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On the first eigenvalue of the Laplacian

acting on p-forms

By Satoshi Asapa
(Received June 25, 1979)

§ 1. Introduction.

Let M be a compact and oriented Riemannian manifold isometrically
immersed in a complete and simply connected space form of constant sectional
curvature K. Let A/(M) denote the first non-zero eignvalue of the Laplacian

acting on p-forms on M. In this note we will be concerned with the next
problem :

Estimate Af(M) from above in terms of the quantities determined by
M (the volume Vol(M), the diameter d(M), etc.) and the immersion (the
mean curvature vector field », the second fundamental form S, etc.). Fur-
thermore, give the equality condition.

For this problem, in the case K=0, Bleecker-Weiner ([I]) obtained an
estimate of Z(M). Masal’cev ([4]) also obtained the same result by a dif-
ferent method but under the additional assumption that M is a hypersurface.
Masal’cev ([5]) gave an estimate of (M) for 1<p<dim M—1, when M is
a hypersurface. In the case K20, Masal’cev ([6]) obtained an estimate of
A(M) for a hypersurface without the equality condition. Now we can com-
pare the first eigenvalue /(M) with that of the standard m-sphere .S™(1)
of constant curvature 1. The purpose of the present note is to present
the following

THEOREM. Let M be an m(>2)-dimensional compact and oriented
Riemannian manifold without boundary.

(A) If M is isometrically immersed in the n-dimensional Euclidean
space E*, then for 0<p<m, we have

Ly RS | IsEav..

Equality holds iff M is embedded as a geodesic sphere in some (m-+1)-
dimensional totally geodesic submanifold in E". Here ||S|| denotes the
length of S and dVy the volume form of M.

(B) If M is isometrically immersed in S*(1), then for 1<p<m—1,
we have
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(1.2) (M) < (S (1) [%M- +tan< o(M) )]z .
m 2

Equality holds iff M is embedded as a geodesic sphere in some (m+1)-
dimensional totally geodesic submanifold in S*(1). Here S(M) denotes the
mazximum of ||S|| and we put p(M): =r—max {p(x, M); x=S5*(1)}, where
p is the distance function of S™(1). A

(C) If M is isometrically immersed in an n-dimensional complete and
simply connected hyperbolic space form H"(—1) of constant curvature —1.
then for 1<p<m-—1, we have

. S(M) d(M)\J
(1.3) (M) < 2 (S™(1) [Wﬁ-—ﬂanh( ! )]
§ 2. Preliminaries.
Let R® be the n-dimensional real number space and (x}:--, x" its

canonical coordinate system. Put

r(x): = \/él () (xeR") .

For a real number K, we define a C®-function ® on R* by @: :1—|——{f—r2.

Let M*(K) denote the Riemannian manifold equipped with the Riemannian

metric G : =@°2i (dx®)? whose underlying manifold is R* for K>0 and the
a=1

open disc {xERn; r(x)2<~—;é—} for K<O0, respectively. Then M"(K) is

simply connected and has the constant sectional curvature K. If K<0, then
Mm™(K) is complete and if K>0, then for any point 2 on the standard z-
sphere S*"(K) of constant curvature K, M"(K) is isometric to S*(K)—{z} by
the stereographic projection. Let § denote the distance function of M"(K),
then for any point x& M*(K) we have

2 rio=| g (K p0.2) (K>0),
70,2 K=0),

The Christoffel symbol { @ } of M"(K) with respect to (x%) is given by

Br
a K
22 |} G —du).
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Let M be an m(>2)-dimensional compact and oriented Riemannian
manifold without boundary isometrically immersed in M"(K). We also de-
note by z% 7, @ the restriction of z, r, ® to M respectively. For a local

ox” or?

coordinate system (U, /) on M, we put x}: = ol ri.= PR Then we

have

(2.3)% Lz =0%,;.

out’ oul
{e,=(E, -, &Y ; t=m+1, .-+, n} be orthonormal vector fields defined along U
and perpendicular to M. Then we have

4 DEwm=0(1Y), Tea=0,.

Here ¢ is the Riemannian metric of M and g¢;;: =g< 0 9 > Let

The a-component of the second fundamental form S(—a%?, —a%;> is given by

Vixj--l-ﬁZ{ ﬂar} iz (cf. Spivak p. 20). Here V denotes the Levi-Civita
37

connection with respect to g. Thus putting .S}, : =G<S<%, a—z;>, &), we get
25  nag=2Sua-n{ bl
; B 7

The mean curvature vector field » is expressed on U as
T NN CKAE
m TN ’

where we put (¢%): =(g;;)"%. If («’) is a normal coordinate system centered
at a point xy& M, Then we have at z,

1
2.6 =1z X(ZS),  lsiE= XS
From (2.6) we see easily that the inequality m||5||*<]|S||? holds on M.
For each p={0,1, ---, m}, A?(M) denotes the space of all differential
p-forms on M and (M) the first non-zero eignvalue of the Laplacian
4d=do+dd acting on A?(M). For w, = A?(M), we put

*) We will use the following convention on the range of indices unless otherwise stated:
a, B, 7,a,8,7€{1,-,n}; 4,5,k L€{L,---,m}; t,1E{m+1,---,n}. For a fixed p€{1,---, m},
t,v, B, v€{1, -, p}; 0 and  run over all permutations of {1,:--,p} and ¢(s), ¢(3) denote
their signs. Repeated indices under a summation sign without indication are summed
over the respective ranges.
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{w, @) : :SM(w]a‘)) dVy and || : =V{e, o).

Then we have the so-called minimum principle, namely,

o, 0)

lol[*

Zf’(M):inf{ wcA?(M), w0, {w,d>=0

for any harmonic p-form (D}.

For each ay, -+, a,E{1, ---, n} we define a p-form o**» on M by
o =dx N\ Ndxtr| M.
Since "7 is an exact form, we have (@™ "*?, @)=0 for any harmonic
p-form @ (The Hodge Decomposition Theorem) and
(™o, oy = ||t [2
Hence by means of the minimum principle, we get

(2.7) A(M) 25 NP 20 [[dw™ 2|2,
ey

ey
LEmMmA 1. For each pe{l, -, m}, we have
m!

i =)

Proor. Fix any point z,&M and let (/) be a normal coordinate sys-
tem on M centered at z, For each j,---,j,€{1, -, m}, the (jy, -, Jp)-
component of w* % is given by

S A
M

(a)al,-“’ap)jlx"’:jp = Z €<0.) x;;'(l) T ng(p) -

a

Thus by means of (2.3) we have at x,

2L (wmer|w™ ) (x)

Ay,

L
- j1<‘.5._‘.-‘<j ,,,Z; 8(0) 6(6> xt‘;:’(‘) ~xt‘;%(l) o x‘(;‘z’)(p) x;{;w)
sl |
m!
= ' @2 = o Q2P
ndts? (m—p)!
By integrating both sides we get (2. 8). Q.E.D.

Now we assume the following :
[*] Fix any point &M and a normal coordinate system (/) on M
centered at x,.
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For ay, -+, ap&{1, -+, n} and j,, -+, j,={1, -+, m} with j,<---<j,, we have
at x,

(5w“h'"»“ﬁ)]~2,...,j (o) = —ZVk( DY g

Ip

T k?#?%‘) :le (0) v;,u x;;(l). ) 'x“;:(v)- ) .xz’l . .xt;f(p) (Vk xf;«:(v))

N
—k;ll;‘%;):ls(g) Ligery " T XGE (Vi xie)
(cf. de Rham [7]). Here ~ over zj;  indicates that it is omitted.
Substituting (2. 5), we get

(b ""’“p>fz,---,ip (o)

= — R TTI L. ga
B k;u;%‘) 1 elo ),,;x’“(l) xfcrc) L xfﬁmZt:Sk’ﬂmE‘y

3
__k;ﬂ;%:l):la(o) x‘;;(l)...x;p...x;f(p) Zz: St £
N\

a, 8
__|_ Z s(o-)y;x‘;;(l)...x;;(y)...xz#-.-x‘;g’(p) ﬁz’; {‘8 ”T} Xy x;‘a(,)

ki psa(p)=1

« R a
+ 2 ¢lo) Liory' " Tk Ll 2 {B #T} e

ksusa(p)=1 Bsr

: X8+ XB i+ XB i+ XB ) -
Here we put (@): =(a, -, ap), (7)1 =(js +++, jp) for simplicity. Hence
5 (@] ders o) (2

g, oty ap

4
— (a) (b)
- Z Z X(a)(j) X(a)(j) .
Jo<t <]p a,b=1
“p

3 Ay

Then we have the following lemma which we will prove in the next Section.

LEMMA 2. In the above situation [*] we have at x,

(2.9) X0:= )] > X8 X&a
juliTa e
_fﬂi 20 2 —1DILS12] @2»
=L m L m =P+ (p=1)lIS)] 222,

4

(2.10) X®:=2 ) Z Z X8 XS
Jp<m<jpa=1b
3 Xy ap

4
3 . — (a) (b)
(2.11) X®:= 2 2 X&H XD
-72<<]p a,b=3

Ay,

“p
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_ Kplm—pt1)em

=T &m-p!
—4p2e(m—1)!
- KZP[(SP‘:é).Z:;_‘;?;'] (m—1)! (dr?|dr?) @0
§ 3. Proof of Lemma 2.
By means of (2.2) we have
K 1 1
P ) (@zx“ Gis= g T g7 x)
Thus we get
K
6.1yl =g 0 nae,

(3.2) ﬁrﬁr{f@ T}{‘B 7’} xf ) xh ]

K _ _
4 sz x gz] gkl 8 (rlzc xi‘ + rlz x/aé) g’L]

2

-3 2 (rixs+73x5) O

2

K _ )
+16g (i i) (reai +rixh) .

We can prove easily the next

LEMMmA 3. Let i—>¢(i) and (i, j)—> 0(i,j) be functions of i,j<{1, -

such that 0(i,j)=6(j,i). Then we have

B3 5 [Seu]=Tr Se,
3T, (n%)
B4 S [Def =rn—p) = Sl
T3, (i)
+p(p—1) EZ :2 : (2o
(3.5) I [ 200Gs )]
3Tp*d, (u# )

(m—2)!

(m—2)!

:P(m”“P)< O 20(1, N+pp— 1)( P! Z 0(z, 7) .

i,

1). Proof of (2.9). Using (2.3) and (2.4), we have

117

., M}
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2
@ Y0
2 bZ_ X&on XD

ay,ap a, 1

=p! 0¥ D LS T 3 (),

caEnT-en (g5 5 (5]

By means of (2.6) and Lemma 3, we get (
(2.4

2.9). Q.E.D.
2). Proof of (2.10). Using (2. 3), (2. 4)

and (3.1), we have

2 Z ZZ a)(])X(a)(J)

aphap a=1b=
= Keplim—p+1) 0% 3 (3 81, - X St) (T er3).
By means of (2.6) and (3. 3), we get (2. 10). Q.E.D.

3). Proof of (2.11). Using (2. 3), we have
2 (X3 nr

e
1%y

- 3 (5 e
o (24

a

ma(p)=1Lv*p
v v i s B 7
— 2 2 5[ Liacss Loy Lioeyy Li
-~ i r} ¢ r} 7> "o o) o)
") o T T
X x
v#/z u#/: PE] ‘8 r ]d(y) Joe JU( ) ja( )

2(p—2) _ a, @ a, _a/-t B T B T
+® " a(y):l[ Z xz xk# {‘8 } {‘8 7} xk xfa(v) x" xjf(u)

PR

7
+ 2. x,m) Ja'( ){ } { } x; x]a(u)x x]o(u)

VR DI vFD

8 Py
— X TpgT Jam{ }{ }x Xl gy Ti T

PR S THE )

""2 Z x@ xjv(v){ﬁ T { a"

PE DL N HEE )

a ag aﬁl

+2 2 ,xij.,@){ }{ﬁ
PENTIVE JIHNE 3]

a}

+ 2 { X5y Lins) {
X, agp a, _ai 8 T [§ 7
T X5y, i { B T} { B 7—,} Zjos) Lioey Liati) Fia(n)

JJ()) x-’d(») 7’ xj a(v)

_} x]a‘(;) Jg(,) l ]a(,)
r
a;

v
A= x x] x] xja
A3 vip, 2 {‘8 r} Ja(g) ey Ia(a) (»)
PEYNTHUE 3

a;

Xy ay a, - 8 T B T
+ xja(fa) xJa(D) {ﬂ 7} {/8 77} Lia() xfc(u) x“(ﬁ) ij‘(v)
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— x5, x5, @ A 2% axh xb
Ja(5) FIa(p) ﬁ 7 ﬂ 7 Ja(w) ey T Ia() oy

A a; a, _ai A 7 B 7
Ljoi xf?(o){ﬁ T} {[3 7 Lo Liac Tluip Tlocwy

a @ a, _C(,; B 7 8 7
+x]j(ﬂ>x1v(a) {ﬁ T} {‘8 7} Liocwy Loy Loy Fioss | | ?
(3) (4)
2 Z X(a)(j) X(a)(j)
o

a
1 dp

a a,
= 2@ Y { , }{_ _} 2 @ 2
po(pn)=Lvxpu ‘6 7' ﬁ 7' J(I(p) Jaewy i

+ Q=2 Z [2 Z xfa(») o {ﬁ »T} {‘éaﬂf} xﬁ x;-m) xfx{

wa(p)=1 v

—2 Z xfa(») ]0(11) {‘@ T}

VI UK 0K D

e 5 -
+2 ) apx ;m){ }{‘g 7} T, §‘,(v)xfx¥],

PE N THDL VL]

L (XGw)?

1,“',&'1)

a \i;8,7

a; X" B 7
ﬁ 7} JD'(V) ]a(,,) xi xl

a

ma(p) =Lv¥p

—Q¥r? Z rfa(u) x]a(u) {ﬁa 7‘} {Ba )7} x xl xk xk
Substituting (3. 2), we get |

4
(@ Y
2 ZS XS X

@y, a0

_ Kepl(m—pt1p

1 72 2P
Kz.p!
- 16 2m+2mp —3p*—2p+1) (dr¥dr?) @*»—"
KZ.p!

P e — dmp -t 4p ( 3, rﬁ-yrﬁ-) Q-0
v=2
By means of (3.3) we obtain (2. 11). Q.E.D.

§ 4. Proof of Theorem.

Since the duality Z(M)=a""?(M) holds, it is sufficient to prove our

2
that for the standard m-sphere S™(K) of constant curvature K>0 we have

theorem for pg[—;g]. Here [l”:l is the integral part of —7%2— We recall
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R (Sm(K))= [ mK (p=0),
{p<m—p+1>K (1 <p<[—2"i])

(see Ikeda-Taniguchi [3]).
1). Proof of Theorem (A). For p=0 the inequality (1. 1) is nothing but

one obtained by Bleecker-Weiner. So we will prove (1.1) for 1< pg[%].
By integrating the both sides of (2.9) we get

2 |lower|f?

B oo
= 22 [t o~ 111SI] Ve
cpm=pF1)-(m=-1)!
< op)!

Thus from (2.7) and (2.8) we obtain (1.1). If the equality holds in (1. 1),
then we have m||y||?=||S||*> on M. This implies that M is a totally um-
bilical submanifold in E*. Hence M is embedded as a geodesic sphere in
some (m-+1)-dimensional totally geodesic submanifold in E” (see Chen p.
50). Conversely, if M is embedded as a geodesic sphere in some (m+1)-
dimensional totally geodesic submanifold in E”, then we see easily that the

equality holds in (1.1). Q.E.D.
ReMARK 1. From the above argument we have the inequality

jMnsndeM, because of mjp|[2<||.S|P?.

BOM) < o= Vot iy ) L7 =P+ o= DIISI ] Vi

(1<p<m) under the assumption of our theorem (A).

2). Proof of Theorem (B). Choose a point 2&.5"(1) such that p(z, M)
>p(2z, M) for any point 2&S8"(1). Then we have 2y&M. The antipodal
point £, of z, satisfies p(M)=max {p(2, x); x=M}. We see that 0<p(M)<r.
We may identify M"(1) defined in Section 2 with the tangent space T, S™(1)
to S*(1) at %, with the Riemannian metric which is induced by the stereo-
graphic projection {: .S"(1)—{zg}—7T5,S"(1). Since z,&M, we may regard
McS*(1) as {(M)Cc M™(1). Thus we arrive at the same situation as Sec-
tion 2. In (2.10) we have

~ Gy, 2 < |Gl @] gl ] = gl () 071 < S (M) 971,

where we put 7(M): =max {r(x); xt&M}. From (2.9) and (2. 10) we get
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(4.1) X(1)+X‘2)<p(m_P+1)[S(M) S(M) m!

o + o r(M)] ﬁ(m—P)! Q%

By means of p<12n— we have (3p+1) m—4p?>0 in (2.11) and we get

2 !
42 xo<pm—pr) G o,
From (4.1) and (4. 2) we have
LT llgur
SM) rM)]2 m! o
<P(m_P+1>|: ym + o ] (m_P>!SM@ dVy.

The choice of 2z, and (2.1) imply that r(M)=2tan (@) Hence from

(2.7) and (2. 8) we obtain (1.2). If the equality holds in (1. 2), then we have
m||y|[?=||S||? on M. This implies that M is a totally umbilical submanifold
in $"(1). Therefore M is embedded as a geodesic sphere in some (m+1)-
dimensional totally geodesic submanifold in $”(1) (see Chen [2] p. 50). Con-
versely, if M is embedded as a geodesic sphere in some (7+1)-dimensional
totally geodesic submanifold in S”(1), then || is constant and equal to

2 1
m<%s-“§(%))—> . On the other hand, since M is isometric to Sm<m>,
we have A(M)= P(m_P—I—l)W;(_Z\/IT' Therefore the equality holds in
(1. 2). Q.E.D.

REMARK 2. By means of S*(1)CE""!, using the inequality (1.1), we
have also the inequality

20 < ()| yagary L ISVt 1]

under the assumprion of our theorem (B).
3). Proof of Theorem (C). Since M"(—1)=H"(—1) is homogeneous,

we may assume that 0 McC M"(—1). By an argument similar to that of
the proof of theorem (B), we get

AM)<pm—p+1) [ b:/(%/[) +

r(é\/f)]z.

If py denotes the distance function of M, then we have 0, x)< 0x(0,x) <d(M)

for any point x&M. From (2.1) we have r(M)<2 tanh(d(éw)> to obtain

the inequality (1. 3). Q.E.D.
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