Boundary behavior of Dirichlet solutions at regular boundary points

By Wataru OGAWA

(Received June 18, 1979)

Let G be a bounded domain in the complex plane. Let f be an extended real-valued continuous function on the boundary ∂G of G. If f is bounded, there exists the Dirichlet solution H_f^q ([2]) and if p_0 is a regular boundary point, then

$$\lim_{\boldsymbol{G} \ni \boldsymbol{z} \to \boldsymbol{p}_0} H_f^{\boldsymbol{G}}(\boldsymbol{z}) = f(\boldsymbol{p}_0) . \tag{1}$$

From M. Brelot's example ([1]) we can make an example which violates $\lim_{g \ni z \to p_0} H_f^q(z) = f(p_0)$ for an unbounded continuous resolutive f at a regular boundary point p_0 . Here we show that under a certain condition (1) holds for an unbounded continuous resolutive f at a regular boundary point p_0 . Set $f^+ = \max{f, 0}$ and $f^- = \max{-f, 0}$. Our result is the following.

THEOREM. Let G be a bounded domain in the complex plane and p_0 be a regular boundary point of G. Let f be an extended real-valued continuous and resolutive boundary function on ∂G .

and $u = H_f^{G}$, then $u_n \uparrow u$ $(n \to \infty)$. If $f(p_0) = +\infty$, $n = \lim_{\substack{G \ni z \to p_0 \\ G \ni z \to p_0}} u(z) \le \lim_{\substack{G \ni z \to p_0 \\ G \ni z \to p_0}} u(z)$. Letting $n \to \infty$, we obtain $\lim_{\substack{G \ni z \to p_0 \\ G \ni z \to p_0}} u(z) = +\infty = f(p_0)$. If $f(p_0)$ is finite, we denote by α the component of ∂G containing p_0 .

W. Ogawa

Case 1. Suppose $\alpha = \{p_0\}$. Let Γ be a Jordan curve in G surrounding p_0 which is sufficiently near p_0 and does not meet ∂G . Let Ω be a domain in the complex plane bounded by Γ . There is a positive constant M such that $\max_{\substack{\partial \Omega \ni z}} u(z) \leq M$. Since f is continuous and $f(p_0)$ is finite, $u_n - u_{n_0} = 0$ on $\partial G \cap \Omega - \gamma$ $(n > n_0, \operatorname{cap} \gamma = 0)$ for a sufficiently large n_0 . Hence

$$u_n(z) - u_{n_0}(z) \leq M \big(1 - \omega(z, \partial G \cap \Omega, G \cap \Omega) \big) \qquad (z \in G \cap \Omega)$$

 $\omega(z, E, D)$ is the harmonic measure of E at the point z with respect to D. Letting $n \rightarrow \infty$, then

$$u(z) - u_{n_0}(z) \leq M \Big(1 - \omega(z, \partial G \cap \Omega, G \cap \Omega) \Big) \qquad (z \in G \cap \Omega)$$

Therefore

$$0 \leq \overline{\lim}_{\substack{G \cap \mathcal{Q} \ni z \to p_0}} \left(u(z) - u_{n_0}(z) \right)$$
$$\leq \overline{\lim}_{\substack{G \cap \mathcal{Q} \ni z \to p_0}} M \left(1 - \omega(z, \partial G \cap \mathcal{Q}, G \cap \mathcal{Q}) \right) = 0.$$

This shows that $\lim_{G \ni z \to p_0} u(z) = \lim_{G \cap \mathcal{Q} \ni z \to p_0} u_{n_0}(z) = f(p_0).$

Case 2. Suppose that α is a continuum. Since $\iint_{a \cap D(p_0, r_0)} u(p_0 + re^{i\theta}) r dr d\theta \leq \iint_{a \cap V} u(z) dx dy < \infty \text{ for a sufficiently small}$ positive r_0 , where $D(\zeta, r) = \{z; |z - \zeta| < r\}, \int_{a \cap \partial D(p_0, r)} u(p_0 + re^{i\theta}) d\theta$ is finite for almost all $r (0 < r \leq r_0)$. We shall show that $\int_{a \cap \partial D(p_0, r)} u(p_0 + re^{i\theta}) d\theta < \infty$ for every r smaller than some $r_1 (0 < r_1 \leq r_0)$ in the proposition. Let g be equal to u on $\partial D(p_0, r) \cap G (0 < r \leq r_1)$ and equal to zero on $\partial D(p_0, r) - \partial D(p_0, r) \cap G$. Since $\int_{\partial D(p_0, r)} g(p_0 + re^{i\theta}) d\theta = \int_{\partial D(p_0, r) \cap G} u(p_0 + re^{i\theta}) d\theta < \infty$, then $v = H_g^{D(p_0, r)}$ is finite. Let w be a harmonic function on $D' = D\left(p_0, \frac{2}{3}r\right) - \partial G \cap \overline{D}\left(p_0, \frac{r}{3}\right)$ with the boundary value v on $\partial D\left(p_0, \frac{2}{3}r\right)$ and the value 0 on $\partial G \cap \overline{D}\left(p_0, \frac{r}{3}\right)$. Then $0 \leq w \leq v < \infty$ on D'. Since w is bounded harmonic on D', $\lim_{D' \geq z - p_0} w(z) = 0$. Since f is continuous and $f(p_0)$ is finite, $0 \leq u_n - u_{n_0} \leq w(n > n_0)$ on $G \cap D\left(p_0, \frac{2}{3}r\right)$ for a sufficiently large n_0 . We let $n \to \infty$ to obtain $0 \leq u - u_{n_0} \leq w$ on $G \cap D\left(p_0, \frac{2}{3}r\right)$. Hence

$$0 \leq \overline{\lim}_{G \cap D(p_0, \frac{2}{3}r) \ni z \to p_0} \left(u(z) - u_{n_0}(z) \right) \leq \overline{\lim}_{G \cap D(p_0, \frac{2}{3}r) \ni z \to p_0} w(z) = 0.$$

This shows that $\lim_{G \ni z \to p_0} u(z) = \lim_{G \cap D(p_0, \frac{2}{3}r) \ni z \to p_0} u_{n_0}(z) = f(p_0)$.

Proof of (i). Since
$$H_{|f|}^{g} = H_{f^+}^{g} + H_{f^-}^{g}$$
, both $\iint_{g \cap V} H_{f^+}^{g}(z) \, dx \, dy$ and

$$\begin{split} &\iint_{G\cap V} H_{f^-}^g(z) \, dx dy \text{ are finite. The above argument shows that} \\ &\lim_{G\ni z \to p_0} H_{f^+}^g(z) = f^+(p_0) \text{ and } \lim_{G\ni z \to p_0} H_{f^-}^g(z) = f^-(p_0) \text{ . Note that } f^+(p_0) \text{ and } f^-(p_0) \text{ are finite. Thus} \end{split}$$

$$\lim_{G \ni z \to p_0} H_f^G(z) = \lim_{G \ni z \to p_0} H_{f^+}^G(z) - \lim_{G \ni z \to p_0} H_{f^-}^G(z)$$

= $f^+(p_0) - f^-(p_0) = f(p_0)$.

Proof of (ii) and (iii). We prove (ii). Part (iii) is proved similarly. Note that f^- is non-negative and $f^-(p_0)=0$. By the hypothesis of f^- we obtain $\lim_{\substack{G \ni z \to p_0 \\ G \ni z \to p_0}} H_{f^-}^q(z) = 0$. Since f^+ is non-negative and $f^+(p_0) = +\infty$, $\lim_{\substack{G \ni z \to p_0 \\ G \ni z \to p_0}} H_{f^+}^q(z) = \lim_{\substack{G \ni z \to p_0 \\ G \ni z \to p_0}} H_{f^+}^q(z) - \lim_{\substack{G \ni z \to p_0 \\ G \ni z \to p_0}} H_{f^-}^q(z) = f(p_0).$

COROLLARY 1. Let G and p_0 be the same as in Theorem. Let f be a non-negative continuous resolutive boundary function of G.

(i) The case where $f(p_0)$ is finite. $\lim_{G \ni z \to p_0} H_f^G(z) = f(p_0)$ holds if and only

$$\begin{array}{l} \text{if } \iint_{g \cap V} H_f^G(z) \, dx dy < \infty \text{ for a neighborhood } V \text{ of } p_0. \\ (\text{ii)} \quad The \text{ case where } f(p_0) = +\infty \lim_{g \ni z \to p_0} H_f^G(p_0) = f(p_0) \text{ holds.} \end{array}$$

PROOF. "Only if" part in (i) is clear. The rest is already proved.

COROLLARY 2. Let G and f be the same as in Theorem and let $\{p; f(p)=\pm\infty\}$ be of capacity zero. If $\iint_{G\cap V(p)} H^g_{|f|}(z) dxdy < \infty$ holds at every regular boundary point p with finite f(p), where V(p) is a neighborhood of p, then $\lim_{G \ni z \to p} H^g_f(z) = f(p)$ holds at every regular boundary point.

PROOF. If f(p) is finite, the assertion is already proved. Let $f(p) = +\infty$. Note first that $\lim_{\substack{G \ni z \to p \\ G \ni z \to p}} H_{f^+}^q(z) = +\infty$. Choose r > 0 such that f^+ is finite on $\partial G \cap \partial D(p, r)$, f^- is zero on $\partial G \cap \overline{D}(p, r)$ and $\partial D(p, r)$ meets no irregular boundary point of G. Let g be a boundary function of $G_r = G \cap D(p, r)$ which is equal to f^- on $\partial G \cap \overline{D}(p, r)$ and equal to $H_{f^-}^q$ on $G \cap \partial D(p, r)$. Then g is resolutive and $H_g^{q_r} = H_{f^-}^q$ on G_r . Take $q \in \partial G \cap \partial D(p, r)$, then

W. Ogawa

$$\lim_{\mathbf{q} \ni \mathbf{z} \to \mathbf{p}} H_f^{\mathbf{q}}(\mathbf{z}) = \lim_{\mathbf{q} \ni \mathbf{z} \to \mathbf{p}} H_{f^+}^{\mathbf{q}}(\mathbf{z}) - \lim_{\mathbf{q} \ni \mathbf{z} \to \mathbf{p}} H_{f^-}^{\mathbf{q}}(\mathbf{z}) = f(\mathbf{p}) \,.$$

If $f(p) = -\infty$, the assertion is proved similarly.

An existence of a finite $\int_{G \cap \partial D(p_0,r)} u(p_0 + re^{i\theta}) d\theta$ is most important in the proof of Theorem. So we furthermore remark the following proposition.

PROPOSITION. With the notation of Theorem we obtain the following.

(i) $\int_{G \cap \partial D(p_0,r)} \left(u_n(p_0 + re^{i\theta}) - u_{n_0}(p_0 + re^{i\theta}) \right) d\theta$ $(n > n_0)$ decreases as $r \to 0$ provided that r is smaller than some small positive number and n_0 is sufficiently large.

(ii) If $\int_{G\cap\partial D(p_0,r_1)} u(p_0+r_1e^{i\theta}) d\theta$ is finite, where r_1 is sufficiently small, then $\int_{G\cap\partial D(p_0,r)} u(p_0+re^{i\theta}) d\theta$ is finite for every r $(0 < r \le r_1)$.

PROOF. Let v_r be equal to $u_n - u_{n_0}$ $(n > n_0)$ on $G \cap \partial D(p_0, r)$ and equal to zero on $\partial D(p_0, r) - G \cap \partial D(p_0, r)$. Then

$$H_{v_r}^{D(p_0,r)}(p_0) = \frac{1}{2\pi} \int_{G \cap \partial D(p_0,r)} (u_n - u_{n_0}) (p_0 + re^{i\theta}) d\theta .$$

Since we can assume that $u_n - u_{n_0} = 0$ on $\partial G \cap D(p_0, r) - \gamma$ (cap $\gamma = 0$) provided that r is smaller than some small positive number and n_0 is sufficiently large, we have $H_{v_r}^{D(p_0,r)} \ge u_n - u_{n_0}$ on $G \cap \partial D(p_0, t)$ for each t ($0 < t \le r$). It follows that $H_{v_r}^{D(p_0,r)} \ge H_{v_t}^{D(p_0,t)}$ on $D(p_0, t)$. In particular $H_{v_r}^{D(p_0,r)}(p_0) \ge H_{v_t}^{D(p_0,t)}(p_0)$. This shows that

$$\int_{G\cap\partial D(p_0,r)} \left(u_n(p_0+re^{i\theta}) - u_{n_0}(p_0+re^{i\theta}) \right) d\theta$$

$$\geq \int_{G\cap\partial D(p_0,t)} \left(u_n(p_0+te^{i\theta}) - u_{n_0}(p_0+te^{i\theta}) \right) d\theta . \qquad (2)$$

To prove (ii), we let $r=r_1$, t=r and $n\to\infty$ in (2) to obtain

$$\infty > \int_{G \cap \partial D(p_0, r_1)} \left(u(p_0 + r_1 e^{i\theta}) - u_{n_0}(p_0 + r_1 e^{i\theta}) \right) d\theta$$

$$\ge \int_{G \cap \partial D(p_0, r)} \left(u(p_0 + r e^{i\theta}) - u_{n_0}(p_0 + r e^{i\theta}) \right) d\theta .$$

This shows that $\int_{G \cap \partial D(p_0,r)} u(p_0 + re^{i\theta}) d\theta < \infty$ for every $r (0 < r \leq r_1)$.

REMARK. We cannot remove the hypotheses of (ii) and (iii) in Theorem. By modifying M. Brelot's example ([1]), we obtain a Dirichlet solution H_f^q such that f is an unbounded continuous and resolutive boundary function and $\overline{\lim}_{G\ni z \to p_0} H_f^q(z) = +\infty$ at a regular boundary point p_0 , where $f(p_0) = -\infty$. For another sufficient condition, we refer to Z. Kuramochi and Y. Nagasaka [3].

References

- [1] M. BRELOT: Sur la mesure harmonique et le problème de Dirichlet, Bull. Sci. Math. 2. Serie 69, 153-156 (1945).
- [2] L. HELMS: Introduction to potential theory, Wiley-Interscience, New York, 1969.
- [3] Z. KURAMOCHI and Y. NAGASAKA: On the Dirichlet problem for unbounded boundary functions, Hokkaido Math. J. Vol. 8, 145-149 (1979).

Department of Mathematics Hokkaido University