)ig)=\pi_k^Gig(ilde{J}_G(f)ig)$$
 .

COROLLARY 2. 2. Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$. If f is strongly k-determined then $\mathfrak{M}_0^{\infty}(\mathbf{R}^n)^{k+1} \cap C_0^G(\mathbf{R}^n) \subset \tilde{J}_G(f)$.

C) Infinitesimally universal G-unfoldings.

Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$ and let $F \in C_0^G(\mathbf{R}^n \times \mathbf{R}^r)$ be a G-unfolding of f. Denote the coordinate of \mathbf{R}^r by (u_1, \dots, u_r) . We shall say F is infinitesimally universal if 1, $\left\{\frac{\partial f}{\partial u_1}|\mathbf{R}^n \times 0\right\}$, \dots , $\left\{\frac{\partial f}{\partial u_r}|\mathbf{R}^n \times 0\right\}$ generate $C_0^G(\mathbf{R}^n)/J_G(f)$ as an \mathbf{R} -vector space.

We now have the following fundamental result for G-unfoldings.

THEOREM 2.5. (Beer [1], Poénaru [2]).

Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$.

- (i) f has universal G-unfoldings if and only if f is strongly finitely determined.
- (ii) Any two universal G-unfoldings of f of same unfolding dimension are G-f-isomorphic.
- (iii) If $F \in C_0^{\alpha}(\mathbb{R}^n \times \mathbb{R}^r)$ is a G-unfolding of f, then F is infinitesimally universal if and only if it is universal.

As an easy consequence, if f is strongly finitely determined, and $b_1, \dots,$

 $b_s \in \mathfrak{M}_0^G(\mathbf{R}^n)$ are representatives of a basis of $\mathfrak{M}_0^G(\mathbf{R}^n)/(J_G(f) \cap \mathfrak{M}_0^G(\mathbf{R}^n))$, then the s-dimensional G-unfolding

$$H(x, u) := f(x) + u_1 b_1(x) + \dots + u_s b_s(x)$$

 $(x \in \mathbb{R}^n, (u_1, \dots, u_s) \in \mathbb{R}^s)$ is an universal G-unfolding.

§ 3. Proof of Theorem 1.6.

We shall say two G-unfoldings are weakly G-equivalent if all conditions in Definition 1.4 hold except that ϕ , Φ are equivariant.

Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$ and let $F \in C_0^G(\mathbf{R}^n \times \mathbf{R}^r)$ be a G-unfoldings of f. We say that F is weakly stable if for every invariant open neighbourhood U of $0 \in \mathbf{R}^n \times \mathbf{R}^r$ and every representative \widetilde{F} of F defined on U there is a neighbourhood $N_G(\widetilde{F})$ of \widetilde{F} in $C^G(U)$ (with C^∞ -topology) such that

$$H: (\mathbf{R}^n \times \mathbf{R}^r, (x_0, u_0)) \longrightarrow (\mathbf{R}, \tilde{H}(x_0, u_0))$$

is weakly G-equivalent to F as a G-unfolding.

We will prove Theorem 1.6 as the following form.

THEOREM 1.6'. Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$ and $F \in C_0^G(\mathbf{R}^n \times \mathbf{R}^r)$ be a G-unfolding of f. Suppose f is strongly k-determined, then the following statements are equivalent:

- (a) F is a stable G-unfolding.
- (b) F is a weakly stable G-unfolding.
- (c) F is an universal G-unfolding.
- (d) F is an infinitesimally universal G-unfolding.

It is clear that (a) implies (b). By Theorem 2.5 (iii), (c) and (d) are equivalent.

Now we shall show first that (b) implies (d).

Let s be a non-negative integer. Let

$$j_1^s F: \mathbf{R}^n \times \mathbf{R}^r \longrightarrow J^s(\mathbf{R}^n, \mathbf{R})$$

be an extension of F defined by $j_1^s F(x, u) := j^s(F_u)(x)$, where $F_u : \mathbb{R}^n \to \mathbb{R}$ is a G-invariant function which is defined by $F_u(x) := F(x, u)$.

Let $O^s(f)$ be the orbit of $j^s f(0)$ defined by the action of invertible jets over \mathbb{R}^n (not necessary equivariant jets).

We now have a canonical decompositions:

$$T_z\Bigl(J^s(\pmb{R}^n,\pmb{R})\Bigr)=J^s(\pmb{R}^n,\pmb{R})=\pmb{R}^n\! imes\!P(n,1)$$
 ,

where $z := j^s f(0)$ and $P^s(n, 1)$ denote the set of polynomial functions of degree s. Let $P_G^s(n, 1)$ be the set of G-invariant polynomial functions in $P^s(n, 1)$.

Then we need the following lemma.

Lemma 3.1. Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$ and let $F \in C_0^G(\mathbf{R}^n \times \mathbf{R}^r)$ an weakly stable G-unfolding of f. For any non-negative integer s, we have

$$d(j_1^s F)_{(0,0)} \left(T_{(0,0)} (\mathbf{R}^n \times \mathbf{R}^r) \right) + T_z \left(O^s(f) \right) \supset \{0\} \times P_G^s(n,1) \ .$$

PROOF. Let $p \in P_G^s(n, 1)$. Suppose that $p \notin Image(d(j_1^s F)_{(0,0)}) + T_z(O^s(f))$, let V be a neighbourhood of z in $J^s(\mathbf{R}^n, \mathbf{R})$, let $D \subset Image(d(j_1^s F)_{(0,0)})$ be a complement of $Image(d(j_1^s F)_{(0,0)}) \cap T_z(O^s(f))$ and M be a closed submanifold in V which contains $O^s(f) \cap V$ and transverse to $\{p\} \oplus D$, where $\{p\}$ denotes a line through p; M always exists for sufficiently small V.

Let $H(x, u, t) = F_t(x, u) := F(x, u) + tp(x)$, then $j_1^s H$ is transverse to M at (0, 0, 0).

Then, there exist a neighbourhood U of $0 \in \mathbb{R}^n \times \mathbb{R}^r$ and a positive integer ε such that:

- i) $j_1^s H$ is transversal to M over $M \times (-\varepsilon \ \varepsilon)$
- ii) $\dim(Image(d(j_1^s H)_{(x,u,t)}) \ge \dim(Image(d(j_1^s F)_{(0,0)}) + 1 \text{ for } (x,u,t) \in U \times (-\varepsilon \ \varepsilon).$

Since F is weakly stable, there exists a positive number ε such that if $t \in (-\varepsilon \varepsilon)$, there exists $(x, u) \in U$ such that germ of F_t at (x, u) is weakly G-equivalent to germ of F at (0, 0) as G-unfoldings. Hence, germ of $(F_t)_u$ at x is right equivalent (not necessary G-right equivalent) to germ of f at 0; in particular

$$j_1^s(F_t)(x, u) \in O^s(f) \cap V$$
.

Let $M':=(j_1^sH)^{-1}(M)$, which is a submanifold of $U\times(-\varepsilon \varepsilon)$ and let $t_0\in (-\varepsilon \varepsilon)$ be a regular value of a restriction to M' of the projection: $U\times(-\varepsilon \varepsilon)\to (-\varepsilon \varepsilon)$.

Then $j_1^s(F_{t_0})(x, u) \in M$ and

$$\dim\left(\operatorname{Image}\left(d(j_1^sH)_{(x,u,t)}\right)=\dim\left(\operatorname{Image}\left(d(j_1^sF_{t_0})_{(x,u)}\right);\right)$$

hence

$$\dim \left(Image \left(d(j_1^s F_{t_0})_{(x,u)}\right)\right) \geq \dim \left(Image \left(d(j_1^s F)_{(0,0)}\right)\right) + 1.$$

This is imposible if a germ of (F_{t_0}) at (x, u) and a germ of F at (0, 0) are weakly G-equivalent.

This completes the proof.

Q. E. D.

PROOF OF (d) FROM (b). Using the formula for the tangent space ([5], p 41, p 63~p 65), the relation (*) in Lemma 3.1 means the following:

$$df\!\left(arGamma_0^\infty(Tm{R}^n)
ight) + V_F + \mathfrak{M}_0^\infty(m{R}^n)^S \supset C_0^G(m{R}^n)$$
 ,

where V_F denote the R-vector space generated by

$$1, \frac{\partial F}{\partial u_1} | \mathbf{R}^n \times 0, \dots, \frac{\partial F}{\partial u_r} | \mathbf{R}^n \times 0.$$

Taking an average over G, we have:

$$J_G(f) + V_F + \mathfrak{M}_0^{\infty}(\mathbf{R}^n)^s \cap C_0^G(\mathbf{R}^n) = C_0^G(\mathbf{R}^n)$$
.

Since f is strongly k-determined,

$$J_G(f) \supset \mathfrak{M}_0^{\infty}(\mathbf{R}^n)^{k+1} \cap C_0^G(\mathbf{R}^n)$$
. (Corollary 2.2).

Hence, let s be a positive integer with $s \ge k+1$, then

$$J_{G}(f) + V_{F} = C_{0}^{G}(\mathbf{R}^{n})$$
.

This completes the proof.

Q. E. D.

For the proof of (a) from (c) and (d), we need the following lemma.

LEMMA 3.2. Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$ and let $F \in C_0^G(\mathbf{R}^n \times \mathbf{R}^r)$ be a G-unfolding of f. Suppose f is strongly k-determined, then the following statements are equivalent:

- (1) F is an infinitesimally universal G-unfolding.
- (2) $d(j_1^k F)_{(0,0)}(T_{(0,0)}(\mathbf{R}^n \times \mathbf{R}^r)) + T_z(J_G^k(n,1)^{\perp} \times L_G^k(n)(\mathbf{z}) \times (\mathbf{R}^n)^G \times \mathbf{R}) = T_z(J_G^k(n,1) \times \mathbf{R}^n \times \mathbf{R}).$

Where $z := j^k f(0)$, and $J_G^k(n, 1)^{\perp}$ is the orthogonal complement of $J_G^k(n, 1)$ in $J^k(n, 1)$, (in certain invariant Riemannian metric).

PROOF. First, we prove that (1) implies (2).

Denote the coordinate of $\mathbb{R}^n \times \mathbb{R}$ by $(x_1, \dots, x_n, u_1, \dots, u_r)$.

Since $T_{(0,0)}(\mathbf{R}^n \times \mathbf{R}^r)$ is generated by $\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}, \frac{\partial}{\partial u_1}, \dots, \frac{\partial}{\partial u_r}$ over \mathbf{R} , then $d(j_1^k F)_{(0,0)}(T_{(0,0)}(\mathbf{R}^n \times \mathbf{R}^r))$ is generated by

$$egin{align} j^k igg(rac{\partial f}{\partial x_i}igg)(0) \;, & i=1,\,\cdots,\,n \;, \ \\ j^k igg(rac{\partial F}{\partial u_j} \,|\, m{R}^n imes 0igg)(0) \;, & j=1,\,\cdots,\,r \;, \ \\ rac{\partial}{\partial x_i} \,|_0 \;, & i=1,\,\cdots,\,n \;, \ \\ rac{\partial}{\partial u_j} \,|_0 \;, & i=1,\,\cdots,\,r \ \end{pmatrix}$$

over **R**. (See [5], p 63~p 64).

Now, the space $T_z(J_G^k(n,1)^{\perp} \times L_G^k(n)(z) \times (\mathbf{R}^n)^G \times \mathbf{R})$ is generated by

$$T_zigl(J^k_G(n,1)^\perpigr), \ T_{(0,0)}igl((oldsymbol{R}^n)^G imes oldsymbol{R}igr)$$
 , and $\pi^G_kigl(ilde{oldsymbol{J}}_G(f)igr)$ over $oldsymbol{R}$.

Since F is infinitesimally universal, we have

$$\pi_k^G\!\!\left(\! ilde{J}(f)\!+\!V_F\!+\!\left\langle \! frac{\partial f}{\partial x_i}\,|\,i=1,\,\cdots\!,\,n
ight
angle\!
ight)\!\!\supset\!T_zJ_G^k(n,1)\!\oplus\!m{R}$$
 ,

where $\left\langle \frac{\partial f}{\partial x_i} | i = 1, \dots, n \right\rangle$ denotes the vector space which is generated by $\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}$ over \mathbf{R} .

Hence, we have

$$egin{aligned} d(j_1^k F)_{(0,0)} ig(T_{(0,0)} (oldsymbol{R}^n imes oldsymbol{R}^r) ig) + T_z ig(J_G^k(n,1)^\perp imes L_G^k(n) \, (z) imes (oldsymbol{R}^n)^G imes oldsymbol{R} ig) \ &= T_z ig(J^k(n,1) imes oldsymbol{R}^n imes oldsymbol{R} ig) \,. \end{aligned}$$

Using the same method as above, we can also proved the converse. Q. E. D.

REMARK: i) The condition (2) in Lemma 3.2 means that the mapping $j_1^k F: \mathbf{R}^n \times \mathbf{R}^r \rightarrow J^k(\mathbf{R}^n, \mathbf{R})$ is transeverse to the submanifold

$$J_G^k(n,1)^{\perp} \times L_G^k(n) (z) \times (\boldsymbol{R}^n)^G \times \boldsymbol{R}$$
 at $(0,0) \in \boldsymbol{R}^n \times \boldsymbol{R}^r$.

ii) Let $(x_0, u_0) \in (\mathbb{R}^n)^G \times \mathbb{R}^r$. Since the local situation about (x_0, u_0) as a G-space is same as about (0, 0), the assertion of Lemma 3.2 is still valid for (x_0, u_0) .

PROOF OF (a) FROM (c) AND (d). Let U be an invariant neighbourhood of $O \in \mathbb{R}^n \times \mathbb{R}^r$, and let $\widetilde{F} \in \mathbb{C}^g(U)$ be a representative of F.

We now define the neighbourhood $N(\tilde{F})$ of \tilde{F} in $C^{\infty}(U)$ as follows:

$$N(\tilde{F}):=\!\left\{ \! ilde{H} \! \in \! C^{\infty}(U) \! \middle| \right.$$

There exists $(x_0, u_0) \in U$ such that

$$j_1^k \widetilde{H}(x_0, u_0) \in J_G^k(n, 1)^{\perp} \times L_G^k(n) (z) \times (R^n)^G \times R$$

and

$$egin{aligned} d(j_1^k ilde{H})_{(x_0,u_0)} \left(T_{(x_0,u_0)} \left(oldsymbol{R}^n imes oldsymbol{R}^r
ight) + T_w \Big(J_G^k(n,\,1)^\perp imes L_G\left(n
ight)(z) imes \ & imes (oldsymbol{R}^n)^G imes oldsymbol{R} \Big) = T_w \Big(J_k(n,\,1) imes oldsymbol{R}^n imes oldsymbol{R} \Big), \quad where \quad w:= j_1^k ilde{H}(x_0,\,u_0). \Big\} \ . \end{aligned}$$

By the above remark i), $N(\tilde{F})$ is an open neighbourhood of \tilde{F} in $C^{\infty}(U)$ (with C^{∞} -topology).

Let $N_G(\tilde{F}) := N(\tilde{F}) \cap C_G(U)$.

If $\tilde{H} \in N_G(\tilde{F})$, then there exists $(x_0, u_0) \in U$ such that

$$j_1^k \tilde{H}(x_0, u_0) \in J_G^k(n, 1)^{\perp} \times L_G(n) (z) \times (\mathbf{R}^n)^G \times \mathbf{R}$$
.

Hence, $(x_0, u_0) \in (\mathbf{R}^n)^G \times \mathbf{R}$. Since \tilde{H} is G-invariant then

$$j_1^k \tilde{H}(x_0, u_0) \in \{0\} \times L_G^k(n)(z) \times (\mathbf{R}^n)^G \times \mathbf{R}$$
.

Let $h:=\tilde{H}_{u_0}$, then $j^kh(0)\in L_G^k(n)(z)\times (R^n)^G\times R$. Since f is strongly k-determined, then we have $f\sim_G h$. Hence, there exists an equivariant diffeomorphism germ

$$\phi: (\mathbf{R}^n, 0) \longrightarrow (\mathbf{R}^n, x_0)$$

such that

$$f(x) = h \circ \phi(x) - x_0.$$

We now define a G-unfolding

$$H': (\mathbf{R}^n \times \mathbf{R}^r, (x_0, u_0)) - \longrightarrow (\mathbf{R}, h(x_0))$$

by

$$H'(x,u):= ilde{H}ig(\phi(x),u_0+uig)-x_0$$

for $(x, u) \in U$.

Then H' is a G-unfolding of f such that H' and H are G-equivalent. By the above remark ii), H is infinitesimally universal at $(x_0, u_0) \in \mathbb{R}^n \times \mathbb{R}$. Hence, H' is an infinitesimally universal G-unfolding of f. On the other hand, by the uniqueness of infinitesimally universal G-unfoldings of same unfolding dimension (Theorem 2.5 ii)), H' and F are G-f-isomorphic. Hence, H and F are G-equivalent.

This completes the proof.

Q. E. D.

References

- [1] M. BEER: Endliche Bestimmtheit und universelle Entfaltungen von Keimen mit Gruppen operation, Diplomarbeit, Regensburg, 1976.
- [2] V. POÉNARU: Singularités C[∞] en presence de symétrie, Lecture Notes in Mathematics 510, Berlin-Heidelberg-New York, Springer, 1976.
- [3] F. Ronga: Stabilite local des applications equivariantes, Differential Topology and Geometry (Dijon 1974), Lecture Notes in Mathematics 484, Berline-Heidelberg-New York, Springer, 1975, 23-35.
- [4] R. THOM: La Théorie des Catastrophes: Etat Présent et Perspectives, Manifold, a student magazine at Warwick University, 1974.

- [5] G. WASSERMANN: Stability of Unfoldings, Lecture Notes in Mathematics 393, Berline-Heidelberg-New York, Springer, 1974.
- [6] G. WASSERMANN: Classification of singularities with compact abelian symmetry, Regensburger Mathematische Schriften 1, 1977.

Department of Mathematics Nara women's University Kita-Uoya Nishimachi NARA 630, JAPAN