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On standard involutions of homotopy spheres

By Yoshinobu KAMISHIMA
(Received July 18, 1980)

INTRODUCTION

This paper studies fixed point free smooth involutions on homotopy
(2n-1) -spheres. It has been proved in [10], [24] that every element of
bP_{2n}(n\geqq 3) admits free involutions, where bP_{2n} is the group of homotopy
(2n-1) -spheres which bound parallelizable manifolds. When such actions
exist, it is natural to ask how they behave.

We will make an approach to this problem in the study of the following
involutions. Let T be a free involution on a homotopy sphere \sum^{2n-1}\in bP_{2n}

(n\geqq 3) . If there exists a parallelizable manifold M with boundary \Sigma such
that T extends to an involution with isolated fifixed points on M, then we
call (T, \Sigma) a standard involution.

We shall establish an explicit description of standard involutions on
homotopy (4k-1) -spheres and then prove that they give a classification of
standard involutions.

Contents

1. Preliminary results and definitions 345
2. Properties of standard involutions 346
3. Geometric models 354
4. Classification of standard involutions 367
5. Characterization on low dimensional free involutions 391

Certain examples of satndard involutions are constructed by an equi-
variant plumbing technique in chapter III. F. Hirzebruch and K. H. Mayer
[13], [21] gave examples of free involutions of homotopy 7-spheres using
the equivariant plumbing. However, the plumbing we need here is different
from it and is based upon the plumbing which is originally motivated by
S. Weintraub [34]. In general, if we are given a free involution T on a
homotopy sphere \Sigma and even though T extends to an involution on M
which \Sigma bounds, it may be considered that T does not extend “uniquely”
So to construction we need to construct Z_{2} -actions on M in a “uniform
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way”. Then the invariants for the actions on M -for examples, Atiyah-
Singer invariants, Spin invariants, Eells-Kuiper \mu invariants give informa-
tions to the classification of (T, \Sigma) . In particular, we have the following
table of standard involutions.

Table 1.

\frac{TyP^{e1(A, S^{4k-1})|)|4k-1}(T_{2l-1,(2l1.-)}^{-\Sigma 4k\underline{-1}}(T_{2l-1}^{+},\Sigma_{(2l-1,+)})|(T_{2l}^{-},\Sigma_{(2l)}^{4k-\underline{1}})|(T_{2l}^{+},\Sigma_{(2l}^{4k-1_{)})}}{\underline invariant,c1assBr_{Livesay10|2l-1|_{-}|2l|2l}owder- cobordism|\begin{array}{l}(P,id)(P=P^{4k-1})\end{array}|(8(2l-1)-1)(P,id)|(8(2l-1)+1)(P,id)|(8(2l)+1)(P,id)|(8(2l)-1)(P, id)2l-1}.

.

Normal

invariantmod 22kSpin | \pm 1 | \pm(8(2l-1)-1)| \pm(8(2l-1)+1)| \pm(8(2l)+1) | \pm(8(2l)-1)

Matrix\overline{rank|-|\begin{array}{l}H_{2l-1}^{-}8(2l-1)\end{array}|} 8(2l-1)H_{2l-1}^{+} |\begin{array}{l}H_{2l}^{-}8(2l)\end{array}| 8(2l)H_{2l}^{+}

\overline{Difffferen- structuretiab1e|S^{4k-1}|} (2l-1)\Sigma_{1} | (2l-1)\Sigma_{1} | (21) \Sigma_{1} | (21) \Sigma_{1}

Chapter IV serves as the classification of standard involutions. For
this, if we are given a standard involution, then we require that a bounded
manifold with a Z_{2}-action is highly-connected. The equivariant surgery
enables us to do so within the normal cobordism class. In such a situation,
we calculate the normal cobordism class of the standard involution and seek
the same class out of the table. And then choosing one with the same
Browder-Livesay invariant, we have the main result of chapter IV.

THEOREM 4. 4. 3. Let T be a standard involution on a homotopy
sphere \Sigma 4k-1\in bP_{4k}(k\geqq 2) . Then, (T,, \Sigma 4k-1) is equivariantly diffeomorphic
to the equivariant connected sum of the defifinite element \Sigma’\in bP_{4k} with
the unique representative (T_{h}, \Sigma_{h}) in the table, i . e. , the quotient

\Sigma 4k-1/T\cong\Sigma_{h}/T_{h}\#\Sigma’

For the (4 k+1) -dimensional case, we have

THEOREM 4. 9. 1. Let T be a standard involution on a homotopy
sphere \Sigma 4k+1\in bP_{4k+2}(k\geqq 1) . Then, (T, \Sigma 4k+1) is equivarianly diffeomorphic
to the equivariant connected sum of some \Sigma’\in bP_{4k+2} with the unique re-
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presentative (T_{d}, \Sigma_{tl}^{4k+1}) in table (cf. \S 3. 8), i . e. , the quotient
\Sigma 4k+1/T\cong\Sigma_{d}^{4k+1}/T_{tz}\#\Sigma’

Here T_{d} is the Brieskorn involution on the Brieskorn sphere \Sigma_{d}^{4k+1} .

Chapter V studies the models which are constructed in chapter III.
The bundles we used to construct the models are stably trivial. However,
if we are able to take bundles with Z_{2}-actions which are not stably trivial,
then by the same method we have spin manifolds (almost closed manifolds
in his definition of Wall [31] ) with Z_{2}-actions. We then receive free involu-
tions on the boundaries which are elements of bspin. If we call such involu-
tions “spin involutions”, then some of these are identified with “curious
involutions” due to Hirsch-Milnor [12] (See also [20, p. 63]). In particular,
we can re -establish the classification on homotopy projective 7-spaces using
the standard involutions and spin involutions.

Certain notational conventions will be used throughout. Z denotes the
integers and Z_{2}=Z/2Z the quotient group. (Co) -homology coefficients are
assumed to be Z. By D^{n+1}(S^{n}) we mean the (n+1)(n) -dimensional unit
disk (sphere) in the (n+1) -dimensional euclidean space R^{n\dagger 1} . A denotes the
antipodal map on D^{n+1}(S^{n}) ,

A(x_{1}, X_{2}^{ },\cdots, X_{n+1})=(-x_{1}, - x_{2}, \cdots, - x_{n+1}) ,

and P^{n}=S^{n}/A is the n -dimensional standard projective space. By I we
mean the unit interval [0, 1] in R^{1} .

The author would like to thank Professor H. Suzuki and Professor
T. Yoshida for their valuable suggestions.

1. Preliminary results and definitions

1. 1. For details on the surgery on manifolds, we refer to Browder
[4], L\’opez De Medrano [20] and Wall [33].

Let T be a free involution on a homotopy n sphere \Sigma^{n} . Two (T_{i}, \Sigma_{i}^{n})

(i=0,1) are equivalent if there is an equivariant diffeomorphism g : (T_{0}, \Sigma_{0})arrow

(T_{1}, \Sigma_{1})\backslash \cdot If n is odd, g is required to be orientation preserving. Denote by
\Pi_{n} the set of equivalence classes of free involutions on homotopy n-spheres.
Denote by \sigma(T, \Sigma) the Browder-Livesay invariant which is the obstruction
whether (T,, \Sigma) has a codimension 1 invariant sphere, i . e. , desuspends or
not. It lies in the following groups (see [20])
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\sigma(T, \Sigma^{n})=

. 0 n even
Zn\equiv-1(4)

. Z_{2}n\equiv 1(4)\tau

THEOREM (Browder-Livesay [7]). If n\geqq 6 , (T, \Sigma^{n}) desuspends if and only

if \sigma(T, \Sigma^{n})=0 .
To distinguish free involutions, we may put them into the frame work

of the surgery theory. Taking quotient spaces and choosing homotopy
equivalences (of degree 1 if n is odd), \Pi_{n} is in one to one correspondence
with hS\{Pn), where hS(Pn) , is the set of homotopy smoothings of P^{n} .

THEOREM ([20, p. 47]). Two free involutions (T_{i}, \Sigma_{i}^{n})(i=0,1) are equi-
valent, modulo the action of bP_{n+1} , if and only if they have the same
normal cobordism class and the same Browder-Livesay invariant.
This theorem follows easily from the surgery exact sequence on p^{n} ,

L_{n+1}(Z_{2}, w)hS(P^{n})[P^{n}, G/0]L_{n}(Z_{2}, w)\underline{\omega}\underline{\eta}\underline{\theta}c

1. 2. DEFINITION. Let T be a free involution on a homotopy sphere
\Sigma^{n}\in bP_{n+1}(n\geqq 5) . We say that T is standard if there exists a parallelizable
manifold M^{n+1} which \Sigma bounds such that T extends to an involution with
isolated fixed points on M. If there exist no such paralleliziable manifold,
we call T non-standard.

Under such a situation, we write (T, \Sigma)=\partial(TM) (we do not distinguish
an extended involution from T). To make clear the notion of non-standard
it will be discussed in chapter V.

1. 3. NOTATION. Let M^{n+1} be a parallelizable manifold whose boundary
is \Sigma^{n} . Denote by \sigma(\wedge/W) the index (resp. Kervaire invariant) of M for n+1\equiv 0

(resp. 2) mod 4. Otherwise we set \sigma(M)=0 .
Note that these invariants are the surgery obstructions of normal maps

into the (n+1) -disk D^{n+1} which are homotopy equivalences on the boundary.

2. Properties of standard involutions

PROPOSITION 2. 1. Suppose that T is a standard involution on \Sigma^{n} so
that (T, \Sigma n)=\partial(T, M^{n+1}) and n\geqq 5 . Then,

\sigma(T, \Sigma)\equiv\sigma(M) if n is even and n\equiv 1(4) ,

\sigma(T, \Sigma)\equiv 1/8\sigma(M)(2) if n\equiv-1(4)

PROOF. If n is even, it follows from the above definition and theorem
that \sigma(T, \Sigma)=\sigma(M)=0 .
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Assume n\equiv-1(4) . The Atiyah-Singer invariant and the Browder-
Livesay invariant agree for free involutions (see [2]). Hence, it follows that
\sigma(T, \Sigma)=1/8 (Sign ( T, M)-L(T, M) ). Since L(T_{\eta},M)=L (Fix T. Fix T) =0
(in this case) and Sign (T,, M)\equiv\sigma(M)(2) , the result follows.

Assume n=4k+1 . Let (T, N^{4k}) be a characteristic submanifold of (T, \Sigma) .
We quote the result of P. Orlik [25] to look for a specific geometry of (T_{r},, N)

for k\geqq 2 . One can perform equivariant surgery on N to yield a submanifold
W_{c} for c=0,1 . W_{c} is as follows. Let \sigma(T, \Sigma)=c . If \sigma(T, \Sigma)=0 , then
W_{0}=S^{4k} . If \sigma(T, \Sigma)=1 , then W_{1} is the double of plumbing J two copies of
the tangent disk bundles of S^{2k} . More precisely, let \Sigma=A\cup TA, A\cap TA=W_{1} .
Then, 0- H_{2k}(W_{1}) - H_{2k}(A)+H_{2k} (TA)\rightarrow 0, and H_{2k}(W_{1})=Ker i_{A}\oplus Ker i_{TA},

where Ker i_{A}=Ker\{i_{A^{*}} : H_{2k}(W_{1}) - H_{2k}(A)\} and Ker i_{TA}=T- Ker i_{A} . Ker i_{A}

has a sympletic basis \{e,.f\} with respect to the skew-symmetric bilinear form
B defined by B(x, y)=x\cdot Ty on Ker i_{A} . The quadratic form \psi_{0} : Ker i_{A}arrow Z_{2}

associated with B satisfies that \psi_{0}(e)=\psi_{0}(f)=1 (of course, if \psi_{0}(e)=\psi_{0}(f)=0 ,
W_{1} reduces to S^{4k}). If we put a=e-(f-Tf), b=Tf+(e-Te) , then by the
contribution to the intersection numbers, we see that a neighborhood J of
\{a\cup b\} in W_{1} is the result of plumbing two copies of the tangent disk bundle
of S^{2k} and the same is true for TJ of \{Ta\cup Tb\} . Then, it is proved in [25]
that W_{1}-(J\cup TJ) is an h-cobordism and hence W_{1} is the double of plumbing
J. We note the following facts which are used later.

(2. 2) If we put c=e-Te, d=f-Tf, then {a, b, Ta, Tb, c, d)

generates H_{2k}(W_{1}) . By the above remark, we have

(2. 3) W_{0} bounds V_{0}=D^{4k+1} and W_{1} bounds V_{1}=J\cross I .

(2. 4) Ker \{i_{*}: H_{2k}(W_{1})-H_{2k}(J\cross I)\}=\{c, d\}

Now, (T, \Sigma 4k+1)=\partial(T, M^{4k+2}) , k\geqq 2 . Let F_{c}^{4k+1} be a parallelizable manifold
which separates M equivariantly such that (T, W_{c}) extends to an involution
with isolated fixed points on F_{c} , i . e. ,

M=B\cup TB, B\cap TB=Fc and (T, W_{c})=\partial(T, F_{c})

We can do this by using the relative transversality theorem. We will com-
pute the Kervaire invariant \sigma(M) of M^{4k+2} . For this, we show that there
is a normal cobordism between F_{c} and V_{c}rel . boundary W_{c}\cross I.

First, W_{1}=\partial(J\cross I) . Divide S^{4k+1} into D_{-}^{4k+1} and D_{+}^{4k+1} along S^{4k} . Take
a degree 1 map g of J onto the disk D^{4k} . Define a map

(2. 5) f_{1} : J\cross I-D^{4k}\cross I\cong D_{-}^{4k+1}
,\cdot
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by setting f_{1}=g\cross 1 . Put

(2. 6) f_{0}=f_{1}|\partial(J\cross I) : W_{1}-S^{4k}

Then f_{0} extends to a map

(2. 7) f_{2} : F_{1}^{4k+1}-D_{+}^{4k\dagger 1} .
We choose a framing b’ : \nu_{F}arrow R^{l} , l sufficiently large. There is a commutative
diagram

b

\nu\downarrow\pi F_{1}

,

f_{2}

\xi\downarrow

F_{1} D_{+}^{4k+1} ,

where b(v)=(f_{2}\pi(v), b’(v)) , \xi=D_{+}^{4k+1}\cross R^{l} .
Hence, f_{2} is a normal map of F onto D_{+}^{4k+1} . Since J\cross 0\subset W_{1}\subset F_{1} , we

have \nu_{J\cross I}+\epsilon^{1}=((\nu_{F_{1}}|J)+\epsilon^{1})\cross I. By (2. 5), f_{1}=g\cross 1 , there is a commutative
diagram

(b|J)\cross 1

\nu_{J\cross I}+\epsilon^{1} (\tilde{\xi}|D^{4k}+\epsilon^{1})\cross I

(2. 9)
J\cross I\downarrow

f_{1}

D^{4k}\cross I=D_{-}^{4k+1}\downarrow

Hence f_{1} is a normal map.
In the diagram (2. 10)

f_{2}

F_{1} D_{+}^{4k+1}

\cup
f_{0}

\cup

W_{1} S^{4k}

\partial JI\bigcup_{\cross}
g\cross 1 s^{\bigcup_{\cross}}4k-1I

.

the normal bundle
\nu_{S}4k-1_{\cross I}=\epsilon^{1}+\xi|S^{4k-1}\cross I

=(\epsilon^{1}+\xi|S^{4k-1})\cross I,\cdot

thus we have \nu_{\partial J\cross I}=(g\cross 1)^{*}(\nu_{S^{4k-1_{\cross I}}})=(\epsilon^{1}+\nu_{F^{1}}|\partial J)\cross I. Therefore, the restric-
tion of the bundle map

b|\partial J\cross I:\nu_{\partial J\cross I}-\nu_{S^{4k-1_{\cross I}}} is b|\partial J\cross I=(b|\partial J)\cross 1

Since f_{1}=f_{2}=f_{0} on W_{1}=\partial(J\cross I) , two bundle maps b, (b|\mathcal{J})\cross 1 are compatible
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on W_{1} . Hence f_{1} and f_{2} define a normal map

.f:F_{1}^{4k+1} \bigcup_{W_{1}}(J\cross I)-S^{4k+1} .

Rearrange f to a normal map

(2. 11) f’ : V^{4k+1}-\partial(D^{4k+1}\cross I) ,

where
(V_{+},f_{+}’)=(F_{1}^{4k+1},f_{2})-(D^{4k+1}\cross 0)

(V_{-},f_{-}’)=(J\cross I, f_{1})-(D^{4k+1}\cross 1)

and
(\partial V,f’|\partial V)=(W_{1}\cross I,f_{0}\cross 1)-S^{4k}\cross I

Removing a small disk D_{\epsilon}^{4k+1} from inside J\cross I, f ’ gives a normal map

(.2. 12) f’ : ( V- int D_{\epsilon}^{4k+1}, S_{\epsilon}^{4k}) -(\partial(D^{4k+1}\cross I)- int D_{\text{\’{e}}}^{4k+1}, S_{\text{\’{e}}}^{4k})

\cong(D^{4k+1}, S^{4k})

which is a homotopy equivalence on the boundary. Since the surgery
obstruction of f’ in L_{4k+1}(1) is zero, f’ is normally cobordant to a homotopy
equivalence h’:D’arrow D^{4k+1}rel . boundary. Let H:Xarrow D^{4k+1}\cross I be its cobor-
dism. Then, X is viewed as a normal cobordism between (X_{+}, H|X_{+})=

(F_{1}^{4k+1},f_{2}) and (X_{-}, H|X_{-})= ( ( J\cross I- int D_{\epsilon}^{4k+1})
s \bigcup_{4k,\text{\’{e}}}D_{j}^{t}f_{1}\cup h’

), and (\partial X, H|\partial X)=

(W_{1}\cross I,f_{0}\cross 1) . Note that

(2. 13) X_{-} is again (J\cross I) .
For, in the exact sequence

H_{*}(J\cross I-D_{\epsilon})\oplus H_{*}(D’)-H_{*}(X_{-})-H_{*}(S^{4k})

H_{*}(J\cross I-D_{\epsilon})\oplus H_{*}(D)-H_{*}(J\cross I)-H_{*}(S^{4k})I^{id+h_{*}’}\downarrow I^{id=(h’|)_{*}}

,

it follows that H_{*}(J)- H_{*}(X_{-})\equiv H_{*}(J\cross I) is isomorphic. The boundary of
X_{-} is already \partial J\cross I, hence by the relative h -cobordism theorem, X_{-} is J\cross I.
Thus we get

(2. 14) There is a normal map H:Xarrow D^{4k+1}\cross I between (X_{+}, H_{+})=

(F_{1}^{4k+1},f_{2}) and (X_{-}, H_{-})=(J\cross I, H_{-}) , (\partial X, H|\partial X)=(W_{1}\cross I,f_{0}\cross 1) .
Second, W_{0}=S^{4k} . There is a normal map f_{2} : (F_{0}^{4k+1}, W_{0})arrow(D^{4k+1}, S^{4k})

which is a homotopy equivalence on the boundary. As above, there is a
normal cobordism
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(2. 15) H:Xarrow D^{4k+1}\cross I between (X_{+}, H_{+})=(F_{0}^{4k+1},f_{2}) and (X_{-}, H_{-})=

(D’, H_{-}) , where H_{-}: D’arrow D^{4k+1} is a homotopy equivalence, and (\partial X, H|\partial X)=

(W_{0}\cross I,f_{0}\cross 1) .

Next we extend these cobordisms (2. 14), (2. 15) to normal cobordims
of M. Since F_{c} separates M, there is a normal map h : Marrow D^{4k+2} which
is a normal map H:Marrow D^{4k+2} which is a homotcpy equivalence on the
boundary \Sigmaarrow S^{4k\dagger 1} and satisfies that h|F_{c}=f_{2}:F_{c}^{4k+1}arrow D^{4k\dagger 1} is the restricted
normal map. Applying the normal cobordism extension theorem to 2. 14
(2. 15) (see [20, p. 45]), we have a normal map h_{1} : M_{1}arrow D^{4k+2} which is nor-
mally cobordant to (M, h)rel. boundary, h_{1}^{-1}(D^{4k+1})=X_{-} , h_{1}|X_{-}=H_{-} . The
normal bundle \nu of D^{4k\dagger 1} in D^{4k+2} is trivial, so is true for the pull back
H^{*}(\nu) , i . e. , H^{*}(\nu)=X\cross I.
Hence M_{1} has the following form (see Figure 1),

M_{1}=B\cup X_{0}\cup(X_{-}\cross I)\cup X_{1}\cup TB, \partial M_{1}=\Sigma

Here X_{i} is a copy of X for i=0,1 .
Since \sigma(M)=\sigma(M_{1}) , we compute the obstruction of M_{1} . We notice that

(2. 16)
A \bigcup_{W_{c}}(X_{-}\cross 0^{\backslash },, TA \bigcup_{W_{C}}(X_{-}\cross 1) are homotopy spheres.

For, if W_{0}=S^{4k} , then A=D^{4k+1} . X_{-}=D’ is a homotopy disk. And so,

\lrcorner tp_{1}

Fig. 1.
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A \bigcup_{W_{0}}(X_{-}\cross 0) is a homotopy sphere (the same is true for TA \bigcup_{W_{0}}(X_{-}\cross 1) ).

If W_{1}=\partial(J\cross I) , then X_{-}=J\cross I. Consider the following exact sequence

H_{2k+1}(A \bigcup_{W_{1}}(X_{-}\cross 0))-H_{2k}(W_{1})-H_{2k}(J\cross I)+H_{2k}(A)

-H_{2k}(A \bigcup_{W_{1}}(X_{-}\cross 0)) .

Then by (2. 2) and (2.4), the central map is an isomorphism. Hence
A \bigcup_{W_{1}}(X_{-}\cross 0) is a homotopy sphere.

Put B\cup X_{0}=Y_{0} . A\cup(X_{-}\cross 0) bounds Y_{0} . Let Y_{1} be another copy of
Y_{0} , i . e. , Y_{1}=TB\cup X_{1} so th^{cat}WTA\cup(X_{-}\cross 1) bounds Y_{1} . Take a tube D^{4k+1}\cross I

\subset X_{-}\cross I and connect D^{4k+1}\cross\{i\}W_{c}toX_{i} , i=0,1 . Set

Z^{4k+1}=X_{-}- int D^{4k+1} .
Z is a cobordism between W_{c} and S^{4k} .

M_{1} splits into (Z\cross I)\cup(Y_{0}\# Y_{1}) . Since \partial(Y_{0}\# Y_{1}) is a homotopy sphere
by (2. 16) and Y_{1} is a copy of Y_{0} , the surgery obstruction of Y_{0}\# Y_{1} to
making a disk rel . boundary is zero. Hence, \sigma(M_{1}) is equal to the obstruc-
tion of the rest Z\cross I to making it homotopy equivalent to (S^{4k}\cross I)\cross I

rel . bondary. Since k\geqq 2 , \sigma(M_{1}) is the obstruction whether Z is an h-
cobordism between W_{c} and S^{4k} or not. Therefore, \sigma(M_{1})=c=\sigma(T, \Sigma) (if
k=1 , the above argument breaks down because we cannot find an invariant
codimension 1 sphere of (T, \Sigma 5) even though \sigma(T, \Sigma)=0) .

Suppose k=1 . Let \Sigma_{d}^{5} , d>0 , odd, be the Brieskorn sphere which is
described by two equations

z_{0}^{d}+z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 ,

z_{0}\overline{z}_{0}+z_{1}\overline{z}_{1}+z_{2}\overline{z}_{2}+z_{3}\overline{z}_{3}=1

The involution T_{d} given by T_{d}(z_{0}, z_{1}, z_{2}, z_{3})=(z_{0}, -z_{1} , -z_{2} , -z_{3}^{\backslash }, on \Sigma_{d} is a
fixed point free involution. T_{d} extends to an involution with isolated d-
fixed points on the parallelizable mainfold F_{d}^{6} with boundary \Sigma_{d}^{5} which is
the fibre of the fibration S^{r}-\Sigma_{d}^{5}arrow S^{1} . The following result is well known
(see [11], [20]).

Lemma 2. 17. hS(P^{5})=\{\Sigma_{d}^{5}/T_{d}, d=1,3,5, 7\} .
\sigma(T_{d}, \Sigma_{d/}^{5\backslash }=\sigma(F_{d}^{6})

In general, the last fact holds for the (4 k+1) -dimensional Brieskorn spheres,
i . e. ,
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\sigma(T_{d}, \Sigma_{d}^{4k\dagger 1})=\sigma(F_{d}^{4k+2})=/0|1d\equiv\pm 1(8)d\equiv\pm 3(8)

Let (T, \Sigma 5)=\partial(T_{i}M^{6}) . We can classify \Sigma 5/T in hS(P^{5}) . Assume that
\Sigma 5/T\cong\Sigma_{d}^{5}/T_{d} for some d. Let h : (T, \Sigma 5)arrow(T_{d}, \Sigma_{d}^{5}) be an equivariant diffe0-
morphism. Denote a 6-dimensional smooth manifold with an involution by

(2. 18) N^{6}=M^{6} \bigcup_{h}F_{d}^{6}

Let \tau_{N} be the tangent bundle of N^{6} . The obstructions to the triviality of
\tau_{N}\oplus\epsilon^{1} lie in the following exact sequence (see [17]).

-H^{i-1}(\Sigma 5, \pi_{i-1}(SO^{1},)-H^{i}(N^{6}, \pi_{i-1}(SO))

-H^{i} ( M^{6}, \pi_{i-1}(SO))\oplus H^{i}(F_{d}^{6}, \pi_{i-1}(SO))-

Write the obstruction \theta_{i}(N^{6})\in H^{i} (N^{6}, \pi_{i-1} (SO)). Then, for 1\leqq i\leqq 5 the
above sequence yields that

0arrow H^{i} (N^{6}, \pi_{i-1}(SO))arrow H^{i}(M^{6}, \pi_{i-1}(SO))\oplus H^{i}(F_{d}^{6} , \pi_{i-1}(SO))arrow 0

and since M^{6} and F_{d}^{6} are parallelizable, we have \theta_{i}(N^{6})=0 . \theta_{6}(N^{6})=0 because
of \pi_{5}(SO)=0 . Hence all \theta_{i}(N^{6}) vanish. Therefore,

(2. 19) \tau_{N}\oplus\epsilon^{1} is trivial.

Take a characteristic submanifold (T, W^{4})\subset(T, \Sigma 5) (which is also a character-
istic submanifold of (T_{d}, \Sigma_{d}^{5}) under the identification of h). (T. W^{4}) extends
to a (T. F^{5}) which separates (T, M^{6}) , i . e. , M^{6}=A\cup TA , A\cap TA=F^{5} . Simi-
larly, (T, W^{4}) extends to a (T, F^{\prime_{5}}) which separates (T_{d}, F_{d}^{6}) , F_{d}^{6}=A’\cup TA’,\cdot

A’\cap TA’=F^{\prime 5} . Put

W^{5}=F^{5} \bigcup_{vr^{4}}F^{\prime_{5}}
and B=A\cup A’

Then, N^{6}=B\cup TB and B\cap TB=W^{5} . Take a degree 1 map f:N^{6}arrow S^{6} such
that f|W^{5} : W^{5}arrow S^{5} is also a degree 1 map. From the fact (2. 19) f is a
normal map and hence f|W^{5} : W^{5}- S^{5} is the restricted normal map. Since
f|W:W^{5}-S^{5} is normally cobordant to a homotopy equivalence g’ : K^{5}arrow S^{5},

we can apply the normal cobordism extension theorem to yield a normal
map g’ : L^{6}arrow S^{6} which is normally coordant to f, and g^{-1}(S^{b})=K^{5}, g|K=g’ .
The normal bundle of K^{5} in L^{6} is trivial, so L^{6} is written as the following
form,
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L^{6}=B’\cup TB’ , B’\cap TB’=K^{5} .

Then, the surgery obstruction of g’ is \sigma(L^{6})=\sigma(B’)+\sigma(TB’)=0 . Hence we
have \sigma(N^{6})=0 . On the other hand, since N^{6}=M^{6}\cup F_{d}^{6} , M^{6}\cap F_{d}^{6}=\Sigma^{5}, it
follows that \sigma(M^{6})+\sigma(F_{d}^{6})=0 . By (2. 17) we have \sigma(T\Sigma 5)=\sigma(T, \Sigma_{d}^{5})=\sigma(F_{d}^{6})=

\sigma(M^{6}) . This completes the proof of n\equiv 1(4) .
When we consider (4 k-1) -dimensional standard involutions, k\geqq 2 , we

have the following result.

Lemma 2. 20. Let (T, \Sigma 4k-1)=\partial(T, M^{4k}) be a standard involution. There
exists a free involution T’ on the sphere S^{4k-1} with \sigma(T’, S^{4k-1})=0 such that
\Sigma/T is normally cobordant to S^{4k-1}/T’

PROOF. It follows from [20] that \Sigma/T is normally cobordant to a hom0-
topy projective space Q^{4k-1} which has a double desuspension. Let W^{4k} be
its normal cobordism between Q and \Sigma/T. Applying the Atiyah-Singer
theorem to W^{4k} , we have

(2. 21) \sigma(T. \Sigma)=\sigma(T, \Sigma)-\sigma(T.\tilde{Q})=1/8(2\sigma(W)-\sigma(\overline{W}))

It follows by Proposition 2. 1 that \sigma(T, \Sigma)=1/8\sigma(M)+2m for some m\in Z.
If we take a parallelizable manifold M’ with boundary \Sigma’\in bP_{4k} such that
\sigma(M’)=8m-\sigma(W) , then the connected sum Q\#\Sigma’ satisfies the conclusion of
lemma. For, put Q’=Q\#\Sigma’ . Then, clearly Q’ has a double suspension,
i . e. , \sigma(T’, Q’)=0 . (Q\cross I)\# M’ is a normal cobordism between Q and Q’ .
Hence Q’ is normally cobordant to \Sigma/T \tilde{Q}’ bounds the parallelizable mani-
fold

( \tilde{Q}\cross I\# 2M’)\bigcup_{\tilde{Q}}\overline{W}\bigcup_{\Sigma}M\neg,

the index of which is zero. Therefore \tilde{Q}’ is diffeomorphic to S^{4k-1} .
By Lemma 2. 20 and Theorem (Browder-Livesay), we have desuspensions

of (T’, S^{4k-1}) , (T’, S^{4k-2})\supset(T’, S^{4k-3}) .

PROPOSITION 2. 22. For a desuspension (T’, S^{4k-3}) of (T’, S^{4k-1}) , it follows
that \sigma(T’, S^{4k-3})=0 . Furthermore, there is a sequence of desuspensions of
(T’, S^{4k-1}) . i . e. , (T’, S^{4k-2})\supset(T’, S^{4k-3})\supset\cdots\supset(T’, S^{5}) satisfying \sigma(T’, S^{5})=0 .

PROOF. If W^{4k} is a normal cobordism between \Sigma/T and S^{4k-1}/T’ , then
by the above argument, (T’, S^{4k-1}) extends to an involution with isolated
fixed points on the parallelizable manifold (\overline{W}\cup M) . For (T’, S^{4k-2})\subset(T’, S^{4k-1}) ,

\Sigma

(T’, S^{4k-2}) extends to an involution with isolated fixed points on a parallelizable
manifold F^{4k-1}\subset(\overline{W}\cup M) . The same is true for \langle T’ , S^{4k-3}) , i . e. , (T’, S^{4k-3})=

\partial(T’, F^{4k-2}) , F^{4k-2}=B\cap T’B, B\cup T’B=F^{4k-1} . And we note that
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(1) S^{4k-3}=D_{0}^{4k-2}\cap T’D_{0^{k-2}}^{4}, D_{0^{k-2}}^{4}\cup T’D_{0}^{4k-2}=S^{4k-2} .

The boundary of B consists of D_{0}^{4k-2} and F^{4k-2} . Since (T’, S^{4k-2}) and (T’, S^{4k-3})

are desuspensions, there is a homotopy equivalence f:S^{4k-1}/T’arrow p^{4k-1} such
that characteristic maps f_{1} , f_{2} are homotopy equivalences in the following
diagram.

S^{4k-1}/T’P^{4k-1}\underline{f}

s4k2/T’P^{4k-2}\underline{u}\underline{f_{1}}\cup

s4k3/T’P^{4k-3}\underline{u}\underline{f_{2}}\cup

.

Since S^{4k-2}=\partial F^{4k-1} and F^{4k-2} is characteristic for F^{4k-1} as above, \tilde{f}_{1}:S^{4k-2}arrow

S^{4k-2} extends to a normal map g_{1} : F^{4k-1}arrow D^{4k-1} which is transverse on
D^{4k-2}\subset D^{4k-1} and g_{1}^{-1}(D^{4k-2})=F^{4k-2} . g_{1} is a normal map since F^{4k-1} is par-
allelizable. If we put g_{1}|g_{1}^{-1}(D^{4k-2})=g_{2} : F^{4k-2}arrow D^{4k-2} , we notice that g_{2}|\partial F^{4k-2}=

\tilde{f}_{2} : S^{4k-3}arrow S^{4k-3} .
Restricting g_{1} to B\subset F^{4k-1} , we have a normal map G:Barrow D_{+}^{4k-1} . Here

\partial D_{+}^{4k-1}=D^{\prime_{4k-2}}\cup D^{4k-2}, D^{\prime_{4k-2}}\cap D^{4k-2}=S^{4k-3} , the first disk being the half of
the boundary S^{4k-2} . Now, \partial B=D_{0}^{4k-2}\cup F^{4k-2} and D_{0}^{4k-2}\cap F^{4k-2}=S^{4k-3} . It fol-
lows by (1) and the above diagram that G|D_{0}^{4k-2}=\tilde{f_{1}}|D_{0}^{4k-2} : D_{0}^{4k-2}arrow D^{\prime_{4k-2}} is
a homotopy equivalence. If we put f_{2}=G|D_{0^{k-2}}^{4} , then (G, B) is viewed as
a normal cobordism between (f_{2}, D_{0}^{4k-2}) and (g_{2}, F^{4k-2})rel . boundary (\tilde{f}_{2}, S^{4k-3}) .
Hence, F^{4k-2} is normally cobordant to D_{0}^{4k-2}, i . e. , \sigma(F^{4k-2})=0 . On the other
hand, by proposition 2. 1 and (T’, S^{4k-3})=\partial(T’, F^{4k-2}) , it follows that \sigma(T’, S^{4k-3})

=\sigma(F^{4k-2})=0 .
For the rest, we have desuspensions (T’, S^{4k-3})\supset(T’, S^{4k-4})\supset(T’, S^{4k-5}) .

Then in particular, we can take (T’, S^{4k-5}) with \sigma(T’, S^{4k-5})=0 . This follows
from theorem [20, p. 52] that given a desuspension (T_{0}, \Sigma_{0}) of (T’, S^{4k-4}) ,
there is another desuspension (T_{1}, \Sigma_{1}) for each i\in Z such that \sigma(T_{1}, \Sigma_{1})-

\sigma(T_{0}, \Sigma_{0})=2i . In this case, as is (T’, S^{4k-5})=\partial(T’, F^{4k-4}) , so \sigma(T’, S^{4k-5})\equiv

1/8\sigma(F^{4k-4})\equiv 0(2) by Proposition 2. 1. Therefore we can apply the above
argument to (T’, S^{4k-5}) completing the proof.

3. Geometric models

In this chapter, we give examples of standard involutions.

NOTATION 3. 1. Let D^{n}(S^{n-1}) be the unit disk (sphere) in R^{n} with the
Z_{2}-action, t(x_{1}, \cdots, x_{n})=(-x_{1}, \cdots, - x_{n}) . Let S^{n} be the suspension of S^{n-1} . i . e. ,
the unit sphere in R^{n}\cross R with the Z_{2}-action, t(x_{1}, \cdots, x_{n}, y)=(-x_{1^{ }},\cdots, - x_{n}, y) .
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The following lemma is a special case in [15], [34] when p=2 (which
is not stated for the (4 k+1) -dimensional case, but the proof is similar).

Lemma 3. 2. For any integer n\geqq 3 , there are D^{n} bundles E {specifically,
E_{+} , E_{0} and E_{-}) over S^{n} with semifree Z_{2}-actions T satisfying

(1) T is a bundle map preserving the O-section,
(2) The action T on the 0-section is S^{n} with the above action and T

has no fifixed points outside the O-section.
(3) E has two isolated fifixed points each normal representation of which

is D^{n}\cross D^{n} with the above diagonal action.
(4) If n=2k, the euler class \chi of E_{+} , E_{0} and E_{-} are taken to be 2, 0,

and -2 mod any multiple of A -times respectively {in particular, we dis-
tinguish E_{+}from E_{-}for our necessity, see remark of Lemma 3. 3).

(5) If n=2k+1, E_{+} and E_{-} are the tangent disk bundles over S^{2k+1}

and E_{0} is the trivial disk bundle.
(6) These bundles are stably trivial.

PROOF. Let d:S^{n}arrow S^{n}\cross S^{n} be the diagonal embedding which is invariant
under the action. Let H_{n}(S^{n}\cross S^{n})=\langle\alpha\rangle+\langle\beta\rangle with the first factor represent-
ing \alpha and the second representing \beta . For any l\in Z, take |l| -embedded
spheres S^{n} ’s in the free part of S^{n}\cross S^{n} each of which represents \beta . Taking
their equivariant connected sum with d(S^{n}) , i . e. ,

d(S^{n})\#|l|S^{n}\subset S^{n}\cross S^{n}Z_{2} ,

we have a stably trivial normal bundle E_{+} over S^{n} which is invariant under
the action. E_{+} has the euler class \chi(E_{+})=(\alpha+(2l+1)\beta)(\alpha+(2l+1)\beta)=2+4l.
Clearly E_{+} satisfies (1), (2) and (3).

Let g be the equivariant diffeomorphism of S^{n-1} onto S^{n-1} defined by

g(X_{1}^{ },\cdots, x_{n})=(-X_{1}, X_{2}^{ },\cdots, x_{n})(

Denote the n-dimensional sphere with Z_{2}-action obtained by attaching
D^{n} to D^{n} by means of g by

S_{1}^{n}=D^{n} \bigcup_{g}D^{n}

which is again S^{n} .
We then define also equivariant embeddings

d’ : S_{1}^{n}-S_{1}^{n}\cross S_{1}^{n}

and
\iota:S_{1}^{n}-S_{1}^{n}\cross S^{n} (similarly, \iota’ : S^{n}arrow S^{n}\cross S_{1}^{n})
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by setting

d’((_{X_{1}}, \cdots, x_{n}, y))=((X_{1}^{ },\cdots, x_{n}, y), (-x_{1}, x_{2}, \cdots, x_{n}, y)) , \iota(z)=(z, z_{1})

where (X_{1}^{ },\cdots, x_{n}, y) , z\in S_{1}^{n} and z_{1} is a fixed point of S^{n} . Making use of
d’ , \iota , we obtain the desired bundles E_{-} , E_{0} accordingly.

Next we consider normal cobordisms for the resulting manifolds which

are obtained by an equivariant plumbing. Let N_{1} , N_{2} be the equivariant
neighborhoods of the fixed points in E. We let each of them small so as
to be contained in D^{n}\cross D^{n} of (3) of Lemma 3. 2. Put

W=E- int \{\bigcup_{i=1}^{2}N_{i}\}/T (if E=E_{+} , we put W=W_{+} , and so on).

Tabe O.

Lemma 3. 3. W defifines a “normal cobordism” between \partial E/T and

\{\bigcup_{i=1}^{2}\partial N_{i}/T\} , i . e. , there exists a normal map H:Warrow P^{2n-1} covered by a bundle

map b:\nu_{W}arrow\nu_{P}, where \nu_{W}, \nu_{P} are stable normal bundles of W, P^{2n-1} . Fur-
thermore, if we look at the inclusion maps of the boundary components,

then H|D^{n}\cross D^{n}\underline{\subset}intN_{i}/Tarrow P^{2?\iota-1} and H_{-}=H|\partial N_{i}/T:\partial N_{i}/Tarrow P^{2n-1} are as

follows.
l

|\begin{array}{l}-(H|D^{n}\cross D^{n}-intN_{i}/T,D^{n}\cross D^{n}-intN_{i}/T)\end{array}|W
-(H|\partial N_{i}/T, \partial N_{i}/T)

W_{+} | (Pr(1\cross 1) , D^{n}\cross D^{n-} int Nt/T) i=1,2 | (1\cross 1, P^{2n-1}) i=1,2.

-W_{0}|\begin{array}{llll}Case f (Pr(1\cross 1), D^{n}\cross D^{n}-intN_{1}/T) (Pr(c\cross 1), D^{n}\cross D^{n}-intN_{2}/\prime\Gamma) C^{\urcorner}asec’ (Pr(1\cross 1), D^{n}\cross D^{n}-intN_{1}/T) (Pr(1\cross c), D^{n}\cross D^{n}-intN_{2}/T) -\end{array}|(1\cross 1,P^{2n-1})(1\cross 1,P^{2n-1})

i=1i=2i=1i=2

|\begin{array}{l}(-\end{array}|W_{-} (1\cross c, P^{2n-1})(c\cross 1,P^{2n-1}) i=1i=2

Here c is the orientation reversing diffeomorphism induced from the map
\tilde{c}:D^{n}arrow D^{n},\tilde{c}(x_{1}, \cdots, x_{n})=(-x_{1}, x_{2}, \cdots, x_{n}) .

Note. H is not a degree 1 map.

REMARK. The maps raised in the table are natural with respect to the
euler classes 2, 0, -2.
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So, given E with \chi(E)\equiv 2(4) , then we are free to take W_{+} and the
pair \{1\cross 1\} or W_{-} and the pair \{1\cross c, c\cross 1\} for E in view of \chi(E)=2+4l

or \chi(E)=-2+4(l+1) respectively.

PROOF OF Lemma 3. 3. Let D^{n+1} be the unit disk in R^{n+1} with the
Z_{2}-action, t(x_{1^{ }},\cdots, x_{n}, y)=(-X_{1}^{ \cdots },,- x_{n}, y) . The fixed points of S^{n} are writ-
ten z_{1}=(\overline{0}, 1) , z_{2}=(\overline{0}, -1),\overline{0}=(0, \cdots, 0)\in R^{n} . Then, by the construction of
E, we have an equivariant embedding

E- int \{\bigcup_{i=1}^{2}N_{i}\}\subset D^{n+1}\cross D^{n+1}-(\overline{0}\cross D^{1})\cross(\overline{0}\cross D^{1})

\cong (D^{n}\cross D^{n}- int \overline{0}\cross\overline{0}) \cross D^{2}

We notice that the action on the part D^{2} is trivial. Hence it induces an
embedding of the quotient spaces

(1) W^{2n}\subset P^{2n-1}\cross I\cross D^{2}

which has the trivial normal bundle.
The normal bundle \nu_{W} is induced from that of P^{2n-1} . Therefore, W

defines a “normal cobordism”. That is, there is a normal map H:Warrow P^{2n-1}

which is covered by a bundle map b:\nu_{W}arrow\nu_{P} . If we look at the inclusion
maps of the boundary components carefully and by constructions of E_{+} , E_{0}

and E_{-} , the rest of lemma follows easily.
When the above bundles are plumbed equivariantly, we will show that

a normal cobordism of the resulting manifold is obtained from each block
of normal cobordisms of Lemma 3. 3.

Lemma 3.4. Suppose that E^{i} ’s are plumbed equivariantly one after
another at a fifixed point on each and denote M’ its resulting manifold
with a Z_{2} action T Let N(pts) be the equivariant tubular neighborhoods
of the fifixed points in M’ so that they are a union of N_{i} ’s for each i(=1,2)
as in the Lemma 2. 3. Then, the cobordism V=M’- int N(pts)/T defines
a normal cobordism G’ : V’arrow P^{2n-1} between \partial M’/T and \cup\{\partial N_{i}/T,\cdot i=1,2\}

j
(j runs over the fifixed point set), covered by a bundle map b’ : \nu_{V’}arrow\nu_{P} .

Under the situation of the above lemma, we prove

Lemma 3. 5. If we do further plumbings in the free part of the action
in M’ equivariantly, and if we denote its manifold with a Z_{2} action T
by M, then the resulting cobordism V=M- int N(pts)/T defifines a normal
cobordism G : Varrow P^{2n-1} between \partial M/T and \cup\{\partial N_{i}/T_{}i=1,2\} . Moreover, G

j
is unaltered on the boundary components, i . e. , G| \bigcup_{j}\{\partial N_{i}/T\}=G’|\bigcup_{j}\{\partial N_{i}/T\} .
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PROOF OF Lemma 3. 4.
The normal representations (3) of Lemma 3. 2 and the normal maps

on them of Lemma 3. 3 give us how to plumb equivariantly, i . e. , around
a fixed point, the two spaces D^{n}\cross D^{n} are equivariantly diffeomorphic by
the map h:D^{n}\cross D^{n}arrow D^{n}\cross D^{n} , h(x, y)=(y, x) . When we consider plumbings
on the quotient spaces, plumbing E^{1} with E^{2} together equivariatly at a fixed
point (we assume this at z_{2}\in N_{2}\subset E^{1} and z_{1}\in N_{1}’\subset E^{2} , for instance) is equi-
valent to taking (E^{1}- int \{N_{1}\cup N_{2}\}/T) \cup (E^{2}- int \{N_{1}’\cup N_{2}’\}/T) and identifying
(D^{n}\cross D^{n}- int N_{2})/T with (D^{n}\cross D^{n}- int N_{1}’)/T by the map h’ induced from
h. If we put the manifold M’ when E^{1} and E^{2} are plumbed as above, then
the resulting cobordism V is V’= (M’- int \{N_{1}\cup N_{2}\cup N_{2}’\} )/T, where N_{1}’\subset E^{2}

is identified with N_{2}\subset E^{1} . Now, in view of table 0 of Lemma 3. 3, we have
the following commutative diagram

(D^{n}\cross D^{n}- int N_{2}) /TP^{2n-1}\underline{H}

(1) \downarrow h’ \downarrow h’

(D^{n}\cross D^{n} -int N_{1}’) /TP^{2n-1}\underline{H}

By the form H of table 0 of Lemma 3. 3 and the construction of normal
cobordisms, the diagram (1) is compatible with the bundle maps b of stable
normal bundles which cover H. Hence, V’ defines a normal cobordism
between \partial M/T and \{\partial N_{1}/T\cup\partial N_{2}/T\cup\partial N_{2}’/T\} . If E^{2} is plumbed further with
E^{3} equivariantly at the unused fixed point in E^{2} , then the diagram (1) holds
around the point, and hence the resulting cobordism also defines a normal
cobordism. Iterating in this way, we obtain the result.

PROOF OF Lemma 3. 5.
In M_{j}’ we do further plumbings equivariantly in the free part of the

action. This can be done by taking two spaces D_{i}^{n}\cross D_{i}^{n}\subset V’ and identifying
D_{1}\cross D_{1} with D_{2}\cross D_{2} by the map h(x, y)=(y, x) , h:D_{1}\cross D_{1}arrow D_{2}\cross D_{2} . Lifting
gives 2-plumbings in the cover M’ . Denote its manifold by M. If (G’, b’) :
Varrow P^{2n-1} is a normal map in Lemma 3. 4, we can arrange, using the hom0-
topy extension theorem, that G’|D_{1}\cross D_{1}=(G’|D_{2}\cross D_{2})\cdot h without changing on
the boundary components \cup\{\partial N_{i}/T. i=1,2\} . Let V be the resulting cobor-

j
dism when we identify D_{1}\cross D_{1} with D_{2}\cross D_{2} by h. Then, V=M- int N(pts)/T
The above compatibility defines a map G:Varrow P^{2n-1} . By choosing a bundle
equivalence of \nu_{V’}|D_{1}\cross D_{1} with \nu_{V}|D_{2}\cross D_{2} covering h, we can arrange, using
the bundle covering homotopy theorem, that b’|(\nu_{V}|D_{1}\cross D_{1}) and b’|(\nu_{V’}|D_{2}\cross D_{2})

are compatible to give a bundle map b:\nu_{V}arrow\nu_{P} . Hence, G:Varrow P^{2n-1} is a
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normal cobordism. Repeating further plumbings in the free part of the action,
the above argument holds on each step. Therefore we can prove the lemma.

PROPOSITION 3. 6. Let \Sigma_{1} be the generator of bP_{4k} , k\geqq 2 . Then, for
any l\geqq 1 , there exist following examples of standard involutions.

Table 1.

Type |(A, S^{4k-1}) |(T_{2l-1}^{-}, \Sigma_{(2l1,-)}^{4k\underline{-1}})|(T_{2l-1}^{+}, \Sigma_{(2l1.+)}^{4k\underline{-1}})|(T_{2l}^{-}, \Sigma_{(2l)}^{4k-\underline{1}}.)|(T_{2l}^{+}, \Sigma_{(2l.+)}^{4k-1})

invariantBrowder- Livesay| 0 | 2l-1 | 2l-1 | 2l | 2l

Normal
classcobordism|(P^{4k-1}, id)|_{P=P^{4k-1}}^{(8(2l-1)-1)(P,id)}|(8(2l-1)+1)(P, id)|(8(2l)+1)(P, id)|(8(2l)-1)(P, id)

invariantmod 22kSpin | \pm 1 | \pm(8(2l-1)-1)| \pm(8(2l-1)+1)| \pm(8(2l)+1) | \pm(8(2l)-1)

Matrix

, \frac{rank|-|8(2H_{2l-1|||}^{-}l-1)8(2l-1)H_{2l-1}^{+}8(2l)Ff_{2l}^{-}}{Differen-,structuretiab1e|S^{4k-1}|(2l-1)\Sigma_{1}|(2l-1)\Sigma_{1}|2l\Sigma_{1}|}2l\Sigma_{1}8\underline{(2l)}H_{2l}^{+}

PROOF. Let m be a positive integer. We introduce the unimodular,
even, symmetric matrices with the rank 8m (the index of which is also 8m),

H_{m}^{+}=\{

2 1
1 2 0

1

0 1^{\cdot}

2 4m+1
4m+12m(8m+3) ,

, H_{m}^{-}=\{\begin{array}{llllll}2 1 1 0 1 2 1 o 2 4m-1 o^{o}\circ 4m -12(8m^{2}-5m +1)\end{array}\}

.

We write simply for the above matices as;

H=\{\begin{array}{lllll}2 1 -o_{1} 1 2 2 b o^{o} o_{1} b a\end{array}\}
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Then, a \equiv\int_{1}02(4)(4) whenwhenH=H_{2l-1}^{+},H_{2l}^{-}H=H_{2l}^{+},H_{2l-1}^{-} and

b\equiv 1(2) .
We rake bundles E^{i} , i=1 , \cdots , 8m from Lemma 3. 2, each euler class of
which is 2 for i=1 , \cdots , 8m-1 and a for i=8m. Plumb together the E^{i}’s,
plumbing E^{i} with E^{i+1} at a fixed point of the action on each. Let M’ be
the resulting mainfold which realizes the plumbing matrix

[^{2}1021 .12o_{\Theta}o_{1}1 a1]

r

By Lemma 3. 3 and 3. 4, the cobordism V= (M’- int N ( (8m+1)1) )/T
defines a normal cobordism G’ : V’arrow P^{4k-1} between \partial M’/T and

\int(8m+1)(P^{4k-1}, id) if a\equiv 2(4)

|(8m)(P^{4k-1}, id)\cup(P^{4k-1}, c\cross 1) if a\equiv 0(4)1

We do further plumbings equivariantly to realize H. Then, we have a
manifold with boundary M which admits a Z_{2}-action. By Lemma 3. 5, there
is a normal map

G:V=(M- int N(_{\backslash }(8m+1)pts)^{\backslash })1^{Z_{2}}-P^{4k-1}

between \partial M/Z_{2} and (8m+1)(P^{4k-1}, id) or ((8m)(P^{4k-1}, id)\cup(P^{4k-1}, c\cross 1)) if
a\equiv 2(4) or 0 (4) accordingly. If follows from the plumbing theory that M is
connected and \pi_{1}(\partial M)\cong\pi_{1}(M) is free, H_{i}(\partial M)=H_{i}(M)=0 for 1<i<2k-1
and H_{2k-1}(M)=0 (see Figure 2).

Put (G_{+}, \partial_{+}V)=(f, \partial M/Z_{2}) . Then, clearly \pi_{1}(f’)=0 . There is no ob-
struction to doing a normal surgery on a generator in \pi_{2}(f)=Ker\{f_{*}’:

\pi_{1}(\partial M/Z_{2})arrow\pi_{1}(P^{4k+1})\} , so there is a trace W and a normal map F’ : Warrow P^{4k-1}

between \partial M/Z_{2} and \partial_{+}W such that f is 2-connected when we set (F’|\partial_{+}W,
\partial_{+}W)=(f, Q^{4k-1}) . Put

V_{1}=V\cup W along \partial M/Z_{2} and
M_{1}=M\cup\overline{W} (=V_{1}\cup N((8m+1)pts))

Then, V_{1} is a normal cobordism between

(8m+1)(P^{4k-1}, id)((8m)(P^{4k-1}, id)\cup(P^{4k-1}, c\cross 1))
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and Q. The universal cover \tilde{Q} bounds the parallelizable mani- fold M_{1} .
The intersection matrix on H_{2k}(M_{1}) is the above plumbing matrix H. Since
H is unimodular and by the above facts of plumbing, it follows that H_{i}

(\tilde{Q})=0 , i\neq 4k-1 . Hence Q is a homotopy projective space (see Remark 1
below). We denote by T_{m}^{\pm} the actions on M_{1} for H_{m}^{\pm} and put \tilde{Q}=\Sigma_{(m,\pm)}^{4k-1}

accordingly. Since the induced action is trivial on homology H_{2k}(M_{1}) , it
follows that

Sign (T_{m}^{\pm}, M_{1})=Index of the intersection matrix on H_{2k}(M_{1})

=\sigma(H_{m})=8m

M_{1} has isolated (8m+1) -fixed points, so the local invariants of (T_{m}^{\pm}, M_{1}) ,
L(T_{m}^{\pm}, M_{1})=0 .

Hence, the Browder-Livesay invariant of (T_{m}^{\pm}, \Sigma_{(m,\pm)}^{4k-1}) is \sigma(T_{m}^{\pm}, \Sigma_{(m,\pm)})=m

and \Sigma_{(m,\pm)}=1/8\sigma(M_{1})\Sigma_{1}=m\Sigma_{1} . For the rest, Q=\Sigma_{(m,\pm)}/T_{m}^{\pm} is normally cob-
ordant to

l (8m+1)(P^{4k-1}, id) if a\equiv 2(4)

| (8m)(P^{4k-1}, id)\cup(P^{4k-1}, c\cross 1) if a\equiv 0(4)

Since c\cross 1 is the orientation reversing diffeomorphism, ((8m)(P^{4k-1}, id)\cup

(P^{4k-1}, c\cross 1)) is normally cobordant to (8m-1)(P^{4k-1}, id) . By the above re-
mark, if H=H_{2l-1}^{+} , H_{2l}^{-} , then Q is normally cobordant to (8m+1)(P^{4k-1}, id) ,

and if H=H_{2l}^{+} , H_{2l-1}^{-} , then Q is normally cobordant to (8m-1)(P^{4k-1}, id) .

REMARK 1. We have “normal cobordism” F:V_{1}arrow P^{4k-1} between
(Q,f) and d(P^{4k-1}, id) , covered by a bundle map b:\nu_{V_{1}}arrow\nu_{P} . Here d=8m+1
or 8m-1 . We note that the map of the boundary components into P^{4k-1}

has degree d. So, the map f of Q into P^{4k-1} is not a homotopy equivalence
even though Q is a homotopy projective space. However, put d=2s+1 .
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Form P^{4k-1}(d)=d(P^{4k-1})\cup-s(S^{4k-1}) and define the normal map d(id) of
P^{4k-1}(d) into P^{4k-1} to be id on P^{4k-1} and p on S^{4k-1} , where p:S^{4k-1}arrow P^{4k-1}

is the 2-fold cover. d(id) has degree 1. If we take a connected sum along
the boundary Q of V_{1} with (-s)S^{4k-1}\cross I, we get a normal cobordism of
Q\#(-s)S^{4k-1}=Q with P^{4k-1}(d) . And hence the induced map Qarrow P^{4k-1} is
of degree 1, i . e. , a homotopy equivalence.

REMARK 2. Let (T_{m}, \Sigma_{m}) and M_{m} with boundary \Sigma_{m} be as in the proof
of (3. 6). H_{2k}(M_{m}) consists of a basis of invariant spheres. We notice that
\sigma(T_{m}, \Sigma_{m})=1/8\sigma(M_{m}) and \Sigma_{m}=1/8\sigma(M_{m})\Sigma_{1} .

Next, within each normal cobordism class of the above models, we can
construct a typical example whose Browder-Livesay invariant takes any
value. This can be achieved by L\’opez De Medrano’s construction [20],
however, by the above Remark 2 we must know how the differentiable
structure of the homotopy sphere is altered when we obtain an example
from each class. An explicit construction has been found in [26]. The
following lemma slightly extends the result of [26].

LEMMA 3. 7. Let (T_{m}, \Sigma_{m}^{4k-1}) and M_{m}^{4k} be as in Proposition 3. 6. For
each i\in Z and (T_{m}, \Sigma_{m}) , there exists a free involution (T_{i}, \Sigma_{i}^{4k-1}) which
satisfifies

(1) T_{i} extends to an involution with isolated fifixed points on a par-
allelizable manifold M_{i}, i. e. , T_{i} is a standard involution.

(2) \sigma(T_{i}, \Sigma_{i})=1/8\sigma(M_{i})=i .
(3) \Sigma_{i}/T_{i} is normally cobordant to \Sigma_{m}/T_{m} .

PROOF. We recall the definition of the Browder-Livesay invariant. Let
W^{4k-2}=V\cap TV be a characteristic submanifold for (T_{m}, \Sigma_{m}) which we can
assume (2k-2) -connected. We have the bilinear form

B(x, y)=x\cdot T_{*}y

defined on Ker i_{V}=Ker\{i_{*} : H_{2k-1}(W)arrow H_{2k-1}(V)\} . Since Ker i_{TV}=T\cdot Ker i_{V},
it follows that H_{2k-1}(W)=Keri_{V}\oplus T\cdot Keri_{V}. Then, by definition of Browder-
Livesay invariant (see [20]), we have

(i) \sigma(T_{m}, \Sigma_{m})=1/8 Index (B(x, y))=m .

By adding handles equivariantly to W inside \Sigma_{m} , we obtain a charac-
teristic submanifold W=W\# 4(S^{2k-1}Z_{2}\cross S^{2k-1}) . Let W=V\cap T’V , V\cap TV=

\Sigma_{m} .
We have an equivariant map f:(T’, W’)arrow(T_{j}W) such that Kerf_{*}=

Ker \{f_{*} : H_{2k-1}(W’)arrow H_{2k-1}(W)\} is a free group on generators \alpha_{i} , T\alpha_{i} , i=
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1, \cdots , 8, so that \alpha_{i}’s are contained in Ker i_{V} and T\alpha_{i} ’s in Ker i_{T’V’} . The
matrix of the form B on \{\alpha_{i}\} consists of l’s on the nonprincipal diagonal
and O’ s elsewhere. Since W’ and W are characteristic submanifolds of
\Sigma_{m} , there exists a characteristic cobordism Y joining them, i . e. ,

\Sigma_{m}\cross I=X\cup TX, XT\cap X=Y

Let F:Yarrow W be an equivariant normal map between f : (T’-,W)arrow(T. W)

and id:(T_{i}W)arrow(T, W) . Noting that \partial X=V\cup Y\cup V’ , there is a normal
map G:Xarrow V which extends F.

Choose new generators \alpha_{i}^{*}
. =p_{ij}\alpha_{j}+q_{ij}T\alpha_{j} , i=1 , \cdots , 8. The matrices

P=(p_{ij}) , Q=(q_{ij}) are given explicitly in [20, p. 23]. We notice that

(ii) 1/8IndexB(\alpha_{i}^{*}, \alpha_{j}^{*})=1 and \alpha_{i}^{x_{1}}\cdot\alpha_{j}^{*}=0 , and \phi(\alpha_{i}^{*})=0

So, we can perform surgery on the \alpha_{i}^{*}’ s\in Kerf_{*} , obtaining a normal
cobordism h:Aarrow W between f:W’arrow W and a homotopy equivalence W’arrow

W. Then, we claim that

(*) V’ \bigcup_{W},A is diffeomorphic to V

For, V’ is obtained from V by adding handles equivariantly along W,
in fact, we can write

V=V \bigcup_{W}(W\cross I\# 4(S^{2k-1}\cross D^{2k})\# 4(D^{2k}\cross S^{2k-1}))

Put V’=W\cross I\# 4(S^{2k-1}\cross D^{2k})\# 4(D^{2k}\cross S^{2k-1}) . Then, \alpha_{i}\in Ker\{i_{*}: H_{2k-1}(W’)arrow

H_{2k-1}( V’)\}\subset Keri_{V’} , i=1 , \cdots , 8. Since V’ is a cobordism between W and
W’.. we may show that V’\cup A is an h -cobordism between W and W’ ,, so

W’

that is diffeomorphic to W\cross I. W and W’ are (2k-2) -connected so the
non-vanishing homology except 0, (4k-2) -dimensions is

H_{2k-1}(V’\cup A)0\uparrow

H_{2k-1}(W)-_{1}H_{2k-1}(V’)\oplus H_{2k-1}(A)\uparrow W’

H_{2k-1,\uparrow},(W’)

We notice that
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H_{2k-1}(W’)=H_{2k-1}(W)+\{\alpha_{i}, T\alpha_{i}\}(_{\backslash }=H_{2k-1}(W)+\{\alpha_{i}^{*}, T\alpha_{i}\}*)
-

H_{2k-1}(V’)=H_{2k-1}(W)+\{a_{i}\} ,

where \{a_{i}\} corresponds to \{T\alpha_{i}\} , i=1 , \cdots , 8, and H_{2k-1}(A) consists of the
generators corresponding to those of H_{2k-1}(W) and the generators \{b_{i}\} cor-
responding to \{T\alpha_{i}\}* . If x\in H_{2k-1}(W) , the vertical map is, x\mapsto(x, - x) and
for \{\alpha_{i}^{*}, T\alpha_{i}^{*}\} , \alpha_{i}^{*}\mapsto(q_{ij}a_{j}, 0) and T\alpha_{i}^{*}\mapsto(p_{ij}a_{j}, - b_{i}) . We see by [20] that det Q
=1 . Hence, the vertical map maps the elements \{\alpha_{i}^{\star_{1}}, T\alpha_{i}\}*_{1} onto \{a_{i}, b_{i}\}

isomorphically. Thus, H_{2k-1}(V’\cup A) consists of the generators corresponding
W’

to (x, 0) for x\in H_{2k-1}(W) . Therefore H_{2k-1}(W)- arrow H_{2k-1}(V’\bigcup_{W},A) is an isomor-

phism. Since W’ is obtained from W’ by performing surgery on the \{\alpha_{i}^{*}\}

and H_{2k-1}(W’) consists of generators corresponding to those of H_{2k-1}(W) , the
similar argument holds for W’ . Hence V’\cup A is an /i -cobordism.

W’

Now, by (*) we can attach a copy of V to V \bigcup_{W},
A along W’ so that

(V \bigcup_{W},A)\bigcup_{W},,V bounds an h-cobordism B of V\cross I (see Figure 3). Put B’=

X \bigcup_{V},
B along V’ . We apply the L\’opez’s construction. Let B’* be another

copy of B’ ,, we can obtain a parallelizable manifold M’ with a free involu-

M
Fig. 3.
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tion T, M’=B’\cup B’* , sewed equivariantly on (T,, Y) . Then, the boundaries
of M’ are the given (T_{m}, \Sigma_{m}) and a L\’opez’s involution (T, \Sigma) . M/T is a
cobordism between \Sigma_{m}/T and \Sigma/T

We first show (3). The normal map

(G|V) \bigcup_{f}h:V\bigcup_{W},A-V extends to a normal map

H’ : (V’ \bigcup_{W},A)\bigcup_{W\prime},V-\partial(V\cross I)

By the above remark, there is a normal map H:Barrow V\cross I. Combining
with G, we have a normal map

G’ : B’=X \bigcup_{V’}B-V

Let E_{W} be the normal disk bundle of W/T in \Sigma_{m}/T_{m} and E_{Y} the normal
disk bundle of Y/T in M/T Then, \partial E_{W}=W, \partial E_{Y}=Y and \Sigma_{m}/T_{m}=E_{W}\cup V,
M’/T=E_{Y}\cup B’ . Since F/T:Y/Tarrow W/T can be covered by a bundle map
between the stable normal bundles, the same is true for E(F/T) : E_{Y}arrow E_{W}.
Hence, G’ and E(F/T) define a normal map of M’/T This proves (3).

\Sigma_{m} bounds M_{m} , so if we put M=M’\cup M_{m} along \Sigma_{m} , then T and T_{m}

define an involution T on the parallelizable manifold M which satisfies the
property of (1). Finally, if we put A’=A\cup V, then by the above construction,

W’
it follows that (T, \Sigma)=A’\cup TA_{i}’A’\cap TA’=W’ and Ker i_{A’}= Ker i_{V}\oplus\{\alpha_{i}^{*}\} .
By (i) and (ii), we have

\sigma(T, \Sigma)=1/8(B(x, y)+B(\alpha_{i}^{*}, \alpha_{j}^{*}))=m+1

Since X\cup TX=\Sigma_{m}\cross I, we notice that
M=M’\cup M_{m}=(B’\cup B’*)\cup M_{m}

=B\cup(X\cup TX)\cup M_{m}\cup B^{*}

=B\cup M_{m}\cup B^{*}

From the Mayer-Vietoris sequence and noting that (B\cup B^{*})\cap M_{m}=\Sigma_{m} , we have
0

0-H_{2k}(B\cup B^{*})+H_{2k}(M_{m}\grave{)}J-H_{2k}(M)-0

H_{2k-1}(W)\downarrow

H_{2k-1}(B)+H_{2k-1}(B^{*})0\downarrow\downarrow

.
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Since B\cong V\cross I and W=W\#,4(S^{2k-1}\nearrow 2\cross S^{2k-1}) , H_{2k}(B\cup B^{*}) consists of the

generators \{\overline{a}_{i},\overline{b}^{i}\} corresponding to \{\alpha_{i}, T\alpha_{i}\} , i=1 , \cdots , 8. Then, by the
result of [26], we can show similarly that the index on H_{2k}(B\cup B^{*}) is 8.
Hence, it follows that

\sigma(M)=Index on H_{2k}(B\cup B^{*})+Index on H_{2k}(M_{m})

=8+8m=8(m+1)

Therefore, \sigma(T, \Sigma)=1/8\sigma(M)=m+1 . This proves (2). Repeating the above
construction for (T, \Sigma) and M, then the result follows.

By Lemma 3. 7, we denote the equivalence class of the normal cobordism
class by [T_{i}, \Sigma_{i}] for each representative (T_{i}, \Sigma_{i}) . We have the following
table more generally.

Table 2. k\geqq 2 , l\geqq 1 and i any integer

\frac{Type|(A,S^{4k-1})|(T_{2l-1,(2l-1,-)}^{-\Sigma)1\Sigma 4k\underline{-1}}4k-1(T_{2l-1,(2l1\dagger)}^{+})|(T_{2l(2l)}^{-,\Sigma.)1(T^{+}\Sigma)}4k-\underline{1}2l,(2l.+)4k-1}{genera1|e1ement[T_{i},\Sigma_{i}]|\frac{[T_{i},\Sigma_{i}]|[T_{i},\Sigma_{i}]|[T_{i},\Sigma_{i}]|[T_{i},\Sigma_{i}]}{|i|i|i}}

,

invariantBrowder- Livesay| i | i

Normal
classcobordism|(P^{4k-1}, id)|_{P=P^{4k-1}}^{(8(2l-1)-1)(P,id)}|(8(2l-1)+1)(P,id)|(8(2l)+1)(P, id)|(8(2l)-1)(P, id)

invariantSpinmod 22k | \pm 1 | \pm(8(2l-1)-1)| \pm(8(2l-1)+1)|
\pm(8(2l)+1)-

| \pm(8(2l)-1)

structureDifffferen- tiable| i\Sigma_{1} |
i\Sigma_{1}

|
i\Sigma_{1}

|
i\Sigma_{1}

|
i\Sigma_{1}

3. 8. The (4k+1)-dimensional case
When we construct (4k+1) -dimensional standard involutions by an equi-

variant plumbing, the resulting involutions are well known “Brieskorn in-
volutions”

Suppose that d is an odd integer. We use the bundles E_{+} in Lemma
3. 2 to plumb equivariantly so that the resulting manifold M_{d}^{4k+2} with a
Z_{2}-action T realizes the plumbing matrix of the rank (d-1) ,
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\{\begin{array}{llll}0 1 0 -1 0 o o 0 10 -1 0\end{array}\}

(

Then, by the result of Hirzebruch it follows that
(T|\partial M_{d}, \partial M_{d})=(T_{d}, \Sigma_{d}^{4k\dagger 1}) .

We have the following result.

Table 3.

Type |-[T_{d}, \Sigma_{d}^{4k+1}]

Normal cobordism class | d(P^{4k+1}, id)

Browder-Livesay invariant |
01 ififd\equiv\pm 3d\equiv\pm 1 (8)(8)

Differentiate structure of \Sigma_{d}^{4k+1} | \Sigma_{{?}}S^{4k+1}4k+1 isifd\equiv\pm 3d\equiv\pm 1 (8)(8)

Here \Sigma_{{?}}^{4k+1} is the Kervaire sphere which is the generator of
bP_{4k+2}(k\geqq 1) .

4. Classification of standard involutions

4. 1. Let (T, \Sigma 2n-1) be a standard involution so that (T, \Sigma)=\partial(T,\cdot M^{2n}) .
We require M^{2n} to be (n-1) -connected, which will be accomplished in the
beginning of this chapter.

Lemma 4. 1. 1. Assume n\geqq 4 . Let T be a free involution on a homO-
topy sphere \Sigma 2n-1 and W^{2n-2} a characteristic submanifold for (T, \Sigma) . We
can perform equivariant surgery to make W(n-2) -connected, Then,

if n=2kj (T, W^{4k-2})=(T, S^{4k-2})\# r(S^{2k-1}\cross S^{2k-1})Z_{2}

and

if n=2k+1 . (T, W^{4k})=(T, W_{c}^{4k})\# r(S^{2k}\cross S^{2k})Z_{2} ’

where W_{c} is defifined in Proposition 2. 1 of chapter II.
PROOF. The case for n=2k has been proved in [20, p. 24], i . e. , W^{4k-2}

can be thought of as a characteristic submanifold for another involution
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(T’, \Sigma’) with \sigma(T’, \Sigma’)=0 . We can perform equivariant surgery on W until
we obtain a sphere S^{4k-2} . The surgery on S^{4k-2} to return to W yields the
above form. Suppose n=2k+1 . Let W^{4k}=B\cap TB and B\cup TB=\Sigma . Then,

we have

H_{2k}(W^{4k})=Ker i_{B}\oplus T\cdot Ker i_{B} ,

where

Ker i_{B}=Ker\{i_{*}: H_{2k}(W)-H_{2k}(B)\}t

The bilinear form B : Ker i_{B}\cross Ker i_{B}arrow Z, defined by B(x, y)=x\cdot T_{*}y , is
skew-symmetric and unimodular. Thus, we have a symplectic basis \{e_{1} , \cdots , e_{r} ,
f_{1} , \cdots,f_{r}\} on Ker i_{B} . If S_{x}^{2k} is an embedded sphere which induces x on
Ker i_{B}\subset H_{2k}(W) , then the quadratic form \psi_{0} : Ker i_{B}arrow Z_{2} is defined to count,

mod 2, the number of pairs (p, Tp) of points in S_{x}^{2k}\cap TS_{x}^{2k} . Then, \psi_{0} is
associated with B. If \psi_{0}(e)=\psi_{0}(f)=0 for a symplectic basis \{e,f\} , then we
can perform surgery on e to obtain W’ so that W=W’\#(S^{2k}Z_{2}\cross S^{2k}) , i . e. ,

{e,\{e,f, Tf\} are killed in H_{2k}(W’) . Suppose that \psi_{0}(e_{1})=\psi_{0}(f_{1})=\psi_{0}(e_{2})=

\psi_{0}(f_{2})=1 . Choose a new symplectic basis
e_{1}’=e_{1}+e_{2} , f’=f_{1} ,\cdot

e_{2}’=f_{1}-f_{2} , f_{2}’=e_{2} .

Then, \psi_{0}(e_{1}’)=\psi_{0}(e_{2}’)=0 and \psi_{0}(f_{1}’)=\varphi_{0}’(f’)=1 . So, we put \lambda_{i}=e_{i}’ , \mu_{i}=e_{i}’+f’.. .
i=1,2 . \{\lambda_{i}, \mu_{i}, i=1,2\} is again a symplectic basis and \psi_{0}(\lambda_{i})=\psi_{0}(\mu_{i})=0 . And
thus Ker i_{B} consists of a symplectic basis \{\lambda_{i}, \mu_{i}, i=1,2\}\cup\{e_{i},f_{i}, i=3, \cdots, r\} .
As above, we can perform surgery on \lambda_{i} , i=1,2 . Hence, iterating this
process, W^{4k} can be reduced to W_{c}\# r(S^{2k}\cross S^{2k}) . We note that if c=0, then

Z_{2}

W_{0}=S^{4k} , and if c=1 , W_{1} is the double of plumbing two copies of the tangent
disk bundles of S^{2k} and H_{2k}(W)=\{e,f, Te, Tf\} with \psi_{0}(e)=\psi_{0}(f)=1 .

Let T be a standard one so that (T, \Sigma 2n-1)=\partial(T, M^{2n}) .

Lemma 4. 1. 2. Assume n\geqq 4 . By performing equivariant surgeries
on M^{2n}rel . boundary, we can make M(n-1) connected.

PROOF. By Lemma 4. 1. 1, we have an (n-2) -ccnnected characteristic
submanifold (T,\cdot W_{1}) of (T, \Sigma) . Applying the relative transversality theorem,
we have a characteristic submanifold (T, F_{1}) with boundary W_{1} for (T, M) .
Write \Sigma=B\cup TB, B\cap TB=W_{1} , M=A_{1}\cup TA_{1}, A_{1}\cap TA_{1}=F_{1} . Let (T. F_{2}, W_{2})
be a characteristic submanifold of (T, F_{1}, W_{1}) , F_{1}=A_{2}\cup TA_{2},A_{2}\cap TA_{2}=F_{2} .
We may assume that F_{2} and W_{2} are connected. We note the following
facts.
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(1) M is obtained from the disjoint union A_{1}\cup A_{1}^{*} , A_{1}^{*} a copy of A_{1} ,
by identifying x^{*} with Tx for all x\in F_{1} (we can view A_{1}^{A} as TA_{1}).

(2) The framing A_{1}(A_{1}^{*}) comes from the restriction of a framing M
under the above identification. The same is true for (TF_{1}) and the framing
F_{2} comes from A_{2} .

We can perform framed 1-surgery on A_{2}rel . boundary. Let X_{2} be
a framed cobordism between A_{2} and a 1-connected manifold A_{2}’rel . boundary,
i . e. , rel . (F_{2}\cup W_{2})\cross I. Define an involution T on (F_{2}\cup W_{2})\cross I by T(x, t)=
{Tx,t). Let X_{2}^{*} be a copy of X_{2} . Then, we have manifolds with involu-
tions T, X_{1}(F_{1}’) which are obtained from X_{2}\cup X_{2}^{*} by identifying x^{*} with Tx
for all x\in F_{2}\cross I ( A_{2}’\cup A_{2^{*}}’ by identifying x^{*} with Tx for all x\in F_{2}\cross 1 )
accordingly. (T_{i}X_{1}) is a cobordism between (T, F_{1}) and (T, F_{1}’) . Since X_{2}

and X_{2}^{*} are framed and the framing on F_{2}\cross I is unaltered, hence, as the
above identification on F_{2}\cross 0 gives the framing F_{1} , the identification on
F_{2}\cross I gives a framing X_{1} . Therefore, (T, X_{1}) is a framed cobordism between
(T, F_{1}) and (T, F_{1}’)rel . boundary W_{1}\cross I (see Figure 4).

\Gamma_{1}^{Y} F_{1}’

IV_{1}

X_{1}

Fig. 4.

By the Van Kampen theorem, it follows that \pi_{1}(F_{1}’)=0 .
Now, (F_{1} \bigcup_{W_{1}}B) bounds A_{1} . We consider the manifold (A_{1} \bigcup_{F_{1}}X_{1}\cup B\cross I) .

F_{1}’\cup B\cross 1 bounds it. Perform framed 1-surgeries on it rel . boundary. Let
X be its cobordism. Then, X is viewed as a cobordism between A_{1} and
a 1-connected manifold A_{1}’ with boundary F_{1}’\cup B\cross 1 . Let X^{*} be another
copy of X and denote by (T, V) the manifold with an involution, glued on
(T_{j}X_{1}) as above. Then, by the above remark, (T, V) is a framed cobordism
between (T, M) and a (T, M’)rel . boundary \Sigma\cross I, where M=A_{1}’ \bigcup_{F_{1}},TA_{1}’

.

It follows from the Van Kampen theorem that \pi_{1}(M’)=0 .
Let M=A\cup TA , A\cap TA=F and \Sigma=B\cup TB, B\cap TB=W. Assume

that W is (n-2) -connected and (M, A, F) are (k-1) -connected, k\leqq(n-2) .
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We consider the exact sequence

-H_{k}(F)H_{k}(A)\underline{i_{*}}+H_{k}(TA)H_{k}(M)-0\underline{j_{*}}

Choose a set of generators \{\alpha_{i}\} in H_{k}(M) . Since j_{*} is onto, we have ele-
meet \{a_{i}\}\subset H_{k}(A) and \{a_{i}^{*}\}\subset H_{k} (TA) such that j_{*}(a_{i}, a_{i}^{*})=\alpha_{i} . \{Ta_{i}\}*

(resp. \{Ta_{i}\} ) are contained in H_{k}(A) (resp. H_{k} (TA)). We choose \{b_{j}\} which
generate \{a_{i}, Ta_{i}^{*}\} in H_{k}(A) so that \{Tb_{j}\} generate \{a_{i}^{*}, Ta_{i}\} in H_{k} (TA).

Given x\in H_{k}(A) , by general position, we can find an embedded sphere
S^{k} which induces x on homology. By the dimensional reason, we can
assume that S^{k}\cap TS^{k}=\phi . Hence we can represent b_{j} by a disjoint embedded
sphere S_{j}^{k} inside A so that TS_{j}^{k} represents Tb_{j} . Perform framed surgeries
on \{Sk\}\subset Arel . boundary, we have a framed cobordism Y between A and
A’ such that \{b_{j}\} vanish in H_{k}(A’) . Noting that Y has F\cross I as a boundary
part, we define an involution T to be T(x, t)=(Tx, t) on F\cross I. Let Y^{*} be
a copy of Y and denote by (T, Z) the manifold with an involution, obtained
from Y\cup Y^{*} glued on (T, F\cross I) . Then, by the previous remark (T Z) is
a framed cobordism between (T,, M) and (T, M)rel . boundary \Sigma\cross I. It is
easily checked that H_{k}(M’)=0 . And thus, the above sequence becomes

-H_{k+1}(M’)-H_{k}(F)-H_{k}(A’)+H_{k}(TA’)-0

Let Ker i_{A’}= Ker \{i_{*} : H_{k}(F)-H_{k}(A’)\} . We note that Ker i_{TA’}=T\cdot Ker i_{A’} .
Again, by general position and the above remark, we can represent a genera-
tor \alpha\in Keri_{A’} by an embedding (D^{k\dagger 1}, S^{k})arrow(A’, F) such that S^{k} lies inside F
and S^{k}\cap TS^{k}=\phi . Denote the tubular neighborhood of (D^{k+1}, P) by N(\alpha) which
does not meet TN(\alpha) . Put A’=(A’-N(\alpha))\cup TN(\alpha) . Then, A’\cup TA’=M_{j}’

A’\cap TA’=F’ and \alpha is killed in Ker i_{A’} . A finite number of iterations kills
the generators of Ker i_{A’} . Denote the resulting manifold (A_{1}, F_{1}) so that
M=A_{1}\cup TA_{1} , A_{1}\cap TA_{1}=F_{1} , (T, \Sigma)=\partial(T_{j}M) . It follows that H_{k}(F_{1})=

H_{k}(A_{1})=0 . Hence by induction we can show that (M, A, F) are (n-2)-
connected.

We consider the exact sequence

arrow H_{n-1}(F^{2n-1})arrow H_{n-1}(A^{2n})+H_{n-1}(TA^{2n})arrow H_{n-1}(M^{2n})arrow 0

0arrow H_{n-1}(W^{2n-2})arrow H_{n-1}(B^{2n-1})+H_{n-1}(TB^{2n-1})arrow 0\uparrow|

.
Since dim A=2n, we can perform framed surgery on A rel . boundary to
make A(n-1) -connected. By the above remark we have an (n-1) -con-
nected manifold with an involution (T, M’) such that \partial(T, M)=(T, \Sigma) .
This proves Lemma 4. 1. 2.
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4. 2. Under the situation, it follows by the Poincar\’e duality that H_{n}(M)

is a Z[Z_{2}] -module with a finite Z-basis. The structure of Z[Z_{2}] -modules
with a Z-basis is determined in [8, \S 74]. Then it implies that

(^{*}) H_{n}(M) is isomorphic as a Z[Z_{2}] -module to mY+nA+l\Lambda for some
integers m, n, I. Here Y is the trivial representation. A is the representa-
tion given by T=-1 , and \Lambda is the regular representation.

THEOREM 4.2. 1. Assume n\geqq 4 . There exists a standard involution
(T’, \Sigma^{\prime_{2n-1}}) which is normally cobordant to (T, \Sigma 2n-1) and there is an (n-1)-
connected -n-dimensional parallelizable manifold (T’. M^{\prime 2n}) with (T’, \Sigma’)=

\partial(T’. M’) such that H_{n}(M) has no regular representation.

Furthermore, we have the following result.

COROLLARY 4, 2, 2, Under the above situation,

if n=2k, H_{2k}(M’)=mT

and

if n=2k+1, H_{2k+1}(M’)=mA for some m.
PROOF OF THEOREM 4. 2. 1.
From Lemma 4. 1. 2 the non-vanishing homology groups are those in

the sequences

(1) 0arrow H_{n}(F)arrow H_{n}(A)+H_{n}(TA)arrow H_{n}(M)arrow H_{n-1}(F)arrow 0

(2) 0arrow H_{n}(F)arrow H_{n}(F, W)arrow H_{n-1}(W)arrow H_{n-1}(F)arrow

arrow H_{n-1}(F, W)arrow 0 .
First we prove the following for the sequence (2).

We can perform equivariant surgeries on H_{n-1}(F, W) to yield the se-
quence,

(2)’ 0arrow H_{n}(F’, W’)arrow H_{n-1}(W’)arrow H_{n-1}(F’)arrow 0t

Here all the groups are Z[Z_{2}] -modules with a finite Z-basis and the surgeries
on W have the effect on trivial framed embedding of S^{n-2} in W, i . e. , W=
W\# r(S^{n-1}Z_{2}\cross S^{n-1}) for some r.

For this, H_{n-1}(F, W) is a finitely generated Z[Z_{2}] -module For a gen-
erator a\in H_{n-1}(F, W) , take a a’\in H_{n-1}(F) whose image is a. Reperesent a’ by
a framed embedding S^{n-1}arrow F. Connecting S^{n-1} by a tube to W, we can re-
present a by a framed embedding (D^{n-1}, S^{n-2})arrow(F, W) . Since S^{n-2}\cap TS^{n-2}=

\phi , we have also (D^{n-1}\cross D^{n})\cap T(D^{n-1}\cross D^{n})=\phi . Hence, H_{n-1}(F, W) is gen-
erated by framed disjoint embeddings
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\bigcup_{i}/(D_{i}^{n-1},S_{i}^{n-2})-(F,W)|T(D_{i}^{n-1},S_{i}^{n-2})-(F, W)\}

Let H be the union of the handles := \bigcup_{i}((D^{n-1}\cross D^{n})\cup T(D^{n-1}\cross D^{n}))\subset F^{2n-1}

and \cup((S^{n-2}\cross D^{n})\cup T(S^{n-2}\cross D^{n}))\subset W^{2n-2} . Set F’=F- int H. Then,
i

(4. 2. 3) (F, W) is normally cobordant to (F’, \partial F’) . Note that this cob-
ordism is F\cross I and P, where \partial(F\cross I)=F\cross 0\cup P\cup F’ , \partial P=W\cup\partial F’ . Consider
the exact sequence of the triad (F, H\cup\partial F’, W) ,

arrow H_{n-1}(H\cup\partial F_{j}’W)arrow H_{n-1}(F, W)arrow H_{n-1}(F, H\cup\partial F’)arrow

arrow H_{n-2}(H\cup\partial F’, W)arrow 0 .

Here (H, H\cup W)=a collection of copies { (D^{n-1}\cross D^{n}, S^{n-2}\cross D^{n}) and (T(D^{n-1}\cross D^{n}) ,

T(S^{n-2}\cross D^{n})\} and (H, H\cap W)-(H\cup\partial F’-, W) is an excision. Then, we
have H_{i}(H\cup\partial F’, W)=0 for i\neq n-1 . Since H_{n-1}(H\cup\partial F’, W)arrow H_{n-1}(F, W)

is onto, it follows that H_{n-1}(F, H\cup\partial F’)=0 . So by excision, H_{n-1}(F’. \partial F’)=0 .

Since H_{i}(F, W)=0 for i\neq n-1 , n , we have H_{i}(F’, \partial F’)=0 for i\neq n . Hence
it follows that

0arrow H_{n}(F’, \partial F’)arrow H_{n-1}(\partial F’)arrow H_{n-1}(F’)arrow 0 .
Put W’=\partial F’ , then W’ is obtained from W by performing surgery on trivial
(n-2) -spheres equivariantly, i . e. , W=W\# r(S^{n-1}Z_{2}\cross S^{n-1}) for some r. This
yields (2)’

Define an involution T on F\cross I to be T\cross 1 , then the above surgery
implies that the cobordism (T, F\cross I, P) between F and F’ (W and W’) is invari-
ant under T By the previous remarks, there is a (T_{r},M’) with \partial(T. M’)=

(T, \Sigma) and \Sigma=B’\cup TB’ , B’\cap TB’=W’ , M’=A’\cup TA’ and A’\cap TA’=F’ (note

that \Sigma is unaltered, because W’ is obtained from W by trivial surgeries).

The sequence (1) becomes

(1)’ 0arrow H_{n}(A’)+H_{n}(TA’)arrow H_{n}(M’)arrow H_{n-1}(F’)arrow 0 .

Under the situations (1)’, (2)’,\cdot H_{n-1}(W’) is a free Z[Z_{2}] -module, while
suppose that

H_{n}(F’. W’)=mY+nA+l\Lambda

Notice that H_{n-1}(F’)=mA+nY+l\Lambda , i . e. , H_{n}(F’, W’) and H_{n-1}(F’) are mutu-
ally \Lambda^{-} -isomorphic. Then we want to surgery on (F’. W’) so that l\Lambda -sum-
mand vanish in H_{n}(F’, W’) . By n\geqq 4 , we can represent l\Lambda -summand in
H_{n}(F’. W’) by framed embeddings

|(D^{n}, \partial D^{n})-(F^{\prime_{2n-1}}, W’)

|(TD^{n}, \partial TD^{n})-(F^{\prime_{2n-1}}, W’)\} ,
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so that their boundaries define disjoint embeddings S^{n-1}arrow W’ and TS^{n-1}arrow W’

(see [33, p. 41-42]). And then attach corresponding n-handles to F’ . If
we denote the resulting manifold by (F_{1^{n-1}}^{2}, W_{1}^{n-2}) , then it follows that

(3) 0arrow H_{n}(F_{1})arrow H_{n}(F_{1}, W_{1})arrow H_{n-1}(W_{1})arrow H_{n-1}(F_{1})

arrow H_{n-1}(F_{1}, W_{1})arrow 0

Here H_{n}(F_{1}, W_{1})(H_{n-1}(F_{1})) are unaltered. H_{n}(F_{1}) is a free \Lambda-module with
one base element corresponding to each handle (represented by the core
of the dual handle so that H_{n-1}(F_{1}, W_{1})=l\Lambda) . Since the surgery on W_{1} to
return to W’ is made on trivial (n-2) -spheres, we note that

(4) W’=W_{1}\# l(S^{n-1}\cross S^{n-1})Z_{2}1

Choose a set of generators \{e_{i}, Te_{i}\} in H_{n-1}(F_{1}) corresponding to those of
H_{n-1}(F_{1}, W_{1}) and perform surgery on the elements \{e_{i}, Te_{i}\} . Let F_{2} be the
resulting manifold. Then, we have

(5) 0arrow H_{n}(F_{2}, W_{1})arrow H_{n-1}(W_{1})arrow H_{n-1}(F_{2})arrow 0

and

H_{n-1}(F_{2})=mA+nY

We consider the geometry of W_{1} . It follows from Lemma 4. 1. 1 and (4) that

(i) (T, W_{1}^{4k-2})=(T, S^{4k-2})\# l_{1}(S^{2k-1}\cross S^{2k-1})Z_{2}2 n=2k

(ii) (T, W_{1}^{4k})=(T_{-},W_{c}^{4k}),\# l_{2}(S^{2k}z_{2}\cross S^{2k}) , n=2k+1

In each case H_{n-1}(W_{1}) has an obvious basis \{\alpha_{i}, T\alpha_{i}, i=1, \cdots, r\} such that
the matrix (\alpha_{i}\cdot T\alpha_{j}) is

\{\begin{array}{llll} 0 |1\circ- 11 r .1| 0 \end{array}\} \{\begin{array}{lll} 0 |1 1-1. -1| \circ 0 \end{array}\}

with respect to n=2k and 2k+1 . Hence, performing framed surgery on
\{\alpha_{i}\} and attaching disks to the boundary of the trace, we have a (T’, \Sigma’)

which is normally cobordant to (T, \Sigma) . (T \Sigma) has a form such that W_{1}=

B_{1}\cap T’B_{1} , B_{1}\cup T’B_{1}=\Sigma’ and \alpha_{i}\in Keri_{B_{1}}=Ker\{i_{*} : H_{n-1}(W_{1})arrow H_{n-1}(B_{1})\} . By
the preceding remark there is a (T’, M’) with \partial(T’, M)=(T’, \Sigma’) such that
M=A_{1}\cup T’A_{1} , A_{1}\cap T’A_{1}=F_{2} . Then the non-vanishing homology groups are
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(6) 0arrow H_{n}(A_{1})+H_{n}(T’A_{1})arrow H_{n}(M’)arrow H_{n-1}(F_{2})arrow 0

(7) 0arrow H_{n}(F_{2}, W_{1}) -

arrow H_{n-1}(W_{1})arrow H_{n-1}(F_{2})arrow 0\partial

Furthermore,
(*) We can take A_{1} such that the elements corresponding to H_{n}(A_{1})

(resp. H_{n}(T’A_{1}) ) and H_{n-1}(F_{2}) do not intersect in H_{n}(M’) .
For (*) , we can do surgery on B_{1} and F_{2}rel . W_{1} to make them (n-1)-

connected since the simply connected surgery obstruction groups are zero.
Let B_{1}’ and F_{2}’ be the resultings respectively. Adding their traces along
W_{1}\cross I, we have the manifold combined A_{1} with their traces whose boundary
is B_{1}’\cup F_{2}’ . Then we can do surgery on it rel . boundary B_{1}’\cup F_{2}’ to obtain

an (n-1)W_{1} -connected manifold A_{1}’ . If we consider the manifo^{1}1dWA_{1}’ with
boundary B_{1} \bigcup_{W_{1}}F_{2} which is obtained from A_{1}’ and their traces along (B_{1}’ \bigcup_{W_{1}}F_{2}’)

,

then the sequence (6) holds for A_{1}’ and M’ in place of A_{1} and M’ respec-
tively. And it is easily checked that the elements corresponding to H_{n}(A_{1}’)

(resp. H_{n}(T’A_{1}’) ) and H_{n-1}(F_{2}) do not intersect in H_{n}(M’) .
We consider the exact sequence for the pair (A_{1}, \partial A_{1}) , A_{1}=B_{1} \bigcup_{W_{1}}F_{2}

,

0arrow H_{n}(\partial A_{1})arrow H_{n-1}(W_{1})arrow H_{n-- 1}(B_{1})i_{*}+H_{n-1}(F_{2})

arrow H_{n-1}(\partial A_{1})arrow 0 .

We show that i_{*} is injective. For let x\in H_{n-1}(W_{1}) and x= \sum_{j}a_{ij}\alpha_{j}+\sum_{j}b_{ij}T\alpha_{j} .
Suppose that i_{*}(x)=(0,0) . Then, x\in Ker i_{B_{l}} , so x= \sum_{j}a_{ij}\alpha_{j}(i. e. , all b_{ij}

vanish). Since H_{n-1}(B_{1}) and H_{n-1}(F_{2}) have no torsion, we may assume
that x is indivisible. From (5) and the fact that H_{n}(F_{2}, W_{1}) and H_{n-1}(F_{2})

are mutually \Lambda^{-} -isomorphic, H_{n}(F_{2}, W_{1}) consists of a Z[Z_{2}] basis \{a_{i}, b_{i}\}

satisfying Ta_{i}=a_{i} , Tb_{i}=-b_{i} . There is an element z\in H_{n}(F_{2}, W_{1}) in (7) such
that \partial z=x . And so if we write z= \sum_{i}t_{i}a_{i}+\sum_{i}s_{i}b_{i} , then

x-Tx= \sum_{j}a_{ij}(\alpha_{j}-T\alpha_{j})=\partial z-T\partial z

= \partial(z-Tz)=2(\partial(\sum_{i}s_{i}b_{i})) .

And thus, 2|a_{ij} , i . e. , 2|x . This contradicts that x is indivisible. Hence
x=0. We have H_{n}(\partial A_{1})=0 . Then, the non-vanishing homology of (A_{1}, \partial A_{1})

lies in the sequnce

(8) 0arrow H_{n}(A_{1})arrow H_{n}(A_{1}, \partial A_{1})- H_{n-1}(\partial A_{1})arrow 0
t

Choose a basis \{c_{i}\} in H_{n}(A_{1}) so that \{T’c_{i}\} form a basis of H_{n}(T’A_{1}) .
We prove that the intersection matrix on H_{n}(A_{1}) is unimodular, and hence
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that H_{n-1}(\partial A_{1})=0 from (8). For this, let \{\overline{c}_{i}, T’\overline{c}_{i}\} be the images of the
map in H_{n\backslash }’M’ ) in (6). Since H_{n}(M’) is free abelian and by the above
argument (*) , we can take the basis corresponding to those of H_{n-1}(F_{2}) of
(6) such that they do not meet \overline{c}_{i} and T’\overline{c}_{i} . Let \{\overline{a}_{i},\overline{b}_{i}\} be ones correspond-
ing to those of H_{n-1}(F_{2})=mA+nY from (5). Clearly, \{\overline{c}_{i}, T’\overline{c}_{i},\overline{a}_{i},\overline{b}_{i}\} form
a Z basis of H_{n}(M’) . By the choice of our basis, the intersection matrix
on H_{n}(M’) has the following form

[ (\overline{c}_{i}\cdot\overline{c}_{j})000|0||0|_{\frac{(\overline{a}_{i}\cdot\overline{a}_{j})|(\overline{a}_{i}\cdot\overline{b}_{j})0|00|0}{(\overline{b}_{i}\cdot\overline{a}_{j})1(\overline{b}_{i}\cdot\overline{b}_{j})}]}|(T\overline{c}_{i}\cdot T\overline{c}_{j})||0|

.

Since the intersection matrix on H_{n}(M’) is unimodular, so \det(\overline{c}_{i}\cdot\overline{c}_{j})=\pm 1 .
By the following commutativity and i_{*}(c_{i})=\overline{c}_{i} ,

H_{n}(A_{1})\cross H_{n}(A_{1})\backslash .
\downarrow(i_{*}, i_{*}) \searrow Z\nearrow

’

H_{n}(M’)\cross H_{n}(M’)’
.

it follows that det (c_{i}\cdot c_{j})=\pm 1 . We have H_{n-1}(\partial A_{1})=0 and hence that \partial A_{1}

is a homotopy sphere.
Let U be the tubular neighborhood of the union of the basis \{c_{i}\} in

A_{1} . Noting that U is viewed as a plumbing manifold, and adding a trace
of 1-surgeries to the boundary, we have a manifold M_{1}\subset intA_{1} . Then A_{1}

splits as M_{1}\cup L , where L is an h-cobordism between \partial M_{1} and \partial A_{1} . Con-
necting M_{1} to B_{1}\subset\partial A_{1} by a tube (equivariantly, TM_{1} to TB_{1}\subset\partial TA_{1}), we
have A_{1}=M_{2}\cup L_{1} as a splitting (see Figure 5). Then, put M_{2}=L_{1}\cup TL_{1}

along (T. F_{2}). Since \partial(T. M_{2})=(T, \Sigma_{1}) is a homotopy sphere (in fact, \Sigma_{1}=

\Sigma’\#-2\partial A_{1}) , \Sigma_{1}/T is normally cobordant to \Sigma’/T’ Consequently, it follows
from the Mayer Vietoris sequence of the triad (M_{2}, L_{1}\cup TL_{1}, F_{2}) that

0arrow H_{n}(M_{2})arrow H_{n-1}(F_{2})arrow 0 ,

i . e. , Hn{M2)=mY+nA. This proves the theorem 4. 2. 1.
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Fig. 5.

PROOF OF COROLLARY 4. 2. 2.
Suppose that \partial(T_{j}M)=(T, \Sigma) and H_{n}(M)=mY+nA . Let \{a_{i}, b_{i}\} be

a Z[Z_{2}] -basis of H_{n}(M) , i . e. , Ta_{i}=a_{i} , This-b_{i} . Then, a_{i}\cdot b_{j}=Ta_{i}\cdot b_{j}=

a_{i}\cdot Tbj9-a_{i}\cdot b_{j} , so a_{i}\cdot b_{j}=0 . The intersection matrix on H_{n}(M) is

( \frac{(a_{i}\cdot a_{j})10}{0|(b_{i}\cdot b_{j})})

,

Hence det (a_{i}\cdot a_{j})=\pm 1 and det (b_{i}\cdot b_{j})=\pm 1 . Let n=2k, then we will
show that H_{2k}(M^{4k})=mY, i . e. , consists of \{a_{i}\} . Represent b_{i} by an embedded
sphere S_{i}^{2k} . Since b_{1}\cdot b_{j}=Tb_{1} .Tbj9 if S_{1}\cap S_{j}\ni x, then Tx\in TS_{1}\cap TS_{j} . And
so the intersection number b_{1}\cdot b_{j} corresponds to such \{(x, Tx)\}_{x\in S_{1}} . Assume
x=Tx for some x in \{(x, Tx)\}_{x\in S_{1}} . S_{1}\cap TS_{1} consists of pairs (y, Ty) . Since
b_{1}\cdot Tb_{1}=-b_{1}\cdot b_{1}= even and x=Tx, S_{1}\cap TS_{1} must contain some y such that
Ty=y. Thus two fixed points x, y in M lie in S_{1} . Then, we have an
invariant sphere S_{1}’ which induces b_{1} on homology. This follows from the
following reason. Let N(x) (resp. N(y) ) be the tubular neighborhood of
x (resp. y) in M which is diffeomorphic to (A, D^{4k}) . Choose equivariant
embeddings

(A, D_{+}^{2k})-(T, M) ,

(A, D_{-}^{2k})-(T,, M)

which are homologous to N(x)\cap S_{1} and N(y)\cap S_{1} respectively. Then the
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obstruction to extending the equivariant maps \partial D_{+}^{2k}\cup\partial D_{-}^{2k}arrow M to an equiva-
riant map (A’, S^{2k}) - (T,\cdot M) lies in H^{2}((S^{2k}-\{D_{+}^{2k}\cup D_{-}^{2k}\})/A’, \{\partial D_{+}^{2k}, \partial D_{-}^{2k}\}/A’ ;
\pi_{1} ((M-Fix T)/T) )\cong H^{2}(P^{2k-1}\cross I, P^{2k-1}\cross\dot{I} ; Z_{2})=Z_{2} . Since T is an involution,
we see that the obstruction is zero (cf. Lemma 4. 3. 1). By general position,
we have an embedded sphere f:(A’\neg,S^{2k})arrow(T. M) . This invariant sphere is
homologous to b_{1} by construction. But we have Tb_{1}=Tf_{*}[S^{2k}]=f_{*}A_{*}’[S^{2k}]=

f_{*}[S^{2k}]=b_{1} . This yields a contradicition. Hence x\neq Tx. Therefore the
intersection number b_{1}\cdot b_{j} which consists of pairs \{(x, Tx)\}_{x\in S_{1}} is even for all
j. It must be 2|\det(b_{i}\cdot b_{j}) . By the preceding remarks, it does not occur.
Hence we conclude that H_{2k}(M)=mY. When n=2k+1 , the simular argu-
ment shows that H_{2k+1}(M)=mA .

4. 3. Now we will classify standard involutions.
Let (T, \Sigma 2n-1) be a standard one. Suppose that \partial(T, M^{2n})=(T, \Sigma) . By

Theorem 4. 2. 1 and Corollary 4. 2. 2, we can assume that M is (n – 1) -con-
nected and moreover,

(i) H_{2k}(M^{4k})=mY ,

(ii) H_{2k-1}(M^{4k+2})=mAt

Applying the Smith theory to M^{2n} , it follows that \chi(Fix(T, M))=m+1 .
Fix (T, M)= \bigcup_{i=1}^{m+1}\{q_{i}\} . The following result is a special case of [34, \S 2] but

the smooth version of which holds only in this case.

Lemma 4. 3. 1. Suppose that n=2k and k\geqq 2 . Let S^{2k} be the unit sphere
in R^{2k+1} with the Z_{2} -action, A’(x_{1}, X_{2}^{ },\cdots, x_{2k},y)=(-x_{1}, - X_{2}^{ \cdots },,- x_{2k},y) . Then,
there exists an equivariant embedding of (A’, S^{2k}) into (T_{-},M) . Moreover,
H_{2k}(M, Z) has a basis consisting of classes represented by invariant embedded
spheres.

SKETCH 0F proof. This has been proved by several stages. Let D^{4k}

be the unit disk in R^{4k} with the Z_{2} -action, A(x_{1}, \cdots, x_{4k})=(-x_{1}, \cdots, -x_{4k}) .
Each fixed point has the neighborhood N which is equivariantly diffeomor-
phic to (A, D^{4k}) . We ca1l take an equivariant embedding of (A, D^{2k}) into
the neighborhood N of each fixed point. Fix any two fixed points \{q, q’\}\subset F.
And put N’=(A, D_{+}^{2k})\cup(A, D_{-}^{2k}) , the first factor representing the embedding
into N(q) and the second representing the embedding into N(q’) . Put
U=S^{2k}-N’ We would like to extend the embedding of \partial U/A to a map
of U/A into M-F/T Since \pi_{i}((M-F)/T)=0 for 1<i<2k, there is an
obstruction in H^{2}(U/A, \partial U/A;Z_{2})=Z_{2} . It is easily seen that the obstruction
is zero (see Lemma 2. 3 [34]). Hence we have an equivariant map of (A’, S^{2k})
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into (T, M). By general position, we can make this map to an equivariant
immersion. This immersion has no singularities other than in the free part
of the action, therefore we can make this immersion equivariantly into an
embedding.

Let F= \{\bigcup_{i=1}^{m+1}q_{i}\} . Let S_{i,j}^{2k} be an invariant embedded sphere constructed
as above which contains q_{i} and q_{j} . Then, it follows by [Theorem 2. 4,
[34] ] that [S_{i,j}^{2k}]_{2}\in H_{2k}(M, Z_{2}) is well defined and [S_{i,j}^{2k}]\in H_{2k}(M, Z) may be
var\dot{l}ed by any element of Kernel \{H_{2k}(M, Z)arrow H_{2k}(M, Z_{2})\} . That is, if
x\in H_{2k}(M) and 2|x, then we obtain an invariant embedded sphere represent-
ing the homology class [S_{i,j}^{2k}]+x.

Let S_{i}^{2k}=S_{i,1}^{2k} , i=2, \cdots , m+1 . S_{1}^{2k}/T is the suspension of P_{1}^{2k-1} , i . e. ,
c(P_{1}^{2k-1})\cup\overline{c}(P_{1}^{2k-1}) . Then, we have the following commutative diagram.

H_{2k}

(\begin{array}{l}m+1\bigcup_{i-\overline{|}|^{2}}S_{i}^{2k}/T\end{array})

0 H_{2k}( \bigcup_{i=2}^{m+1}c(P_{i})\cup\bigcup_{i-2}^{m+1}\overline{c}(P_{i}))-H_{2k-1}(\bigcup_{i-2}^{m+1}P_{i})-0

H_{2k}(M-F/T \cup c(\partial N(q_{1})/T))arrow H_{2k}(M-F/T\cup\bigcup_{i=1}^{m+1}c(\partial N(q_{i})/T))arrow H_{2k-1(_{i=2}^{m+1}}11^{i_{*}}\downarrow\cup c(\partial N(q_{i})/7^{1}))arrow 0

.
||

m+1||

H_{2k}(M-F/T, \partial N(q_{1})/T) H_{2k}(M-F/T, \bigcup_{i=1}\partial N(q_{i})/T)\downarrow

0 -Z^{m}Z^{m}\underline{id}-0

\downarrow(2\cross)^{m}I^{i_{*}}mod 2\downarrow mod 2 \downarrow

Z^{m}-Z^{m}-Z_{2}^{m}-0 .
Here P_{i}=P_{i}^{2k-1} .

Hence, i_{*} is congruent mod 2 to the identity matrix: Z^{m}arrow Z^{m} . But
then, by using the fact that the map SL_{m}(Z)arrow SL_{m}(Z_{n}) for any integers m
and n, induced by reduction mod n, is onto and the above remark of chang-
ing the invariant spheres by arbitrary 2-divisible elements of H_{2k}(M) , we
can make i_{*} into an isomorphism. Therefore, lifting to M, H_{2k}(M) has
a basis cosisting of invariant spheres.

COROLLARY 4. 3. 2. Suppose that n=2k+1 and k\geqq 2 . Let S^{2k+1} be the
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unit sphere in R^{2k+2} with the Z_{2}-action, A’(X_{1}^{ },\cdots, x_{2k+1}, y)=(-X_{1}^{ },\cdots, -- x_{2k+1}, y) .
Then, there exists an embedding of (A’, S^{2k+1}) into (T, M^{4k+2}) . H_{2k+1}(M, Z)

has a basis cosisting of classes represented by invariant embedded spheres.

PROOF. As in the proof of Theorem 4. 2. 1, we have the following
exact sequence

0-H_{2k+1}(M^{4k+2})H_{2k}(F^{4k+1})-0\underline{\partial} ,

where F^{4k\dagger 1}=A\cap TA , A\cup 7^{\tau}A=M. F is (2k-1) -connected. We notice that
if H_{2k+1}(M)=mA , then H_{2k}(F)=mY. We apply Lemma 4. 3. 1 to F. Then,
H_{2k}(F) has a basis consisting of invariant embedded spheres. Let f:(A’, S^{2k})arrow

(T, F) be an embedding. f extends to an embedding \overline{f}:D^{2k+1}arrow A from the
above sequence. Then, there is an embedding g : (A’, S^{2k\dagger 1})- (T, M^{4k+2}) glued
on (A’, S^{2k}) . Since \partial g_{*}[S^{2k\dagger 1}]=f_{*}[S^{2k}] and \partial is an isomorphism, H_{2k+1}(M, Z)

consists of a basis represented by invariant embedded spheres.

4. 4. We will state our classification theorems.
THEOREM 4.4. 1. Let T be a free involution on a homotopy sphere

\Sigma^{4k-1}\in bP_{4k}(k\geqq 2) . Suppose that T extends to an involution voith isolated
fifixed points on a(2k-1) -connected 4k-dimensional parallelizable manifold
M^{4k} and such that the induced action is trivial on the homology H_{2k}(M) .
Then, (T, \Sigma 4k-1) is equivariantly diffeomorphic to the unique representative
element of the table 2.

REMARK 4. 4. 2. The effect on the spin invariant. It will be shown that
the spin invariant for (T, \Sigma 4k-1) must have the formula \infty(T, \Sigma 4k-1)=\pm(8m\pm 1)

mod 2^{2k} . If \sigma(T, \Sigma 4k-1)=h , then choosing (T_{h}, \Sigma_{h}^{4lc-1}) within the classes of the
form \pm(8m\pm 1) in the table 2, it is proved that (T, \Sigma)\cong(T_{h}, \Sigma_{h}) .

We have the main theorem for the classification of standard involutions.
THEOREM 4. 4. 3. Let T be a standard involution on a homotopy

sphere \Sigma^{4k-1}\in bP_{4k}(k\geqq 2) . Then, (T, \Sigma) is equivariantly diffeomorphic to the
equivariant connected sum of the defifinite element \Sigma’\in bP_{4k} with the unique
representative (T_{h}, \Sigma_{h}) in the table 2, i . e. , the quotient \Sigma/T\cong\Sigma_{h}/T_{h}\#\Sigma’ .

The proof of (4. 4. 1) is carried out by the following steps.
Step 1. Geometry of M.
Step 2. Normal cobordism class of (T, \Sigma) .
Step 3. Determination of (T, \Sigma) .

4. 5. Step 1.
4. 5. 1. Suppose that H_{2k}(M)=mY, where Y is the trivial representa-

tion and m is a non-negative integer.
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Let \Phi : H_{2k}(M)\cross H_{2k}(M) - Z be the intersection form. It follows by
the Poincar\’e duality that \Phi is unimodular, even, symmetric and Z_{2}-invariant.
We have a basis consisting of invariant embedded spheres \{a_{i}, i=1, \cdots, m\}

from Lemma 4. 3. 1. Let U be an invariant tubular neighborhood of the
union of the spheres \{a_{i}\} . U is the sum of components, U=U_{1}\cup\cdots\cup U_{h} .
Then \Phi is written as a sum of blocks (\Phi|U_{i}) , i . e. ,

\Phi\equiv[\frac{\Phi|U_{1}|}{0|,0|}. 00^{\cdot} |_{1}|\Phi|U_{h}00]

.

We notice that if one forgets the action, then each U_{i} is viewed as a
plumbing manifold and \Phi|U_{i} as its plumbing matrix. In our case, it may
be impossible, because not only two spheres but several spheres meet in
one point. That is, suppose that two spheres meet at a point and let us
assume that another sphere meets at that point. If it is a free point of
the action, then by general position, we can make it into a double
point. We can do this equivariantly when intersection points are free. While,
an intersection point is a fixed point of the action, we cannot make it into
a double point equivariantly. So, it may be possible for several spheres to
meet at the fixed point. However in this case, it has the same homotopy
type as a join of spheres. Thus, in each case it follows similarly to the
plumbing theory that for each j,

(1 ) ( i) \pi_{1}(\partial U_{j})\cong\pi_{1}(U_{j}) is free.

(ii) H_{i}(\partial U_{j})=H_{i}(U_{j})=0,1<i<2k-1 and H_{2k-1}(U_{j})=0 .
Put

(2) X_{l}=M- \bigcup_{i=}^{l} lint U_{i}(1\leqq l\leqq h)

Then T acts freely on X_{h} .

Lemma (3). X_{h} is a trace of “equivariant 1-surgeries”. For any
generator \alpha\in\pi_{1}(\partial U_{j}) it follows that T\alpha\neq\alpha for each j.

PROOF of (3). We may prove that the generators of \pi_{1}(\partial U_{j}) are killed
equivariantly in X_{h} . The generators of \pi_{1}(\partial U_{j}) correspond to the components
of the intersections for the union which gives \partial U_{j} . If \alpha is a generator of
\pi_{1}(\partial U_{j}) , we represent \alpha by an embedded sphere S^{1} in \partial U_{j} . Then it is
sufficient to prove that
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(*) S^{1} and TS^{1} do not belong to same component of intersections.
Suppose that S^{1} and TS^{1} belong to the same component. Since a

generator arises in the components of intersections, so S^{1} and TS^{1} induce
the same generator such that \alpha=T\alpha in \pi_{1}(\partial U_{j}) . On the other hand, we
have X_{1}\cup U_{1}=M by (2). It follows by the Van Kampen theorem and (i)
that \pi_{1}(X_{1})=0 . We can show inductively that \pi_{1}(X_{l})=0 for 1\leqq l\leqq h . From
the Mayer-Vietoris sequence of the triad (M, X_{1}, U_{1}) and (ii), it is easily seen
that H_{i}(X_{1})=0 for 0<i<2k , and inductively H_{i}(X_{l})=0 for 0<i<2k, 1\leqq l\leqq h .
Hence X_{h} is a trace of 1-surgeries (see [4, p. 119]). We notice that the
surgery on \partial U_{j} does not affect any homology groups other than the first
homology group. Now, S^{1} is killed in X_{h} , so S^{1} bounds a 2-disk D^{2}\subset X_{h} .
Assume that TS^{1}\neq S^{1} ( i . e. , S^{1} is not an invariant sphere). Since X_{h} is
invariant under T, TS^{1} must bound TD^{2}\subset X_{h} . Put

W=\partial U_{j}\cross I\cup(D^{2}\cross F^{4k-2})\cup T(D^{2}\cross D^{4k-2})\subset X_{h}

which is a trace of S^{1} and TS^{1} . Noting the above remark, H_{2}(W) is a
summand in H_{2}(X_{h}) , so that H_{2}(W)=0 . W has the homotopy type of
(\partial U_{j}\cup D^{2}\cup TD^{2}) . By the hypothesis of \alpha=T\alpha, (\partial U_{j}\cup D^{2}\cup TD^{2}) has the
homotopy type of \partial U_{j}\cup S^{2} . Hence, H_{2}(W)=H_{2}(\partial U_{j}\cup S^{2})\equiv Z. This yields
a contradiction. While S^{1} is an invariant sphere, i . e. , TS^{1}=S^{1} , then S^{1}

bounds an invariant disk D^{2}\subset X_{h} . But T acts freely on X_{h} , hence this case
does not occur. Therefore, (*) is proved.

It follows from (*) and (1) that \pi_{1}(\partial U_{j}) is a free Z[T] -module for each
j. Then, performing “equivariant 1-surgeries” on \partial U_{j} for each j, we obtain
X_{h} . This proves (3).

4. 5. 2. We investigate the geometry of U_{j}.
Put U=U_{j} for convenience. Suppose that two invariant spheres a_{1} , a_{2}

are contained in U. If a_{1} and a_{2} meet only at free points of the action,

then they meet transversely at even points. So, there exists actually an
odd number of generators in \pi_{1}(\partial U) . Within them, we can find a generator
\alpha such that T\alpha=\alpha . But by (3) it does not occur. If they meet at the
two fixed points on each, we have also a generator \alpha such that T\alpha=\alpha .
Then, by the same reason there exists no such \alpha . Hence, if a_{1} and a_{2} meet,

then they meet transversely at only one fixed point on each. Once they
meet at the fixed point, they may meet at free points of the action on
each. If we assume further, that a_{3}\in U and a_{2} meets a_{3} , then only two

cases occur : the first is that a_{2} and a_{3} meet at the used fixed point of a_{2} ,

and the second is that they meet at the unused fixed point of a_{2} . a_{1} and
a_{3} do not meet at the unused fixed point on each, otherwise we can find
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a generator \alpha such that T\alpha=\alpha , so it contradicts (3). a_{1} , a_{2} and a_{3} may meet
at free points of the action on each (see Figure 6, for example m=4).

(1)

(II)

a_{4}

(III\rangle

Fig. 6.

When we continue in this way around the fixed points of the action on
these embedded spheres, if a_{1} , \cdots , a_{i}\in U and a_{i+1} does not meet the pre-
ceding a_{j} ’s, then a_{i+1}\not\in U. Because in this care if a_{i+1}\in U, a_{i+1} meets some
a_{j} only at free points of the action. So it does not occur as above by
the same reason. Thus we can start with a_{i+1} in a different component.
Eventually we arrive at h -components, consisting of U_{1} containing \{a_{1} , a_{2} ,
\ldots , a_{i_{1}}\} , U_{2} containing \{a_{i_{1}+1}, \cdots, a_{i_{2}}\} , \cdots , and U_{h} containing \{a_{i_{h-1}+1^{ }},\cdots, a_{i_{h}}\}

so that a_{i_{h}}=a_{m} .
On the other hand, it follows that Fix_{h}(T. U_{1})=i_{1}+1 , Fix (T,\cdot u_{2})=(i_{2}-

i_{1}+1) , \cdots , Fix (T. U_{h}) =(m-i_{h-1}+1) . Since \cup Fix (T. U_{1}) = Fix (T. M), it fol-
i-l

lows that m+1=m+h, i . e. , h=1 . Hence, U=U_{1}\cup\cdots\cup U_{h}=U_{1} is the equiv-
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ariant connected tubular neighborhood containing all a_{i}’s, i=1 , \cdots , m in M.

4. 6. Step 2.
4. 6. 1. Let (T, U)\subset(T, M) be the one as above. It follows by (3) that

M- int U=X is a trace of “equivariant 1-surgeries” Denote by (T_{a_{i}}, E_{a_{i}})

the equivariant tubular neighborhood of the invariant sphere a_{i} in U for
each i. Then, by the equivariant tubular neighborhood theorem, (T_{a_{i}}, E_{a_{i}})

has, up to (equivariant) isotopy, the following form,

(T_{a_{i}}, E_{a_{i}})=D^{2k} \cross D^{2k}\bigcup_{b_{fa_{i}}}D^{2k}\cross D^{2k}\tau

Here the action on D^{2k}\cross D^{2k} is the diagonal action A\cross A and b_{fa_{i}} : S^{2k-1}\cross

D^{2k}arrow S^{2k-1}\cross D^{2k} is an equivariant map defined by b_{fa_{i}}(x, y)=(x,f_{a_{i}}(\pi(x))(y)) ,
where f_{a_{i}} : P^{2k-1}arrow SO(2k) is a map and \pi : S^{2k-1}arrow P^{2k-1} is the projection.

4. 6. 2. We then wish to identify these bundles (T_{a_{i}}, E_{a_{i}}) with the bundles
with the Z_{2}-actions introduced in chapter III. First to do so, we write the
bundles in Lemma 3. 2. of chapter III by the above form.

We shall recall the characteristic map on the tangent bundle of S^{n} .
Let u_{n} be the map of S^{n-1} into SO(n) defined by

u_{n}(x)=(\delta_{ij}-2x_{i}x_{j}) (I_{n-1} -1)-

,

x=(x_{1^{ }},\cdots, x_{n})\in S^{n-1} . Then, u_{n}\in\pi_{n-1} (SO (n)) represents the tangent bundle
\tau_{S^{n}} over S^{n} . u_{n} is invariant under the action, i . e. , un{Ax)= u_{n}(x) , where
A(x_{1}, \cdots, x_{n})=(-x_{1}, \cdots, - x_{n}) . So, u_{n} factors through the projection \pi:S^{n-1}

arrow P^{n-1} ,

S^{n-1}\underline{u_{n}}SO (n)

P^{n-1}\downarrow_{\nearrow^{v_{n}}}^{\nearrow}

Define a map v_{n}^{h} : P^{n-1}arrow SO(n) for each h by setting v_{n}^{h}([x])(y)=(v_{n}([x]))^{h}(y)

for x\in S^{n-1} and y\in D^{n} . We have a stably trivial bundle over S^{n} with a
Z_{2} action T_{h} ,

N_{v_{n}^{h}}=D^{n} \cross D^{n}\bigcup_{b_{v_{n}}h}D^{n}\cross D^{n}’
’

where b_{v_{n}^{h:}}S^{n-1}\cross D^{n}arrow S^{n-1}\cross D^{n} , b_{v_{n}^{h}}(x, y)=(x, v_{n}^{h}([x])y) and the action on
D^{n}\cross D^{n} is the diagonal action A\cross A .

If one forgets the action, then it is known (for example, see [23], see
also \S 4. 1 of chapter IV) that
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(i) n= even, N_{v_{n}^{h}} is a stably trivial bundle over S^{n} with the euler
class 2h .

(ii) n=odd, and n\neq 3,7 , N_{v_{n}^{h}} is isomorphic to the tangent disk bundle
E(\tau_{S^{n}}) if h is odd and to the trivial bundle of S^{n} if h is even.

By construction of E in chapter III, the bundles N_{v_{n}^{h}} with Z_{2}-actions are
same as E with Z_{2} -actions. From now on, we identify (T, E) with (T_{h}, N_{v_{n}^{h}})

to our need.
4. 6. 3. We note the following to determine such (T_{a_{i}}, E_{a_{i}}) . Since M

is parallelizable, E_{a_{i}} ’s are stably trivial bundles. So,
(i) if one forgets the action, then E_{a_{i}} is classified by its euler class.

When E_{a_{i}} and N_{v_{2k}^{h}} have the same euler class, the difference between them
lies in the effect on the action around the two fixed points on each.

(ii) Then, the spin invariants ([1], [2]) make a contribution to distinguish
them.

We quote the results of [6], [10].

Lemma 4. 6. 4. ([10]). [P^{n-2}, SO(n)]=KO^{-1}(P^{n-2})

=\{\begin{array}{l}Z_{2}n-2\not\equiv-1(4)Z_{2}+Zn-2\equiv-1(4)(\end{array}

Consider the cofibration, S^{n-2}arrow P^{n-2}arrow P^{n-1}\pi i and the exact sequence
for SO (n),

(4. 6. 5) \pi_{n-1} (SO (n) ) arrow [
c^{*}

P^{n-1}, SO (n) ] arrow [
i^{*}

P^{n-2}, SO (n)] \underline{\pi^{*}}\pi_{n-2}(SO(n))

:

where c:P^{n-1}arrow S^{n-1} is the collapsing map.

LEM MA 4. 6. 6. ([6, Lemma (5. 4)]). (1) If we represent a generator of
Z_{2}-summand in [P^{n-2}, SO (n)] by \beta , then for the map v_{n} : P^{n-1}arrow SO(n) it
follows that i^{*}[v_{n}]=\beta . In particular, i^{*}[v_{n}^{h}]=\beta^{h}, i . e. , \beta^{h}=\beta (h odd) and
\beta^{h}=1 (h even).

(2) If n-2\equiv-1 (4) , Z-summand comes from the image c^{*} of
\pi_{n-2} (SO (n)), c:P^{n-2}arrow S^{n-2} . Hence Im i^{*}=\langle\beta\rangle=Z_{2}\subset [P^{n-2}, SO (n)].

For the last assertion, when f\in{\rm Im} i^{*} and if f lies in the Z-summand
so that f=C^{*}(g) for some g:S^{n-2}arrow SO(n) . Since n-2\equiv-1(4) , c\pi:S^{n-2}arrow

S^{n-2} is of degree 2 and \pi_{n-2}(SO(n))=Z, we have by (4. 6. 5) that \pi^{*}(f)=

\pi^{*}c^{*}(g)=2g=0 , so g=0. Hence f=0.
4. 6. 7. We now identify the bundles (T_{a_{i}}, E_{a_{i}}) with (T_{h}, N_{v_{2k}^{h}}) . In

(4. 6. 1) it follows by the equivariant tubular neighborhood theory that

(T_{a_{i}}, E_{a_{i}})=N_{J_{a_{i}}}=D^{2k} \cross D^{2k}\bigcup_{bf_{a_{i}}}D^{2k}\cross D^{2k}
,
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where f_{a_{i}}\in [P^{2k-1}, SO (2k)].
We have by (4. 6. 5) and (4. 6. 6) that i^{*}(f_{a_{i}})=\beta^{l}=i^{*}(v_{2k}^{l}) for t=0 or 1.

So, f_{a_{i}} differs from v_{2k}^{t} by a map c^{*}(g)\in [P^{2k-1}, SO (2k)] for some g\in

\pi_{2k-1} (SO(2k)). Hence it follows as Z_{2} bundles that N_{f_{a_{i}}}\cong N_{c^{*}(g)\cdot v_{2k}^{l}} . Since
N_{J_{a_{i}}} is stably trivial, S(f_{a_{i}}\cdot\pi)=0 in the following exact sequence of the fibration

\partial S
SO (2k)arrow SO(2k+1)arrow S^{2k} , \pi_{2k}(S^{2k})arrow\pi_{2k-1}(SO(2k))arrow\pi_{2k-1} (SO (2k+1) )- , and

hence that S(c^{*}(g)\cdot\pi)=0 . Noting that c\pi is of degree 2, then S(2g)=0 .
Thus we have S(g)=0 if 2k\not\equiv 2(8) . In this case g is generated by u_{2k}^{m} for
some m by the above exact sequence. Therefore it follows from the diagram
below that c^{*}(g)=c^{*}(u_{2k}^{m})=v_{2k}^{2m} ,

And hence if 2k\not\equiv 2(8) , we conclude that N_{f_{a_{i}}}\equiv N_{v_{2k}^{2m\dagger t}} for t=0 or 1 and
some m. On the other hand, assume 2k\equiv 2(8) . Then \pi_{2k-1}(SO(2k))=Z+Z_{2}

and \pi_{2k-1}(SO(2k+1))=Z_{2} . We can write N_{J_{a_{i}}}\cong N_{c^{*}(g)\cdot v_{2k}^{2m+\prime}} (t=0 or 1), where g

is the generator of the Z_{2}-summand in \pi_{2k-1} (SO(2k)). Since c^{*}(g)\cdot\pi=2g=0 ,
N_{c^{*}(g)} is a trivial bundle with a Z_{2}-action. N_{f_{a_{i}}} is isomorphic as bundles to
N_{v_{2k}^{2m+t}} . In order to regard N_{f_{a_{i}}} as N_{v_{2k}^{2m+t}}. with Z_{2}-actions, we must show that
the effect on the action by the map c^{*}(g) which makes N_{v_{2k}^{2m\dagger t}} into N_{C^{*}(g)\cdot v_{2k}^{2m+t}}

is unaltered. By note (ii) of (4. 6. 3), it is sufficient to prove that the spin
invariant

(4. 6. 8) \infty(T, N_{c^{*(g)}})=0 , i . e. ,

(4. 6. 9) \infty(T, N_{c^{*}(g)\cdot v_{2k}^{2m+t}})=\infty(T, N_{v_{2k}^{2m+t}})

PROOF OF (4. 6. 8). c is the collapsing map, so we have a map h ,

P^{2k-1}S^{2k-1}\underline{c}\underline{g}SO (2k)

h : P^{2k-2} \bigcup_{-}pt\cup-so^{\cup}(2k-1) ,

which is the trivial map of P^{2k-2} into SO(2k-1). Then, there is an equi-
variant embedding

\alpha:(T, N_{h}^{4k-2})\subset(T, N_{C^{*(g)}}^{4k})

which has the trivial normal bundle. Choosing a specific field of normal
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2-frames, we have an embedding of the spaces of oriented orthonomal
4k(4k-2) -frames,

F(\alpha) : FN_{h}^{4k-2}\subset FN_{C^{*(g)}}^{4k}

Then the embedding induces an isomorphism of Z_{2} into itself

F(\alpha)_{*}: \pi_{1}(FN_{h}^{4k-2})-\pi_{1}(FN_{C^{*(g)}}^{4k}) .

Since h is the trivial map, it follows that

(T, N_{h}^{4k-2})\equiv(A’\cross A, D^{2k-1}\cross D^{2k-1})1

Thus, we have \infty(T, N_{h}^{4k-2})=0 , i . e. , the two fixed points have the different
sign. It follows from the proposition 8. 44 [1] that the certain loop c joining
the two fixed points is non-trivial in \pi_{1}(FN_{h}^{4k-2})=Z_{2} . The above isomorphism
F(\alpha)_{*} maps the loop c to the corresponding loop in FN_{C^{*(g)}}^{4k} . So, c\neq 0 in
\pi_{1}(FN_{C^{*(g)}}^{4k}) . Again by proposition 8. 44 [1] it follows that \infty(T, N_{C^{*(g)}}^{4k})=0 .
Thus,

(4. 6. 10) In each case we can identify as Z_{2}-bundles (T_{a_{i}}, E_{a_{i}}) with
(T_{h}, N_{v_{2k}^{h}}) for some h. Here we notice that (T_{h}, N_{v_{2k}^{h}}) is the bundle with
the Z_{2}-action (T, E) introduced in chapter III (see (4. 6. 2)).

4. 6. 11. We turn to the situation (4.6. 1). When we identify the
bundle (T_{a_{i}}, E_{a_{i}}) with the bundle ( T, E\rangle of chapter III by the above remark,
we are able to apply the corresponding Lemma 3. 3, 4. 5 of chapter III to
(T_{a_{i}}, E_{a_{i}}) . Let (T, \Sigma)=\partial(T,\cdot M) and (T, U), (T_{\eta},M) be as above. Then we have

Lemma 4. 6. 12. There exists a normal cobordism F:Varrow P^{4k-1} between
\partial U/T and \{m_{1}(P^{4k-1}, id)\cup m_{2}(P^{4k-1}, c\cross 1)\} for some m_{1} , m_{2} such that m_{1}+m_{2}=

m+1, where V= (U- int N((m+1)pts) )/T so that U=V\cup N((m+1)pts)) , and
c\cross 1 is defined in Lemma 3. 3 of chapter III.

PROOF. We have already determined the structure of U in step 1.
So, according to that of U and the preceding remarks, the proof goes by
ad -hoc argument just as in Lemma 3. 4 of chapter III. We use the same
notation of (3. 4). a_{1} meets a_{2} at a fixed point on each, i . e. , E_{a_{1}} is equivari-
antly plumbed with E_{a_{2}} at the fixed point. Denote the resulting manifold
M’ when E_{a_{1}} and E_{a_{2}} are plumbed. Then, the resulting cobordism

V=M’- int \{N_{1}\cup N_{2}\cup N_{2}’\}/T

defines a normal cobordism. Here the first N_{1} , N_{2} are in E_{a_{1}} and the last
N_{2}’ in E_{a_{2}} , and N_{1}’ in E_{a_{2}} is identified with N_{2} in E_{a_{1}} . Assume that a_{3}

meets a_{2} at a fixed point. There are two possibilities : they meet at the
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EXAMPLES. (I), (II), (III) are examples of standard involutions which
are all diffeomorphic to (A, S^{4k-1}) .

all a_{i}’s are trivial bundles
plumbing matrix

(\begin{array}{llll}0 1 0 01 0 1 00 1 0 10 0 1 0\end{array})

Fig. 7.
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unused fixed point of a_{2} , i . e. , around N_{2}’ . They meet at the used fixed
point of a_{2} , i . e. , N_{1}’(=N_{2}) .

In the first case, the same argument of Lemma 3. 4 shows that the
resulting cobordism (which is plumbed further with E_{a_{3}} ) defines a normal
cobordism. In the second case, take (D^{2k}\cross D^{2k} – int N_{1}’) /T from
E_{a_{3}}- int (N_{1}’\cup N_{2}’)/T And then, the identified space by h’ between E_{a_{1}} and
E_{a_{2}} , i . e. , D^{2k}\cross D^{2k}- int N_{2}/T ( =D^{2k}\cross D^{2k}- int N_{1}’/T) is again identified with the
above (D^{2k}\cross D^{2k}- int N_{1}’)/T by the map which is modified (up to isotopy)

from h’ compatibly. The compatibility (1) of Lemma 3. 4 holds around these
spaces. Thus the resulting cobordism defines a normal cobordism. The
above argument holds when a_{4} meets a_{3} at the used or unused point of a_{3} .
Hence when we continue in this way about the fixed points for all a_{i}’s, the
resulting cobordism V’ defines a normal cobordism (see Figure 7). Next,

if a_{i}’s meet at free points, then we can apply Lemma 3. 5 to V’ so that
the resulting V also defines a normal cobordism. By construction of U and
Lemma 3. 5, the cover ( V\cup N(m+1)pts)) is just the equivariant neighborhood
U. Therefore, as in Lemma 3. 5, V is a normal cobordism between \partial U/T

and \{(m_{1})(P^{4k-1}, id)\cup(m_{2})(P^{4k-1}, c\cross 1), m_{1}+m_{2}=m+1\} .

Lemma 4. 6. 13. \Sigma 4k-1/T is normally cobordant to (8l\pm 1)(P^{4k-1}, id) for
some l .

PROOF. Let F:Varrow P^{4k-1} be a normal cobordism between \partial U/T and
\{m_{1}(P^{4k-1}, id)\cup m_{2}(P^{4k-1}, c\cross 1)\} as in Lemma 4. 6. 12. Put F|\partial U/T=f’ : \partial U/T

arrow P^{4k-1} . Clearly, \pi_{1}(f’)=0 . By the preceding argument of (4. 6. 1), equivari-
ant 1-surgeries on \partial U inside (T, M)\supset(T, U) is equivalent to perform normal
surgery on \pi_{2}(f’)=Ker\{f_{*}’ : \pi_{1}(\partial U/T)arrow\pi_{1}(P^{4k-1})\} . Hence,

(4. 6. 14) There is a trace W and a normal map H:Warrow P^{4k-1} between
(\partial U/T,f’) and (Q^{4k-1},f) such that f is 2-connected (note that in the cover,

we can do this inside (M- int U) ) .
Since \Phi|U is unimodular and by the plumbing theory, it follows that

H_{i}(Q)=0 for i\neq 4k-1 . Hence Q is a homotopy projective space. If we
put U=U\cup\overline{W} along \partial U, then (M- int U’)/T is an h-cobordism between
Q and \Sigma/T(=\partial M/T) . Therefore, \Sigma/T is diffeomorphic to Q. The normal
map H and (4. 6. 12) show that \Sigma/T is normally cobordant to \{m_{1}(P^{4k-1}, id)\cup

m_{2}(P^{4k-1}, c\cross 1)\} . For convenience, put this P^{4k-1}(m_{1}, m_{2}) . Since m_{1}+m_{2}=

m+1=odd (m is the rank of the unimodular, even, symmetric matrix), we
may assume m_{1}>m_{2} . Then, P^{4k-1}(m_{1}, m_{2}) is normally cobordant to (m_{1}-m_{2})

(P^{4k-1}, id) , because c\cross 1 is the orientation reversing diffeomorphism. Hence
we have
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(4. 6. 15) \Sigma/T is normally cobordant to (m_{1}-m_{2})(P^{4k-1}, id) .
On the other hand, it follows by Proposition 2. 22 of chapter II that

\Sigma/T is normally cobordant to S^{4k-1}/T’ which has a sequence of desuspensions
until 5 dimension with \sigma(T’, S^{5})=0 . Then, S^{5}/T’ is normally cobordant to
(m_{1}-m_{2})(P^{5}, id) from (4.6. 15). When we recall Lemma 2. 17 that the
Brieskorn involutions (T^{d}, \Sigma_{d}^{5}) generate hS(P^{5}) and table 3 in (3,8) that
\Sigma_{d}^{5}/T_{d} is normally cobordant to d(P^{5}, id) , we conclude that S^{5}/T’ is diffe0-
morphic to \Sigma_{d}^{5}/T_{d} for d=m_{1}-m_{2} . Hence, as is well known (see Lemma
2. id), \sigma(T_{d}, \Sigma_{d}^{5}/T_{d})=\sigma(T’, S^{5})=0 if and only if d=m_{1}-m_{2}=\pm 1 mod 8.
This completes the proof of Lemma 4. 6. 13

4. 7. Step 3.
4. 7. 1. We give a proof of Theorem 4. 4. 1. We shall recall in chapter

I that the Browder-Livesay invariant and the Atiyah-Singer invariant agree
for free involutions, i . e. ,

\sigma(T, \Sigma 4k-1)=1/8(Sinh(T, M)-L (Fix T\cdot FixT) )

M has isolated fixed points and the action is trivial on homology. It follows
that

(4. 7. 2) \sigma(T, \Sigma 4k-1)=1/8\sigma(M)

It follows from Lemma 4. 6. 13 that \Sigma 4k-1/T is normally cobordant to

(8l\pm 1)(P^{4k-1}, id)

for some I. Then we note that the spin invariant
(4. 7. 3) \infty(T, \Sigma 4k-1)=\pm(8l\pm 1) mod 2^{2k} .

We can take (M-N(m+1)pts))/T as a normal cobordism between them
(see Figure 8).

Aw

Fig. 8.
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Put X=M-N((m+1)pts)/T Then the index of \tilde{X} is same as that of M.
Suppose that \sigma(T, \Sigma)=h . Then we can find the unique representative (T_{h}, \Sigma_{h})

out of the class of (8l\pm 1) in table 2. Furthermore, it follows from (2) and
(3) of Lemma 3. 7 in chapter III that

(4. 7. 4) \Sigma_{h} bounds M_{h} with \sigma(T_{h}, \Sigma_{h})=1/8\sigma(M)=h , and

M_{h}-N((8l\pm 1)pts)/T_{h}

is a normal cobordism between \Sigma_{h}/T_{h} and (8l\pm 1)(P^{4k-1}, id) . Put Y=
M_{h}-N((8l\pm 1)pts)/T_{h} . If we set Z=X\cup-Y along (8l\pm 1)(P^{4k-1}, id) , then Z
is a normal cobordism between \Sigma/T and \Sigma_{h}/T_{h} . The surgery obstruction for
Z to making it homotopy equivalent to P^{4k-1}\cross I lies in L_{4k}(Z_{2})(=Z+Z) , i . e. ,

(4. 7. 5) \theta(Z)=(\sigma(Z)/8, \sigma(\tilde{Z})/8)\in L_{4k}(Z_{2}) .
Since \sigma(T_{h}, \Sigma_{h})-\sigma(T, \Sigma)=(2\sigma(Z)-\sigma(\tilde{Z}))/8

=0 by the assumption,

and
\sigma(Z)=\sigma(X)-\sigma(\tilde{Y})=\sigma(M)-\sigma(M_{h})

=0 by (4. 7. 2) and (4. 7. 4),

we have
\sigma(Z)=\sigma(\tilde{Z})=0 .

Hence the surgery obstruction \theta(Z)=0 . Therefore, there is an /i -cobordism
between \Sigma/T and \Sigma_{h}/T_{h} and hence \Sigma/T is diffeomorphic to \Sigma_{h}/T_{h} . This
completes the proof of Theorem 4. 4. 1.

4. 8. Proof of Theorem 4. 4. 3.
It follows from Theorem 4. 2. 1 that \Sigma/T is normally cobordant to some

\Sigma’/T’ such that \partial(T’, M’)=(T’, \Sigma’) and H_{2k}(M)=mY for some m. We can
apply Theorem 4. 4. 1 to \Sigma’/T’ so that \Sigma’/T’ is diffeomorphic to the unique
representative (T_{h}’, \Sigma_{h}’) in table 2. When we assume that \sigma(T, \Sigma)=h , we
can choose (T_{h}, \Sigma_{h}) with \sigma(T_{h}, \Sigma_{h})=h within the class [T_{h}’, \Sigma_{h}’] . Thus \Sigma/T

is normally cobordant to \Sigma_{h}/T_{h} such that they have same Browder-Livesay
invariant. Then, considering the surgery obstruction of the cobordism
between \Sigma/T and \Sigma_{h}/T_{h} , we conclude that \Sigma/T is diffeomorphic to \Sigma_{h}/T_{h}\#\Sigma’

for some \Sigma’\in bP_{4k} . Since \Sigma_{h}=h\Sigma_{1} and by taking 2-fold cover so that \Sigma\cong

\Sigma_{h}\# 2\Sigma’,\cdot\Sigma’ is uniquely determined with respect to the differentiable structure
of \Sigma .

Note. The effect to taking \Sigma’ is to arrange the differentiable structure
for a choice of the representative \Sigma_{h} .
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4. 9. Similar results for (4k+1)-dimensional case.
When we consider (4k+1) -dimensional standard involutions, we have

the similar results to (4k-1) -dimensional case. The corresponding results
also hold under the assurance of Theorem 4. 4. 1 and Corollary 4. 2. 2,
Corollary 4. 3. 2.

Given (T, \Sigma 4k+1) , \Sigma/T is normally cobordant to \Sigma’/T’ such that \partial(T’,\cdot M’)

=(T’, \Sigma’) and H_{2k+1}(M’)=mA . Then we can show that \Sigma’/T’ is normally
coborant to (m_{1}-m_{2})(P^{4k+1}, id) , where m_{1}+m_{2}=m+1=odd (skew-symmetric
matrices have even ranks). Assume m_{1}>m_{2} and put d=m_{1}-m_{2} . Then,
d is odd. Since Brieskorn involutions \Sigma_{d}^{4k+1}/T_{d} is normally cobordant to
d(P^{4k+1}, id) , \Sigma/T is normally cobordant to \Sigma_{d}^{4k+1}/T_{d} . And hence, \Sigma/T is
diffeomorphic to \Sigma_{d}^{4k+1}/T_{d}\#\Sigma_{k}^{4k+1} . Summarizing up, we get

THEOREM 4. 9. 1. Let T be a free involution on a homotopy sphere
\Sigma 4k+1\in bP_{4k+2}(k\geqq 1) . Suppose that T extends to an involution with isolated
fifixed points on a(4k+2) -dimensional parallelizable manifold M^{4k+2} . Then,
(T, \Sigma) is equivariantly diffeomorphic to the equivariant connected sum of
some \Sigma’\in bP_{4k+2} with the unique representative (T_{d}, \Sigma_{d}^{4k+1}) in table 3, i. e. ,
the quotient

\Sigma 4k+1/T\equiv\Sigma_{d}^{4k+1}/T_{d}\#\Sigma’

REMARK 4. 9. 2. (1) The Kervaire sphere \Sigma_{\mathscr{L}} generates bP_{4k+2} . It is
unknown whether \Sigma_{{?}} acts freely on P^{4k+1} , provided that \Sigma_{\mathscr{H}}\not\cong.S^{4k+1} . From
this point of view, it is unknown to be allowable to avoid the ambiguity
\Sigma’\in bP_{4k+2} .

(2) The above argument cannot apply to the 5-dimensional case, but
the result is true using the result on hS(P^{5}) .

5. Characterization on low dimensional free involutions

5. 1. We relate the models in table 1 with the classical well known
examples due to Bredon [3]. We recall again [13] which is introduced in
the previous section. Let

u_{n} : S^{n-1}arrow SO(n) be the map defined by

u_{n}(x)=(\delta_{ij}-2x_{i}x_{j}) (I_{n-1} -1) , where

x=(x_{1}, \cdots, x_{n})\in S^{n-1} and I_{n-1} is the identity matrix with rank n –1. u_{n} is the
characteristic map of the tangent bundle \tau_{S^{\eta}} with the structure group SO(n).
Put u_{n}^{k}(x)=u_{n}(x)^{k} , the k^{lh} -power of u_{n} , : S^{n-1}arrow SO(n) for x\in S^{n-1} . We denote
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the bundle of S^{n} induced from u_{n}^{k} by k\tau_{S^{\eta}} . It is known that
(1) If n is even, k\tau_{S^{n}} is a stably trivial bundle whose euler class is 2k.
(2) If n is odd and n\neq 3,7 , k\tau_{S^{n}} is isomorphic to \tau_{S^{n}} when k is odd,

or to the trivial bundle when k is even.
(3) If n=3,7, k\tau_{s^{n}} is isomorphic to the trivial bundle.
Since O(n)\subset O(n) , we can view O(n) as the structure group of \tau_{S^{n}} .

When we set \alpha_{n} : S^{n-1}arrow O(n) by \alpha_{n}(x)=(\delta_{ij}-2x_{i}x_{j}) , the inclusion i : O(n)-
O(n) induces an isomorphism i_{*}: \pi_{n-1}(SO(n))arrow\pi_{n-1}(O(n)) whose image of
u_{n} is \alpha_{n} . We note that both u_{n} and \alpha_{n} are are invariant with respect to
the action A on S^{n-1} , A(X_{1}^{ },\cdots, x_{n})=(-X_{1}^{ \cdots },,- x_{n}) . Moreover, we have
the commutative diagram of characteristic maps,

S^{n-1} SO(n)\underline{u_{n}}

|i |j

S^{n-2}\underline{u_{n-1}}SO(n-l)

Here i:S^{n-2}arrow S^{n-1}, i(X_{2}^{ },\cdots, x_{n})=(0, X_{2}^{ },\cdots, X_{n}) and j : SO(n-1)arrow SO(n) ,

j(H)=(1 H) .

5. 2. We summarize here the main ideas and results of [3] to our
necessity.

If \theta_{x} is the refrection through the line Rx, i . e. , \theta_{x}(y)=2(x, y)x-y,

x, y\in S^{n-1}, then xarrow\theta_{x} defines a smooth map

\theta:S^{n-1}-O(n)

(5. 2. 1) It follows easily that -\theta=\alpha_{n} : S^{n-1}arrow O(n) and \theta^{2}=1(i. e., \theta_{x}^{2}(y)

=y) .
Note. The fact that -\theta=\alpha_{n} implies that (-1)^{n}\det\theta_{x}=\det\alpha_{n}(x) for each

x\in S^{n-1} . Since det \alpha_{n}(x)=-1 , so det \theta_{x}=1 (n odd), det \theta_{x}=-1 ( n even).
\theta:S^{n-1}arrow O(n) reduces to a map into SO(ri) if n is odd.

Consider the maps

\Psi_{r} : S^{n-1}\cross S^{n-1}arrow S^{n-1}\cross S^{n-1} defined by \Psi_{r}(x, y)=((\theta_{x}\theta_{y})^{r}x, (\theta_{x}\theta_{y})^{r}y) .
\Psi_{r} is equivariant with respect to the diagonal action of O(n) . It is easily

checked that \Psi_{-r}=(\Psi_{r})^{-1} , so that \Psi_{r} is an equivariant diffeomorphism for
each r. Attaching D^{n}\cross S^{n-1} to S^{n-1}\cross D^{n} by means of \Psi_{r} , we have smooth
O(n) manifolds.

(5. 2. 2) M_{r}^{2n-1}=(D^{n} \cross S^{n-1})\bigcup_{\Psi_{\gamma}}(S^{n-1}\cross D^{n})
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(5. 2. 3) M_{r}^{2n-1} is equivariantly diffeomorphic to M_{-r-1}^{2n-1} for negative values.
Let O(n) act, as a subgroup of O(n+1) , on the unit tangent disk

bundle of S^{n} via the differential.
Let J_{r} be the result of equivariant plumbing of 2r-copies of the unit tan-

gent disk bundles of S^{n} at the fixed points. Then, Hirzebruch has shown that
(5. 2. 4) M_{r}^{2n-1} is equivariantly diffeomorphic to \partial J_{r} . When we concen-

trate on the boundary of J_{r} , this follows from the fact (5. 2. 1).
Let \Sigma_{d}^{4k+1} be the Brieskorn sphere in C^{2k+2} given by two equations

z_{0}^{d}+z_{1}^{2}+\cdots+z_{2k+1}^{2}=0

z_{0}\overline{z}_{0}+\cdots+z_{2k+1}\overline{z}_{2k+1}=1

Let O(2k+1) act on C^{2k+2} by the natural complex representation on
(Z_{1}^{ },\cdots, Z_{2k+1}) . Then, it is clear that \Sigma_{d}^{4k+1} is an invariant submanifold. By
the classification of [13], we obtain

(5. 2. 5) M_{r}^{4k+1} is equivariantly diffeomorphic to \Sigma_{2r+1}^{4k+1} .
Hereafter, we shall consider the manifolds M_{r}^{2n-1} with involutions.
5. 3. Let Z_{2} be the subgroup of order 2 generated by -I_{n}\in O(n) .

Denote by T the action of Z_{2} in O(n) -manifold M_{r}^{2n-1} and by T_{d} the action
of Z_{2} in \Sigma_{d}^{4k+1} which is the Brieskorn involution. We obtain from (5. 2. 5)
that

(5. 3. 1) (T_{i}M_{r}^{4k+1})\cong(T_{2r+1}, \Sigma_{2r+1}^{4k+1}) . ( ”\cong ” stands for equivariantly diffe0-
morphic).

Suppose n\geqq 3 . The action of T on D^{n}\cross S^{n-1} is the diagonal antipodal
map A\cross A . There are invarian t submanifolds

(T, D^{n}\cross S^{n-1})\subset(T, D^{n+1}\cross S^{n})

(T, S^{n-1}\cross D^{n})\subset(T, S^{n}\cross D^{n+1}) .
The normal bundles of these inclusions are D^{n}\cross S^{n-1}\cross D^{2} (resp. S^{n-1}\cross D^{n}\cross D^{2})
and the action on the fiber D^{2} is the antipodal map A. We have equivariant
embeddings

(5. 3. 2) (T, (D^{n} \cross S^{n-1}\bigcup_{\Psi_{\gamma}}S^{n-1}\cross D^{n}))\subset(T, (D^{n+1}\cross S^{n}\bigcup_{\Psi_{r}}S^{n}\cross D^{n+1}) . It induces

an embedding of quotient spaces
(5. 3. 3) M_{r}^{2n-1}/T\subset M_{r}^{2n-1}/T_{\tau} the normal bundle of the embedding being

M_{r}^{2n-1}\cross D^{2}Z_{2}^{\cdot}

Lemma 5. 3.4. Suppose n\geqq 3 . There is a chain of codimension 2-
characteristic submanifolds of (T_{-},M_{r}^{2n-1}) for each r. That is, there exists
a normal map f_{2n-1} : M_{r}^{2n-1}/Tarrow P^{2n-1} which is transverse on P^{2n-\}\subset P^{2n-1},
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M_{r}^{2n-3}/T=f_{2n-1}^{-1}(P^{2n-3}) , and f_{2n-1}|(M_{r}^{2n-3}/T)=f_{2n-3}, such as f_{4k+1} is a homotopy
equivalence, and so on.

REMARK. This has been proved more generally, which holds for codi-
mension 1-characteristic submanifolds with help of the equations which
describe the Brieskorn sphere \Sigma_{d}^{4k+1} .

SKETCH OF PROOF. Since (T,, M_{r}^{5})=(T_{2r+1}, \Sigma_{2r+1}^{5}) by (5. 3. 1), there is
a homotopy equivalence f_{5} : M_{r}^{5}/Tarrow P^{5} . By (5. 3. 3), f_{5} is covered by a bundle
map b_{5} : E(\nu)arrow E(\eta\oplus\eta) , where \eta is the canonical line bundle over P^{5} . put
b_{5}’=b_{5}|\partial E(\nu):\partial E(\nu)arrow E(\eta\oplus\eta)=S^{5}\cross S^{1}Z_{2}^{\cdot} The obstruction to extending b_{5}’ to a

map M_{r}^{7}/T-E(\nu)arrow p^{7}-E(\eta\oplus\eta)\cong S^{1} is \theta(b_{5}’)\in H^{2}(M_{r}^{7}/T-E(\nu), \partial E(\nu);\pi_{1}(S^{1}))\cong exc
.

H^{2}(M_{r}^{7}/T, M_{r}^{5}/T;Z) . So, we prove in the following exact sequence that i^{*}

is an isomorphism for i=1,2,

(*) H^{i}(M_{n}^{2n\dagger 1}/T, M_{r}^{2n-1}/T)-H^{i}(M_{r}^{2n\dagger 1}/T)H^{i}(M_{r}^{2n-1}/T)\underline{i^{*}}

-H^{i+1}(M_{r}^{2n+1}/T_{j}M_{r}^{2n-1}/T) (n\geqq 3)

Since i_{*}: \pi_{1}(M_{r}^{2n-1}/T)arrow\pi_{1}(M_{r}^{2n+1}/T)\cong Z_{2} is isomorphic by (5. 3. 3), hence i^{*}:

H^{1}(M_{r}^{2n+1}/T)arrow H^{1}(M_{r}^{2n-1}/T) is isomorphic. On the other hand,

H^{2}(M_{r}^{2n+1}/T)=Hom(H_{2}(M_{r}^{2n+1}/T), Z)+Ext(_{\backslash }H_{1}(M_{r}^{2n-1}/T), Z)

=Ext (H_{1}(M_{r}^{2n+1}/T) , Z)=Z_{2} .

Hence i^{*}: H^{2}(M_{r}^{2n\dagger 1}/T)=Ext(H_{1}(M_{r}^{2n+1}/T), Z)arrow H^{2}(M_{r}^{2n-1}/T)=

Ext (H_{1}(M_{r}^{2n-1}/T)jZ)

is isomorphic. Therefore, H^{2}(M_{r}^{2n+1}/T_{j}M_{r}^{2n-1}/T)=0 .
b_{5}’ can be extended to a map f_{7} : M_{r}^{7}/Tarrow P^{7} which extends f_{5} . Starting

with f_{7} and applying the above argument to it, we have a map f_{9} : M_{r}^{9}/Tarrow P^{9}

extending f_{7} . f_{9} is transverse on P^{7}\subset P^{9} and has degree 1. Since M_{r}^{9}/T=

\Sigma_{2r+1}^{9}/T_{2r+1} , f_{9} is a homotopy equivalence. Iterating in this way, we have
a chain of maps f_{2n-1}(n\geqq 3) . f_{4k+1} : M_{r}^{4k+1}/Tarrow P^{4k+1} determines a normal
map, by taking \xi=g^{*}(\nu_{M/T}) , where \nu_{M/T} is the stable normal bundle of
M_{r}^{4k+1}/T and g is a homotopy inverse of f_{4k+1} . Hence, f_{4k-1} : M_{r}^{4k-1}/Tarrow P^{4k-1}

is a restricted normal map. Thus we have the desired result.
As to the normal cobordism classes, the relationship between our models

(table 1) and (T, M_{r}^{4k-1}) is as follows.
COROLLARY 5. 3. 5. Assume k\geqq 2 .
(1) M_{r}^{4k-1}/T is normally cobordant to (2r+1)(P^{4k-1}, id) .
(2) When r moves among {0, -1 mod 4}, M_{r}^{4k-1}/T is normally cob-
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ordant to the elements of table 1 as below.

r | 8l-1 | 8l | 8l-4 | 8l-5

M_{r}^{4k-1}/T | \Sigma_{(2l}^{4k-|\begin{array}{l}\sum_{(}^{4-})/T_{2l}^{-}-\end{array}|1}.+)/T_{2l}^{+}\Sigma_{(2l-1.+)}^{4k-1}/T_{2l-1}^{+} | \Sigma_{(2l-1-)}^{4k-1}./T_{2l-1}^{-}

PROOF. Since M_{r}^{4k+1}/T=\Sigma_{2r+1}^{4k+1}/T_{2r+1} , M_{r}^{4k+1}/T is normally cobordant to
(2r+1)(P^{4k+1}, id) . By Lemma 5. 3. 4, M_{r}^{4k-1}/T is normally cobordant to
(2r+1)(P^{4k-1}, id) . Then comparing with the table, the result follows.

5. 4. General setting and examples

We shall recall the definition of standard. Let T be a free involution
on a homotopy sphere \Sigma^{n} .

DEFINITION 5. 4. 1. We say that T is standard if there exists a par-
allelizable manifold M^{n+1} which \Sigma bounds such that T extends to an
involution with isolated fifixed points on M. If there exists no such par-
allelizable manifold, we call T non-standard.

To make clear the notion of non-standard, we need some preparations.
Let bspin_{n} be the group of homotopy (n-1) -spheres which bound spin
manifolds. In [9], Eells-Kuiper have defined an invariant \mu for certain
(4k-1) manifolds. \mu is available how to distinguish differentiable structures
of topological manifolds. When a homotopy sphere \Sigma 4k-1 bounds a par-
allelizable manifold M^{4k} , it follows that

\mu(\Sigma 4k-1)=-\sigma(M^{4k})/a_{k}(2^{2k+1}(2^{2k-1}-1)) mod 1

Here a_{k} is 1 if k is even, 2 if k is odd. Let |bP_{n}| be the order of the
cyclic group bP_{n} .

Examples of low values n

|\begin{array}{l}2^{2}.7-\end{array}||\begin{array}{l}-1-\end{array}||bP_{n+1}|n
||

51

| 7 |

92
||

2^{5}.3111

| 13 |

2^{6}.12715||\begin{array}{l}-2\end{array}||2^{9}(2^{9}-1)19

Put /l=a_{k}(2^{2k-2}(2^{2k-1}-1))\mu . In the above case, \mu’(\Sigma 4k-1)=-\sigma(M)/2^{3} . Fol-
lowing Kervaire and Milnor [18], bP_{4k} is generated by \Sigma_{1}^{4k-1} with \mu’(\Sigma_{1})=1 .
We note that a_{k}(2^{2k-2}(2^{2k-1}-1))=|bP_{4k}| for 1<k\leqq 5 and a_{k}(2^{2k-2}(2^{2k-1}-1))/|bP_{4k}|

in general.
We consider the following cases for non-standard involutions. Let T

be a free involution on a homotopy sphere \Sigma 4k-1 .

DEFINITION 5. 4. 2. (i) If there exists a spin manifold W^{4k} which \Sigma
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bounds such that
\sigma(T, \Sigma)\neq\mu’(\partial W) mod 2,

we call that T ‘curious’
(ii) If there exists a spin manifold W^{4k} which \Sigma bounds such that

T extends to an involution with isolated fifixed points on W, then we call
T “semi-standard”.

(iii) If (T, \Sigma 4k-1) satisfifies (i) and (ii), we call T “spin involution”
REMARK 5. 4. 3. By definition, standard involutions are semi-standard.

On the other hand, Porposition 2. 1 of chapter II shows that standard
involutions are not curious. So, from defintion 5. 4. 2 we can settle a general
question.

PROBLEM 5. 4. 4.

{semi-standard involutions} =

{standard involutions}\oplus {spin involutions} ?

5. 4. 5. Examples of standard involutions
(1) Weintraub’s actions, which are obtained by applying an equivariant

plumbing (see [15], [34]).
(2) L\’opez De Medrano’s involutions, which are obtained from the

antipodal map on the sphere.
(3) Brieskorn’s involutions.

5. 4. 6. Examples of curious involutions
(1) The restrictions of some of free S^{1}-actions on homotopy 7-spheres

constructed by Montgomery-Yang [22].
(2) Some of Hirsch-Milnor involutions [12].
(3) When we apply the L\’opez’s construction to curious involutions,

then we obtain new involutions which are again curious.
Now we shall consider here Hirsch-Milnor involutions. ‘curious’ is used

there originally.

5. 4. 7. Hirsch-Milnor involutions
Let N_{h}^{7} be the Milnor sphere which is the boundary of a certain D^{4} -

bundle over S^{4} . Taking the antipodal map on each fiber, we obtain a
smooth involution \alpha_{h} : N_{h}^{7}arrow N_{h}^{7} . Then they showed that (\alpha_{h}, N_{h}^{7}) has a
double desuspension, i . e. , \sigma(\alpha_{h}, N_{h}^{7})=0 . On the other hand, N_{h}^{7} bounds
the spin manifold E(\xi_{h,1-h}) (see [12]). Since the Pontrjagin class of E(\xi_{h,1-h})

is 2 (2h-1)\iota , it follows that \mu’(N_{h}^{7})=h(h-1)/2 . By definition we have
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Lemma 5. 4. 8. If h\equiv 2 or 3 mod 4, then (\alpha_{h}, N_{h}^{7}) is a curious involu-
tion.

N_{h}^{7} is described as follows. Let H be the quaternion field.

D^{4}=\{u\in H|||u||^{2}\leqq 1\} ,

S^{3}=\{u\in D^{4}|||u||^{2}=1\} ,

D^{3}=\{u\in D^{4}|{\rm Re}(u)=0\} ,

S^{2}=\{u\in D^{3}|||u||^{2}=1\}

Let f_{h,j} : S^{3}arrow SO(4) be the map defined, using quaternion multiplication,
by

f_{h,j}(u)(v)=u^{h}vu^{j}

for u\in S^{3}, v\in D^{4} .
Put f_{h}=f_{h,1-h} . The Milnor sphere N_{h}^{7} , h\in Z is obtained by attaching D^{4}\cross S^{3}

to D^{4}\cross S^{3} by the map f_{h} ,

N_{h}^{7}=(D^{4} \cross S^{3})\bigcup_{b_{h}}(D^{4}\cross S^{3})

Here b_{h} : S^{3}\cross S^{3}arrow S^{3}\cross S^{3} is defined by b_{h}(u, v)=(u,f_{h}(u)v) . Set b_{h}(u, v)=

(u’, v’) , i . e. , (u, v) stands for a point in the first factor and (u’, v’) in the
second. Then (u, u^{h}vu^{1^{-}h})=(u’, v’) .

Define an involution on D^{4}\cross S^{3} to be (u, v)arrow(u, - v) . It is easily checked
that b_{h} is equivariant under the action. We obtain a free involution \alpha_{h} on
N_{h}^{7} . They showed that (\alpha_{h}, N_{h}^{7}) has the double desuspension (\alpha_{h}, N_{h}^{6}) , (\alpha_{h}, N_{h}^{5})

as follows,

N_{h}^{6}=N_{h}^{7}\cap\{{\rm Re}(uv)={\rm Re}(v’)=0\} ,

N_{h}^{5}=N_{h}^{6}\cap\{{\rm Re}(v)={\rm Re}(u’v^{\prime-1})=0\}

N_{h}^{5} is written more explicitly.

(1) N_{h}^{5}= \{D^{4}\cross S^{2}\cap\{{\rm Re}(uv)=0\}\}\bigcup_{b_{h}}\{D^{4}\cross S^{2}\cap\{{\rm Re}(u’v^{\prime-1})=0\}\} .

where b_{h} : \{S^{\}\cross S^{2}\cap\{{\rm Re}(uv)=0\}\}-arrow\{S^{\}\cross S^{2}\cap\{{\rm Re}(u’v^{\prime-1})=0\}\} , b_{h}(u, v)=(u’. v’)

=(u, u^{h}vu^{1-h})=(u, u^{2h-1}v) , is a diffeomorphism. The last equality follows
since \overline{uv}=-uv , u^{-1}=\overline{u} and v^{-1}=-v imply that uv=vu^{-1} . Here \overline{u} is the
conjugation of u .

We shall classify N_{h}^{5} by the Brieskorn involutions. First we recall the
results of 5. 2. Using the above notations, the reflection \theta is reformed as
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\theta:S^{2}-O(3) , \theta_{u}(v)=uvu^{-1}\tau

Hence it follows by (5. 2. 2) that

(2) M_{h}^{5}=(D^{3} \cross S^{2})\bigcup_{\Psi_{h}}(S^{2}\cross D^{3}) ,

\Psi_{h}(u, v)=((\theta_{u}\theta_{v})^{h}u, (\theta_{u}\theta_{v})^{h}v))

Denote by \beta_{h} the action T on M_{r}^{5} of (5. 3). Since (uv)^{-1}=\overline{uv}=vu , it is
easily seen that

(\theta_{u}\theta_{v})^{h}u=(uv)^{h}u(uv)^{-h}=(uv)^{2h}u ,

(\theta_{u}\theta_{v})^{h}v=(uv)^{2h}v .

Thus we have \Psi_{h}(u, v)=((uv)^{2h}u, (uv)^{2h}v) . We note by (5. 3. 1) that

(3) (\beta_{h}, M_{h}^{5})\cong(T_{2h+1}, \Sigma_{h+1}^{5}) .

Lemma 5. 4. 9. (\alpha_{h+1}, N_{h+1}^{5})\equiv(\beta_{h}, M_{h}^{5}) for each h\in Z. Hence by (3),
(\alpha_{h+1}, N_{h+1}^{5})\cong(T_{2h+1}, \Sigma_{2h+1}^{5}) .

REMARK. The result of [36] is an easy mistake.

PROOF. We define maps

\lambda:\{D^{4}\cross S^{2}\cap({\rm Re}(uv)=0)\}-D^{3}\cross S^{2}

and

\mu:\{D^{4}\cross S^{2}\cap({\rm Re}(u’v^{\prime-1})=0)\}-S^{2}\cross D^{3}

by setting
\lambda(u, v)=(uv, v)

\mu(u’, v’)=(v’, v’u’)

It is easily checked that they are equivariant diffeomorphisms. Furthermore,

\lambda(\{S^{3}\cross S^{2}\cap({\rm Re}(uv)=0)\})=S^{2}\cross S^{2} .

\mu(\{S^{3}\cross S^{2}\cap({\rm Re}(u’v^{\prime-1})=0)\})=S^{2}\cross S^{2} .

Then we show that the following diagram is commutative,

\{S^{3}\cross S^{2}\cap({\rm Re}(uv)=0)\}\{S^{3}\cross S^{2}\cap({\rm Re}(u’v^{\prime-1})=0)\}\underline{b_{h+1}}

\downarrow\lambda

\Psi_{h}

\downarrow\mu

S^{2}\cross S^{2} S^{2}\cross S^{2} .
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When (u, v)\in\{S^{3}\cross S^{2}\cap({\rm Re}(uv)=0)\} , we note that

(i) v^{-1}=-v(i. e., v^{2}=-1)

u^{-1}v^{-1}=(vu)^{-1}=\overline{vu}=-- vu (Re (uv)={\rm Re} (vu)=0), so by (i)

(ii) u^{-1}v=vu .

Then, \mu b_{h+1}(u, v)=\mu(u, u^{2h+1}v)= ( u^{2h\dagger 1}v , u^{2h+1} vu)
=(u^{2h+1}v, u^{2h}v\grave{)} ((ii)),\cdot

\Psi_{h}\lambda(u, v)=\Psi_{h}(uv, v)=((uvv)^{2h}uv, (uvv)^{2h}v)

=(u^{2h+1}v, u^{2h}v) ((i))

Hence the above compatibility defines an equivariant diffeomorphism

\nu:(\alpha_{h+1}, N_{h+1}^{5})-(\beta_{h}, M_{h}^{5})

By periodicity of { \Sigma_{d}^{5} , d odd} of [16] and Lemma 5. 4. 9, we have

COROLLARY 5. 4. 10 (Periodicity) For each h\in Z,

(\alpha_{h}, N_{h}^{5})\cong(\alpha_{h+8}, N_{h+8}^{5})\cong(\alpha_{9-h}, N_{9-h}^{5})1

PROOF. It follows by [16] that (T_{d}, \Sigma_{tf}^{5})\cong(T_{d+16}, \Sigma_{d+16}^{5})\cong(T_{-d+16}, \Sigma_{-d+16}^{5})

for d>0 . For h\leqq-1 , we have by (5. 2. 3) and (3) that

(T, M_{h}^{5})\cong(T, M_{-h-1}^{5})\equiv(T_{-2h-1}, \Sigma_{-2h-1}^{5})

COROLLARY 5. 4. 11 (Desuspension). (\alpha_{h+1}, N_{h+1}^{7}) has (T_{2h+1}, \Sigma_{2h+1}^{5}) for
h\geqq 0 and (T_{-2h-1}, \Sigma_{-2h-1}^{5}) for h\leqq-1 as a desuspension,

5. 5. Reestablishment of the classification of free involutions
on homotopy 7-spheres

We will classify free involutions of homotopy 7-spheres by standard
involutions and spin involutions.

REMARK. There were two steps. The first is to use the normal cob-
ordism theory due to L\’opez and Wall, and the second is to use the spin
invariants due to Mayer [21].

The set of equivalence classes of free involutions on homotopy spheres
is denoted by \Phi_{+}^{n} (in chapter I, p. 346, we write \prod_{n}), and \Phi_{+}^{n} is in one-t0-0ne
correspondence with hS(Pn) . It has been shown in [20] that hS(P^{7})\cong

Z_{4}+Z+Z_{28} and [P^{7}, G/O]=Z_{4}+Z_{2} . The summand Z_{2} is identified with the
surgery obstruction group L_{3}(Z_{2}) . So, we may ignore so far as are con-
cerned with \Phi_{+}^{n} . Taking characteristic submanifolds, the restriction [P^{7}, G/O]

arrow[P^{5}, G/O]=Z_{4} is onto. We quote the result of [16].
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Lemma 5. 5. 1. hS(P^{5})\cong[P^{6}, G/O] consists of \{\Sigma_{d}^{5}/T_{d}, d=1,3,5,7\} and
\Sigma_{d}^{5}/T_{d}\cong\Sigma_{-d+16}^{5}/T_{-d+16}\equiv\Sigma_{d+16}^{5}/T_{d+16} for d>0 .

The last equality implies that

(5. 5. 2) \Sigma_{d}^{5}/T_{d}\cong\Sigma_{-d+16i}^{5}/T_{-d+16i}\equiv\Sigma_{d+16j}^{5}/T_{d+16j} for d, i, j>0 .
We first determine standard involutions in table 1.

Lemma 5. 5. 3. In the table 1, there are two distinct normal cobordism
classes of standard involutions, which are classifified by the spin invariant \varpi .

(i) \varpi=\pm 1 mod 2^{4}, (A, S^{\gamma})\sim(T_{2l}^{-}, \Sigma_{(2l,-)}^{7})\sim(T_{2l}^{+}, \Sigma_{(2l,+)}^{7})

(ii) \varpi=\pm 7 mod 2^{4}, (T_{2l-1}^{-,\Sigma_{(2l-1,-)}^{7})\sim(T_{2l-1}^{+},\Sigma_{(2l-1,+)}^{7})}

‘\sim ’ stands for “normally cobordant”.

PROOF. We notice from the table that

(5. 5. 4) \Sigma_{(2l,-)}^{7}/T_{2l}^{-}\sim(16l+1)(P^{7}, id)

\Sigma_{(2l,+)}^{7}/T_{2}^{+},\sim(16l-1)(P^{7}, id)

(5. 5. 5) \Sigma_{(2l-1,-)}^{7}/T_{2l-1}^{-}\sim(16l-9)(P^{7}, id)(=(_{\backslash }16(l-1)+7))(P^{7}, id)

\Sigma_{(2l-1,+)}^{7}/T_{2l-1}^{+}\sim(16l-7)(P^{7}, id) ,

and the spin invariants are \pm 1 mod 2^{4} for (i) and \pm 7 mod 2^{4} for (ii). On
the other hand, since \Sigma_{d}^{5}/T_{d} is normally cobordant to d(P^{5}, id) , it follows
from (5. 5. 2) that

(5. 5. 6) d(P^{5}, id)\sim(-d+16i)(P^{5}, id)\sim(d+16j)(P^{5}, id) in [P^{5}, G/O] .

Hence, by taking d=1 and d=7, (i) and (ii) follow accordingly.

REMARK 5. 5. 7. By the result [5] of Browder, \theta^{7} acts freely on hS(P^{7}) .
If follows that \Sigma_{(2l,-)}^{7}/T_{2l}^{-}\cong\Sigma_{(2l,+)}^{7}/T_{2l}^{+}\#\Sigma’ such that 2\Sigma’=0 for (i) and

\Sigma_{(2l-1,-)}^{7}/T_{2l-1}^{-}\cong\Sigma_{(2l-1,+)}^{7}/T_{2l-1}^{+}\#\Sigma’

such that 2\Sigma’=0 for (ii). (they have the same Browder-Livesay invari-
ants). We cannot get rid of the ambiguity of \Sigma’ , \Sigma’ .

REMARK 5. 5. 8. Denote by [A, S^{7}] the equivalence classes of (i) and
by [T_{1}^{-}, \Sigma_{(1,-)}^{7}] those of (ii)

| Normal cobordism class | Spin invariant | \mu’ | \sigma

\overline{[A,S^{7}]|(P^{7},id)|} \pm 1 | 0 | 0

[T_{1}^{-}, \Sigma_{(1.-)}7] | 7 (P^{7}, id) | \pm 7 | 1 | 1
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On the other hand, we have by [16] that

Lemma 5. 5. 9. There exists a free involution T_{d} on a homotopy
sphere \Sigma_{d}^{7} with (T_{d}, \Sigma_{d}^{5}) ( = Brieskorn involution) as a desuspension (i. e. ,
\sigma(T_{d}, \Sigma_{d}^{7})=0) . Furthermore, (T_{d}, \Sigma_{d}^{7}) satisfifies that

1. \infty(T_{d}, \Sigma_{d}^{7})=\pm d mod 2^{4} .
/h/2, h even

2. If we set d=2h+1, then \mu’(\Sigma_{2h+1}^{7})=|(h+1)/2 , h odd.

We now state our classification.

PROPOSITION 5. 5. 10. Every free involution on homotopy 7-sphere is
semi-standard.

PROOF. Let T be a free involution on a homotopy sphere \Sigma 7 . Then
by proposition 1. 25, there is a free involution (T’, S^{7}) which is normally
cobordant to (T, \Sigma 7) such that (T’, S^{7}) has a double desuspension, (T’, S^{6})\supset

(T’, S^{5}) . Since S^{5}/T’\in hS(P^{5}) , it follows that S^{5}/T’\cong\Sigma_{d}^{5}/T_{d} for some d. Using
the supension construction and by the fact that \theta^{6}=0 , we have S^{6}/T’\cong

\Sigma_{d}^{6}/T_{d} , where (T_{d}, \Sigma_{d}^{6}) is the desupension of (T_{d}, \Sigma_{d}^{7}) . Again, the suspension
construction yields that S^{7}/T’\equiv\Sigma_{d}^{7}/T_{d}\#\Sigma’ for some \Sigma’\in\theta^{7} . Hence, \Sigma 7/T is
normally cobordant to \Sigma_{d}^{7}/T_{d}\#\Sigma’- Let W^{8} be a normal cobordism between
them. Since \theta^{7}=bP_{8} , \Sigma’ bounds a parallelizable manifold M^{\prime_{8}} . We know
in Lemma 5. 5. 9 that \Sigma_{d}^{7} bounds the spin manifold M_{d}^{8} on which T_{tl} extends
to an involution with isolated fixed points. Set V_{d}^{8}=\overline{W}^{8}\cup M_{d}^{8}\# 2M’ , glued
on \Sigma_{d}^{7}\# 2\Sigma’ equivariantly. Then we see that \Sigma^{7}=\partial V_{d}^{8} and T extends to an
involution with isolated fixed points on a spin manifold V_{d}^{8} (see Figure 9).

\underline{\nabla}

Fig. 9.

For convenience we put \Pi_{d}=\Sigma_{d}^{5}/T_{d} . Then \{\Pi_{d}, d=1,3, 5, 7\} represent
the normal cobordism classes.

THEOREM 5. 5. 11 Free involutions on homotopy 7-spheres are classifified
by standard involutions and spin involutions. Moreover,



402 Y. Kamishima

(i) standard if and only if \infty=\pm 1 , \pm 7 mod 2^{4}

spin if and only if \infty=\pm 3 , \pm 5 mod 2^{4}

(ii) Characteristic normal cobordism classes of standard involutions
move over \{\Pi_{1}, \Pi_{7}\} , while those of curious involutions move over \{\Pi_{3}, \Pi_{6}\} .

COMPLEMENT. \sigma=\mu’ mod 2 if and only if standard.

PROOF. Let T be a free involution on a homotopy sphere \Sigma 7 . As
above, \Sigma 7 bounds V_{d}^{8} . We calculate \mu’ of \Sigma 7 . Write \mu’(\Sigma 7)=\mu’(V_{d}^{8}) for
our necessity. In our case, \mu’ is additive from the definition, \mu’(V_{d}^{8}.)=\mu’(\overline{W}^{8})+

\mu’(M_{d}^{8}\# 2M’)=\mu’(\overline{W}^{8})+\mu’(M_{d}^{8})+2\mu’(M’) . Since \overline{W}^{8} is parallelizable, it follows
that \mu’(\overline{W}^{8})=\sigma(\overline{W}^{8})/8 . If we put d=2h+1 , then it follows from Lemma
5. 5. 9 that

\mu’(V_{d}^{8})=\int_{1}\sigma()/8+h/2\sigma()/8\overline{\frac{W}{W}}+(h+’ 1)/2

,
hhoddeven

On the other hand we have \sigma(T_{d}\# 1, \Sigma_{d}^{7}\# 2\Sigma’)-\sigma(T, \Sigma 7)=(2\sigma(W)-\sigma(\overline{W}))/8 .
z_{2}

Since \sigma(T_{d}\# 1, \Sigma_{d}^{7}\# 2\Sigma’)=\sigma(T_{d}, \Sigma_{d}^{7})=0z_{2} by Lemma 5. 5. 9, we conclude that

(I) \mu’(\Sigma 7)=\sigma(T, \Sigma 7)+h/2 mod 2 if h is even,
(5. 5. 12)

(II) \mu’(\Sigma 7)=\sigma(T, \Sigma 7)+(h+1)/2 mod 2 if h is odd.

Now there occur exactly two cases, the first is \sigma(T, \Sigma)\neq\mu’(V_{d}^{8}) and the
second is \sigma(T, \Sigma)=\mu’ (V_{d}^{8}) . From definition 5. 4. 2, T is curious (i. e. , \mu’\neq\sigma, the
second case occurs) if and only if h\equiv 2 , h\equiv 1 mod 4 for (I), (II) respectively.
Then the spin invariant for (T, \Sigma) is \infty(T, \Sigma 7)=\infty(T_{2h+1}, \Sigma_{2h+1}^{7})=\pm(2h+1)

mod 2^{4} . Hence, T is ‘spin’ if and only if

h

|\pm 5|8l+2 (I) 8l+6|

\pm 3 |

8l+1\pm 3-(II)8l+5\pm 5

characteristic normal cobordism cless | \Pi_{5} \Pi_{3} | \Pi_{3} \Pi_{5}

On the other hand, suppose the first case, i . e. , \mu’(\Sigma 7)=\sigma(T, \Sigma 7)(2) ,
then we show that T is ‘standard’ This case occurs if and only if h\equiv 0 ,
h\equiv 3 mod 4 with respect to (I) and (II). Thus we have
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h |8l (I) 8l+4| 8l+3(II)8l+7

\infty
| \pm 1 \pm 7 | \pm 7 \pm 1

characteristic normal cobordism class | \Pi_{1} \Pi_{7} | \Pi_{7} \Pi_{1}

(T, \Sigma) has the same characteristic cobordism as one of the elements in
Remark 5. 5. 8 since \Pi_{d}-d(P^{5}, id) . Hence as in the proof of Proposition
5. 5. 10, (T, \Sigma) is normally cobordant to (A, S^{7}) or to (T_{1}^{-}, \Sigma_{(1,-)}^{7}) . Let W
be its normal cobordism between them. (A, S^{7}) (resp. (T_{1}^{-},, \Sigma_{(1,-)}^{7}) is standard,
so bounds a parallelizable manifold with an involution. Adding \overline{W} to it
along (A, S^{7}) (resp. (T_{1}^{-}, \Sigma_{(1,-)}^{7}) , we have a parallelizable manifold with bound-
ary \Sigma such that T extends to an involution with isolated fixed points on
it. Therefore, (T, \Sigma) is a standard involution.

SUMMARY 5. 5. 13 Let \Phi^{n} (resp. \Phi_{+}^{n} ) be the set of equivalence classes of
free (resp. orientation preserving free) involutions on homotopy n-spheres.
Then,

\Phi^{5}=\Phi_{+}^{5}= {standard involutions).

\Phi_{+}^{7}= {semi-standard involutions)
= {standard involutions}\oplus {spin involutions)

Problem 5. 4. 4 is true for n=5,7 .
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