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Introduction

"Let M be a real hypersurface of a complex manifold M’. As usual
we say that M is non-degenerate (resp. strongly pseudo-convex) if the Levi
form L, at each point x of M is non-degenerate (resp. definite).

Now let E be the restriction of the holomorphic tangent bundle 7%9(M")
of M’ to M. By a holomorphic vector field on M, we mean a cross section
« of E, which satisfies the so-called tangential Cauchy-Riemann equation.
It is clear that if X is a holomorphic vector field on M’, then the restriction
u=X|/M of X to M is a holomorphic vector field on M. Conversely we
know the following facts :

1) Let u be a holomorphic vector field on M. If both M and « are
real analytic, then there is a unique holomorphic vector field X defined on
a neighborhood of M such that X|M=u (cf. [12]).

2) If M is non-degenerate and is not strongly pseudo-convex, then
there is a neighborhood U of M such that any holomorphic vector field «
on M can be extended to a unique holomorphic vector field X on U (cf.
[9). (A similar fact is also known even in the case where M is strongly
pseudo-convex.)

These facts show that the study of the holomorphic vector fields on
M is closely related to the study of the complex manifold M’ itself.

Let g(M) be the Lie algebra of all holomorphic vector fields on M, and
let a(M) be the Lie algebra of all infinitesimal automorphisms of the real
hypersurface M, which may be considered as a real subalgebra of g(M).
It is well known that if M is non-degenerate, then a(M) is finite dimensional
(cf. [12]), and that if M is compact and if M is non-degenerate and is not
strongly pseudo-convex, then g(M) is finite dimensional (cf. [5]). It can
be also shown that if M is non-degenerate, then the natural homomorphism
Ca(M)—g(M), Ca(M) being the complexification of a(M), is injective, and
hence Ca(M) may be considered as a subalgebra of g(M).
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In the present paper, we prove a series of structure theorems on the
Lie algebras g(M) and Ca(M), assuming the following conditions: 1) M
is compact 2) M is non-degenerate, 3) M is normal in the sense of [14],
i.e., M admits an infinitesimal automorphism ¢ such that, at each point x
of M, &, is transversal to the maximal complex subspace of the tangent
space T'(M),, and 4) Certain conditions on the pair (M, &), M being equipped
with the induced PC {or CR) structure. The theorems consist of decompo-
sition theorems and vanishing theorems, and are stated in different forms
according as M is strongly pseudo-convex or not. See Theorems B.2,
B.6, 5.4, 5.6 and 5.7. We also exihibit some examples, and apply the
theorems to some problems on real hypersurfaces and complex manifolds.
In particular, we obtain a theorem (Theorem 6.5) characterizing the hyper-
plane bundles over the complex projective spaces. See also Theorems 4.5,
4.7 and 6. 1.

In §1 we first recall several known facts on PC structures. Then we
introduce a space F(M) of functions on M satisfying a certain differential
equation, and construct a linear isomorphism of the Lie algebra a(M) onto
the space F(M). Thus the study of g(M) is reduced to that of F(M).
§ 2 is a preliminary to the subsequent sections. We define differential opera-
tors N, [], and [, on F(M), and then describe F(M) in terms of these
operators. In § 3 and § 5, we state and prove the structure theorems. The
proofs are based on the decompositions F(M) into the eigenspaces of N,
[ and [, §4 and §6 are devoted to the examples and applications:

The author would like to express his sincere thanks to Prof. N. Tanaka
who gave him valuable suggestions and kindly read through the manuscript
during the preparation of this paper.

Preliminary remarks

1) Throughout this paper we always assume the differentiability of
class C*, and assume that the manifolds to be considered are connected.

2) Given a manifold M, C*(M) denotes the space of all complex
valued differentiable functions on M. Let E be a vector bundle over M.
We denote by E* the dual vector bundle of E and by I'(E) the space of
all differentiable cross sections of E. For ¢&I'(*"'AE*) and Xe&I'(E),
X lpel'(P ANE¥) is defined by

(X__l¢) (Yl’ Tty Yp) - ¢(X’ Yl’ R Yp)

for Yy, -, Y,eI'(E).
3) In the case where M is a complex manifold and E is a holomorphic
vector bundle over M, we denote by I (E) the space of all holomorphic
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cross sections of E, and by 27(E) the sheaf of germs of local holomorphic
E-valued p-forms. We denote by H¢(M, 2*(E)) the g-th cohomology group
of the sheaf Q7(E). In particular if p=0, we use the notation H¢(M, E) in
stead of H¢(M, Q°(E)).

§1. Non-degenerate PC manifolds and the Lie algebras a(M)
and a(M)

1.1. PC manifolds and the holomorphic tangent bundles (cf. [14]).
Let M be a differentiable manifold of dimension 2z2—1. A partially complex
structure (or briefly a PC structure) on M is a subbundle .S of the com-
plexified tangent bundle CT(M) of M which satisfies the following condi-
tions :

(PC. 1) dim,S=n—1, and SNS=0;

(PC. 2) [I'(S), I'(S))cI(S).

The manifold M equipped with the partially complex structure .S is
called a partially complex manifold (or briefly a PC manifold).

Let M be a PC manifold. Let us recall the definition of the holo-
morphic tangent bundle of M. We define a complex vector bundle T(M)
over M by

T(M)=CT(M)/S (factor bundle)
and define a differential operator
3 F(T(M))——J’(T(M)@S‘*)

as follows. Let z: CT(M)—T (M) be the natural projection. For any cross
section w of T(M) and any cross section Y of .5, we define a cross section

(0w) (Y) of T(M) by
@) (7) ==(IY, X1),

where X is a cross section of CT(M) such that z(X)=u. Then it is easy
to see that (9u)(Y) does not depend on the choice of X and the assignment
)7—>(79u)()7) gives a cross section ou of T(M)@S*

Here we notice that the complex vector bundle T'(M) together with

the operator 9 becomes a holomorphic vector bundle in the sense of Tanaka

[14], that is, the following hold :

(HV. 1) Y (fu) = (Yf) u+f(Yu);
(HV. 2) [Y,Z] u=Y(Zu)—Z(Yu),
where ucI'(T(M)), feC*(M), Y, ZeI'(S), and Yu denotes (0u) (V).
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The holomorphic vector bundle 7'(M) thus obtained is called the holo-
morphic tangent bundle of M, and a cross section u of T(M) is called a
holomorphic cross section or preferably a holomorphic vector field on M,
if it satisfies the (tangential Cauchy-Riemann) equation

ou=0.

Let M’ be a complex manifold of dimension n and let M be a real
hypersurface of M’. Let T%9(M’) be the holomorphic tangent bundle of the
complex manifold M’ or the vector bundle of complexified tangent vectors
of type (1,0) to M’. For each point x of M, we define a subspace .S, of
CT(M), by

S;=CT(M),NT*(M'),,

and set S=U.S,. Then we see that .S defines a PC structure on M, which
is called the induced PC structure.

Let i (resp. p') denote the natural injection CT(M)—CT(M’) (resp. the
natural projection CT(M')—T“(M’')). Let E(M) denote the restriction of
T2 (M’) to M. Since Ker (p'oi)=S, we see that the map p'oi induces an
isomorphism j of T(M) onto E(M) as differentiable vector bundles in a
natural manner. Hereafter we will identify the two vector bundles T(M)
and E(M) by this isomorphism.

Let us now consider the Cauchy-Riemann operator of the holomorphic
vector bundle T%°(M ), which is the differential operator

7 D(T(M))—— I (T(M)QT (M)
defined by
IX(¥)=p (I, X]),

where X, YelI'(T%(M')). Now let X be any cross section of T*°(M'), it
is easy to verify that

(Gu)(V)=(F X)(¥)  for all YES,

where « denotes the restriction X|M of X to M.

It follows that if X is a holomorphic vector field on M’ or a holomorphic
cross section of T“°(M’), then u=X|M is a holomorphic vector field on M
or a holomorphic cross section of T(M)=E(M).

We define a differential operator §: C*(M)—I"(S*) by

@) (Y)=YF, YeS§
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Then a function f on M is called a holomorphic function if it satisfies the
(tangential Cauchy-Riemann) equation

f=0.

Now let « be a cross section of T(M)=E(M), and let 2!, -+, 2" be any
local complex coordinate system of M’. The restrictions u;, 1<i<n, of the

vector fields 9/d2% to M form a local (holomorphic) frame of T(M), and
hence u can be expressed as follows :

u=2f u

f* being local functions on M. Then we remark that « is a holomorphic
vector field if and only if all the components f* of « are local holomorphic
functions on M.

1.2. The Lie algebras g(M) and a(M). Let M be a PC manifold.
We denote by g(M) the space of holomorphic vector fields on M. We show
that g(M) is endowed with the structure of a complex Lie algebra. Let
u,=g(M), i=1,2, and let us choose cross sections X; such that u;==(X).
Then we define a cross section [u,, us] of T(M) by

[s, ] = 2 ([ X, Xo] ) -

Since [X;, ['(S)]cI(S) and [['(S), I'(S)]cI'(S), we see that [uy, us] does not
depend on the choices of X; and X,. By using the Jacobi identity for vector
fields on M, we also see that [u;, u,]=g(M) and that the vector space
g(M) equipped with this bracket operation becomes a complex Lie algebra.

Let X be a real vector field on M, and let ¢, be the local 1-parameter
group of local transformations generated by X. Then X is called an infini-
tesimal automorphism of M if each ¢, is a local automorphism, i. e., preserves
the PC structure S of M. Note that X is an infinitesimal automorphism
if and only if [X,I'(S)]CI'(S). We denote by a(M) the Lie algebra of
infinitesimal automorphisms of M.

Let Xea(M). Then it is easy to see that n(X)=g(M) and that the
assignment X—x(X) gives an injective homomorphism of a(M) to g(M) as
real Lie algebras. Thus we may regard a(M) as a real subalgebra of g(M).

Finally let us consider a real hypersurface M of a complex manifold
M’. Let X be a holomorphic vector field on M’. Then we see that X|M
is an infinitesimal automorphism of M if and only if the real part of X is
tangent to M at each point of M.

1.3. Non-degenerate PC manifolds. Let # be a real valued 1-form
defined on a neighborhood of x which satisfies the following conditions :
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1) 6,20,
2) @ annihilates .S.
Then we define a hermitian form L,=L% by

LUX,Y)= —/=1 (X, T), X Yes,,

which is called the Levi form of M at x (corresponding to the 1-form ).
Let # be another l-form satisfying the condition above. Then & can be
expressed as ¢ =f8 with a function f defined on a neighborhood of z, and
we can easily see that

Ly =flz) L .

It follows that neither the dimension of the null space of L, nor the signature

of L, (up to sign) depends on the choice of #. This being said, we define

L. —1
a non-negative integer A(x) <§ n2 ) by

A(x) = Min <Z+(x), i (:c)) ,

where 4,(x) (resp. A_(x)) stands for the number of positive (resp. negative)
eigenvalues of the hermitian form L,.

We say that the PC manifold M is non-degenerate and of index r, if
the Levi form L, is non-degenerate and A(x)=7 at each point x of M. In
particular, we say that M is a strongly pseudo-convex (or briefly s.p.c.)
manifold if it is non-degenerate of index 0 or equivalently the Levi form
L, is definite at each point x of M.

ProrosiTION 1.1. Let M be a non-degenerate PC manifold. Then
the subspaces a(M) and v —1a(M) of g(M) satisfy a(M)Ny—1a(M)=0,
and hence the subalgebra a(M)-++—1a(M) of g(M) may be considered as
the complexification Ca(M) of a(M).

Proor. We define a subbundle 7} of T(M) by

T, =(T(M)+3)/S.
Then we have
T.NV—1T,=(S+S)/S.

Take any element « of a(M)N+—1a(M). From the remark above, we can
find a cross section X of § such that u==(X). Since u=a(M), we obtain
[X, T'(S)]cI'(S), and hence

= V=T {X.0()-Y.0(X)—6([X, V1.)} =0,
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where Y&I'(S). Since L, is non-degenerate at each point x of M, it
follows that X=0. g.e.d.

1.4. Condition (C.1) and the canonical affine connections (cf. [14]).
Let M be a PC manifold. We assume the following condition :

(C.1) There exists an infinitesimal automorphism & such that &, (S +5),
for any point x of M.

From now on we will be concerned with the pair (M, ). We denote
by P the 1-dimensional complex subbundle of CT(M) spanned by &:

P,=C¢,, reM.
Then we have
CT(M)=S+S+P  (direct sum).
We define a real valued 1-form 6 by
0 =1,
6(X)=0, Xe(S+S),,
and consider the Levi form L,= L’ corresponding to the 1l-form 6.

ProrosiTiON 1.2 (cf. [14]). Let M be a non-degenerate PC manifold.
Assume that M satisfies condition (C. 1), then there is a unique affine con-
nection

7 F(T(M))

r(T(M)QT(M)¥)

on M satisfying the following conditions :
1) S is parallel with respect to V.
2) & 0, and df are all parallel.
3) The torsion tensor T of V has the following properties :

T(X,Y)=0,
T(X, V) = (d0) (X, V) &( =V =1 Lo(X, V) &),
T, Y)ES,,

where X, YES,.

The connection F in [Proposition 1.2 is called the canonical affine con-
nection of (M, &). We denote by R the curvature tensor of /.

ProrosiTioN 1.3 (cf. [14]). Let X, Y, Z, WeI'(S).
(1) T, X)=0.
(2) V. X=<:X.
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(d6) (R (X, Y)Z, W)+(db) (Z, R(X, Y) W)=0.
R X,Y)Z=R(Z, Y) X&I'(S).

R(X, Z)=0.

R(¢, X)=0.

Proor. Since V. X and [§, X] are cross sections of .S, and since F3£=0,
we have T'(§, X)eI'(S). On the other hand, we know that T'(& X)=I'(S)
by [Proposition 1.2, Hence we have T'(¢, X)=0, proving (1). (2) follows from
(1). (3) follows immediately from the fact that Fd#=0. From Bianchi’s first
identity and (1) together with the fact that F'7'=0, we have

(1.1) R(X,Y)Z+R(Y,Z) X+R(Z, X) Y =0.

SO W

(
(
(
(

Since the subbundle S is parallel with respect to the canonical affine con-
nection 7, we have R(X,Y)ZeI'(S), R(Y, Z) XeI'(S) and R(Z, X) YeI'(S).
By taking the S-component of (1.1), we obtain

R(X,Y)Z+R(Y,Z)X=0,

implying(4). In the same manner, we obtain

R(Z,X)Y=0.
Since Vdf=0, we have

(d6) (R(X, Z) W, ¥)+(db) (W, R(X, Z) ¥) =0.
Hence it follows that
L(R(X, Z) W, Y)=—V=T1(df) (R(X, Z) W,Y)=0.

Since the Levi form L is non-degenerate, it follows that

R(X,Z)W=0.

Hence we have proved (5). Since the vector field & leaves invariant the
PC structure .S and the vector field &, it follows that & is an infinitesimal
affine transformation. Hence & satisfies the following

(1.2) (& 7xY]=Tx([e, Y1) —Fen¥ =0.

By (1) we have V. (FxY)=[£,VzY] and F.Y=[§, Y]. Hence the left hand
side of (1.2) is equal to R(&, X)Y, which implies R(& X) Y=0. Similarly
we have R(§, X) Y=0, proving (6). g.e. d.

1.5. The space F(M). We define a subbundle 7" of CT(M) by T=
S+P. Then we have

CT(M)=T+S (direct sum)
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and the projection = : CT(M)—T (M) induces a bundle isomorphism P of T
onto T'(M). Let u be a cross section of T(M), and let the capital letter U
denote the corresponding cross section of 7. Then « is a holomorphic cross
section of T(M) if and only if the cross section U satisfies the condition

(1. 3) [U, F(S)]cr(S) .

Let us denote by US (resp. by UF) the S-component of U (resp. the
P-component of U). We interpret (1.3) in terms of US and U?. Then, for
any YeI'(S), we have

(1. 4) [Y, UF)P+[Y, Us]P =0,
(1.5) = [Y,Us=0,

where we use the fact that [Y, UP]S=0,
We define a function f, by

Then we have UP=f,£. By using the canonical affine connection V, we
obtain

Loy Pefukldn)(Us T)=0,
(1. 5y Vs U8=0,
where YeS,. It follows from (1.4) and (1.5) that
(1. 6) VeVzfu=0, Y,Ze8,.
Here we define a subspace F(M) of C*(M) by
F(M)={feC=(M)|7zVzf=0  for any ¥, ZES, and zEM}.

ProrosiTiON 1.4. The assignment u—f, gives a linear isomorphism

of g(M) onto F(M).
Proor. Let usg(M). Suppose that f,=0. By (1.4), we have
LUS, Y)= —V—=1(d6)(Us, Y)=0 for any YES,.

* Since the Levi form L, is non-degenerate at each point x of M, it follows
that US=0, which implies #=0. Conversely let f be a function contained
in F(M). Since the Levi form L, is non-degenerate at each point x of M,
we can take a unique cross section U of .S satisfying (1. 4)'. Since f satisfies
(1. 6), it follows that (1.5) holds. If we put U=+ US, then we see that
U satisfies (1.3). Therefore the cross section « of T'(M) corresponding to
U is a holomorphic vector field satisfying f,=f. g.e.d.
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We define a subspace F(M) of C*(M) by
F(M)={f|reFou}.
Then we have the following

ProrosiTION 1.5. Let ucsg(M). Then uca(M) if and only if f, is
a real valued function. Hence the assignment u—f, gives a linear isomor-

phism of Ca(M) onto F(IM)NF(M).

Proor. First assume that x is contained in a(M). Then we have an
infinitesimal automorphism X such that z(X)=u. Let X” be the T-com-
ponent of X. Then it follows that U= X" and

Su=0(U)=0(X")=06(X),

implying that £, is a real valued function.
Conversely assume that f, is a real valued function. We define a real

vector field X by

Then we see that z(X)=w, and X is an infinitesimal automorphism.
q.e. d.

§ 2, The fundamental equalities

2.1. Condition (C. 2), and the operators [ ], and N. Let M be a non-
degenerate PC manifold of index r satisfying condition (C.1). In this and
the subsequent sections, we assume that M is compact and satisfies the
following condition :

(C.2) There exist subbundles .S* and S? satisfying the following :

1) dim,S'=r, and dim, S?=s, where s=n—r—1.

2) S=851+.82 (direct sum).

3) Both S*' and S? are parallel with respect to the canonical affine
connection /.

4) At each point x of M, the Levi form L, is negative definite (resp.
positive definite) on S: (resp. on ,S?), and S. and S? are mutually orthogonal
with respect to L,.

First of all, let us define a Riemannian metric ¢ on M by
[1] 0.(X,YV)=—L.(X,Y), X Y&Si;

(X, Y)=L,(X,Y), X YeS52;

ga:(sw’ Ez)zl ’

The other components of ¢, vanish.
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We easily see that the Riemannian metric ¢ thus defined is parallel
with respect to the canonical affine connection /. Let us denote by dV the

volume element (n———li)—' O N\ (df)*1, which is nothing but the volume element
associated with g. We define a hermitian inner product ( , ) in the space
C*(M) by

(ho=|,roav

where {f, ¢g> is the function defined by |
oy (@) =f)g(x), x=M.

In the following, the three indices a, b, ¢ range over the integers 1, ---,
r while the three indices a, 5, 7 range over the integers r-+1,:--,n—1.
Let x be any point of M, and let e, -+, e, (resp. e,y -+, €,_;) be a base of
St (resp. of S%) such that g(e, €,) =0dqs (resp. g(es, €)=0,,). Then the 2n—1
Vectors &, €y, ***y €ry €rity ***s Ot Cus ***s &ry Cryy, +++5 €,y form a base of CT(M),.
By using these bases, we will express various tensor fields in terms of their
components.

We define a bilinear form R*: S,xS,—C by
R*(X, V) :i o(RX, V)end), X YES.
It is easy to see that
R*(X,7)=R*(Y,X) .
The tensor R* thus defined will be called the Ricci tensor.

ProposiTION 2. 1.
(1) RXV)=Xg(RXY)e,a) for X, YES!.

R¥(X, V)= g(R(X,V)e,e,) for X, YES.

(2) Rx(X,Y)=0  for X&S! and YES?.

Proor. Let X&S. By Proposition 1.3 and the fact that S' and S2
are parallel with respect to V, we have

R(X,Y)e,=Rle, Y) X&S5:NS=0,

which implies the first assertion of (1). The second assertion of (1) is proved
in the same manner. Now let X&S, and Y&S2 By Proposition 1.3 and
the fact that Fg=0, we have
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g(R(X, Y)ere;)=g(Rlene) X, ¥).
Since 5! is parallel with respect to F, it follows that
R(ei, e',) XESZL. .

Therefore we have

R¥(X, Y)= Y g(R(en2) X, ¥) =0,
proving (2). g. e. d.
We define the scalar curvatures ¢; and g, by

1
U= 1) ; R*(e,, &) ,

1
%= 1) ; R*(e,, €,) .

We also define differential operators [ J;, [ ], and N on C*(M) respec-
tively by

le:_ZVaVaf’ D2f:_§:‘7a75f’ Nf:‘/'_:l—éf,

for fEC=(M).

ProprosITION 2. 2. The operators [}, [ |, and N are self-adjoint opera-
tors, moreover [ |, and [ ], are positive semi-definite.

Proor. Let f, ff€C®(M). Then we have
;Va<7ﬁf’f,>:Za:<7a76ﬂf,>+§<’7@f’76f'>-

Define a cross section Z of S! by

Z:§<Vaf;fl>€a.
and a (complexified) tensor field A of type (%) by

A X)=VyZ+T(Z X), XeCT(M),.
Then we have
d(Z _|dV)=Trace(AzdV .

We know that FyZeS! for XeCT(M), and T(Z, X)=P,, for X&(S+S),,
and 7(Z,&=0. Hence we have

Trace(Az)= 2 (Vo Z)*.
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Since the subbundle 5! is parallel with respect to //, we have

S0aZf = SVeTaff >

a

Hence, by using Stokes’ theorem, we obtain - -
O F)==ZOTf )= SOofs af).
Similarly, we obtain

CRf L) = = ZOTL )= SOLTS).

Therefore we see that [ ], and [ ], are positive semi-definite self-adjoint
operators. '
Finally since £,g=0, we have

(KAL) =GR I+
Since &({f,.f'))dV=d(f,f'>&_|dV), it follows from Stokes’ theorem that
ELL)HES) =0,
and hence _ | .
(NAS) = (L NSf),
implying that N is a self-adjoint operator. q.e.d.
We need the following lemma.
LemMMA 2.3 (The Ricci formula cf. [14]). Let feC*(M) and let X,
Y, ZeT(M),.
(1) Vel v f =VeV xf—Vrxn f -
( 2) VXVYVZf: VYVszf—‘VT(X,Y) VZf_VR(X,Y)Zf-
ProprosITION 2.4. Let [, [J. and N denote the conjugate operators
of [, [l and N respectively.
(1) [IN=N[1], [ LN=N[, and Dl|:|2:|:l2|:|1-
(2) _D—I—Dler; iz—Dzz—SN-'
(3) N=—N.
Proor. By Proposition 1.3, we have T'(¢, X)=0 and R(§, X)=0 for
XeT(M). It follows from the Ricci formula that & J,=[1],¢ and & J,=
[ £, which implies the first and the second equalities of (1). Similarly by

using the Ricci formula and the facts that T'(e, €,)=0 and R(e,, &,)=0, we
have [ Ji[ Jo=[ Jo[ i, implying the third equality of (3).
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By using the Ricci formula again, we see that
—D—l: — 2. VVa= _ZVan_Z T(ea’éa):D1+rN‘

In the same manner, We have the second equality of (2).

Finally (3) is clear from the definition of N. q.e.d.

2.2. The space F(M), and the operators A;,, We define a cross sec-
tion W, (resp. W,) of S! (resp. of .S? by -

lezVaR:zieb: szzVaR:éep:
a,b a,f
Lemma 2.5, Let f, freC*(M).
(1) 2L \FaVsf, Valsf')

Y SO S RIS TS,
(2) B0 )
(B TN+ RIS+ W f).
(8) RO, Fal ) = OO S) = A
(4) NS TS = OO =TS,

CLOAS) = (OhRAS) -

=)

»a

SO.afs P.Faf)

I
I

Proor. First we have
aZ,:bVa<VaV5f" Vsf>
= 2L alalsf, Vaf o+ L Falsf, Valsf'> .
Define a cross section Z of S! by ’
Z= SIS, Tf> e
As in the proof of Proposition 2.2, we have
§7a<i7@75ﬁ Vsf'>dV=d(Z_|dV).
It follows fromvStokes’ theorem that '

LTS, Valsf'> == SO ofs Tof).

a,b

Now we see from the Ricci formula that
VoV aVs =V VsVsf
= VsVl o f+ 00 o(Nf)+(R(@s, ) ) f
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By Proposition 1.3, we have
R(éy, €,) 6, = R(,, €,) &5 .
Therefore we obtain
SPaPalsf = =Fs(Chf)+7s(Nf)+ SR oS
It follows from Stokes’ theorem that
Va5 f, Valsf)
U SO -ON SRS,

proving (1). The proof of (2) is quite similar.
Next, by using Stokes’ theorem, we obtain

Z(VEVaf’ VaV&f'):_tg(VanVaﬁ V&f,>-

a,a

From the Ricci formula and the fact that 7'(e, &,)=0, T(e'a, e)=0 and
R(e,, e,) ,=0, we obtain

ZVaV&Vaf:ZVaVaVif:ZV&VaVEf'
It follows that

(VdVaf’ VaVaf'> :(D2ljl.f’ f,) ’

a,x

proving (3). In the same manner we obtain (4). q. e. d.
We define differential operators A;, 1=1, 2,3, on C®(M) respectively by

21 Af=CE/-CUNASREDF WS,
22 Af=[Rf+LUN+ S REFF S+ WS,

(2.3) Asf=[h[Lf=01LLLS,
for feC*(M).
By (1), (2) and (3) of Lemma 2.5, we have the following proposition.

PrOPOSITION 2.6. Let f€C®(M). Then the following conditions are
mutually equivalent :

(1) feFM).

(2) A;f=0, i=1,2,3.

(3) (Aufif)=0, i=1,2,3.

PROPOSITION 2.7. The operators A,, i=1, 2, 3, are positive semi-definite
self-adjoint operators and satisfy A;N=NA,.
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ProoF. By Lemma 2.5, we see that A, are positive semi-definite self-
adjoint operators. By Lemma 1.3 and condition (C.2), we have

2(I(SH)cr(S)  and Zg=0.
Hence it follows that
S (VaVsNf, Valsf)= X (Valsf, ValsNf')

a,b a,b
for any f, f €C*(M), which implies A;N=NA,. The other assertions can
be proved in the same manner. q. e. d.

Let us denote by A; the conjugate operator of A;. Then we have
the following '

ProrosiTiON 2.8. The operators A,, i=1,2, 3, are positive semi-definite
self-adjoint operators and satisfy the Following

(1) A=A,+(+1) (rN*—ro, N+ 2 LN)+ W, — Wy,

(2)  Ay=Ag+(s+1) (sN2+50, N—2bN)+ W, — We;

(3) Ag=As;—s[ {N+r JeN—rsN?.

Proor. It follows from the Ricci formula that
TRGTFa= X Rl Vo = 3 RE(Val5+ Tlew &)
a,b a,b a,b
=Y R&VJVs—(r+1)reN .

Hence (1) follows from Proposition 2.3 and (2. 1). The other equalities
can be proved quite similarly. q. e. d.

§3. The structures of the Lie algebras g(M) and Ca(M)
(the non-degenerate case)

3.1. A general structure theorem on the Lie algebras g(M) and Ca(M).
Let M be a non-degenerate PC manifold of index r satisfying conditions
(C.1) and (C.2). First of all, let us recall the following fact.

TueoreM A (cf. [5]). Let M be a compact non-degenerate PC mani-
fold of index r. If r=1, then g(M) is finite dimensional.

Let us assume that #=1. By [Proposition 2.4 and Theorem A, we see
that F(M) is a finite dimensional vector space. For each vER, we define
a subspace F, of F(M) and a subspace £, of F(M)N F(M) respectively by

Fo ={fEF(M)|Nf =>f},

Fo = | feF(M)NF(M)|Nf =}
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ProrosiTioN 3.1. Let M be a compact non-degenerate PC -manifold
of index r. Assume that r=1 and M satisfies conditions (C.1) and (C. 2).

(1) F(M)=XF, (direct sum), F(IM)NF(M)=>F, (direct sum) and
dim F,, =dim F_,.

Assume further that the scalar curvatures o, and o, are equal to real
constants ¢, and c,.

(2) The case where c;=c, (=¢)>0: Fo,=F,=0 for v#£0, —c, ¢,
F(m:ﬁ(on F(——c):F(-—c) and F(c)zﬁw)- _

(3) The case where both ¢, and c, are non-positive: F(M)=F(M)=
F(O)iF(O)' .

(4) The case where ¢, >Max (0, ¢) : F,,=0 for v>0 or v< —c, F,=0
Jor v#0, and Fo=Fg. The case where c;>Max (0, ¢): Fo,=0 for v<0
or v>c, Fiy=0 for v#£0, and F(o):ﬁ‘(m.

Proor. We see from Propositions and 2.7 that the operator N
leaves invariant the finite dimensional subspace F(M) of C*°(M) and from
[Proposition 2.2 that N is a self-adjoint operator with respect to the inner
product ( , ) on F(M). Hence we have

F(M)=}F, (direct sum).

Similarly we see that the operator N leaves invariant the subspace F(M)N
F(M) of C*(M) and hence we obtain

FIM)NFM)= Y F,  (direct sum).

By Proposition 2.4, we see that the correspondence f—f gives an isomor-
phism of F, onto F._,, and hence

dim F(,) =dim F(—v) ’

profzing (1).
Hereafter we assume that o; are constant. We first assert that W,=0.
Indeed, for any X&.S;, we have
9(X, Wy =9(X, Zb Vs R3se,) = 9(X, L VaR35¢,)

a,b
=r(r+1) Xe, =0,
and hence obtain W,=0. In the same way, we can show that W,=0.
Let feF,. By Proposition 2.6, we have

A f=0, i=1,2,3.

It is easy to see from [Proposition 2.8 that if v=0, then
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A f=0, i=12,3.

Hence we have Fq=FqcCF(M).

Suppose that there is a positive number v such that F,#0. We claim
that v<¢, and ¢;=c¢,. For this purpose, let f be a non-trivial function con-
tained in F(,. By [Proposition 2.8, we have

(3.1) rir+1) vlv—a) (L) +20+ 1) v([Ouf,f) = (A f) 20
(3.2) ss+1) v+c) () =26+ »([a fof) =(Acfs f) 20
(3.3) — (W )+ fo ) —rs2(f f) = (A f f) 2 0.

Hence we obtain

LOANZ 5@ (),

LOfif) =

S

(c2+v) (fof) s

o= ol

L Oan+ TN .

From the second and the third inequalities, we have

LOAN = gla A

Since []; is a positive semi-definite operator, we have v=<c,. By using the
first and the fourth inequalities, we have ¢;=c;. These prove our assertions.
Similarly we can prove that if there is a negative number v such that
F.,#0, then v=—c¢, and ¢;=¢;. From these facts, we obtain (3) and (4).
Let us prove (2). Assume that ¢,=c, (=c)>0. Let v be a positive
number such that F,,#0. Take any f&F,. It is easily verified that

equalities hold in (3.1), (3.2) and (3.3). Hence it follows from
2.6 that feF,. By [Proposition 2.8, we have le— (c——v)f and [ Jof =
%(c-}—v)f. Since A;f=0, we have

D1D2f— (C—”) (ct+v)f=

If f#0, then we have v=c. We have thus shown that F,=0 for v+#c,
and F,,=F,. In the same manner, we can prove that, for a negative
number v, F,=0 except v=—c¢, and F o =F_». We have thus completed
the proof of Proposition 3. 1. q.e. d.

For each vER, we define a subspace g, of g(M) and a subspace
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8., of Ca(M) respectively by
g = {ueg(M)|V=11¢, u] = v},
8, = {uECa(M)I V—1[&u] = vu} .

It is easy to see that the assignment u—f, gives an isomorphism of g,
onto F, and an isomorphism of &, onto F,.

THEOREM 3.2. Let M be a compact non-degenerate PC manifold of
index r. Assume that r=1 and M satisfies conditions (C.1) and (C. 2).

(1) g(M)= 2 gw, Ca(M)= Y4, (direct sum) and dim &, =dim §._,,.
Moreover g(M) and Ca(M) become graded Lie algebras with respect to
these decompositions.

(2) If an infinitesimal automorphism X of M is contained in a(M)N
Gws then X satisfies [ X, ['(SH]CI'(S, i=1, 2.

Assume further that the scalar curvatures o, and ¢, are equal to real
constants ¢, and c,.

(3) The case where c;=c, (=c)>0: g, =0 for v+0, —c, ¢, o =8,
8o =8, G =8y and 9(M>:CQ(M):Q(0)+g(c>+9(—c)-

(4) The case where both ¢, and c, are non-positive : G =8, =0 for
v#0, gg =8y and Q(M):CG<M):Q_<0)-

(5) The case where c;>Max (0, ¢y): g, =0 for v>0 or v< —c¢y, &, =0
Jor v#0, g =8« and Ca(M)=gq. The case where c,>Max (0, 1) goy =0
Jor v<O0 or v>c, &, =0 for v£0, go =8¢ and Ca(M)=g.

Proor. We prove only (2). The other assertions follow immediately
from [Proposition 3.1. Let X be an infinitesimal automorphism of M which
is contained in a(M)Ngw. Then we see that the function fy corresponding
to X satisfies [J;[], fx=Nfx=0. By [Proposition 2.4, we have [J,[], fx=
[i[lfx=0. Take any cross section Y (resp. W) of S! (resp. of .S%. Then
we have

VYVWfX: VWVY‘fX: 0,
which implies that
(dﬂ) (VY XS’ W) - (da) (VW XS’ Y) = O ’

where X5 is the S-component of X. Therefore we have VyXS<I'(SY) and
VwXSel'(S%). From the fact that X is an infinitesimal automorphism and
the fact that P and S are parallel with respect to the canonical affine con-
nection V, we obtain
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[X, Y] =[X, YIS=[f2& YIS+[X5, Y5+ [X5, Y]
=fxV e YV s Y-V XS,
Since ' is parallel with respect to I/, we have [X, Y]<I'(SY). Similarly we
obtain [X, W]&I'(S?. Therefore we have [X, I'(S")] C I'(S?). g.e.d.
3.2. Condition (C. 3) and the space F(M). In the rest of this section,

we further assume the following condition :
(C.3) The Ricci tensor R* satisfies

R¥X, Y)=(r+1) qg9(X,Y) for any X, YES,,
R¥(X,Y)=(s+1) cq(X, Y) for any X, Y&.S2Z,

where ¢; and ¢, are real constants.
First of all, we remark the following equalities :

A=E-LIhN=(+1) all,

Ay =[B+[TeN—(s+1) cz[ ],

As= (Ll = D2D1 s

A =A+r+1) N2 —=re; N+2[;N),
Ay = Ay+(s+1) N2+ s, N—2[,N),
Ay=Ay—s[ [\ N+r[ |, N—rsN2.

We also remark that the operators A;, [ |; and N commute one another.
For each triple (4, 4, v) of real numbers, we define a subspace F , , of

C°(M) by
Foum = {fE€C(M)| L f = 4fs Uhf =4fs Nf=vf)

Moreover we define subspaces F? =0, ---,4 of C*(M) as follows: First
we put F'=Fqo0. If ¢,#0, then we put F'=Fipe 00 and F*=Fq. o _.),
and if ¢,=0, then we put F'=F*=0. Similarly if ¢,#0, then we put F?=
Fo,sve,0 and F*=Fq,, ., and if ¢,=0, then we put F?=[F*=0.

ProposiTiON 3.3. Let M be a compact non-degenerate PC manifold of
index r. Assume that r=1 and M satisfies conditions (C. 1), (C.2) and (C. 3).
4
( F(M)=>,F¢ (direct sum).
i=1

1)

(2) F° consists of all constant functions.

(3) If ,=0 (resp. If c,=<0), then F'=0 (resp. F?*=0).

(4) If a,<c, or ;=0 (resp. If ¢;>cy or c;=0), then F*=0 (resp. F*=0).

Proor. We first show that FECF(M), i{=0,---,4. Let fEF: By
(3. 4), (3.5) and (3.6), we have
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Aifzo, i:1,2,3.

Hence it follows from [Proposition 2.6 that feF(M), which proves our
assertion. Conversely we will show that F(M)C }F'. First of all, we

remark that dim F(M)< +oo and that the operators [ ], [ ], and N are
self-adjoint and leave F(M) invariant and commute one another. Therefore
we obtain

F(M)= 2 Fg, 0>

where F( ;. is the subspace of F(M) defined by

F()‘;uzz’”) = F(M) n F(Zl,lz,v) .

Let (4, 4, v) be a triple such that F(; ;. #0. We must show that F , .
is contained in some F'. Since A;f=0, we have

(3. 4) B—vh—r+1) c4=0,

(3. 5) Bdvly—(s+1) =0,

(3. 6) WA =0.

Since [1, [ s [J: and [, are positive semi-definite operators, we obtain
(3.7) 4=0,

(3. 8) =0,

(3. 9) A4 =0,

(3.10) A—sv=0.

Moreover since A; are positive semi-definite operators, it follows that
(3.11) (r+1) (m?—rev+24v) =20,

(3.12) (s+1) (2?24 scov—24v) =0,

(3.13) —shv+rigy—rsf=0.

By (3.6), (3.7) and (3. 8), it suffices to consider the following three cases.
1] The case where 4,=2=0: By (3.9) and (3.10), we have v=0.
2] The case where 4 >0 and 2,=0: By (3.4), we obtain

A=v+(r+1)c.

Substituting 4, =v+(r+1) ¢, into (3.9), we have

V+Clgo.

By (3.10), we have v=0. Hence we obtain
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—q=v=0.

On the other hand, it follows from (3.11) that
viv+c)=0.

From these facts, we see that v=0 or v=—¢,. If v=0, then we have
(A, A v) =((r+1) ¢, 0,0) and ¢=0. If v=—¢, then we have (4, 4,v) =
(rey, 0, —¢;) and ¢,=0. Moreover by (3.12), we have ¢;=c,

3] The case where =0 and 4,>0: In the same manner as in 2],
we see that the triple (4, 4, v) coincides with (0, (s+1)c; 0) or (0, sc, ).
Furthermore we see that if (4;, 4, v)=(0, (s+1) ¢y, 0), then ¢,=0 and if (4, 4, v)
=(0, scy, ¢3) then ¢,=0 and c;=¢

We have thus shown that F(M)c ), F? and hence have completed the
proof of (1). (3) and (4) follow immediately from the discussions in 1], 2],
and 3]. Let f be a function contained in F? then we have [}, f=[f=
Nf=0. By Proposition 2.4, we have [ J; f=[].f=0. Hence it follows that
Vf=0. Thus f is constant, proving (2). q.e.d.

Let f€F, ,,». Then we see that fEF( 4, _s,-». Therefore putting
Fi=FinF(M), we obtain

CoROLLARY 3.4. (1) F(M)NF(M)=3Ft (direct sum).
(2) F=F, Fi=F' gnd F?=F>

(3) If c;=cy, then F3=F% and F*=F*.

(4) If c;#cy then F3=Ft=0.

3.3. Condition (C.3) and the structure theorems on the Lie algebras
g(M) and Ca(M). Let us denote by g* the subspace of g(M) which cor-
responds to F? through the isomorphism u—f, of g(M) onto F(M).

THEOREM 3.5. Let M be a compact non-degenerate PC manifold of
index r. Assume that r=1 and M satisfies conditions (C.1), (C.2) and
(C. 3).

(1) g(M):i:gi (vector space direct sum).
i=1

(2) ¢'={C¢, ¢"+a'+g={ucgM)|l¢,«] =0} (=gw). If c#0, then
3—{ueg( )"/_1[5’ u]:'—clu} <:g(-—cl))' If‘c2$0’ then g‘-{uEg(M}]x/—l
[&, u]l =cou} (= g<c2

(3) If ueg' or usg® (resp. If ucsg® or usg'), then the cross section
US of S corresponding to u satisfies USES; (resp. UsES)) at any point x
of M.

(4) g i=0,1,2, are subalgebras of (M), and gwy=g"+g'+a® (direct
sum of Lie algebras).
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(5) [¢5¢lca® 1=0,1,2, and [¢, gl gt 1=0,1, 2.
(6) If ;=<0 (resp. If ;<0), then g'=0 (resp. g2=0).

(7) If e;<cy or ;=0 (resp. If c;<c, or c,=0), then g*=0 (resp. g*=0).
(8) If ¢;=c;>0, then [gd gl Cg'+g'+g%

Proor. (1) follows immediately from (1) of [Proposition 3.3

From (2) of Proposition 3.3, we have g°={C¢}. It follows from Pro-
position 3.3 that F'+F'4+F*=F, if ¢,#0, then F*=F_,,, and if ¢+#0,
then F*=F,,. This implies that g*+g'+g’=gq, if 70, then g*=g_c,,
and if ¢;#0 then g*=g¢,, proving (2).

Now let us prove (3). Let u=gl. Then the corresponding function
f. satisfies [ ], /,=0, which implies that /'y f,=0 for any YeS2 We have

(do) (US, Y)= —Fsfu=0,

and hence US&S!. The other assertions of (3) are quite similar.

Let u, vEqgq. Let us denote by U and V the cross sections of T(=.S
+P) which correspond to # and v. We first remark that &f,=§f,=0 and
[&, US]=[&, V5]=0 and [U, V]=(Usf,— V8f,) E+[US, V5]. Therefore we ob-
tain fr,,0=USfs— V5f, and Nfw,a=0.

Assume that «, vegl. By a direct calculation, we have
(WU = US(Cuf) + =1 LValafu VsV fot USN) 4 =1 [ fuNfo
:<7‘+1) ClUsfv_*_“/jZVaVéfu Vdefv .
ab

In the same manner, we obtain
DI(VSfu) - <r+1) 1 stu‘]f_*/?ZILVaVBfu VbVa, vy

Therefore we obtain

Dlﬁu,v] - (7"—{—1) C]ﬁu,v] .

Similarly we obtain

Dzﬁu,v] =0.

From these facts we obtain fi, » < F', implying that [g%, g']Cg'. In the same
manner, we have [g? g% Cg?%

Let u=g! and veg? By (3), we have US€.SL and VS€S2.  Since [, fu=
J.f,=0, we have

ﬁu,-‘u] = Uva_ stu = 0 ’

implying that [«, v]=0. Therefore we have [g!,g*]=0. We have thus
proved (4).
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(5) follows directly from (2). (6) and (7) are also immediate from (3)
and (4) of Proposition 3.3. Finally (8) follows from (2). q. e. d.
As a consequence of [Corollary 3.4, we have

THEOREM 3.6. Let M be a compact non-degenerate PC manifold of
index r. Assume that r=1 and M satisfies conditions (C.1), (C.2) and
(C. 3).

4
1

(1) If c;=cs, then Ca(M)=2.¢. In particular, if ¢;=c;=0, then

Ca(M)=g(M)=g".
(2) If c;%#cy then Ca(M)=g'+g'+g2

§ 4. Applications and examples (the non-degenerate case)

4.1. Some general facts on holomorphic line bundles. Let M be an
(n—1)-dimensional complex manifold, and F a holomorphic line bundle over
M with a hermitian metric ~. Let P be the principal C*=GL (1, C)-bundle
associated with F, and z the projection of P onto M. For each a=C¥,
let R, denote the right translation, that is, R,x=2xa, xEP.

Let {U,} be an open covering of M (with sufficiently small U,’s), and,
for each a, let ¢ be a local frame of F defined on U,. Let us consider
the corresponding holomorphic trivializations x—(z(x), 2*(z)) of ==(U,) onto
U,x C*, and the corresponding system of transition functions, {r,;}. Then

we have
2*(za) = 2*(x) a, x=xY(U,), acC*,

2'(2) = 7,4(z(2)) #(2), 2 (U.NU).

For each « we define a function 2* on U, by A*(y)=h(es %), ycU,,

and put w,=dlogh*. As is well known, the l-forms n*w*+ —dz* on

a

n~Y(U,) define a global 1-form » on P, which is a connection form in the
principal bundle P and represents the canonical connection of the hermitian
holomorphic line bundle F (cf. [7]). Let us now consider the curvature

~

form 2=dw of w. Then we know that there is a unique 2-form ® on M
such that n*@:%}—Q, which is usually called the first Chern form of F.
Note that @ is a real form of type (1.1).

Let M be the U (1)-reduction of P defined by %, which is a real hyper-
surface of P, and let S be the induced PC structure on M. It is easy to
see that MN#x~Y(U,) is defined by the equation z*h*|2*|2=1. From this fact

we easily obtain
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ProposiTION 4.1 (cf. [7]). For each xeM, S, consists of all X&
Tt(P), such that o(X)=0.

Let &p be the vector field on P induced from the 1l-parameter group
of right translations R,=,, t&R. Clearly &p is tangent to M, and hence
the restriction & of & to M becomes an infinitesimal automorphism of the

PC manifold M. We define a 1-form 6 on M by
= —v—1i*w,

i being the injection M—P. Then we have 0(§)=1 and 6(S)=0 (Proposi-
tion 4.1). Especially we see from this fact that M satisfies condition (C. 1)
with respect to £ Let L be the Levi form on M corresponding to the
real 1-form #. Then we have

ProposiTION 4.2. L(X, V)=—2(X,Y), X, YES..

Let us now consider the Lie algebra g(M) of all holomorphic vector
fields on M and its subspaces g, (see §1 and §3). From the definition of
£ we easily obtain

ProposiTION 4.3. (1) If v is not an integer, then g, =0.

(2) If v is equal to an integer m, then

Jmy = {ue g(M)

We denote by g(P) the Lie algebra of all holomorphic vector fields on
P, and, for any integer m, define a subspace g(P)m by

§(P)aw = { XEG(P)| R X = " X,asC*} .

Reu=a"u, ucU(1)} .

Then we have

PrOPOSITION 4.4. The assignment X— X|M gives an isomorphism of
g(P)emy onto gum-

By virture of this fact the study of g is reduced to that of g(P)wm.

We denote by C°(P)wm, the space of all functions f on P such that
Rif=a™f, acC*. We will construct a linear mapping f=Ff of C®(P)m
to I'(F™, where F™ denotes the m-th tensor product of F if m=0, and
the (—m)-th tensor product of the dual bundle F* of F if m<0. Take
any fEC®(P)wm. For each a we define a function f* on = }(U,) by f*=
(z)mf. Then we have R}f*=f* a=C*, and hence there is a unique function
F«on U, such that ff=r*f. We have f<=(r,)"f*. Therefore the local
cross sections f*X(e’)™ of Fm give rise to a global cross section f of F™,
where (¢9)™ denotes the local frame of F™ naturally induced from e. This
completes our construction. It is easy to see that the assignment f—f gives
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an isomorphism of C*(P)y, onto I'(F™) and that f is holomorphic if and
only if 7 is holomorphic.

We now denote by I'(T“(P))wm the space of all cross sections X of
T%(P) such that R, X=a™X, acC*. We construct a linear mapping X—X
of I'(TY(P))my to I'(TW(M)QF™) as follows: For each a we define a
vector field X* on z71(U,) by X*=(2*)»X. Then we see as above that there
is a unique vector field X* on U, such that X*=r,(X*) and that the local
cross sections X*®(e®)™ of TH(M)QF™ give rise to a global cross section
X of TO(M)QF™ completing our construction. It is easy to see that if X
is holomorphic, so is X.

For any Xel'(T*(P))mw we put pxy=w(X), which is an element of
C®(P)um. Then we notice that the assignment X—»(X, fx) gives an isomor-
phism of I'(T"(P))wm, onto I'(TH(M)RF™) x I'(F™).

As we have just seen, the mapping X—X induces a linear mapping of
G(P)my to hy(TH(M)QF™), which we denote by k,. As before let @ be
the Chern form of F. Let us assume that @, is non-degenerate at any
point x of M. Then we have a linear isomorphism _|@ of T (M)QF»
onto (7T°{(M)*®F™), which is naturally induced from the isomorphism X—
X_|® of T (M) onto (T**(M))*. Let 9: I'(F™—I(T*'(M))*®XF™) be the
Cauchy-Riemann operator, and let £€%:© be the (1, 0)-part of the real vector
field £&,. Then the next theorem determines the image and the kernel of
the linear mapping &,,.

THEOREM 4.5. Assume that ®, is non-degenerate at any point x of M.
(1) Im , consists of all YET (TY(M)QF™) such that Y _|® is d-exact.
(2) Ker &y consists of all holomorphic vector fields of the form p&3°,
where p is a holomorphic function in C°(P)u,. Hence Ker &, is isomorphic

to I'ng(F™).

Proor. Let X&g(P)wm. If we put ¢x=X |2, we see that ¢x is a
1-form of type (0,1) on P, and satisfies : ¢x(p)=0 and R} ¢gx=a ™ ¢y, acC*.
For each a we define a l-form ¢% on 7~ '(U, by ¢%=(2"¢x. Then it
follows that there is a unique 1-form ¢% of type (0,1) on U, such that

V=1
2

r*J%=¢% Since 7*@= Q, we easily obtain

R jo= J;{ L je®em  on U..

Since X is holomorphic, we have [X, Y]eI'(T*(P)) for any Y&l (T*(P)),

and hence
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9x(¥) = 2(X, V) = Xo(¥)— Yo(X)—o([X, ¥])

= — Ylox ,
meaning that ¢y=—0py. Therefore we have 3= —ap3, and hence
) VT -
X |0=— on 0px .

Conversely let Y be a holomorphic cross section of T™(M)QF™ such
that Y |@ is d-exact. Take a cross section § of F™ such that

Y 0= _\/.2;1,

As we have remarked before, we can find a unique X&(T%(P))m such that
X=Y and py=p. We show that X is holomorphic, which will complete the
proof of (1).

Fix a and consider a coordinate system w!, ---, w" ! on U,. Then the

op .

vector field X* may be expressed as follows :

0
0t

X= 21&5
Furthermore the n functions w?, 2* form a coordinate system on z~!(U,),
and the vector field X* may be expressed as follows :

0 0
X = L?Sz_a‘wl +77_8£"‘— .

For our purpose it suffices to prove that X* is holomorphic, i.e., the func-
tions & and 7 are all holomorphic. Since my Xe=X+ we have & =r*&,
Since X is holomorphic, we see that £ are holomorphic.

If we put y*=n/2%, we have R}7*=7%, a€C*. Hence there is a unique

A~

. 1
function #* on U, such that y*==*j*. Since w=r*o0"+ —z'a—dz“, we have

w(Xa):ﬂ*<wa<Xa)>+ﬂ*,7a.
On the other hand we have
o(X?) = (27" 0(X) = (2)" px = p% = 7* §% .
Hence it follows that 7*=p%—*(X%). Since X is holomorphic, we have

Var (%) = —dar (R, 7)+ Ko 0(F)— o (R, 7))

= —do* (X, V)=2n/ -1 0(X~, V)= Yps.
where YeI'(T%(M)). This means that 7 and hence 3 are holomorphic.
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We have thus shown that X is holomorphic, and hence have completed
the proof of (1). , .

It remains to prove (2). Let X&g(P)w. . Then we see that XeKer &,
if and only if 74 X*=X*=0. Clearly this last condition means that X is
of the form p&%®, where p is a holomorphic function on P and p.=C%(P) .
These prove (2). q. e. d. ;

4.2. Non-degenerate PC manifolds associated with pairs of positive line
bundles. For each i=1 or 2, let M, be a compact complex manifold of
dimension 7;, and let F;, be a holomorphic line bundle over M, with a
hermitian metric A;,. We assume that the first Chern form @; of the her-
mitian holomorphic line bundle F; is positive (cf. [16]).

Let g; be the Kdhlerian metric on M, associated with @;, and let (M, §)
be the product of the two Kahlerian manifolds (M, §,) and (M,, §,). For each
point ¥y =, y2) & M= M, x M,, we define a 1-dimensional vector space F, by

Fy=(F)yQ(F))
(Fy)3 being the dual space of (F),, and put F=UF,. Then F is a holo-
morphic line bundle over M. Let (h)* be the hermitian metric of the dual

bundle (Fy)* of F, which is naturally induced from h,. Then we define
a hermitian metric 2 of F by

hy = (h1)y‘®(h2>;<2 ’
or
h(u@v, u@Qv) = hy(u, u) hs (v, v),

where u&(Fy),» and veE(Fy);-.

In this paragraph we consider the PC manifold M which is associated
with the hermitian holomorphic line bundle F over M, thus obtained. Recall
that M satisfies condition (C.1).

ProrositioN 4.6. The PC manifold M is non-degenerate of index
ri, and satisfies condition (C. 2).

Proor. Let x be any point of M. For i=1 or 2, we define a subspace
St of S, as follows: We first remark that the differential 7% of the projec-
tion 7’ : M—M maps S, isomorphically onto T%%(M),, where y=x(x), and
that T%9(M), is naturally decomposed as follows :

Tl’()(M)y = Tl’o(Ml)y"I' T1’0<M2)y2 ’
where Y=, 9%. Now S! is defined to be the subspace of S, which cor-

~ ~

responds to the subspace T%°(M,),: of T%°(M), through the isomorphism
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7%|Ss. It is clear that S=U.S. is a subbundle of S and that S=$‘—|—S2

(direct sum). Let us apply Proposition 4.2 to the three line bundles F!, F?
and F. Then it is not difficult to see that the Levi form L, of M at x«
is negative definite (resp. positive definite) on S, (resp. on S2) and that .S}
and S? are mutually orthogonal with respect to L, implying that M is
non-degenerate of index r,. Furthermore it is not difficult to see that both
St and S? are parallel with respect to the canonical affine connection F of
(M, ¢). Thus we have seen that M satisfies condition (C. 2). q.e. d.
Hereafter we assume that both M, and M, are Einstein manifolds ;

E;:k:(ri'{'l) ¢ (i=1, 2),

where R} are the Ricci tensors of the Kihlerian manifolds M,, and ¢; are
real constants. A direct calculation shows that the Ricci tensor of the
canonical affine connection F satisfies the equalities

RYX, Y)=(r+1)eg(XY), X YeSi(i=12),

implying that M satisfies condition (C. 3). Therefore we know from
3.5 that the Lie algebra g(M) is decomposed as follows :

TureoreM 4.7. (1) If >0 (resp. If ¢;>0), then g' (resp. @¢° is
isomorphic to Iy (T V) (resp. to ooy (THO(M))). If ;=0 (resp. If c,<0),
then g*=0 (resp. g*=0).

(2) If g0 (resp. If ¢*+0), then M, (resp. M,) is biholomorphic to
the ri-dimensional complex projective space P:(C) (resp. to the ry-dimensional
complex projective space P+(C)), and correspondingly F, (resp. F,) is iso-
morphic to the hyperplane bundle H; over P (C) (resp. to the hyperplane
bundle H, over P:(C)).

ProorF. Assume that ¢;>0. Let u<gl. Since g'Cgq, we have a
unique element X of g(P)q such that X{M=wu. We claim that (x(X)), &
Tw(M),: for any y =, y)€M. Indeed the cross section US of S cor-
responding to u satisfies USeS:, which implies that x(X),&T%(M),. Let
us remark that I (T%°(M)) is naturally decomposed as follows :

[yt (T(M)) = Toer (T + Dios (T4 (M)

(direct sum). Hence we have y(X) & (T(M,)).
Let us prove that the assignment u—x,(X) gives an isomorphism of gt
onto [ (T™(M)). Suppose that x(X)=0. Let f, be the element of F!
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which corresponds to z. It can be easily seen that US=0 and hence [ ], f/,=0.
Since f,€F', we have [, fu=(r;+1)c;f., and hence f,=0. This implies
that «=0. We have thus shown that the linear mapping u—ro(X) of g
to [y (TYO(M)) is injective. Take any Y&I@h, (T'0(M,)). We remark that
H%'(M) is naturally decomposed as follows :
HY (M) = H\(M,)+ H*'(M,)  (direct sum).

It is easy to see that the cohomology class [Y |®@] determined by the closed
1-form Y |@ is contained in H®'(M,). Since ¢;>>0, we see that the canonical
line bundle k(]\z) of M, is a negative line bundle. By Kodaira’s vanishing
theorem, we have H®!(M,)=0 and hence Y |@ is d-exact. It follows from
Theorem 4.5 that Y&Im k,, which implies that /co(g‘)ZFhol(Tl"’(Ml)). In
the same manner, we can prove that if ¢,>0, then g¢* is isomorphic to
o (TY(M,)).  Furthermore it follows from [Theorem 3.5 that if =0
(resp. if ¢,<0), then g!=0 (resp. g2=0). We have thus proved (1).

To prove (2), we first remark that 2,=(r,+1) ¢;®,, where X, (resp. @)
denotes the Ricci form of the Kihlerian manifold M, (resp. the first Chern
form of the hermitian holomorphic line bundle Fj). Assume that g*+0.
From [Theorem 3.5 and [Proposition 4.3 and the fact that g?Cgc ., it
follows that ¢, is a positive integer. Hence we have the following inequality

X = (r+1) @

According to the result of Kobayashi-Ochiai [8], we see that M, is
biholomorphic to the complex projective space P:(C) and F; is isomorphic
to the hyperplane bundle H,; over P7:(C). In the same manner, we see
that if g¢0, then M, is biholomorphic to P":(C) and F; is isomorphic to
the hyperplane bundle H, over Pm:(C). g. e. d.

4.3. Special cases of 4.2. For i=1 or 2, let M, be the r;-dimensional
complex projective space Pri(C), and let F; be the k;-th tensor product
(H,)¥ of the hyperplane bundle over P7i(C), where k;=1. Let 2, -, 2L, be
homogeneous coordinates of Pri(C), and for each 0=a=r; let U, be the
open subset of Pri(C) defined by 2i#0. We define a function A; on U by

i o \kg
b= (3 1)
r=0

Then we see that the functions A, a=0, -+, 7y, satisfy the relations

he=hi(12/12] )" on UiUU,

and hence define a hermitian metric of the line bundle F,.
In this paragraph we apply the arguments in 4.2 to the hermitian
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holomorphic line bundles F; over M,, thus obtained. First of all, we remark

that the Ké#hlerian metric §; are of constant holomorphic sectional curvature
2/k;, from which follows that

ﬁf: 7‘12;1 G -

We will calculate the dimensions of the subspaces g' of g(M). By (2) of
I'heorem 3.5 we have dim g°=1. By (1) of Theorem 4.7 we have dim g'=
dim [ (TH0(P(C))). It is well known that I, (T%9(P7:(C)) is isomorphic to
gl(r;+1, C)/center. Hence we have dim g'=dim [y (T*(P"(C)))=r(r,+2),
and similarly dim g?=7,(,+2). Let us now calculate dim g®. We first recall
that g*=g1,=g(P)L ((2) of [Theorem 3.5 and [Proposition 4.4). From
(1) of Propoéition 4.3 it follows that if k=2, then ¢*=0. Thus we con-
sider the case where k,=1. We assert that the linear mapping x_, gives
an isomorphism of g(P)_y, onto Iy (T%(M)XF-Y). Indeed by the Kiinneth

formula we have

HY(M, F~) = H'(Pr(C), Hi)QHY(Pr+(C), HE'),

H{(M, F1) = H0<PT1(C), Hf‘>®H1<P”(C)’ Hé%)
(0, HRE (P, )

Since HY(Pr:(C), Hy)=H\P(C), HT)=0 (cf. [1]), it follows that H°(M, F-Y)
= HYM, F-)=0. Hence our assertion follows immediately from
4.5. Therefore using the Kiinneth formula again, we obtain

§* = Do (TH(M)QF )
= H'(P(C), Tw(Pr:<C))®H;1)®H°(Pn(c>, HE+)
+ Ho(Pr(C), HiY)QHo(Pr+(C), T (Pr(C)\Q HE:)
= Ho(P(C), T™(P~(C))®H)Q H(Pr+(C), HE:),

whence dim g*=(r;+1) <r22—k2> (cf. [I]). In the same manner as above, we
2

can show that if k=2, then ¢*=0 and if k=1, then dim g*=(r,+1) (ﬁzlﬁ)_
1

We have thus proved the following

ProrosiTiON 4.8. (1) dim g°=1, dim g'=7y(ry+2), and dim g2=r,(r,+2).
(2) If ky, ke=2, then g®=g*=0.



Holomorphic vector fields on real hypersurfaces 93

(3) If b=1 and k=2, then ¢=0 and dim g@=(r+1) (“,j’%). I
2 .

k=2 and ky=1, then $=0 and dim g*=(r;+1) (rl}:kl).
1

(4) If ky=ky,=1, then dim g*=dim g*=(r,+1) (rz+1).
This proposition combined with [Theorem 3.5 gives the following

COROLLARY 4.9. (1) If ky, k=2, then g(M)=Ca(M)=g¢"+g'+¢

(2) If k=1 and ky=2, then g(M)=g'+g'+a’+¢* and Ca(M)=
O+g+a. If k=2 and k=1, then g(M)=¢"+g'+a’+g* and Ca(M)=
g°+g'+¢>

(3) If ky=lky=1, then g(M)=Ca(M)=¢"+g¢'+¢"+§+g"

REMARK. Put n=r+r+1 and consider the n-dimensional complex

projective space P*(C). Let 2 -+, 2, be homogeneous coordinates of P"(C),
and let Q, be the hermitian quadric of P"(C) defined by

Nlal— 3 15=0,

- B=ry

which is a non-degenerate PC manifold of index 7. Then it can be shown
that if k,=k,=1, then M is naturally isomorphic to Q. as PC manifolds.
4.4. Non-degenerate PC manifolds associated with complex tori. Let
M be an (n—1)-dimensional complex torus. In his paper [11], Matsushima
constructed a class of hermitian holomorphic line bundles F over M, whose
Chern forms are non-degenerate and indefinite everywhere. We assert
without proof that the PC manifolds M associated with F are non-degenerate
of positive index, and satisfy conditions (C. 1), (C.2) and (C. 3), where (C. 3)
is satisfied with constants ¢;=c;=0. Therefore we know from

3.5 that g(M)=Ca(M)={C¢}.

§5. The structures of the Lie algebras g(M) and Ca(M).
(the strongly pseudo-convex case) ,

5.1. A general structure theorem on the Lie algebras g(M) and Ca(M).
Let M be a compact strongly pseudo-convex manifold of dimension 2n—1
satisfying condition (C.1). First of all we remark that M automatically
satisfies condition (C.2): S'=0 and $*=S. Thus we have the operators
[J,, Wa A, and the scalar curvature o which will be simply denoted by
[], W, A and ¢ respectively. Note that the operator A is defined by

A=[P+IN+ L REVVA+W.

Let us recall the results of § 2.
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ProposiTION 5.1. Let feC*(M). Then the following conditions are
mutually equivalent :

(1) fEFM).

(2) Af=0.

(3) (A4f,f)=0.

ProrosiTiON 5.2. (1) [, N and A are self-adjoint operators. Moreo-
ver [ and A are positive semi-definite.

(2) [ON=NI[], AN=NA.

(3) OJ-=-n—1)N, N=-—N.

(4) A—A=n(n—1) N*+n(n—1) oN—=2n ] N+W-W.

Although the finite dimensionality of the Lie algebra g(M) is not valid
any more for a strongly pseudo-convex manifold M (cf. [2]), we know the
following

Tueorem B ([4], [12] and [13]). Let M be a (2n—1)-dimensional
non-degenerate PC manifold, then

dim, a(M) < n?+2n.

Therefore we know from [Proposition 1.5 that F(M)NF(M) is finite
dimensional. As in §3, for each vER, let us define a subspace F,, of
F(M) and a subspace F, of F(M)nF(M) respectively by

Fo ={feF(M)|Nf=yf},

Fo ={feFM)NFM|Nf =}

ProposiTiON 5.3. Let M be a compact strongly pseudo-conver mani-
fold satisfying condition (C.1).

(1) Each F, is finite dimensional.

(2) FIM)nF(M)=XF,, (direct sum), and dim F,=dim F_,.

Assume further that the scalar curvature o is equal to a real constant c.

(3) F«n:Fw)-

(4) The case where ¢>0: F,,=0 for v>c, and F,, =0 Jor |y >c.

(5) The case where ¢c<0: F,,=0 for v>0, and F,, =0 Jor v+£0.

Proor. First of all, we see that any f&F,, satisfies

(A+NY f=rf.

Since the operator A+ N*is a self-adjoint strongly elliptic differential operator,
it follows that F, is finite dimensional, implying (1). We see from Propo-
sition 5.2 that N is a self-adjoint operator and leaves invariant the finite
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dimensional subspace F(M)NF(M) of C*(M). Hence we have
FIM)NF(M)=Y F, (direct sum) .

It follows from [Proposition 5.2 that the assignment f—f gives an isomor-
phism of F, onto F_,. Hence we obtain dim F,=dim F._,, proving (2).

In the following we assume that ¢ is equal to a constant ¢. As in the
proof of Proposition 3.1, we have W=0. Take any f€F,. Then it follows
from Proposition 5.1 that Af=Nf=0. By (4) of Proposition 5.2, we have
Af=0. Thus we obtain fEF, implying (3).

To prove (4) and (5), it suffices to prove that F,=0 for v>Max(c, 0).
Let us assume that v>Max(c,0) and take any f&F,. Then we have
Af=0 and Nf=yf. Moreover we have

Af=nn—1) v+ f—2m[]f.

By [Proposition 5.2, we have

0 <(Af, f) =n(n—1)v(v+o) (£ f)—2nm(1£.f) -

Hence we have

Cf )= 2= p .

By Proposition 5.2, we have

Gfp <=1 p g

It follows from (1) of Proposition 5.1 that

0< P .

Hence we obtain f=0. This proves our assertion. q.e.d.
As in §3 we define a subspace g, of g(M) and a subspace &, of
Ca(M) respectively by

0oy = {uEg(M)lx/jl_[E, u] = vu} ,
0o = {UECO(M)I‘/-——l[E, u] = vu} )

Then by Proposition 5.3, we have the following

THEOREM 5.4. Let M be a compact strongly pseudo-convex manifold
satisfying condition (C.1)
(1) g are finite dimensional, and [§.y, 8] CBtutn-
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(2) Ca(M)=3>3, (direct sum), and dim §,,=dim &._,,

Assume further that the scalar curvature.o is equal to a real constant c.

(3) gw=8a0.

(4) The case where ¢>0: g, =0 for v>c, and 8, =0 for |v|>c.

(5) The case where ¢<0: g, =0 for v>0, and §,, =0 for v+0.

5.2. Condition (C.3) and structure theorems on the Lie algebras g(M)
and Ca(M). As in 3.2, we assume the following condition :

(C.3) The Ricci tensor R* satisfies

R¥X, Y)=ncqg(X,Y) for any X, YES,,

where ¢ is a real constant.
For each vE R, we define subspaces F},, and F?, of C*(M) respectively by

b= {feC™(M)| D=0, Nf=»f},
b ={fEC(M)|1f = (nc—»)f. Nf=vf}.

Then we obtain the following

ProprosITION 5.5. Let M be a compact strongly pseudo-convex mani-
fold satisfying conditions (C.1) and (C. 3).

(1) Fo,=F4,+F, (direct sum) for v#nc, and Fip=Flpy=Fi.

(2) Fu consists of all holomorphic functions satisfying Nf=uf. In
particular, Fl, consists of all constant functions.

(3) The case where c>0: F(,,=0 for v>0 or 0>v>—c, and F¢,=0
Sfor v>c or ¢>v>0.

(4) The case where ¢<0: F{,=0 for v>0, and F?,=0 for v>nc.

(5) The case where ¢>0: F(M)N\F(M)=Fl,+ Fty+F}_,,+ F%, (direct
sum), and dim F(_,=dim F,. The case where c<0: F(M)NF(M)=F},

Proor. First of all, we remark that condition (C.3) impies that
A=P+N[]—nc[].

Hence we have F{,,CF, and F},CF,,.
Conversely let us prove that F,CF},,+F?,. It follows from

5.2 that [ ] is a self-adjoint operator leaving invariant the finite dimensional
subspace F(, of C*(M). Hence we have

Fo,=2Fq,, (direct sum)
2

where we put Fo,={f€F,|[1f=1f}. Take any f&F,, then we have
Af=2A+v—nc)f=0.
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Hence we see that if F(;, #0, then =0 or A=nc—v. We have thus proved
our assertion. From this, (1) follows immediately.

Let f€F!,. From the fact that []f=0, it follows that Yf=0 for any
YesS,, xt&M. Therefore f is a holomorphic function. In particular, if
fEF}, then we have []f=Nf=0 and hence []f=0. These imply that
Vf=0, and hence f is constant. We have thus proved (2).

Since [ ] and A are positive semi-definite operators (Proposition 5. 2),
we see that if F},#0, then —(n—1)v=>0 and n(n—1)v(v+¢)=0. Similarly
we see that if F%,#0, then nc—v=0, n(c—v)=0 and n(n+1)v(v—c)=0.
Now (3) and (4) follow from these facts.

By Proposition 5.3, we have

FIM)nNF(M)=>F,  (direct sum).

The operator [ | leaves invariant the subspace F,. Therefore by (1) we
have

F, ———Ff,)—i—ﬁ(zp) (direct sum) for v#nc,

F(nc) - F‘%nc) - F?nc) ’
where we set F%v)ZFmﬂFh) and ﬁfv):F‘(y)ﬂF(zy). It is easily verified that
Fly=F, Fy=F%, F_y=F_, and F},=F%,. Moreover the assignment
f—f gives an isomorphism of F{_, onto F’,. On the other hand we see
from [Proposition 5.2 that if v#0, —¢, then F,,NF(M)=0, and if v+0, ¢,
then F?,NF(M)=0. Hence we have F“,):O for v£0, —c, and F‘%u):o for
v#0, c. We have thus proved (5). g. e. d.

Let g}, be the subspace of g, which corresponds to the subspace Fi,
of F, through the isomorphism u—f, of g, onto Fi,.

THEOREM 5.6. Let M be a compact strongly pseudo-convex manifold
satisfying conditions (C.1) and (C. 3).

(1) @gu=g.,+d, (vector space direct sum) for v#nc, and §meo =8ine =
Glne)-

(2) g,={fE|f is a holomorphic function satisfying Nf=yf}. In
particular, g ={CE}.

(3)  [8tws 8] C8lurnrs (861 80 =0, [l 800 S@lurnrs (8005 Gl S0y and

[80)» 8n] C 8-
(4) The case where ¢>0: gt,=0 for v>0 or 0>v>—c, and gj,,=0

for v>c or ¢>v>0.
(5) The case where ¢=0: gi,,=0 for v>0, and §,,=0 for v>nc.

Proor. We will show the proof of (3). The other assertions follow
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directly from [Proposition 5.5 Let u<g, and veg,,. Let us denote by
U and V the cross sections of T, which correspond to » and v. First of
all, we have

[U, V1= {=1(u=)fufot USfo—VS£i) €
+H[US, VS +4 —1 puf, US—4/ =1 uf, V5.
Hence it follows that

(5. 1) S = “/:TW'"”)fufv"l' Usfv — V5.

By a simple calculation we obtain

LAk =0 fufo otV =1 (V3 + USE) ,
CUUSS) = US(L] fo) —(USFo) +4 — 1 v([ fo) fo
—wiT§mmﬁmnﬁ,

C(VS£) = VSO L) — 2 (VSf)+V =1 w(J fo) fu
AT OISV o,

and hence

(5.2) (O frwn =4 =1 (0L fo— =1/ f) +0(V3£)
— (U + US(L fo) = V(L Sf) -

Let u=gf,, and vegg,,. Since f, and f, are holomorphic, we have US=
V8=0. By (5.2), we have []frn=0. Therefore we have fi, nEF,..,
which implies [gf,), 8t.)] CG(u+v)- In particular if g=y, then we easily see from
(5.1) that fi, »n=0. Hence we have [gi,), gi,)] =0.

Let uegf,, and veg,. Then it follows that []f,=(nc—p) f, and
[ fo=(mc—y) fo. By (5.2), we have

Dﬁu,v] — <n —U— V)ﬁu,v]

Therefore we see that fi, wE F{.+.,, and hence [gf,, %)) C&,+u)-

Let ueg), and veg,,. We have []f,=0 and V5=0. Therefore it
follows from (5.2) that []fr,n=0. Consequently we have [g%,, gi,] Cgt.,.
Finally from (2) together with the definition of @, it is clear that [g}y), g%,]
gt q.e. d.

As a consequence of (5) of [Proposition 5.5, we have

THEOREM 5.7. Let M be a compact strongly pseudo-convex manifold
satisfying conditions (C.1) and (C. 3).
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(1) The case where ¢>0: Ca(M)=glo)+ g +al-c)+ &> (vector space
direct sum), and dim g{_,=dim gf,).

(2) The case where ¢=0: Ca(M)=g.

§ 6. Applications and examples (the strongly pseudo-convex case)

, 6.1. Finite dimensional subalgebras of the Lie algebra g(M). In this
paragraph, by using [Theorem 5.6 and [Theorem 5.7, we will prove the

following

THEOREM 6.1. Let M be a compact strongly pseudo-convex manifold
satisfying conditions (C.1) and (C. 3) with a positive constant c. If §i_+#0,
then Ca(M) is a maximal finite dimensional subalgebra of g(M).

Proor. Let b be a finite dimensional subalgebra of g(M) which contains
Ca(M). Since é=Ca(M)ch, we have [§b]Cb. For each vER, we define
a subspace b, of b by

b, = {uebl«lff[s, u] = uu} =bNgy .

Then we have b= > b, (vector space direct sum) and [b,, bey] The,pn-

By [Theorem 5.7 we have g{_.,Cb.,, and hence [by,, g{_] Tb(,_». For
any u &b, we define a linear mapping A, of g{_., to b,_, by

A, (v) = [u, v], VEQG( o) -
We recall that if #<b,, and veg_.), then
(6. 1) [U, V] ={=T1W+0) fufot USfo) +4 =11, UF,
where we have used the fact that VS=0 (see the proof of [Theorem 5. 6).

LemMA 6.2. Assume that b, #0 for some v, and let u be a non-zero
element of b,. Assume further that 1) v#0, —c or 2) v=—c and ue&g_,.
Then the linear mapping A, of §i_. to bo_s is injective.

Proor. We first remark that {r& M | f,(x)#0} is an open dense subset
of M, because the function f, satisfies the strongly elliptic differential equa-
tion ((J°+ N f,=v*,. Similarly we remark that if veg{_, and v=+0, then
{reM]| f,(x)#0} is an open dense subset of M. Clearly it suffices to con-
sider the following two cases.

A] The case where v#0 and ué£gi,,. Let vegi,, be such that A,(v)
=0. From (6. 1), it follows that v/, US=0. If v=£0, then we have US=0.
This contradicts the fact that uegy,.
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B] The case where v#—c and ucgl,,. Let vegi, be such that
A,(v)=0. From (6.1) and the fact that US=0, it follows that (v4-c) f, f,=0.
Hence we have f,=0, implying that v=0. g. e. d.

We are now in position to complete the proof of Theorem 6.1. Suppose
that b=Ca(M). Let y, be the real number defined by

v, = Min {v ERIB(,) * 0}

Since bDOgl_, we have y< —c. Consequently it suffices to consider the
following three cases.

1) The case where y,< —c. By Lemma 6. 2, we have b, _,#0, which
contradicts the definition of .

2) The case where y,=—c and there is real number v, such that b,
+0 and —c<y,<0. By Lemma 6.2, we have b, _,+#0, which contradicts
the definition of y,.

3) The case where yy=—c and b, =0 for —c<v<0. We assert that
b(_c)__':),.__g}_c). Indeed, by [Theorem 5.7, we have CG(M):Q}O)"}‘Q%O)‘!‘Q}_C)—}‘g%c).
Furthermore by [Theorem 5.6, we have b, =0 (v>0, v#c), by =g}, and
by =ge. From these facts follows easily our assertion. Now let » be an
element of b, such that u&g}_,. Then it follows from Lemma 6.2 that
the mapping A, of gi_, to by, is injective. Hence we have b, +0,

which contradicts the definition of w,. q. e. d.

REMARK 1. Assume that g'_,=0. By [Theorem 5.7, we have Ca(M)
=gty +ak. From (2) of Theorem 5.6 we see that, for each vER, g+
% +ai_, is a finite dimensional subalgebra of g(M). Let us further assume
that the vector field & is induced from a U(1)-action: (x,9cMxU(1)—
zac=M. Then we can show that there are a U(l)-invariant open subset
M+ of M and a hermitian holomorphic line bundle F, over an (n—1)-
dimensional complex manifold M, such that the Chern form of F, is nega-
tive and such that the PC manifold M* is equivariantly isomorphic to the
PC manifold M, associated with F, (the U(1l)-reduction of the principal
C*-bundle P, associated with F;). Furthermore by using this fact and reason-
ing in the same manner as in [15], we can show that the space F_,,
which is equal to the space of all holomorphic functions f on M such that
Nf= —yf, is not reduced to the zero space for any sufficiently large integer
y. Accordingly we know that, for any sufficiently large integer v, gc_,,#0
and hence gly+a%+gi_, is a finite dimensional subalgebra of g(M) con-
taining Ca(M) as a proper subalgebra.

REMARK 2. Let M be a compact strongly pseudo-convex manifold.
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Under the assumption of [Theorem 6. 1, we can show that M is isomorphic
to the unit sphere S?*»7! of C* as PC manifolds. In the forthcoming paper,
we will prove this fact more generally.

6.2. The Lie algebra a(M) and infinitesimal isometries. As in 4.1,
let M be a complex manifold of dimension 7—1 and F a holomorphic line
bundle over M with a hermitian metric h. We assume that M is compact
and the first Chern form @ of the hermitian holomorphic line bundle F is
positive. Let ¢ be the Kihlerian metric associated with @. Let us denote
by $(M) the Lie algebra of all infinitesimal isometries of the Kihlerian
manifold (M, §), which may be considered as a subspace of [ (T%(M)).
Let M be the PC manifold associated with the hermitian holomorphic line
bundle F (see §4). In that section, we defined the spaces §(P)m and the
linear mappings £, Of §(P)m to Iy (TH(M)XF™). We define a subspace
a(P)o of g(P)w by

a(P)o ={XEg(P)w| X MEa(M)}.

ProposiTiON 6.3. (1) Ker goNa(P)qg ={REX"}.
( 2) /Co(ﬂ(P)(o)):f(M)mIm K.

Proor. It is obvious that Ker ryN a(P)q D{RES?}. Conversely let Xe&
Ker ry,Na(P)q. By [Theorem 4.5, we see that X=r*pER?, where § is a
holomorphic function on M. Since X|Mea(M), g is a real valued function,
and hence p is constant. Therefore we have Ker kN a(P) C{RES}, prov-
ing (1).

Let Xca(P)y and let 5 the real part of X. Then we see that 7 is
tangent to M and the restriction /M to M is an infinitesimal automorphism
of M. Since 7 is invariant by the U(1)-action, it follows from Proposition
4.1 that &£, 0=0. This implies that «,2=<,do=d<,0=0. Therefore we
see that the real part 5 of X=r,(X) satisfies .2;@=0, which implies that 7 is
an infinitesimal isometry of M. Hence we have ky(a(P))CEH(M)NIm &,

Conversely let YEt(M)NIm k,. Then the real part { of Y satisfies

0=22,0=2d0( |0)=d(Y_|®)+d(Y_]).

_ —1 =
By Theorem 4.6, we have a function p on M such that Y_[@0=— ~/27r ap.

Then we have

implying that o+ is a pluriharmonic function on M. Hence we see that
the real part of p is constant. Let us denote by ¢ the imaginary part of
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o, then we have 9p=+—13g. Let X be the vector field on P such that
X is r-related to Y and o(X)=+/—1z*q. As in the proof of
4.5, we can show that X is holomorphic. Since w(X) is a pure imaginary
valued function, we see that the real part of X is tangent to M, and hence
X|Mea(M). g.e.d.

6.3. Holomorphic line bundles and Einstein Ké#hlerian manifolds. In
this paragraph we further assume that M is an Einstein Kghlerian manifold :

R*=ncg

where R* is the Ricci tensor of M and ¢ is a real constant. By Proposition
4.2, we see that M is a compact strongly pseudo-convex manifold. Moreover
it is easy to see that the Levi form associated with —¢& is positive definite
and the pair (M, —¢&) satisfies conditions (C. 1) and (C. 3).

Let us apply the results in §5 to the pair (M, —¢). First we remark
that g, ={ucg(M)W—1[§ u]=—vu}. It follows from [Theorem 5.6 that
go, is decomposed as follows: gq,=g(,y+a%, (direct sum) for v#nc. As in
Proposition 4.3, we know that if v is not an integer, then g, =0 and that
for each integer m, the assignment X— X|M gives an isomorphism of §(P)um,
onto gcm. For i=1 or 2, let us denote by g'(P)w the subspace of g(P)um,
which corresponds to gf_m).

ProposITION 6.4. (1) g'(P)wm =Ker k, and §'(P)um is isomorphic to
Fhol, (Fm) -

(2) &n induces an isomorphism of G (P)m onto Iy (T (M)QF™) for
m=+ —nc. :

Proor. Let XEg (P)wm. Since X|MeEg(_m), we can express X|M as
follows : X|M=f%, where f is a holomorphic function on M satisfying
R¥f=amf, acU(l). Since RnxX=amX, acC*, it follows that X=p&L0,
where p is a holomorphic function in C*(P), satisfying o|M=f. By (2)
of Mheorem 4.5, we have X&Kerk,. Conversely it is clear from (2) of
[heorem 4.5 that Ker £, Cg!(P)wm. We have thus proved that g{P)wm, =
Ker x,. The second assertion follows from [Theorem 4.5, proving (1).

To prove (2), let us consider the line bundle FrQk(M)~1, where k(M)
denotes the canonical line bundle of M. If m>—nc, then FmXk(M)™" is
a positive line bundle over M. By Kodaira’s vanishing theorem, we obtain
H{(F™=0. It follows from [Theorem 4. 5 that x,(¢(P)m) =1 na (TH(M)YQF™).
If m< —nc, then F®Xk(M) is a positive line bundle over M. We have

jad (Tl,O(M)@Fm) _ Hn—l(gn—l <T1»°(M)*®F‘m>>

= H*1(Q'(F"®#k(M))) =0.
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By [Theorem 8.6, we see that g*(P)m, =0, and hence g*(P)u, is isomorphic
to o (TI’O(M)®F”"). g. e. d.

Let X be the Ricci form of M. Then we have Z=nc®. Assume that
there exists a positive integer m such that g?(P)_., #0. Applying
5.6, we see that q*(P)_,+#0 and ¢>0. As in [Proposition 4.3, we see that
c is a positive integer. Hence we obtain the inequality X=n®. According
to the result of Kobayashi-Ochiai [8], we see that M is biholomorphic to
the (n—1)-dimensional complex projective space P*~!(C) and F is isomorphic
to the hyperplane bundle over P*~1(C). This fact combined with (2) of
[Proposition 6. 4 implies

THEOREM 6.5. Let M be a compact complex manifold of dimension
n—1 and F a holomorphic line bundle over M. Assume that there is a
hermitian metric h of F satisfying the following conditions :

[a] The first Chern from @ of the hermitian holomorphic line bundle
F s a positive form.

[b] The Kcdhlerian metric § associated with @ is an Einstein metric.

If the vector bundle T (M)RXF-' admits a non-trivial holomorphic
cross section, then 1] M is biholomorphic to the (n—1)-dimensional complex
projective space P*~1(C) and F is isomorphic to the hyperplane bundle over
Pv1(C), or 2] n=2, M is biholomorphic to the 1-dimensional complex pro-
jective space PY(C) and F is isomorphic to the tangent bundle of PY(C).

Proor. From condition [b], we have X=nc®, ¢ being a real constant.
It follows from [Proposition 6.4 that if nc=1, then I, (T(M)QF-) is
isomorphic to the space g*(P)._;,. Hence we have g?(P)_,#0. As we have
just seen above, this implies that M is biholomorphic to the complex pro-
jective space P 1(C) and F is isomorphic to the hyperplane bundle over
Pr1(C). '

Assume that nc=1. Since the Ricci tensor X of M is positive, we
have H®'(M)=0. It follows that every line bundle is completely determined
by its Chern class. Since @=¥, we obtain F'=K(M), where K(M) is the
canonical line bundle of M. Therefore we have

Tha (TH(M@F 1) = Ho( M, T+(M)QK (M)
— H"—I<M Q"‘1<T1’°(M)*®K([\Z)*>>
= H' (M) .
Since M is a Kahlerian manifold, we have

dim Hv»4(M) = dim H**(M) = dim H'(M, K(M)).
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Therefore we obtain dim HYM, K(M))=dim [ (TH(M)QF.
On the other hand, from Kodaira-Nakano’s vanishing theorem, it fol-
lows that if n—1>1, then

H(M, K(M))=0.

Hence, if n=3, then Fhol(Tlvo(M)@)F“):O, which is a contradiction. If
n=2, then M is biholomorphic to the complex projective space P!(C),
because K(M) is a negative line bundle. g.e. d.
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