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On a parametrix for the hyperbolic mixed problem

with diffractive lateral boundary II
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\S 1. Introduction.

In the previous paper ([5]) we proved that there exist parametrices with
a loss of 1/3 derivative in a neighborhood of a fixed diffractive point for
second order normally hyperbolic mixed problems with boundary conditions
more general than Dirichlet’s or Neumann’s.

The aim of the present paper is to give examples of the mixed problems
with such general boundary conditions mentioned above, which may appear
in classical Mathematical Physics in a natural way. Namely, we consider
the equation with given initial data at t=0

(1. 1) \partial_{t}^{2}u=\mu\Delta u+(\lambda+\mu)\nabla(\nabla\cdot u) for t\geqq 0

where u={}^{t}(u_{1}, u_{2}) is the displacement vector and \lambda , \mu the Lam\’e parameters
of the medium which occupies a C^{\infty}-domain \Omega of R^{2} . Denote the stress-
strain components by

\sigma_{ij}=\lambda(\nabla\cdot u)\delta_{ij}+\mu(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}) , i, j=1,2

and let

( : -b(X)a(X))\in O(2)

which is a C^{\infty}-cross-section over \partial\Omega . Now we impose the following mixed
boundary conditions :

\int a(X)u_{1}(X)-b(X)u_{2}(X)=0 :(1. 2)
| \sum_{k=1,2}(b(X)\sigma_{1k}(X)+a(X)\sigma_{2k}(X))n_{k}(X)=0 on \partial\Omega .

Here (n_{1}, n_{2})(X) is the unit inward normal at X=(x_{1}, x_{2})\in\partial\Omega (see [14]). Our
boundary conditions mean that for any boundary point X they are rigid
in the direction (a(X), - b(X)) and are free for the direction (b(X), a(X)) .

To make (1. 1) a normally hyperbolic system we must assume that
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(1. 3) \mu>0,\cdot 2\mu+\lambda>0 and \mu+\lambda\neq 0 .

On the other hand the quantity

E(t)= \frac{1}{2}\int\{\frac{\partial u_{i}}{\partial t}\frac{\partial u_{i}}{\partial t}+\sigma_{ij}\frac{\partial u_{i}}{\partial x_{j}}\}dx

is invariant of t, but we can’t consider in general it as an energy norm,

because in general domains it is not always positive definite for test functions
u with the boundary conditions and does not dominate the norm ||u||_{1} even

if \frac{\partial u_{i}}{\partial t} is replaced by \gamma u_{i} for \gamma\gg 1 . Furthermore it will be not easy to find

such a suitable norms, in order to show the existence of solutions to the
problem. Fortunately our results in [12], [7] and [8] are applicalbe to the
problem and we shall show in section 3 that it is well-posed.

About the propagations of singularities of solutions it seems to be an
open problem to decide precisely the lateral wave on the boundary of our
mixed problem even in a neighborhood of a gliding point (see [3], also [1]

and [11] ) . In section 4 we only apply the result in [5] to the present mixed
problem in order to construct a parametrix for given boundary data in a
neighborhood of a diffractive point.

\S 2. The Lopatinskii determinant.

Let (\tau, \xi_{1}, \xi_{2}) be the covectors with respect to (t, x_{1}, x_{2}) and let Q^{2}=

(\lambda+\mu)^{-1}(\tau^{2}-(\xi_{1}^{2}+\xi_{2}^{2})\mu) . Then the characteristic polynomial of (1. 1) is the
determinant

(2. 1) |\begin{array}{ll}Q^{2}-\xi_{1}^{2}, -\xi_{1}\xi_{2}-\xi_{1}\xi_{2}, Q^{2}-\xi_{2}^{2}\end{array}|=Q^{2}(Q^{2}-(\xi_{1}^{2}+\xi_{2}^{2}))

Therefore the zeros of (2. 1) in \tau are
\tau^{2}=\mu|\xi|^{2} or (2\mu+\lambda)|\xi|^{2}

corresponding to Q^{2}=0 or Q^{2}=|\xi|^{2} respectively and hence by (1. 3) we see
that (1. 1) is normally hyperbolic with respect to t .

For an arbitrary but fixed boundary point X^{0} let us consider the follow-
ing transformations T(x^{0}) :

\int x
=n_{1}(x_{1}-x_{1}^{0})+n_{2}(x_{2}-x_{2}^{0}) ,

|y =-n_{2}(x_{1}-x_{1}^{0})+n_{1}(x_{2}+x_{2}^{0}) and

/v_{1}=n_{1}u_{1}+n_{2}u_{2} ,
|_{v_{2}=}-n_{2}u_{1}+n_{1}u_{2}
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where

n=(n_{1}, n_{2})=(n_{1}(X^{0}), n_{2}(X^{0}))

Then setting \nabla=^{t} (\frac{\partial}{\partial x} , \frac{\partial}{\partial y}) we have that (1. 1) is invariant and (1. 2) becomes
at (x, y)=(0,0)

(2. 2) \{

Av_{1}-Bv_{2}=0 ,

B \{\lambda(\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{1}}{\partial y})+2\mu\frac{\partial v_{1}}{\partial x}\}+A\mu(\frac{\partial v_{1}}{\partial y}+\frac{\partial v_{2}}{\partial x})=0

Here

A(X^{0})=a(X^{0})n_{1}(X^{0})-b(X^{0})n_{2}(X^{0}) and

B(X^{0})=a(X^{0})n_{2}(X^{0})+b(X^{0})n_{1}(X^{0})

Therefore the characteristics of boundary operators for freezing problem is
the determinant

(2. 3) |\begin{array}{lll}A \prime. -BB(2\mu+\lambda)\xi+A\mu\sigma \prime. B\lambda\sigma+A\mu\xi\end{array}|

which is A^{2}\mu+B^{2}(2\mu+\lambda)\neq 0 for (\xi, \sigma)=(1,0) . Here (\xi, \sigma) is the covector
with respect to (x, y) . This means that the boundary operators are non-
characteristic with respect to the boundary surface \{x=0\} .

According to Hersh ([4]) we shall calculate the Lopatinskii determinant
for the freezing problem (1. 1) in x\geqq 0 and boundary conditions (2. 2) on
x=0.

From now on, in order to use the same notations as in [5], after c0-

ordinate transformation let the last component of the coordinates coincide
with normal one. Therefore we shall rewrite (x, y, \xi, \sigma)\in T^{*}(\{x>0\}) by
(y, x, \sigma, \xi) , but we shall keep the order of (v_{1}, v_{2}) .

Let \lambda_{(1)}^{+}=(\mu^{-1}\tau^{2}-\sigma^{2})^{1/2} and \lambda_{(2)}^{+}=((2\mu+\lambda)^{-1}\tau^{2}-\sigma^{2})^{1/2} be the roots of (2. 1\grave{)} in
\xi , where (\sigma, \xi) may be identified with (\xi_{1}, \xi_{2}) , Im \tau\leqq 0 and Im \lambda_{(i)}^{+}(i=1,2)

are non-negative. Now we take two vectors

W_{1}={}^{t}(\sigma, -\lambda_{(1)}^{+}) and W_{2}={}^{t}(\lambda_{(2)}^{+}, \sigma)

as null ones of the matrix in (2. 1) according as the cases Q^{2}=0 and Q^{2}=

\sigma^{2}+\xi^{2} respectively. Then we see that the determinant

|W_{1} , W_{2}|=\lambda_{(1)}^{+}\lambda_{(2)}^{+}+\sigma^{2}

is zero if and only if \tau=0 . Denoting by B(\sigma, \xi) the matirx in (2. 3) we see that
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B ( \sigma, \lambda_{(1)}^{+}(\tau, \sigma)) W_{1}={}^{t}(A\sigma+B\lambda_{(1)}^{+}, A\mu\sigma^{2}+2B\mu\sigma\lambda_{(1)}^{+}-A\mu\lambda_{(1)}^{+^{2}}) ,

B ( \sigma, \lambda_{(2)}^{+}(\tau, \sigma)) W_{2}=(t-(B\sigma-A\lambda_{(2)}^{+}), \{B(2\mu+\lambda)\lambda_{(2)}^{+}+A\mu\sigma\}\lambda_{(2)}^{+}

(2.4) +\{B\lambda\sigma+A\mu\lambda_{(2)}^{+}\}\sigma)

=^{t}(-(B\sigma-A\lambda_{(2)}^{+}), B\lambda\sigma^{2}+2A\mu\sigma\lambda_{(2)}^{+}

+B(2\mu+\lambda)\lambda_{(2)}^{+^{2}})

Then the Lopatinskii determinant for \tau\neq 0 may be considered as

|\mathscr{L}|=|_{A\mu\sigma^{2}+2B\mu\sigma\lambda_{(1)}^{+}-A\mu\lambda_{(1)}^{+^{2}}}A\sigma+B\lambda_{(1)}^{+},

’
B\lambda\sigma^{2}+2A\mu\sigma\lambda_{(2)}^{+}+B(2\mu+\lambda)\lambda_{(2)}^{+^{2}}-(B\sigma-A\lambda_{(2)}^{+})|1

The term containing AB in |\mathscr{L}| is

A\sigma\cdot(B\lambda\sigma^{2}+B(2\mu+\lambda)\lambda_{(2)}^{+^{2}}+B\lambda_{(1)}^{+}\cdot 2A\mu\sigma\lambda_{(2)}^{+}

+B\sigma\cdot(A\mu\sigma^{2}-A\mu\lambda_{(1)}^{+^{2}})-A\lambda_{(2)}^{+}\cdot 2\mu\sigma\lambda_{(1)}^{+}

=AB\sigma(\lambda\sigma^{2}+(2\mu+\lambda)\lambda_{(2)}^{+^{2}}+2\mu\lambda_{(1)}^{+}\lambda_{(2)}^{+}

+(\mu\sigma^{2}-\mu\lambda_{(1)}^{+^{2}})-2\mu\lambda_{(1)}^{+}\lambda_{(2)}^{+})

=AB\sigma((\lambda+\mu)\sigma^{2}+(2\mu+\lambda)\lambda_{(2)}^{+^{2}}-\mu\lambda_{(1)}^{+^{2}})

=0\iota

Thus we see that

|\mathscr{L}|=A\sigma\cdot 2A\mu\sigma\lambda_{(2)}^{+}+B\lambda_{(1)}^{+}\cdot(B\lambda\sigma^{2}+B(2\mu+\lambda)\lambda_{(2)}^{+^{2}})

+B\sigma\cdot 2B\mu\sigma\lambda_{(1)}^{+}-A\lambda_{(2)}^{+}(A\mu\sigma^{2}-A\mu\lambda_{(1)}^{+^{2}})

=A^{2}\lambda_{(2)}^{+}(2\mu\sigma^{2}-\mu\sigma^{2}+\mu\lambda_{(1)}^{+^{2}})+B^{2}\lambda_{(1)}^{+}(\lambda\sigma^{2}+2\mu\sigma^{2}+(2\mu+\lambda)\lambda_{(2)}^{+^{2}})

=(A^{2}\lambda_{(2)}^{+}+B^{2}\lambda_{(1)}^{+})\tau^{2} .

On the other hand, at \tau=0 the roots \lambda_{(1)}^{+} and \lambda_{(2)}^{+} are equal to i|\sigma| ,

therefore we must take another base (W_{1}, W_{2}’) which are generalized null
vectors of the matrix in (2. 1) with \xi_{2}=i|\sigma| and \xi_{1}=\sigma . Then the resulting
Lopatinskii determinant is equivalent to the limit |\mathscr{L}|\cdot(\lambda_{(1)}^{+}-\lambda_{(2)}^{+})^{-1} from \tau\neq 0 .
Thus we obtain the following

Lemma 1. The Lopatinskii determinant for the freezing problem at
the boundary point X^{0} is equivalent to

(2. 5) A^{2}\lambda_{(2)}^{+}+B^{2}\lambda_{(1)}^{+}
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for every \tau with Im \tau\leqq 0 .
By the analogous calculation for the free boundary conditions

(2. 6) \sum_{k=1,2}\sigma_{ik}n_{k}=0 (i=1,2) on \partial\Omega,\cdot

we have the following

Lemma 2. For the problem (1. 1) and (2. 6) the Lopatinskii determinant
is equivalent to

(2. 7) 4\mu^{2}\sigma^{2}\lambda_{(1)}^{+}\lambda_{(2)}^{+}+(\tau^{2}-2\mu\sigma^{2})^{2}

for every \tau with Im \tau\leqq 0 .
Here we remark that for n=3 and for the free boundary case the

Lopatinskii determinant is equivalent to \lambda_{(1)}^{+}\cdot(2.7) , where \sigma=(\xi_{1}, \xi_{2}) are the
covectors with respect to tangential components, \sigma^{2}=\xi_{1}^{2}+\xi_{2}^{2} and the \lambda_{(1)}^{\pm}(\tau, \sigma)

are the solutions of the corresponding characteristic equation in \xi_{3} .

\S 3. The well-posedness for arbitrary C^{\infty}-domains.

First let \Omega be a domain with C^{\infty}-compact boundary. Then for an ar-
bitrary but fixed point X^{0} of the boundary and for some neighborhood U
of X^{0}, there is a coordinate transformation T from U to a neighborhood
V of the origin such that

T(U\cap\Omega)\subset V\cap\{x>0\}’-

(3. 1) T(U\cap\partial\Omega)\subset V\cap\{x=0\} and
T(X)=T(X’)+(0, s)

where T((x_{1}, x_{2}))=(y, x) , X=X’+sn(X’) and X’\in\partial\Omega .
By results of [8], to prove the L^{2} -well\sim posedness of our problem, we

may only consider the freezing problems whose equations are just (1. 1) for
x>0 and the boundary operators at x=0 are (2. 2) with A=A(X) and
B=B(X) uniformly for X\in\partial\Omega\cap U. Therefore from Lemma 1 it follows
that the Lopatinskii determinants are L(X, \tau, \sigma)=A(X)^{2}\lambda_{(2)}^{+}+B(X)^{2}\lambda_{(2)}^{+} for any
\tau with Im \tau\leqq 0 .

Following the previous paper [13], for example we represent \lambda_{(1)}^{\pm} as
follows : for \tau near \pm\sqrt{\mu}|\sigma| let

( \tau-\sqrt{\mu}|\sigma| for Re \tau>0 and
\zeta=|\tau+\sqrt{\mu}|\sigma| for Re \tau<0 ,

then
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\lambda_{(1)}^{\pm}=J\mp\zeta^{1/2}\mu^{-1/2}(\tau+\sqrt{\mu}|\sigma|)^{1/2}\downarrow\pm i\zeta^{1/2}\mu^{-1/2}(-\tau+\sqrt{\mu}|\sigma|)^{1/2}

for Re \tau<0t

for Re \tau>0 and

Analogously we do also with \lambda_{(2)}^{\pm} . Then we see easily that L(X^{0}, \tau^{0}, \sigma^{0}) is
zero if and only if

i) B(X^{0})=0 and \lambda_{(2)}^{+}(\tau^{0}, \sigma^{0})=0 (\sigma^{0}\neq 0)\backslash

or
ii) A(X^{0})=0 and \lambda_{(1)}^{+}(\tau^{0}, \sigma^{0})=0 (\sigma^{0}\neq 0)1

Here we may consider only the first case i). Let X^{0} be a point such that
B(X^{0})=0 . By the implicity function theorem we see that for \tau_{0}>0 , for
X near X^{0} and for (\tau, \sigma) near (\tau^{0}, \sigma^{0})

L=L(X, \sqrt{\zeta}, \sigma)(\sqrt{\zeta}-D(X, \sigma)) ,

L(X, \sqrt{\zeta}, \sigma)\neq 0,\cdot D(X^{0}, \sigma^{0})=0
,\cdot

(3. 2) D(X, \sigma) is real and non-positive if 2\mu+\lambda>\mu ,

(3. 3) D(X, \sigma) is pure imaginary and has a non-negative imaginary
part if 2\mu+\lambda<\mu .

Thus our conditions in [13] (see also [12]) are satisfied in this case.
Analogously we see that in other cases also they are valid. Here we remark
that for X near X^{0}B(X)\equiv 0 if and only if D(X, \sigma)\equiv 0 .

To prove the well-posedness for our problems we shall consider the
reflection coefficients of the problems. Let v(t, y, x) be 2-vector to which
u in (1. 1) is transformed by T(X)(X\in U) as in the previous section, \gamma>0 ,
let

w_{1}=(|D_{t}-i\gamma|^{2}+|D_{y}|^{2})^{1/2}v , w_{2}=D_{x}v

and let
w={}^{t}(^{t}w_{1},{}^{t}w_{2})

Then (1. 1) and (1. 2) are reduced to the following:

\int_{\backslash }Pw=(ED_{x}-A(x, y, D_{t}, D_{y}))w=0 for x>0 ,
(3. 4)

| Bw=0 for x=0
where A is a 4\cross 4 -matrix of classical pseud0-differential operators of order
1 and B is 2\cross 4 -matrix such that

A=A(T^{-1}(y, x)) . B=B(T^{-1}(y, x)) ,
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B=(_{A}A\mu\sigma’’

.
B\lambda\sigma’-B

,
B(2\mu+\lambda)0,-

,

A\mu 0 ),
\sigma’=\sigma\cdot(|\tau|^{2}+|\sigma|^{2})^{-1/2} and

\tau=\xi_{0}-i\gamma with \gamma\gg 1

Here we remark that for x=0, the principal part of A(y, x, D_{t}, D_{y}) is in-
dependent of (y, x) and denote its symbol by A(\tau, \sigma) . Hereafter we shall
use only normalized covector (\tau’, \sigma’) near (\tau^{0’}, \sigma^{0’}) and without confusion we
shall also denote them by (\tau, \sigma) in this section.

Furthermore let h_{1}^{+}={}^{t}(^{t}W_{1}, \lambda_{(1)}^{+}\cdot {}^{t}W_{1}) , h_{2}^{+}={}^{t}(^{t}W_{2}, \lambda_{(2)}^{+}\cdot {}^{t}W_{2}) . Then h_{1}^{+} and h_{2}^{+}

are the eigenvectors of A(\tau, \sigma) with the eigenvalues \lambda_{(1)}^{+} and \lambda_{(2)}^{+} respectively.
Analogouoly if we replace \lambda_{(i)}^{+} in W_{1} and W_{2} by \lambda_{(i)}^{-} respectively, we obtain
the eigenvectors h_{1}^{-} and h_{2}^{-} of A(\tau, \sigma) with the eigenvalues \lambda_{(1)}^{-} and \lambda_{(2)}^{-} respec-
tively. Therefore set the 4\cross 4 matrix (h_{1}^{+}, h_{2}^{+}, h_{1}^{-}, h_{2}^{-})=S, then we see that

S^{-1}A(\tau, \sigma)S=(\begin{array}{llll}\lambda_{(1)}^{+} \lambda_{(2)}^{+} \lambda_{(1)}^{-} \lambda_{(2)}^{-}\end{array})

BS=(V_{1}^{+}, V_{2}^{+}, V_{1}^{-}, V_{2}^{-}) and |V_{1}^{+} , V_{2}^{+}|=|\mathscr{L}|

For (X, \tau, \sigma) near (X^{0}, \tau^{0}, \sigma^{0}) let

(\tilde{b}_{ij}(X, \tau, \sigma))=(V_{1}^{+}, V_{2}^{+})^{-1}\cdot(V_{1}^{-}, V_{2}^{-}) .

Then from the results of [8] (see also [12]), it follows that our problem is
L^{2}-well-posed if and only if for (X, \tau, \sigma) near (X^{0}, \tau^{0}, \sigma^{0})(X\in\partial\Omega) and for some
positive constant C

(\alpha) |\tilde{b}_{11}|=||V_{1}^{-1} , V_{2}^{+}|\cdot|\mathscr{L}|^{-1}|\leq C\gamma^{-1}|{\rm Im}\lambda_{(1)}^{+}|^{1/2}|{\rm Im}\lambda_{(1)}^{-}|^{1/2}|\lambda_{(1)}^{-}-\lambda_{(1)}^{+}| ,\cdot

(\beta) |\tilde{b}_{12}|=||V_{2}^{-} , V_{2}^{+}|\cdot|\mathscr{L}|^{-1}|\leq C\gamma^{-1}|{\rm Im}\lambda_{(1)}^{+}|^{1/2}|{\rm Im}\lambda_{(2)}^{-}|^{1/2}|\lambda_{(2)}^{-}-\lambda_{(2)}^{+}| ,

(\gamma) |\tilde{b}_{21}|=||V_{1}^{+} , V_{1}^{-}|\cdot|\mathscr{L}|^{-1}|\leq C\gamma^{-1}|{\rm Im}\lambda_{(2)}^{+}|^{1/2}|{\rm Im}\lambda_{(1)}^{-}|^{1/2}|\lambda_{(1)}^{-}-\lambda_{(1)}^{+}| and

(\delta) |\tilde{b}_{22}|=||V_{1}^{+} , V_{2}^{-}|\cdot|\mathscr{L}|^{-1}|\leq C\gamma^{-1}|{\rm Im}\lambda_{(2)}^{+}|^{1/2}|{\rm Im}\lambda_{(2)}^{-}|^{1/2}|\lambda_{(2)}^{-}-\lambda_{(2)}^{+}| ,

where \tau=\xi_{0}-i\gamma , \gamma\geqq 0 and \gamma\ll 1 .
To show these inequalities, we first remark that for \zeta with Im \zeta<0 and
for some positive constant C_{0}
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Im \lambda_{(2)}^{\pm}\sim{\rm Im}\sqrt{\zeta} ,
|\mathscr{L}|\geqq C_{0}|{\rm Re}\sqrt{\zeta}| and in fact

\geqq C_{0}|\sqrt{\zeta}|,\cdot

(3. 5)
\gamma=|{\rm Im}\zeta|=2|{\rm Re}\sqrt{\zeta}|\cdot|{\rm Im}\sqrt{\zeta}| and

/\gamma if 2\mu+\lambda>\mu ,
{\rm Im}\lambda_{(1)}^{\pm}\sim|1 if 2\mu+\lambda<\mu .

(see [13], (3. 2) and (3. 3)).
Now we consider the case where 2\mu+\lambda>\mu .

From (2. 4) it follows
V_{1}^{\pm}={}^{t}(A \sigma+B\lambda_{(1)}^{\pm}, A\mu\sigma^{2}+2B\mu\sigma\lambda_{)}\frac{arrow}{(1}-A\mu\lambda_{(1)}^{\pm^{2}}) ,

(3. 6)
V_{2}^{\pm}=^{t}(-B\sigma+A\lambda_{(2)}^{\pm}, B\lambda\sigma^{2}+2A\mu\sigma\lambda_{(2)}^{\pm}+B(2\mu+\lambda)\lambda_{(2)}^{\pm^{2}})

Hence by the same way as one derived (2. 5) we have
|V_{1}^{-} , V_{2}^{+}|=(A^{2}\lambda_{(2)}^{+}+B^{2}\lambda_{(1)}^{-})\tau^{2} and
|V_{1}^{+} , V_{2}^{-}|=(A^{2}\lambda_{(2)}^{-}+B^{2}\lambda_{(1)}^{+})\tau^{2} ,

whose absolute values \leqq|A^{2}\lambda_{(2)}^{+}+B^{2}\lambda_{(1)}^{+}|\tau^{2} , because of arguments of \lambda_{(1)}^{\pm} , \lambda_{(2)}^{\pm} .
Therefore (3. 5) implies (\alpha) and (\delta) . Furthermore since

|V_{2}^{-},\cdot V_{2}^{+}|\sim|\lambda_{(2)}^{-}-\lambda_{(2)}^{+}|(O(\sqrt{\zeta})+O(|B|)) and

considering arguments of \lambda_{(1)}^{+} and \lambda_{(2)}^{+} , we see that

|B|\sim|B||\lambda_{(1)}^{+}|^{1/2}\leqq|A^{2}\lambda_{(2)}^{+}+B^{2}\lambda_{(1)}^{+}|^{1/2} ,

for \lambda_{(1)}^{+}\neq 0 . Hence we have (\beta) .
Finally using the relation \lambda_{(1)}^{+}+\lambda_{(1)}^{-}=0 we have

|V_{1}^{+} , V_{1}^{-}|=2\lambda_{(1)}^{-}AB\tau^{2}\sim B .
Therefore in the same way as above (3. 5) implies (\gamma) .

In the other case where 2\mu+\lambda<\mu, analogously we obtain the desired
inequalities. Thus we see that freezing problems are uniformly L^{2}-well-posed.
Furthermore in the case of (3. 3) the simple real roots \lambda_{(i)} don’t exist for
real \tau and hence we can construct a tangential symmetrizer of the problem
(3. 4).

Furthermore from the forms of (1. 1) and (1. 2) it follows that our pr0-

blem is reversible and if initial data are of C^{\infty}-class and satisfy the compati-
bih.ty conditions, there exists a unique C^{\infty}-solution of (1. 1) and (1. 2) for
an arbitrary domain \Omega with C^{\infty}-bounded boundary.
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Finally we say that the boundedness of \partial\Omega in the above considerations
may be removed. Here we remark merely about the local uniqueness of
solutions to our problem, which is obtained by the usual method using the
Holmgren transformation t’=t+\epsilon y^{2}, y’=y, x’=x near the origin. In fact,
then we have only to replace (\tau, \sigma) in the above calculations by (\tau, 2\epsilon y\tau+\sigma)

and by the a priori estimate thus obtained we have the local uniqueness
near the origin.

\S 4. The existence of a parametrix near a diffractive point.

Let (X^{0}, \tau^{0}, \sigma^{0}) be the point fixed in the section 3 and we assume that
(t^{0}, X^{0}, \tau^{0}, \sigma^{0}) is diffractive with respect to (1. 1) and \partial\Omega . By the transforma-
tions stated there and giving boundary data we may consider (1. 1) and (1. 2)
as follows :

(4. 1)
/P(X, D)v=0 for x=x_{2}\geqq 0 ,

B(X, D)v=g for x_{2}=0 and
-

the data g and v=0 for t=x_{0}\leqq 0 ,

where X=(t, y, x) is also denoted by (x_{0}, x_{1}, x_{2}) , P(X, D) is the 2\cross 2 matrix
transformed from (1. 1) by T(X) in (3. 1) previously and

B(X, D)v=\{
(|D_{x_{0}}|^{2}+|D_{x_{1}}|^{2})^{1/2}\cdot(A(X)v_{1}-B(X)v_{2})

-

the left hand side of the second equality in (2. 2).

Hereafter a boundary point (X’, 0) is often denoted by X’ .
Now it may be restricted to the case i) in the previous section, i . e.y

2\mu+\lambda>\mu , B(X^{0})=0 and \lambda_{(2)}^{+}(X^{0}, \xi^{0’})=\lambda_{(2)}^{+}(\xi^{0’})=0 . Here let \xi^{0’}=(\xi_{0}^{0}, \xi_{1}^{0})=(\tau^{0}, \sigma^{0})

with \xi_{0}^{0}>0 and let the \lambda_{(i)}^{\pm}(X, \xi’)(i=1,2) be roots of the characteristic poly-
normial of P, which are equal to \lambda_{(i)}^{\pm}(\xi’) when x_{2}=0 . Hereafter we consider
mainly (X, \xi’) near the diffractive point (X^{0}, \xi^{0’}) . Therefore \lambda_{(1)}^{\pm}(X, \xi’) are
real for real \xi’ and \lambda_{(2)}^{\pm}(X, \xi’) can be represented as follows: for \zeta with
Im \zeta<0 ,

\lambda_{(2)}^{\pm}(X, \xi’)=\lambda(X, \xi’)\mp\sqrt{\zeta}\mu_{3}^{1/2}(X, \xi’) . (\sqrt{1}=1)

\mu_{3}(X, \xi’)>0 ,

\zeta=\xi_{0}-\mu_{2}(X, \xi’)(\xi’=\xi_{1}) ,
\mu_{2}(X, \xi’) is real and
\lambda(X, \xi’)=0 for x_{2}=0 .

Then we see that the characteristic polynomial
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P_{4}(X, \xi)=((\xi_{2}-\lambda(X, \xi’))^{2}-\mu(X, \xi’)) . (non-zero factor).

\mu(X, \xi’)=\zeta(X, \xi’)\mu_{3}(X, \xi’)

Furthermore the diffractiveness at (X^{0}, \xi^{0’}) means that

\{\xi_{2}-\lambda(X, \xi’)j\mu(X, \xi’)\}>0

if \xi_{2}=\lambda(X, \xi’) , \mu(X, \xi’)=0 and x_{2}=0 .
Now let \varphi_{0}(X’, \eta)’ be the phase function mentioned in the previous paper

[5], i . e. , for x_{2}=0

\varphi_{0}(X_{ \eta}’,)=\{

\theta(X’, \eta)-\frac{2}{3}\rho(X_{ \eta}’,)^{3/2}+\frac{2}{3}\alpha^{3/2}|\eta’| for \alpha\geqq 0 ,

\theta(x_{ \eta}’,) for \alpha<0

Here \varphi_{\pm}(x_{ \eta}’,)=(\theta\pm\frac{2}{3}\rho^{3/2})(X, \eta)’ are the solutions of the eikonal equation

(\varphi_{x_{2}}-\lambda(X, \varphi_{x’}))^{2}-\mu(X, \varphi_{x’})=0

for \rho\geqq 0 and \alpha=\eta_{0}/|\eta’| .
Then we see that if x_{2}=0

|\mathscr{L}|(\theta_{x’}-\sqrt{\rho}\rho_{x’})=\{A^{2}(X)\cdot(\theta_{x_{2}}-\sqrt{\rho}\rho_{x_{2}})+B^{2}(X) .

. \lambda_{(1)}^{+}(\theta_{x’}-\sqrt{\rho}\rho_{x’})\}(\theta_{x_{0}}-\sqrt{\rho}\rho_{x_{0}})^{2}|\eta’|^{-1}

which is by definition the determinant of the matrix

((B_{1}W_{1})(\theta_{x_{1}}-k\rho_{x_{1}}, \lambda_{(1)}^{+}(\theta_{x’}-k\rho_{x’})) , (B_{1}W_{2})(\theta_{x_{1}}-k\rho_{x_{1}}, \theta_{x_{2}}-k\rho_{x_{2}}))

for k=\sqrt{\rho}

Hereafter we shall assume that W_{i}\in S_{1,0}^{0} and often abbreviate X in the
symbols. Therefore for x_{2}=0 and \rho=0 the determinants

|(B_{1}W_{1}, B_{1}W_{2})|=\{A^{2}(X)\theta_{x_{2}}+B^{2}(X)\lambda_{(1)}^{+}(\theta_{x’})\}\theta_{x_{0}}^{2}|\eta’|^{-1} ,
(4. 2)

|(B_{1}W_{1}) , \frac{\partial}{\partial\xi_{2}}(B_{1}W_{2})|_{k=0}=A^{2}(X)\theta_{x_{0}}^{2}|\eta’|^{-1} .

Since \theta_{x_{2}}=\lambda_{2}^{\pm}(\theta_{x’}) for x_{2}=0 and \rho=0 by Lemma 2. 3 of [5] we see that
\theta_{x_{2}}=0 there. Thus we have that for x_{2}=0 and \rho=0

|B_{1}W_{1} , B_{1}W_{2}|\leqq 0 and
(4. 3)

|B_{1}W_{1} , \frac{\partial}{\partial\xi_{2}}(B_{1}W_{2})|\sim\neq\prime c_{1}>0 .
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Let \Sigma be a conical neighborhood of (X^{0}, \xi^{0}’) on T^{*}(x_{2}=0) . Then by
the canonical transformation \chi=\chi(Y’, \eta)’ and \xi=\xi(Y’, \eta)’ with the generating
function \varphi_{0}(X’, \eta)-\langle Y’, \eta\rangle , \Sigma is transformed to a conical neighborhood \Sigma’

of the point (Y^{0}, \eta^{0}’) such that
\varphi_{0x’}(X^{0}, \eta^{0’})=\xi^{0’} , \varphi_{0_{\eta}\prime}(X^{0}, \eta^{0’})=Y^{0}

and
|\alpha|\ll 1

Now we shall seek a parametrix for (4. 1) in the following form: for
a positive \epsilon\ll 2/3 and scalar distributions F_{1}\in\epsilon’(\Pi\Sigma) and F_{2}\in\epsilon’(\Pi\Sigma’)

G_{1}F_{1}(X)= \int a(X, \xi’)e^{i\varphi_{1}(X,\xi’)}\chi(\xi’)^{2}\hat{F}_{1}(\xi’)d\xi’ and

G_{2}F_{2}(X)= \int\int_{L}g(X’, \eta, k)e^{i(\frac{k^{3}}{3}-\rho k+\theta)}dk .

. (A(\alpha|\eta’|^{2/3}))^{-1}\chi_{1}(\alpha|\eta’|^{\epsilon})^{2}\chi(\eta’)^{2}\hat{F}_{2}(\eta’)d\eta
’

+ \int d(X_{ \eta}’,)e^{i(\theta+\theta_{1})(x_{\eta}’)}’\chi_{-1}(\alpha|\eta’|^{\epsilon})^{2}\chi(\eta’)^{2}\hat{F}_{2}(\eta’)d\eta
’

Here a(X, \xi’) and d(X, \eta)’ are 2-vector valued classical symbols such that

a(X, \xi’) , d(X_{ \eta}’,)\in S_{1,0}^{0}

Furthermore \chi(\xi’) and \chi(\eta’) are cut off functions restricting to conical neigh-
borhoods of \xi^{0’} and \eta^{0’} respectively and L is a complex contour

k=J \mathfrak{l}te^{\frac{|e\pi}{6}i}|t^{-}\frac{\pi}{2}i

for tarrow\infty

for tarrow-\infty ,

We choose \chi_{1} and \chi_{-1}\in C^{\infty}(R^{1}) such that \chi_{1}\geqq 0 , \chi_{-1}\geqq 0 ,

\chi_{1}(t)^{2}=1 for t>-c , \chi_{1}(t)=0 for t<-2c and
\chi_{-1}(t)^{2}=1-\chi_{1}(t)^{2} for some c>0

Finally the function (\theta+\theta_{1})(X_{ \eta}’,) satisfies the eikonal equation, i . e .

((\theta+\theta_{1})_{x_{2}}-\lambda(X, \theta_{x’}))^{2}-\mu(X, \theta_{x’})=0

for x_{2}=0 and for \alpha|\eta’|^{e}<-\frac{c}{2} ,

\theta_{1}(X, \eta)’=0 for x_{2}=0\iota

Hereafter using (4. 3) we shall only sketch our consideration to get a
parametrix and treat mainly terms containing \chi_{1}(\alpha|\eta’|^{e}) (for the detail see
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[2] and [5] ) .
The construction of G_{1} is accomplished as that of a parametrix for

hyperbolic initial value problem and in fact the principal part a_{0}(X, \xi’) of
a(X, \xi’) is

a_{0}(X, \xi’)=W_{1}(\xi’) for x_{2}=0t

Since W_{2}={}^{t}(\lambda_{(2)}^{+}, \sigma) is a right nullvector and also a left one for P_{2}(X, \tau, \sigma, \lambda_{2}^{+})

if x_{2}=0 , extending it for x_{2}>0 we find a null eigenvector

W_{2}(X, \theta_{x}-\sqrt{\rho}\rho_{x})=W’(X’, \eta)-\sqrt{\rho}W’(X, \eta)’

for P_{2}(X, \theta_{x}-\sqrt{\rho}\rho_{x}) , where W’ and W’ may be considered as e1ements\in S_{1,0}^{0}

and \in S_{1,0}^{-1/3} respectively.
Setting \mathcal{G}_{0}(x_{ \eta,k)=(d_{0}(X’}’,, \eta)-ke_{0}(X’, \eta))\cdot W_{2}(X, \theta_{x}-k\rho_{x}) and solving the

scalar solution d_{0}\mp\sqrt{\rho}e_{0} of the transport equation in \rho\geqq 0 and extending it
for the domain \{\alpha\leqq 0\} we get the desired term of order 0. Then for i=
1,2, \cdots setting

g_{i}(X_{ \eta}’,, k)=g_{i}^{0}(X_{ \eta}’,)-kh_{i}^{0}(X_{ \eta}’,)+

+(d_{i}(X’, \eta)-ke_{i}(X’, \eta))W_{2}(X, \theta_{x}-k\rho_{x})

where g_{i}^{0}(X’, \eta)\mp\sqrt{\rho}h_{i}^{0}(X’, \eta) are special solutions of P_{2}(X, \theta_{x}\mp\sqrt{\rho}\rho_{x})(g_{i}^{0}(X, \eta)’\mp

\sqrt{\rho}h_{i}^{0}(X’, \eta))=the2 -vectors respectively which are defined by g_{j}(X, \eta k’,) for
j<i , we solve sucessively the transport equations for d_{i}\mp\sqrt{\rho}e_{i} in \rho\geqq 0 with
given inital data d_{i}(X, \eta)’ on the surface \rho(X, \eta)’=0 . (see [9]) Here we can
take d_{0} and e_{0} such that for x_{2}=0

d_{0\neq}^{\sim}\prime 0 and e_{0}=0(\alpha^{\infty}|\eta’|^{-1/3}) (see [2])

To seek (F_{1}, F_{2}) such that for g with WF(g)\subset\subset\Sigma and for x_{2}=0

B((G_{1}F_{1}+G_{2}F_{2}))=g (mod C^{\infty}) ,

we shall calculate the symbol of

B(X, D) \int_{L}g_{0}(x_{ \eta,k)e^{i(_{\frac{k^{3}}{3}}-\rho k+\theta)}}’,dk .

Since we have for x_{2}=0

B_{1}(X, \theta_{x}-k\rho_{x})g_{0}(X, \eta k’,)=C_{1}(X, \eta)’

+C_{2}(X’, \eta)k+(k^{2}-\rho)b(X, \eta k’,) ,

where for \alpha=0
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C_{1}(X’, \eta)=B_{1}(X, \theta_{x})d_{0}(x_{ \eta}’,)W_{2}(X, \theta_{x}) and

c_{2}(X_{ \eta)=(-\rho_{x_{2}})\frac{\partial}{\partial\xi_{2}}(B_{1}W_{2})(X}’,

-B_{1}(X, \theta_{x})W_{2}(X, \theta_{x})e_{0} ,

we can write BG_{2}F_{2}(X)|_{x_{2}=0}

= \int\{d_{1}(X’, \eta)A(\rho)/A(\alpha|\eta’|^{2/3})+id_{2}(X’, \eta)A’(\rho)/A(\alpha|\eta’|^{2/3)\}}

\cross e^{i\theta}\chi_{1}(\alpha|\eta^{\prime_{\epsilon}}||)^{2}\chi(\eta’)^{2}\hat{F}_{2}(\eta’)d\eta
’

Here

d_{1}(X’, \eta)=C_{1}(X’, \eta)|_{\alpha=0}+0(\alpha|\eta’|) mod (S_{1,0}^{0}) and

d_{2}(X’, \eta)=C_{2}(X’, \eta)|_{\alpha=0}+0(\alpha|\eta’|^{2/3}) mod (S_{1,0}^{-1/3})

Obviously

BG_{1}F_{1}(X)|_{x_{2}=0}

= \int(B_{1}W_{1})((\xi_{1}, \lambda_{1}^{+}(\xi_{0}, \xi_{1}))e^{i’}\backslash x’,\xi’\rangle\chi(\xi’)^{2}\hat{F}_{1}(\xi’)d\xi’ mod (L_{1,0}^{0})

Now for x_{2}=0 let \Phi be an elliptic Fourier integral operator

( \Phi V)(X)=\int e^{i(\varphi_{0}(x’,\eta’)-\langle y’,\eta’\rangle)}c(X’, \eta)V(Y’)dY’d\eta
’

where c(X”, \eta)\in S_{1,0}^{0}(R^{2}\cross R^{2}|0) and is positive and let \Phi^{-1} be the inverse
elliptic Fourier integral operator such that

\Phi\Phi^{-1}V=V (mod C^{\infty})

for any V\in\epsilon’(\Pi\Sigma) such that WF(V)\subset\Sigma .
Then we shall consider the following problem: for x_{2}=0

(4. 4) \Phi^{-1}B(G_{1}\Phi(\Phi^{-1}F_{1})+G_{2}F_{2})=\Phi^{-1} (\begin{array}{l}g_{1}g_{2}\end{array}) mod (C^{\infty}) .

Here if the cut off functions are neglected, \Phi^{-1}BG_{1}\Phi and \Phi^{-1}BG_{2} are pseud0-
differential operators with principal symbols such that for X=X(Y’, \eta)’ , x_{2}=0

and for \alpha|\eta’|^{\text{\’{e}}}>-2c

(B_{1}W_{1})(\theta_{x’} , \lambda_{(1)}^{+}(\theta_{x’}))+0(\alpha|\eta’|) .

(B_{1}W_{2})(\theta_{x})d_{0}(X_{ \eta}’,)+0(\alpha|\eta’|)



14 T. Shirota

+(-i) \{\rho_{x_{2}}\frac{\partial}{\partial\xi_{2}}(B_{1}W_{2})(\theta_{x})d_{0}(X’, \eta)

+(B_{1}W_{2})(\theta_{x})e_{0}(x_{ \eta)+0(\alpha|\eta’|^{2/3)\}\frac{A’(\alpha|\eta’|^{2/3})}{A(\alpha|\eta|^{2/3})}}}’,,

whose determinant is just

( |B_{1}W_{1} , B_{1}W_{2}|d_{0}+0(\alpha|\eta’|^{2}))-i(\rho_{x_{2}}|B_{1}W_{1}, \frac{\partial}{\partial\xi_{2}}(B_{1}W_{2})|d_{0}

+0( \alpha|\eta’|^{5/3}))\cdot\frac{A’(\alpha|\eta’|^{2/3})}{A(\alpha|\eta|^{2/3})},

since e_{0} can be taken as 0 (\alpha^{\infty}|\eta’|^{-1/3}) .
Next we extend the above symbols except those 0 (\alpha|\eta’|) and 0 (\alpha|\eta’|^{2/3})

over the whole space R^{2}\cross R^{2}\backslash 0 such that (4. 3) is valid and for sufficient
large X’ they are independent of X’ and |B_{1}W_{1} , B_{1}W_{2}|<0 . Here and in
(4. 6) let us regard the symbols 0 (\alpha|\eta’|^{k}) as those multiplied by a cut off
function \delta(X’)\chi_{1}’(\alpha|\eta’|^{\epsilon})\chi’(\eta’) such that \delta(X’)=1 on O, WF(g)\subset O\subset\pi(\Sigma) and

\chi_{1}’(t)\chi’(\eta’)=1 on supp (\chi_{1}(t)\chi(\eta’))

Then (4. 4) with extended symbols defined above are rewritten with obvious
notations in the following form:

(4. 5) (\begin{array}{lll}g_{1}^{(1)}, g_{2}^{(1)}+ g_{3}^{(1)}Kq_{1}^{(2)}, g_{2}^{(2)}+ g_{3}^{(2)}K\end{array})(\begin{array}{l}\tilde{F}_{1}\tilde{F}_{2}\end{array})=(\begin{array}{l}\tilde{g}_{1}\tilde{q}_{2}\end{array})

Here (g_{1}^{(1)}g_{3}^{(2)}-g_{1}^{(2)}g_{3}^{(1)})|D_{y}’|^{1/3} is elliptic, g_{1}^{(1)}(g_{2}^{(2)}+g_{3}^{(2)}K)-g_{1}^{(2)}(g_{1}^{(1)}+g_{3}^{(1)}K) has the
property mainly considered in [5] which we denote by Q_{1} and Q_{2} respec-
tively, \sigma(K)=A’(\alpha|\eta’|^{2/3})/A(\alpha|\eta’|^{2/3}) modified suitably outside supp (\chi’) and all
of other symbols \in S_{1-e,\epsilon} .

Let, for example, [mathring]_{2}_{g}^{(1)}be the symbol of g_{2}^{(1)} when \alpha=0 . Setting g_{2}^{(1)}=

[mathring]_{2}_{g}^{(1)}+0(\alpha|\eta’|) near \Sigma_{\sim}’ we shall consider the operator

(4. 6) (-g_{1}^{(2)}g_{3}^{(2)}|D_{y}’|^{1/3},’ -g_{3}^{(1)}|D_{y}’|^{1/3}g_{1}^{(1)}) . (the left hand side of (4. 5))

whose principal symbol near \Sigma’ is contained in the matrix

(\begin{array}{ll}[mathring]_{Q}+0(\alpha|\eta’|^{2}), ([mathring]_{3_{\backslash }}_{g}^{(2)(1)^{o}}q_{2}^{o}-g_{3}^{(1)}g_{2}^{o(2)})|\eta’’|^{1/3}+0(\alpha|\eta’|^{2})+0(\alpha|\eta’|^{b/3})\sigma(K), 0(\alpha|\eta,|^{2}) [mathring]_{2}_{Q}+(0(\alpha|\eta,|^{2})+0(\alpha|\eta,|^{5,3})\sigma(K)) \end{array}) .

From (3. 6) and (4. 2) it follows that ([mathring]_{3}_{g}^{(2)}[mathring]_{2}_{g}^{(1)}-[mathring]_{3}_{g}^{(1)}[mathring]_{2}_{g}^{(2)})|\eta’|^{1/3} is
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|(B_{1}W_{2})(\theta_{x}) , \frac{\partial}{\partial\xi_{2}}(B_{1}W_{2})(\theta_{x})|d_{0}^{2}\rho_{x_{2}}(-i)|\eta’|^{1/3}

=|\begin{array}{ll}-B\sigma, AB\lambda\sigma’\sigma, 2A\mu\sigma’\end{array}|(\theta_{x})\cdot d_{0}^{2}\cdot\rho_{x_{2}} (-i)|\eta’|^{1/3} mod (S_{1-\epsilon,\epsilon}^{1}) ,

whose absolute value
\leqq C_{2}d_{0}|B||\eta’|\cdot d_{0}|\eta’| and |B|^{2}|\eta’|^{2}\leqq C_{3}||B_{1}W_{1} , B_{1}W_{2}||

\leqq C_{4}|[mathring]_{1}_{g}^{(1)}[mathring]_{2}_{g}^{(2)}-[mathring]_{1}_{g}^{(2)}[mathring]_{2}_{g}^{(1)}| for |\eta’|\gg 1

Moreover we see that \sigma(K)=0(|\eta’|^{1/3}) . Hence by the same way as those

in [5] we have that for some C_{5}>0 and for some \theta(0<\theta<\frac{\pi}{2})

(4. 7) Re (-e^{i\theta}(4.6),{}^{t}(\tilde{F}_{1},\tilde{F}_{2}))\geqq C_{5}(||\tilde{F}_{1}||_{5/6}^{2}+||\tilde{F}_{2}||_{5/6}^{2})

if |\eta’|\gg 1 , \epsilon\ll 1 in all of symbols contained in (4. 7), 0<\delta<d_{0}\ll 1 and (\tilde{F}_{1},\tilde{F}_{2})=

(\chi_{1}\Phi^{-1}F_{1}, \chi_{1}F_{2}) .
To derive the same a priori estimate as (4. 7) in the region where

\alpha|\eta’|^{\epsilon}<-c we first remark that it can be taken as follows: for x_{2}=0

d(X_{ \eta}’,)=d_{0}W_{2}(\theta_{x}+\theta_{1x}) ,
\theta_{x_{2}}(X_{ \eta)=a_{1}(X_{ \eta}’)\alpha\prime}’,,.

\mu(X, \theta_{x’})=a_{2}(X, \eta)’\alpha , a_{2}>0 and
\theta_{1}(X’, \eta)=ix_{2}(a_{2}(X’, \eta)|\alpha|)^{1/2}-x_{2}a_{1}(X’, \eta)\alpha

(see [2] and [5]).
From these remarks it follows that for \alpha<0 and for x_{2}=0

\theta_{x_{2}}+\theta_{1,x_{2}}=i(a_{2}(X’, \eta)|\alpha|)^{1/2}=i(\mu(X, \theta_{x’}))^{1/2}

=i\sqrt{|\rho|}\rho_{x_{2}}+0(\alpha)|\eta’|’\wedge

for \theta_{x_{2}}-\sqrt{\rho}\rho_{x_{2}}=(\mu(X, \theta_{x’}))^{1/2} if \rho\geqq 0 .
Hence we have that for \alpha’\neq 0\sim and for x_{2}=0

B_{1}W_{2}(\theta_{x}+\theta_{1x})

=B_{1}( \theta_{x})W_{2}(\theta_{x})+0(\alpha|\eta’|)+\{(\frac{\partial}{\partial\xi_{2}}(B_{1}W_{2})(\theta_{x}))(-i\rho_{x_{2}})+

+0(\alpha|\eta’|^{2/3})\}(-\sqrt{|\rho|})

Now we replace \Phi^{-1}F_{1} by \chi_{-1}\Phi^{-1}F_{1} in (4. 4) and \Phi^{-1}BG_{2}F_{2} by

\Phi^{-1}B\int d(X_{ \eta)e^{i(\theta+\theta_{1})}}’,\chi_{-1}^{2}\cdot\chi^{2}\hat{F}_{2}(\eta’)d’\eta
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and extend symbols as in the case \alpha|\eta’|^{\epsilon}>-2c . Then we obtain the similar
equation to (4. 5) where

\sigma(K)=-\sqrt{|\rho|}\in S_{1-\epsilon,\epsilon}^{1/3} and (\tilde{F}_{1},\tilde{F}_{2})=(\chi_{-1}\Phi^{-1}F_{1}, \chi_{-1}F_{2})

Therefore by the same way as the previous case we obtain also (4. 7).
Adding up the bilinear forms (4. 7) obtained above where the (\tilde{F}_{1},\tilde{F}_{2}) are

(\chi_{1}\Phi^{-1}F_{1}, \chi_{1}F_{2}) and (\chi_{-1}\Phi^{-1}F_{1}, \chi_{-1}F_{2}) respectively we see by the usual method
that for (4. 4) with symbols suitably modified and without \chi(\xi’)^{2} and \chi(\eta’)^{2}

C_{6}(||F_{1}||_{5/6}+||F_{2}||_{5/6})\leqq(||g_{1}||_{1/6}+||g_{2}||_{1/6})

for some C_{6}>0 and considering the conjugate form of the bilinear one
obtained above and using the ellipticity of Q_{1} we have the solution of the
extended equation (4. 4) without \chi(\xi’)^{2} and \chi(\eta’)^{2} . Furthermore we see that
the extended operator in the left hand side of (4. 4) is hypoeliiptic (see [5]).
Therefore we have the desired solution (4. 4) mod (C^{\infty}) . Thus we get the
desired parametrix and hence obtain that near the diffractive point there are
no lateral waves propagating on \partial\Omega from it.

Finally we say that under the free boundary consitions the construction
of a parametrix is more direct, because in such a case even if the Lopatinskii
determinant is zero, the corresponding D(X, \xi’)\equiv 0 or this determinant has
only simple real zeros for elliptic region, i . e. , |\xi’|\gg|\xi_{0}| (see Lemma 2 and
[16] ) .
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