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Abstract.

In this paper the author extends the Caristi-Kirk fixed point theorem
to the multi-valued case, as well as give a generalization to the s0-called
“strictly p-nonexpansive mappings.” Specialization yields a stronger form
of Edelstein’s fixed point theorem. A characterization of asymptotic re-
gularity in terms of fixed point features of cluster points is made. Also
given is a nonlinear generalization of Stein’s theorem for spectral radius
less than one. Furthermore, it is shown that the Browder-G\"ohde-Kirk fixed
point theorem cannot be extended in a “natural way.”

1. Introduction.

In recent papers [11], [12], [22] (see also [4], [5], [9], [15], [16], [29],

[32] ) , Caristi and Kirk have shown the following interesting technical sharpen-
ings of the Banach contraction mapping principle: Let (M, d) be a complete
metric space and f:Marrow M an arbitrary mapping. Suppose that there exists
a lower semi-continuous real functional p:Marrow[0, \infty) such that for each x
in M,

d(x,f(x))\leq p(x)-p(f(x))

Then f has a fixed point. As pointed out by Kirk and Caristi [22], the
strength of this result lies in fact that it typically applies to mappings f
which need not be continuous. Caristi-Kirk’s theorem includes the Banach
contraction theorem as a very special case (by takin p(x)=(1-k)^{-1}d(x,f(x))

if k<1 is a Lipschitz constant for f). Because this theorem can be applied
to investigate the theory of normal solvability ([7], [8], [22], [23]) and of
inward mappings ([11], [12]), Browder [9] pointed out this theorem may well
become an important tool in the future development of nonlinear functional
analysis. It is the purpose of the present paper to extend this result to
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the multi-valued case and to the s0-called “strictly p-nonexpansive mappings.”
Specialization yields a stronger form of Edelstein’s fixed point theorem [14].
A characterization of asymptotic regularity in terms of fixed point features
of cluster points is made. Also given is a nonlinear generalization of Stein’s
theorem [30] for spectral radius less than one. Furthermore, it is shown
that the Browder-G\"ohde-Kirk fixed point theorem [6], [18], [21] cannot be
extended in a “natural way”. A number of examples are constructed to
compare our results with existing related results or to show that certain
weakenings of our hypotheses cannot be made.

2. Basic results.

In the sequel of this paper unless otherwise is stated, M will denote
a metric space with metric d. Let 2^{M} be the family of all nonempty subsets
of M,

C(M)=\{A\in 2^{M} : A is closed\};K(M)=\{A\in 2^{M} : A is compact\}

To fix our terminology and to state results concisely, we consider the following
definitions ((v) and (vi) below are well-known) :

(i) A mapping f:Marrow 2^{M} is said to be a weak p-contraction if there
exists a real functional p:Marrow[0, \infty) such that for each x in M and some
y\in f(x) , d(x, y)\leq p(x)-p(y) .

(ii) A mapping f:Marrow 2^{M} is said to be a p-contraction if there exists
a real functional p:Marrow[0, \infty) such that for each x in M and all y\in f(x) ,
d(x,y)\leq p(x)-p(y) .

(iii) A mapping f:Marrow 2^{M} is said to be strictly p-nonexpansive if there
exists a real functional p:Marrow[0, \infty) such that for each x in M with x\not\in

f(x) and all y\in f(x) , p(y)<p(x) .
(iv) A mapping f:Marrow 2^{M} is said to be p-nonexpansive if there exists

a real functional p:Marrow[0, \infty) such that for each x in M and all y\in f(x) ,
0\leq p(x)-p(y) .

(v) A mapping f:Marrow 2^{M} is said to be upper semicontinuous on M
if for each x in M and for any neighborhood G of f(x) , there is a neigh-
borhood V of x such that f(V)= \bigcup_{x\in V}f(x)\subset G .

(vi) A mapping f:Marrow 2^{M} is said to be closed on M if for each x in
M and for every sequence \{x_{k}\} in M, \lim_{karrow\infty}x_{k}=x, y_{k}\in f(x_{k}) and \lim_{karrow 8}y_{k}=y\in M

imply y\in f(x) .
We begin with the following two theorems.
THEOREM 1. Let (M, d) be a complete metric space and f:Marrow 2^{M} be
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closed. Suppose that f is a weak p-contraction {with p not necessarily lower
semi-continuous). Then the sequence \{x_{k}\} generated by x_{k+1}\in f(x_{k}) , k=0,
1, \cdots , x_{0}\in M, converges to a fifixed point x^{*} off with the estimate d(x_{k}, x^{*})

\leq p(x_{k}) , k=0,1 , \cdots .
THEOREM 2. Let (M, d) be a complete metric space and f:Marrow 2^{M} an

arbitrary mapping. Suppose that f is a weak p-contraction with p being
lower semi-continuous. Then f has a fifixed point.

Special cases of Theorem 1 and 2 are the weak p-contraction replaced
by the p-contraction.

PROOF of THEOREM 1. Since f is a weak p-contraction, d(x_{k}, x_{k+1})\leq

p(x_{k})-p(x_{k+1}) , k=0,1 , \cdots . Note that the sequence \{p(x_{k})\} is monotonically
decreasing in [0, \infty) . Hence \{p(x_{k})\} converges. The estimate

(1) d(x_{k}, x_{k+m}) \leq\sum_{j=k}^{k+m-1}d(x_{j}, x_{j+1})

\leq\sum_{j=k}^{k+m-1}(p(x_{j})-p(x_{j+1}))

=p(x_{k})-p(x_{k+m})

shows that \{x_{k}\} is a Cauchy sequence. By completeness of M, \{x_{k}\} con-
verges to a point x^{*} in M. Since x_{k+1}\in f(x_{k}) and f is closed, x^{*}\in f(x^{*}) .
The estimate follows from (1) as marrow\infty .

Geometrically, the estimate

d(x_{0}, x_{k}) \leq\sum_{j=0}^{k-1}d(x_{j}, x_{j+1})\leq p(x_{0})-p(x_{k})

can be regarded as an upper bound for the “path-length” \sum_{j=0}^{k-1}d(x_{j}, x_{j+1})

traversed by the iterates. Suppose that we have a problem of solving a
nonlinear operator equation F(x)=0 in a Banach space with norm ||\cdot|| and
that an initial point for a certain iterative process (e. g. , the Newton-Kan-
torovich method [20] of the form x_{k+1}=x_{k}-(F’(x_{k}))^{-1}F(x_{k}) , k=0,1 , \cdots .
Here F’(x) denotes the Fr\’echet derivative of F at x). From the proof of
Theorem 1, we see that the problem of finding roots for F(x)=0 is reduced
to the construction of the “majorant function” p such that

||x_{k}-x_{k+1}||\leq p(x_{k})-p(x_{k+1}),\cdot k=0,1 , \cdots

PROOF of THEOREM 2. By a result of Ekeland [16, p. 324], there exists
some v\in M such that p(w)>p(v)-d(v, w) for all w\in M with w\neq v . We
assert that v\in f(v) . Indeed, suppose not, then p(w)>p(v)-d(v, w) for
each w\in f(v) , and hence, d(v, w)>p(v)-p(w) for some v in M and all
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w\in f(v) . This is a contradiction to the weak p-contraction of f.
An interesting extension of the Caristi-Kirk theorem is the following

theorem which weakens the p- c\dot{o}ntraction to be strictly p-nonexpansive.
THEOREM 3. Let f : Marrow K(M) be upper semi-continuous. Suppose

that f is strictly p-nonexpansive with p being continuous. Let the sequence
\{x_{k}\} be generated by the recurrence relation

if x_{k}\in f(x_{k})’.
x_{k+1}\{\begin{array}{l}=x_{k}\in f(x_{k}) if x_{k}\not\in f(x_{k}),\end{array} k=0,1 , \cdots , x_{0}\in M

Then each cluster point \zeta\in M of the successive iterates \{x_{k}\} is a fifixed point
off.

Before coming to the proof of Theorem 3, we remark that a strictly
p-nonexpansive mapping f may not have a fixed point, or, alternatively,
that there may have arbitrarily many fixed points even if f is single-valued.
To illustrate this, let us consider the functions

f(x)= \exp(\frac{-x}{2})+x, p(x)= \exp(\frac{-x}{2}) for x\geq 0

Then f is strictly p-nonexpansive and f has no fixed point. Let [x] be the
greatest integer which is less than or equal to x, the real parameter \alpha varies
between 0 and +\infty . Consider the function f:[0, \infty)arrow[0, \infty) defined by

f(x)=\{\begin{array}{l}[x] if x<_{\sim}\alpha,0 if x>\alpha\end{array}

Let p(x)=x for x\geq 0 . Then f is strictly p-nonexpansive on [0, \infty) . If
\alpha=0 , f has exactly one fixed point and in general, if \alpha=k (positive integer),

f has k+1 fixed points. Moreover, as \alphaarrow+\infty , f has denumerably many
fixed points. On the other hand, let

f(x)=\{

\frac{1}{2} if x\in[0, \frac{1}{2}]

:

p(x)=\exp(-x) for x\in[0,1]

x if x \in(\frac{1}{2},1] ;

Then f is strictly p-nonexpansive on [0, 1] and there is even a continuum
of fixed points. We note also that a strictly p-nonexpansive mapping is
indeed weaker than p-contraction. To see this, consider the function f :
[0, \infty)arrow[0, \infty) defined by f(x)=[x]+1 . We assert that f is not a p-con-
traction for any p:[0, \infty)arrow[0, \infty) . Indeed, suppose that there exists some
p such that for each x in M,
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(2) d(x,f(x))\leq p(x)-p(f(x))

Then (2) implies that for any sequence \{x_{k}\} induced by

x_{k+1}=f(x_{k})-, k=0,1 , \cdots , x_{0}\in[0, \infty) .

(3) \infty\sum_{k=0}d(x_{k}, x_{k+1})\leq p(x_{0})<+\infty

But, if we choose the initial value x_{0}=1 , then \sum_{k=0}^{\infty}d(x_{k}, x_{k+1})=+\infty . There

comes a contradiction to (3). On the other hand if we define p(x)=\exp(-x)

for x\geq 0 , then f is strictly p-nonexpansive.
In the proof of the theorem, we shall make use of the following two

lemmas. Their proofs can be found in Nikaido [27, pp. 66-67].

Lemma 1. Let f:Marrow K(M) be upper semi-continuous. Then, if S is
a compact subset of M, the image f(S)= \bigcup_{x\epsilon s}f(x) is also compact.

Lemma 2. If f:Marrow C(M) is upper semi-continuous, then f is closed.
PROOF of THEOREM 3. Let F(f)=\{x\in M:x\in f(x)\} . If \{x_{k}\}\cap F(f)\neq\phi,

then the result follows. So we may assume that x_{k}\not\in F(f) for each k. Let
\zeta be a cluster point of \{x_{k}\} . Then there exists a subsequence \{x_{n(k)}\} or
\{x_{k}\} such that x_{n(k)}- \zeta as karrow\infty . Because of the continuity of p, p(x_{n(k)})arrow

p(\zeta) as karrow\infty . For every \epsilon>0 , there is a positive integer j such that k\geq j

implies p(x_{n(k)})-p(\zeta)<\epsilon . From antitone property of p,

0\leq p(x_{k})-p(\zeta)=p(x_{k})-p(x_{n(k)})+p(x_{n(k)})-p(\zeta)<\epsilon

for every k>,j . It follows that

(4) p(x_{k})arrow p(\zeta) as karrow co

Let S=\{\zeta, x_{n(1)}, x_{n(2)}, \cdots\} . Thus S is a compact subset of M. Since f(x)
is compact for each x in M and f is upper semicontinuous, from Lemma
1, we see that f(S)= \bigcup_{x\in S}f(x) is a compact subset of M. Since the sequence
\{x_{n(k)+1}\} is contained in f(S), there exists a subsequence \{x_{m(n(k)+1)}\} of \{x_{n(k)+1}\}

such that x_{m(n(k)+1)} - \eta as karrow\infty . By the same argument as above,

(5) p(x_{k})arrow p(\eta) as karrow oo

From (4) and (5)

(6) p(\zeta)=p(\eta)1

Because f is upper semi-continuous and f(x) is compact for each x in M
(that f(x) is closed is needed only), by Lemma 2, we come to the conclusion
that f is closed. Since x_{n(k)} - \zeta , every subsequence of \{x_{n(k)}\} also converges
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to \zeta . Therefore, we can construct a subsequence \{x_{i(n(k))}\} of \{x_{n(k)}\} such
that x_{i(n(k))} - \zeta and x_{i(n(k))+1}=x_{m(n(k)+1)} . Hence we have chosen a sequence
\{x_{i(n(k))}\} to fulfill

(\alpha) x_{i(n(k))+1}\in f(x_{i(n(k))}) ,
(\beta) x_{i(n(k))+1}arrow\eta ,
(\gamma) x_{i(n(k))}arrow\zeta(

From closedness of f, \eta\in f(\zeta) . Thus, if \zeta is not a fixed point of f, then
p(\eta)<p(\zeta) . This yields a contradiction to (6).

EXAMPLE 1. This example shows that the upper semi-continuity of f
cannot be substituted by the closedness in Theorem 3.

Let M=\{-1\}\cup[0, \frac{1}{2}]\cup[2, \infty) . Define f:Marrow K(M) by

f(x)=\{

{--1} if x=0 or x=-1 .

\{1/x\} if 0<x \leq\frac{1}{2} ,

\{1/3x\} if x\geq 2

Then f is closed but not upper semi-continuous. Define P:Marrow[0, \infty) by
’

\frac{1}{2} if

p(x)= x+1 if

\frac{4}{5x}+1 if

x=-1 .

0 \leq x\leq\frac{1}{2} ,

x\geq 2

Then f is strictly p-nonexpansive with p being continuous on M. Let the

sequence \{x_{k}\} induced by x_{k+1}=f(x_{k}) , k=0,1 , \cdots , x_{0}= \frac{1}{4} ; then 0 is a cluster

point of \{x_{k}\} , but O\not\in f(0)=\{-1\} .
We remark that our main idea of the proof of Theorem 3 is due to

Zangwill’s convergence theorem for nonlinear programming [33, p. 91].
Now we turn to a stronger form of Edelstein’s fixed point theorem.
THEOREM 4. Let f:Marrow M be continuous. Suppose that f is strictly

p-nonexpansive mapping with p being continuous. Let x\in M and let \zeta be
a cluster point of the successive iterates \{f^{k}(x)\} of x. Then:

(a) \zeta is a fifixed point off.
(b) If p(f(x))<p(x) for each x in M with x\neq\zeta and \{f^{k}(x)\} is pre-

compact, then f^{k}(x)arrow\zeta as karrow\infty .
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PROOF. Since f is single-valued and f is continuous, f is upper semi-
continuous. Then conclusion (a) follows immediately from Theorem 3. To
show (b), suppose that \eta is any cluster point of \{f^{k}(x)\} . From (a), \eta is a
fixed point of f. Suppose that \eta\neq\zeta , then p(f(\eta))<p(\eta) . A contradiction
comes up. Hence \eta=\zeta . Since all the convergent subsequences of \{f^{k}(x)\}

have \zeta as a cluster point, f^{k}(x)arrow\zeta as karrow\infty .
When p(x)=d(x,f(x)) , Theorem 3 specializes to the following theorem

of Edelstein [14] :
COROLLARY 1. Let f:Marrow M and suppose that f is strictly nonexpan-

sive, i. e. , d(f(x),f(y))<d(x, y) for each x, y in M with x\neq y . Let x\in M

and let \zeta\in M be a cluster point of the succesive iterates \{f(x)\} of x. Then
\zeta is a unique fifixed point of f and f^{k}(x) - \zeta as karrow\infty .

COROLLARY 2. Let f:Marrow M be continuous and \zeta=f(\zeta) . Suppose that
there exists a continuous real functional p:Marrow[0, \infty) such that

(7) p(f(x))<p(x) for each x in M with x\neq\zeta

If \{f^{k}(x)\} is pre-compact, then f^{k}(x)arrow\zeta as karrow\infty .
Let p(x)=d(x, \zeta) . Then (7) implies that d(f(x), \zeta)<d(x, \zeta) for each

x in M with x\neq\zeta . Therefore, Corollary 2 generalizes a recent result of
M\dot{a}ruster[26] (and hence, an earlier result of Tricomi, see [13]). We note
that an example [13, p. 471] shows that the conclusion of Corollary 2 is
false if a convergent subsequence is not assumed. The following example
shows that our result is a proper generalization of Edelstein’s fixed point
theorem.

EXAMPLE 2. Let R^{2} be 2-dimensional real linear space of column vectors
x=(x_{1}, x_{2})^{T} with the metric induced by the norm

||x||_{\infty}= \max\{|x_{1}| , |x_{2}|\} , for x=(x_{1}, x_{2})^{T}\in R^{2}

Let M=x= \int_{1}(\begin{array}{l}x_{1}x_{2}\end{array}) : x_{1}\geq 0 , x_{2}\geq 0\} . Define f:Marrow M by

f(x)=(_{\backslash ^{\frac{1}{10}x_{1}+\frac{3}{10}x_{2}}}^{\frac{3}{5}x_{1}+\frac{1}{2}x_{2}}’)

Since

|| (\begin{array}{ll}\frac{3}{5} \frac{1}{2}\frac{1}{10} \frac{3}{10}\end{array}) ||_{\infty}= \frac{3}{5}+\frac{1}{2}>1r
,
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||f(x)-f(y)||_{\infty}\geq||x-y||_{\infty} for some x, y in M with x\neq y, i . e. , f is not
a strictly nonexpansive mapping. Let p : Marrow[0, \infty) be a quadratic form
defined by

p(x)=x^{T}(\begin{array}{ll}\frac{1}{4} \frac{1}{4}\frac{1}{4} \frac{1}{3}\end{array}) x , for x=(x_{1}, x_{2})^{T}\in M

Then

p(f(x))= \frac{37}{300}x_{1}^{2}+\frac{57}{500}x_{1}x_{2^{-\tau}}^{I}\frac{67}{400}x_{2}^{2}

< \frac{1}{4}x_{1}^{2}+\frac{1}{2}x_{1}x_{2}+\frac{1}{3}x_{2}^{2}

=p(x) . for each x\neq 0

It is clear that 0 is a cluster point of \{f^{k}(x)\} for x\neq 0 . Therefore, all the
conditions of Theorem 4 are fulfilled.

By refining the proofs of Theorem 3 and 4, we can obtain the following
result concerning the weak convergence of successive approximations.

THEOREM 5. Let E be a normed linear space, K a nonempty weakly
closed subset of E and f:Karrow K a weakly continuous mapping. Suppose
that f is strictly p nonexpansive with p being weakly continuous. Let x\in

M and let u be any weak cluster point of the successive iterates \{f^{k}(x)\} of
x. Then :

(a) u is a fifixed point off.
(b) If \zeta=f(\zeta) and p(f(x))<p((x) for each x in M with x\neq\zeta and

\{f^{k}(x)\} is weakly pre-compact, then \{f^{k}(x)\} converges weakly to \zeta .

3. A characterization of asymptotic regularity.

A mapping f:Marrow 2^{M} is said to be asymptotically regular at x if there
exists an orbit O(x)=\{x_{k} : x_{k+1}\in f(x_{k}), k=0,1, \cdots, x=x_{0}\in M\} of x such
that \{d(x_{k+1}, x_{k})\} converges to 0. The concept of asmyptotic regularity for
multi-valued mappings generalizes the asymptotic regularity introduced by
Browder and Petryshyn [10] for single-valued mappings. The following result
is a characterization of asymptotic regularity in terms of fixed point features
of cluster points.

THEOREM 6. Let f:Marrow K(M) be upper semi-continuous. Let x\in M

be such that its orbits are relatively compact in M. Then the following
are equivalent:
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(a) There is an orbit O(x) of x such that each cluster point of O(x)

is a fifixed point of f.
(b) f is asymptotically regular at x.

PROOF of (a)\Rightarrow(b) . Let O(x) be an orbit of x such that for each cluster
point of O(x) is a fixed point of f. On the contrary suppose that \{d(x_{k+1}, x_{k})\}

does not converge to 0. Then there exists a subsequence \{x_{n(k)}\} of \{x_{k}\}

such that
d(x_{n(k)+1}, x_{n(k)})arrow\delta\in(0, \infty)

By the relative compactness of O(x) , we may (by taking a subsequence, if
necessary) assume that \{x_{n(k)}\} converges, say x_{n(k)}- \zeta . By the hypothesis,
\zeta\in f(\zeta) . Since f(x) is compact for each x in M and f is upper semi-con-
tinuous, x_{n(k)+1}arrow f(\zeta) . Hence

d (f(\zeta) , \zeta)=d(_{karrow\infty}h.mx_{n(k)+1},\lim_{karrow\infty}x_{n(k)})

= \lim d(x_{n(k)+1}, x_{n(k)})

=\delta>0 .

There occurs a contradiction.
PROOF of (b)\Rightarrow(a) . Since f is asymptotically regular at x, there exists

an orbit o(x) of x such that d(x_{k+1}, x_{k})arrow 0 . Let \zeta be a cluster point of
O(x) . Then there exists a subsequence \{x_{n(k)}\} of \{x_{k}\} such that x_{n(k)}arrow\zeta .
Since f(x) is compact for each x in M and f is upper semi-continuous,

we see that x_{n(k)+1}arrow f(\zeta) . Since

d(\zeta,f(\zeta))\leq d(\zeta, x_{n(k)})+d(x_{n(k)}, x_{n(k)+1})+d(x_{n(k)+1},f(\zeta)) ,

letting k tend to infinity, we obtain \zeta\in f(\zeta) .
Combining Theorem 4 and 6 we have

PROPOSITION 1. Let f:Marrow M be continuous. Suppose that f is a

strictly p-nonexpansive mapping with p being continuous. Let x\in M be

such that its successive iterates \{f^{k}(x)\} is relatively compact. The f is as-
ymptotically regular at x.

Let M=[-1,1] and f(x)=-x for x\in M. Let p(x)=|x

Then f is p-nonexpansive. Clearly, \frac{1}{2} is a cluster point of \{

| for x\in M.

f^{k}( \frac{1}{2})\} , but

\frac{1}{2}\neq f(\frac{1}{2}) . By Theorem 6, we conclude that f is not asymptotically regular

at \frac{1}{2} . From this simple example and Proposition 1, we see that the differ-
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ence between strictly p-nonexpansive and p-nonexpansive mapping in a com-
pact setting is a concept of asymptotic regularity.

The next result follows from Proposition 1 and a result of Hillam [19].

PROPOSITION 2. Let f:[a, b]\subset R^{1}arrow[a, b] be continuous. Suppose that

f is strictly p-nonexpansive with p being continuous. Then every x\in[a, b]

the successive iterates \{f^{k}(x)\} of x converges to a fifixed point off.

4. A nonlinear generalization of Stein’s theorem.

Let A be an n\cross n complex matrix, A^{*} the conjugate transpose of A,
and \rho(A) the spectral radius of A. A is said to be Hermitian if A=A^{*} .
We denote by C^{n} the complex n-dimensional normed linear space of all
column vector z=(z_{1}, z_{2}, \cdots, z_{n})^{T} . A is said to be positive definite Hermitian
if A is Hermitian and satisfies

z^{*}Az>0 . for all z\neq 0

In [30] (see also Varga [32, p. 16]) Stein claimed the following result :
THEOREM 7. Let A=(a_{ij}) be an n\cross n complex matrix. If there exists

an n\cross n complex matrix B such that B and B-A^{*}BA are both positive
defifinite Hermitian, then \rho(A)<1 .

In this section we provide a nonlinear (not necessarily linear) generah.za-
tion of the above theorem. Our approach is an application of Theorem 5.
The result is the following:

THEOREM 8. Let E be a reflexive Banach space, K a nonempty weakly
closed subset of E, and f:Karrow K a weakly continuous mapping. Suppose
that f is strictly p-nonexpansive with p being weakly continuous and p(x)arrow

+\infty as ||x||arrow+\infty . Let x\in K. Then :
(a) The successive iterates \{f^{k}(x)\} of x has weak cluster points in K

and each weak cluster point of \{f^{k}(x)\} is a fifixed point off.
(b) If \zeta=f(\zeta) and p(f(x))<p(x) for each x in K with x\neq\zeta , then

f^{k}(x) converges weakly to \zeta .
Let E be a normed linear space, K a nonempty subset of E, and p

a real functional on K. As usual, any nonempty set of the form

\Phi[p, \alpha]=\{x\in K : p(x)\leq\alpha\}j \alpha\in R^{1} ,

is a level set of p. To prove Theorem 8, we need the following basic lemma.
Lemma 3. Let E be a reflexive Banach space and K a nonempty

weakly closed subset of E. Suppose that p is weakly lower semi-continuous
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on K and p(x)arrow+\infty as ||x||arrow+\infty . Then each level set \Phi[p, \alpha] is weakly
compact.

PROOF. By the weak lower semi-continuity of p, \Phi[p, \alpha] is weakly
closed in K. Since K is weakly closed in E, \Phi[p, \alpha] is weakly closed in
E. To show that \Phi[p, \alpha] is bounded, on the contrary suppose that

sup \{||x|| : x\in\Phi[p, \alpha]\}=+\infty

Then there exists a sequence \{y_{k}\}\subset\Phi[p, \alpha] such that ||y_{k}||-+\infty , then, by
hypothesis, p(y_{k})arrow+\infty , which is a contradiction to p(x)\leq\alpha for all x\in\Phi[p, \alpha] .
By reflexivity of E, we conclude that \Phi[p, \alpha] is weakly compact.

PROOF of THEOREM 8. Let x\in K. We may assume thet f^{k+1}(x)\neq f^{k}(x)

for each k=1,2, \cdots . (The convention f^{0}(x)=x is understood.) Since f is
strictly p-nonexpansive, we see that \{f^{k}(x)\} is contained in the level set

\Phi[p, p(x)]=\{y\in K:p(y)\leq p(x)\}

By Lemma 3, \Phi[p, p(x)] is weakly compact. By the Eberlein- \check{S}muh.an the0-
rem [24, p. 303], \Phi[p, p(x)] is weakly sequentially compact. Let u be any
weak cluster point of \{f^{k}(x)\} . For Theorem 5 (a), u is a fixed point of f.
If \zeta=f(\zeta) and p(f(x))<p(x) for each x in K with x\neq\zeta , by Theorem 5 (b),
f^{k}(x) converges weakly to \zeta .

PROOF of THEOREM 7 using THEOREM 8. Let E=K=C^{n} be with norm
||\cdot|| . Define f : C^{n}arrow C^{n} by f(z)=Az, and define p : C^{n}arrow[0, \infty) by p(z)=
z^{*}Bz . By the hypothsis,

p(Az)<p(z) , for all z\neq 0

Let ||z||_{*}=(z^{*}Bz)^{\frac{1}{2}} . Then ||\cdot||_{*} is a norm on C^{n} . Since all norms on C^{n}

are equivalent, p(z)arrow+\infty as ||z||arrow+\infty . According to Theorem 8, A^{k}zarrow 0

for any z\in C^{n} . We assert that \rho(A)<1 . On the contrary suppose that
A has an eigenvalue \lambda with |\lambda|\geq 1 and corresponding eigenvector z\neq 0 . Then
A^{k}z=\lambda^{k}z for all k, so that A^{k}z does not tend to zero, which is absured.

We note that Theorem 8 fails in nonreflexive Banach space with the
strong continuity of f and p.

EXAMPLE 3. Let E be the Banach space C_{0} consisting of all real se-
quences x=(x_{k}) with \lim_{karrow\infty}x_{k}=0 and normed by ||x||= \sup\{|x_{k}|:^{k=1,2,\}} \cdots .
Let

K=\{x=(x_{k}) : 0\leq x_{k}\leq 1 , k=1,2, \cdots\}

Then K is a weakly closed subset of C_{0} . Define f:Karrow K by
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f(x)=(1, x_{1}, x_{2}, \cdots) , for each x=(x_{k})\in K .

Then f is continuous on K, in fact, f is nonexpansive. Define p:Karrow[0, \infty)

by

p(x)= \sum_{k=1}^{\infty}(1-x_{k})2^{1-k}

Then p is continuous on K and p(f(x))= \sum_{k=1}^{\infty}(1-x_{k})2^{1-k} ,

p(x)-p(f(x))= \sum_{k=1}^{\infty}(1-x_{k})2^{1-k}-\sum_{k=1}^{\infty}(1-x_{k})2^{-k}

= \sum_{k=1}^{\infty}(1-x_{k})2^{-k}

Since k.arrow\infty hmx_{k}=0 , there exists some positive integer k_{0} such that x_{k_{0}}<1 , and

hence,

\sum_{k=1}^{\infty}(1-x_{k})2^{-k}\geq(1-x_{k_{0}})2^{-k_{0}}>0

Hence p(f(x))<p(x) for each x in K. Furthermore, the growth condition
p(x)arrow+\infty as ||x||arrow+\infty is automatically satisfied. However, the mapping

f has no fixed point, for if f(x)=x, where x=(x_{k})\in K, then x_{k}=1 for k\geq 1 ,
a contradication.

As an example of the use of Theorem 8, we give the following:
EXAMPLE 4. Consider the 2-dimensional system of difference equation

u_{k+1}= \frac{\frac{1}{2}v_{k}}{1+3v_{k}^{2}}

v_{k+1}= \frac{-\frac{1}{3}u_{k}}{1+3v_{k}^{2}}

.

Define f:R^{2}arrow R^{2} by
f (\begin{array}{l}uv\end{array})=(\frac{\frac{1}{2}v}{1+2u^{2}}

,
\frac{-\frac{1}{3}v}{1+3v^{2}})T. Let p(x)=||x||=u^{2}+v^{2} for

each x=(u, v)^{T}\in R^{2}. Then f(0)=0, and p(x)arrow+\infty as ||x||arrow+\infty . Fur-
thermore,

p(f(x))-p(x)=( \frac{}{(1+2u^{2})^{2}-1})v^{2}+(\frac{}{(1+3v^{2})^{2}-1})u^{2}\frac{1}{4}\frac{1}{9}

\leq(\frac{1}{4}-1)v^{2}+(\frac{1}{9}-1)u^{2}<0 : for each x=(u, v)^{T}\neq 0 .
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According to Theorem 8, (u_{k}, v_{k})^{T}arrow 0 for all (u, v)^{T}=(u_{0}, v_{0})^{T}\in R^{2} .

5. Minimization.

This section is devoted primarily to the study of the problem of finding
a fixed point for certain mappings in a metric space (or a normed linear
space) M, which can be replaced by a problem of minimizing a real functional
on M. We begin with the following rather sharp improvement of Theorem
3 concerning only the existence of a fixed point.

PROPOSITION 3. Let f:Marrow 2^{M} be an arbitrary mapping and suppose
that f(M) is contained in a compact set D\subset M. Suppose that there exists
a lower semi-continuous functional p:Marrow[0, \infty) such that for each x in
M with x\not\in f(x) and some y\in f(x) , p(y)<p(x) . Then f has a fifixed point.

PROOF. Since p is lower semi-continuous and D is compact, there exists
x^{*} in D such that

p(x^{*})= \min\{p(x) : x\in D\}

If x^{*}\not\in f(x^{*}) , then p(y)<p(x^{*}) for some y\in f(x^{*})\subset D. This gives a con-
struction of x^{*} , so that x^{*}\in f(x^{*}) .

PROPOSITION 4. Let E be a reflexive Banach space, K a nonempty
weakly closed subset of E, and f:Karrow K an arbitrary mapping. Suppose
that f is strictly p-nonexpansive with p being weakly lower semi-continuous
and p(x)arrow+\infty as ||x||arrow+\infty . Then f has a fifixed point in K.

Let \dot{p}(x)=p(f(x))-p(x) . Then \dot{p}(x)<0 for each x\neq f(x) . Thus our
assumption is closely related to a result of LaSalle and Lefschetz [25, p. 67].

COROLLARY 3. Let E be a reflexive Banach space and K a nonempty
weakly closed subset of E. Suppose that f:Karrow K is weakly continuous, f(K)
is bounded, and ||f^{2}(x)-f(x)||<||f(x)-x|| for each x in K with x\neq f(x) .
Then f has a fixed point in K.

PROOF of COROLLARY 3. Let p(x)=||f(x)-x|| . Since f is weakly con-
tinuous, p is weakly lower semi-continuous. Since

||f(x)-x||\geq||x||-||f(x)||

and f(K) is bounded, p(x)arrow+\infty as ||x||arrow+\infty . By Proposition 4, f has
a fixed point in K.

COROLLARY 4. Let E be a reflexive Banach space and K a nonempty
closed convex subset of E. Suppose that f:Karrow K is an arbitrary mapping
and f is strictly p-nonexpansive with p, a lower semi-continuous quasi-
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convex functional on K (a functional p defifined on a convex set K is said
to be quasi-convex if p( \alpha x+(1-\alpha)y)\leq\max\{p(x), p(y)\} for each x, y in K
and every \alpha\in(0,1)) and p(x)arrow+\infty as ||x||arrow+\infty . Then f has a fifixed
point in K.

PROOF of COROLLARY 4. Since K is closed and convex, K is weakly
closed. Since p is quasi-convex, each level sets \Phi[p, \alpha] is convex. The
conclusion follows immediately from the following fact and Proposition 4:
A lower semi-continuous real functional having convex level sets is weakly
lower semi-continuous.

PROOF of PROPOSITION 4. Let \overline{x}\in K . By Lemma 3, the level set
\Phi[p, p(\overline{x})] is weakly compact. Since p is weakly lower semi-continuous and
has a weakly compact level set, there exists x^{*}\in K such that

p(x^{*})= \min\{p(x) : x\in K\}

Hence x^{*} is a fixed point of f.
EXAMPLE 5. Let l_{2} be the real sequence space of square summable

sequances x=(x_{k}) with norm

||x||=( \sum_{k=1}^{\infty}x_{k}^{2})^{\frac{1}{2}}

Let K=\{x=(x_{k}) : x_{1}=2x_{2}=\cdots=2^{k-1}x_{k}=\cdots\} be a hyperplane of l_{2} . Then
K is a weakly closed subset of l_{2} . For each x=(x_{k})\in K, define f:Karrow K by

f(x)=\{
(1, 1/2, \cdots, 1/2^{k-1}, \cdots) if x_{1}=3/2 ,

(o, o, \cdots, o, \cdots) if x_{1}\neq 3/2

Let p(x)=||x||=( \frac{4}{3})^{\frac{1}{2}}|x_{1}| for x\in K. Then

p (f(x))=\{\begin{array}{l}4/3 if x_{1}=3/2,0 if x_{1}\neq 3/2\end{array}

So that f is strictly p-nonexpansive on K. Since the norm is weakly lower
semi-continuous, p is weakly lower semi-continuous. Furthermore, p(x)arrow+

oo as ||x||arrow+\infty . Therefore, f satisfies all the conditions of Proposition 4.
To see the advantage of Proposition 4, we note that f is discontinuous and
||f^{2}(x)-f(x)||\geq||f(x)-x|| for some x in K with x\neq f(x) . For instance, let
x=(3/2,3/4, \cdots, 3/2^{k-1_{ }},\cdots) . Then f(x)=(1,1/2, \cdots, 1/2^{k-1_{ }},\cdots) , f^{2}(x)=(0,0 , \cdots ,

0, \cdots ). Therefore, ||f^{2}(x)-f(x)||=4/3>||f(x)-x||=1/3 .
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6. The Browder-G\"ohde-Kirk Theorem.

Let K be a nonempty weakly compact convex subset of a Banach space
E and suppose K possesses normal structure. (A nonempty convex K\subset E is
said to have normal structure [3] if each convex bounded subset S of K with
positive diameter d contains a point x such that sup \{||x-y|| : y\in S\}<d.)

The well-known Browder-G\"ohde-Kirk fixed point theorem [6], [18], [21] as-
serts that each nonexpansive mapping f:Karrow K has a fixed point. Perhaps
the most natural problem in link with the results of Browder-G\"ohde-Kirk
and Caristi-Kirk is the following sample: Let K be a nonempty weakly
compact convex subset of a Banach space E and let K have normal structure
and f:Karrow K. Suppose that f is p nonexpansive with p being non-constant
lower semi-continuous. Does f have a fixed point in K?. The answer is
in the negative as can be seen from the following result.

THEOREM 9. Let K be a nonempty weakly compact convex subset of
a separable infifinite-dimensional Hilbert space E. Then there exists a p-
nonexpansive mapping f:Karrow K with p being weakly non-constant continu-
ous on K such that f does not have a fifixed point in K.

Note here that each nonempty closed bounded convex subset of a uni-
formly convex Banach space has normal structure [28].

PROOF of THEOREM 2. We may take the Hilbert space E to be the
real sequence space l_{2} . Let

K=\{x=(x_{k})\in l_{2} : x_{1}=2x_{2}=\cdots=2^{k-1}x_{k}=\cdots , x_{k}\in[-1,1] , k=1,2, \cdots\}

Then K is nonempty weakly compact convex subset of l_{2} . For each x=
(x_{k})\in K, define f : Karrow K by

f(x)= \int_{1(-1,-1/2,-1/4,\cdots,-1/2^{k-1},\cdots)}(1, 1/2, 1/4,\cdots,1/2^{k-1},\cdots) ifif x_{1}\in[-1,1)x_{1}=1_{}
’

and define p : Karrow[0, \infty) by

p(x)=2-(4/3)^{\frac{1}{2}}|x_{1}|

Then p(f(x))=2-(4/3)^{\frac{1}{2}}\leq 2-(4/3)^{\frac{1}{2}}|x_{1}|=p(x) . Hence f is p-nonexpansive.
It remains to verify that p is weakly continuous on K. If x^{n}=(x_{k}^{n})\in K

converges weakly to \overline{x}=(\overline{x}_{k})\in K, then x_{1}^{n}arrow\overline{x}_{1} (see, [1, p. 236]). Therefore,

2-(4/3)^{\frac{1}{2}}|x^{n}|arrow 2-(4/3)^{\frac{1}{2}}|x_{1}|

This implies that p(x^{n})arrow p(\overline{x}) . Consequently, p is weakly continuous. Howe-
ver, f has no fixed point in K.
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It should be remarked that f does not possess a fixed point even if
we impose certain regular conditions on f in the problem, for instance, f
is continuous and \inf_{x\in K}||x-f(x)||=0 , as the following example shows.

EXAMPLE 6. Let K=\{x=(x_{k})\in l_{2} : ||x||\leq 1\} . Then K is convex, weakly
compact and has normal structure. Define f:Karrow K by

f(x)=((1-||x||^{2})^{\frac{1}{2}},x_{1}, x_{2} , \cdots)- for each x=(x_{k})\in K

Then ||f(x)||=1 and f is continuous in the strong topology. Define p :
Karrow[0, \infty) by p(x)=1-||x|| . Then p is continuous and p(f(x))=1-||f(x)||=
0\leq 1-||x||=p(x) . Let x^{n}=(x_{k}^{n})\in K be such that

x_{1}^{n}=\cdots=x_{2}^{n_{n}}=1/2^{\sqrt}\overline{n} and x_{2}^{n_{n_{+m}}}=0 for m=1,2, \cdots

Then f(x^{n})=(0, x_{1}^{n}, x_{2}^{n}, \cdots, x_{2}^{n_{n}}, 0, \cdots) . It follows that

||x^{n}-f(x^{n})||=(2/2^{n})^{\frac{1}{2}}-0 as narrow\infty

Therefore, we see that \inf_{x\in K}||x-f(x)||=0 . Suppose there exists u=(u_{k})\in K

such that f(u)=u. Since ||f(u)||=1 , ||u||=1 . Thus
f(u)=(0, u_{1}, \mathcal{U}_{2}^{ },\cdots)=(u_{1}, u_{2}, u_{3}, \cdots)

Consequently, u=(0,0, \cdots) , a contradiction to ||u||=1 . Therefore, f has no
fixed point in K.

From Theorem 9 and this example, we conclude that the Browder-
G\"ohde-Kirk fixed point theorem cannot be extended in such a “natural
way.”
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Added in proof. A simple proof of Theorem 3 runs as follows: Since
p is decreasing on \{x_{k}\},\lim_{karrow\infty}p(x_{k})=\delta\geq 0 . Suppose \{x_{n(k)}\} is a subsequence of
\{x_{k}\} which converges to \zeta\in M. Since p is continuous, \delta=p(\zeta) . By upper
semi-continuity of f at \zeta , dist (x_{n(k)+1},f(\zeta))arrow 0 , and since f(\zeta) is compact,
some subsequence of \{x_{n(k)+1}\} must converge to a point \eta\in f(\zeta) . It follows
that \delta=p(\eta)=p(\zeta) ; thus \zeta\in f(\zeta) .
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