Some remarks on separable extensions

Dedicated to Professor Goro Azumaya on his 60th birthday

By Kazuhiko HIRATA (Received May 12, 1980)

Many equivalent conditions for a ring extension to be H-separable have been studied by Sugano and Nakamoto in [2] and [4] etc.. In this connection we give some equivalent conditions for separable extensions in Theorem 1. In § 2, we consider the automorphism group of an H-separable extension, and in Theorem 3 we give an exact sequence which turns into the result of Rosenberg and Zelinsky [3] Theorem 7 in case of Λ is an Azumaya algebra.

§ 1. Separable extension

Throughout this paper we assume that all rings have the identity 1 and subrings contain this element and modules are unitary. For any two-sided module M over a ring A, M^A means the set $\{m \in M | am = ma \text{ for all } a \in A\}$. Thus for a ring Λ and a subring Γ of Λ , denote by Δ , $\Delta = \Lambda^{\Gamma} = \{d \in \Lambda | d\gamma = \gamma d, \ \gamma \in \Gamma\}$, the commutator of Γ in Λ , and by C, $C = \Lambda^A$, the center of Λ .

Theorem 1. Let Λ be a ring with the center C, Γ a subring of Λ . Then the following conditions are equivalent.

- (1) Λ is separable over Γ .
- (2) $(\Lambda \bigotimes_{\Gamma} \Lambda)^A$ is $(\Lambda \bigotimes_{\Gamma} \Lambda)^{\Gamma}$ -finitely generated projective and $\Lambda \cong \operatorname{Hom}_{(\Lambda \bigotimes_{\Gamma} \Lambda)^{\Gamma}}$ $((\Lambda \bigotimes_{\Gamma} \Lambda)^A, \Lambda \bigotimes_{\Gamma} \Lambda)$ as two-sided Λ -modules.
- (3) For any two-sided Λ -module M, $M^{\Lambda} \cong (\Lambda \bigotimes_{\Gamma} \Lambda)^{\Lambda} \bigotimes_{(\Lambda \bigotimes_{\Gamma} \Lambda)^{\Gamma}} M^{\Gamma}$ as C-modules.
 - $(4) \quad C \cong (A \otimes_{\Gamma} A)^{A} \otimes_{(A \otimes_{\Gamma} A)^{\Gamma}} A \quad as \quad C\text{-modules}.$
 - $(5) \quad (\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda} \cdot \Delta = C.$
 - (6) There exists an element $\sum x_i \otimes y_i$ in $(\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$ such that $\sum x_i y_i = 1$.

PROOF. (1) \Rightarrow (2). By the definition Λ is separable over Γ means that Λ is a two-sided Λ -direct summand of $\Lambda \bigotimes_{\Gamma} \Lambda$, ${}_{\Lambda} \Lambda_{\Lambda} < \bigoplus \Lambda \bigotimes_{\Gamma} \Lambda$. Then by Theorem 1. 2 [1], (1) implies (2). Note that, in this case, $(\Lambda \bigotimes_{\Gamma} \Lambda)^{\Lambda}$ is a direct summand right ideal of $(\Lambda \bigotimes_{\Gamma} \Lambda)^{\Gamma} \cong \operatorname{Hom}_{\Lambda,\Lambda} (\Lambda \bigotimes_{\Gamma} \Lambda, \Lambda \bigotimes_{\Gamma} \Lambda)$. (2) \Rightarrow (3).

36 K. Hirata

Let M be a two-sided Λ -module. Then we have following isomorphisms $(\Lambda \bigotimes_{\Gamma} \Lambda)^{\Lambda} \bigotimes_{(A \bigotimes_{\Gamma} \Lambda)^{\Gamma}} M^{\Gamma} \cong (\Lambda \bigotimes_{\Gamma} \Lambda)^{\Lambda} \bigotimes_{(A \bigotimes_{\Gamma} \Lambda)^{\Gamma}} Hom_{\Lambda, \Lambda} (\Lambda \bigotimes_{\Gamma} \Lambda), M) \cong Hom_{\Lambda, \Lambda} (Hom_{(A \bigotimes_{\Gamma} \Lambda)^{\Gamma}} ((\Lambda \bigotimes_{\Gamma} \Lambda)^{\Lambda}, \Lambda \bigotimes_{\Gamma} \Lambda), M) \cong Hom_{\Lambda, \Lambda} (\Lambda, M) \cong M^{\Lambda}. (3) \Rightarrow (4).$ Take Λ as M in (3). $(4) \Rightarrow (5)$. The isomorphism in (4) is given by $(\Lambda \bigotimes_{\Gamma} \Lambda)^{\Lambda} \bigotimes_{(A \bigotimes_{\Gamma} \Lambda)^{\Gamma}} \Lambda \cong (x \bigotimes y) \otimes d \rightarrow (x \bigotimes y) \cdot d = x dy \in C$. So $(\Lambda \bigotimes_{\Gamma} \Lambda)^{\Lambda} \cdot \Lambda = C$. (5) \Rightarrow (6). From the assumption, there are elements $\alpha_i = \sum_j x_{ij} \bigotimes_{j=1} (\Lambda \bigotimes_{\Gamma} \Lambda)^{\Lambda}$ and $\beta_i \in \Lambda$ such that $\beta_i = \sum_j x_{ij} \otimes \beta_i \otimes \beta_i$ is in $(\Lambda \bigotimes_{\Gamma} \Lambda)^{\Lambda}$. (6) \Rightarrow (1). This is clear.

Let \mathcal{M}^{Γ} (resp. \mathcal{M}^{Λ}) be the category of two-sided Λ (resp. C)-modules M^{Γ} (resp. M^{Λ}) obtained from two-sided Λ -modules M. If Λ is an H-separable extension of Γ , then we have $M^{\Gamma} \cong \Lambda \otimes_{\mathcal{C}} M^{\Lambda}$ for any two-sided Λ -module M. Since H-separable means separable we have, by Theorem 1, following theorem which turns into the Morita equivalence in case of Λ is an Azumaya algebra.

THEOREM 2. $\Delta \bigotimes_{C^-}$ and $(\Lambda \bigotimes_{\Gamma} \Lambda)^{\Lambda} \bigotimes_{(\Lambda \bigotimes_{\Gamma} \Lambda)^{\Gamma^-}}$ give an equivalence between \mathcal{M}^{Λ} and \mathcal{M}^{Γ} .

§ 2. Automorphism group

In this section we shall assume that Λ is an H-separable extension of Γ . Let σ be a ring automorphism of Λ leaving invariant the elements of Γ . Then Λ is converted to new two-sided Λ -module ${}_{\sigma}\Lambda$ by defining $\lambda \cdot x = \sigma(\lambda)x$ for λ and x in Λ . Put $J_{\sigma} = ({}_{\sigma}\Lambda)^{\Lambda}$. Then, since $({}_{\sigma}\Lambda)^{\Gamma} = \Lambda$ and Λ is an H-separable extension of Γ , $\Lambda \cong \Lambda \otimes_C J_{\sigma} \cong J_{\sigma} \otimes_C \Lambda$. As Γ is a direct summand of Λ and Λ is Γ -finitely generated projective, Γ is a Γ -finitely generated projective module of rank 1.

LEMMA 1. σ is inner if and only if J_{σ} is C-free of rank 1.

PROOF. If $\sigma\lambda = u_{\sigma}\lambda u_{\sigma}^{-1}$, $\lambda \in \Lambda$, for some unit u_{σ} (in Δ), then $u_{\sigma} \in J_{\sigma}$. For any $x \in J_{\sigma}$ and $\lambda \in \Lambda$, $\sigma(\lambda)$ $xu_{\sigma}^{-1} = x\lambda u_{\sigma}^{-1} = xu_{\sigma}^{-1}\sigma(\lambda)$, so $xu_{\sigma}^{-1} \in C$. Thus $J_{\sigma} = Cu_{\sigma}$ is C-free. Conversely if $J_{\sigma} = Cu$ is C-free, then, since $\Delta = J_{\sigma}\Delta = \sigma(\Delta)J_{\sigma} = \Delta J_{\sigma}$, it follows that $\Delta J_{\sigma} = \Delta J_{\sigma} =$

Let $O(\Lambda/\Gamma) = \operatorname{Aut}(\Lambda/\Gamma)/\operatorname{Inn}(\Lambda/\Gamma)$ be the Γ -automorphism group of Λ modulo inner, and I(C) the set of isomorphism classes of finitely generated projective C-modules of rank 1. I(C) is an abelian group by the multiplication \bigotimes_{C} with the identity [C], the class of C. Now we shall prove that the map $\alpha: \sigma \to [J_{\sigma}]$ is a group homomorphism of $\operatorname{Aut}(\Lambda/\Gamma)$ to I(C). Since Λ is H-separable over Γ , there exist elements $\sum_{j} x_{ij} \otimes y_{ij} \in (\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda}$ and $d_{i} \in \Lambda$ such that $\sum_{i,j} x_{i,j} \otimes y_{i,j} d_{i} = 1 \otimes 1$. (cf. [2], p. 296). Bythe map $f: d \otimes x \to 0$

dx, $J_{\sigma} \otimes_{\mathcal{C}} \Lambda$ is isomorphic to ${}_{\sigma} \Lambda$. The inverse map is given by $g: x \to \sum_{ij} \sigma(x_{ij})$ $y_{ij} \otimes d_i x = \sum_{ij} \sigma(x_{ij}) y_{ij} \otimes \sigma^{-1}(x) d_i$, since, for $d \in J_{\sigma}$ and $x \in \Lambda$, $g \circ f(d \otimes x) = \sum_{ij} \sigma(x_{ij}) y_{ij} \otimes d_i dx = \sum_{ij} \sigma(x_{ij}) y_{ij} \otimes x_{\alpha\beta} d_i dy_{\alpha\beta} d_\alpha x = \sum_{ij} \sigma(x_{ij}) y_{ij} x_{\alpha\beta} d_i dy_{\alpha\beta} \otimes d_\alpha x = \sum_{ij} \sigma(x_{\alpha\beta}) \sigma(x_{ij}) y_{ij} d_i dy_{\alpha\beta} \otimes d_\alpha x = \sum_{\alpha\beta} \sigma(x_{\alpha\beta}) dy_{\alpha\beta} \otimes d_\alpha x = \sum_{\alpha\beta} dx_{\alpha\beta} y_{\alpha\beta} \otimes d_\alpha x = d \otimes \sum_{\alpha\beta} x_{\alpha\beta} y_{\alpha\beta} d_\alpha x = d \otimes x$. Thus $J_{\sigma} \otimes_{\mathcal{C}} \Lambda \cong_{\sigma} \Lambda$ and $J_{\sigma} = ({}_{\sigma} \Lambda)^{\Lambda} \cong (J_{\sigma} \otimes_{\mathcal{C}} \Lambda)^{\Lambda}$. Similarly we can prove that, for Γ -automorphisms σ and τ of Λ , $J_{\sigma} \otimes_{\mathcal{C}} J_{\tau} \otimes_{\mathcal{C}} \Lambda \cong_{\sigma\tau} \Lambda$ by the map $d_1 \otimes d_2 \otimes x \to d_1 d_2 x$. Therefore we have $J_{\sigma\tau} = ({}_{\sigma\tau} \Lambda)^{\Lambda} \cong (J_{\sigma} \otimes_{\mathcal{C}} J_{\tau} \otimes_{\mathcal{C}} \Lambda)^{\Lambda} \cong J_{\sigma} \otimes_{\mathcal{C}} J_{\tau}$ and $\alpha: \sigma \to [J_{\sigma}]$ is a homomorphism of Aut (Λ/Γ) to $I(\mathcal{C})$. By Lemma 1, Ker $\alpha = \text{Inn}(\Lambda/\Gamma)$.

Let P be a two-sided Λ -module satisfying the following conditions:

- (1) ${}_{A}P_{A} < \bigoplus A \oplus \cdots \oplus A$
- (2) $P_{\mathfrak{m}}^{r} \cong \mathcal{A}_{\mathfrak{m}}$ for all maximal ideals \mathfrak{m} of C.

Since $P^{\Lambda} \cong \operatorname{Hom}_{\Lambda,\Lambda}(\Lambda, P) < \bigoplus \sum \operatorname{Hom}_{\Lambda,\Lambda}(\Lambda, \Lambda) = \sum C$, P^{Λ} is a finitely generated projective C-module. Furthermore, $P^{\Gamma} \cong \operatorname{Hom}_{\Lambda,\Lambda}(\Lambda \bigotimes_{\Gamma} \Lambda, P) < \bigoplus \sum \operatorname{Hom}_{\Lambda,\Lambda}(\Lambda \bigotimes_{\Gamma} \Lambda, \Lambda) \cong \sum \Lambda$, P^{Γ} is Λ -(and so C-) finitely generated and projective. As $P^{\Gamma} \cong \Lambda \bigotimes_{C} P^{\Lambda}$, P^{Λ} is a C-finitely generated projective module of rank 1, by the condition (2). We have also from (1) $P \cong \Lambda \bigotimes_{C} \operatorname{Hom}_{\Lambda,\Lambda}(\Lambda, P) \cong \Lambda \bigotimes_{C} P^{\Lambda}$ by Theorem 1. 2 [1].

Let $I(\Lambda)$ be the set of left Γ - and right Λ -isomorphism classes of two-sided Λ -modules P with the properties (1) and (2) above. $I(\Lambda)$ becomes a group by the multiplication \bigotimes_{Λ} . As $P \cong \Lambda \bigotimes_{C} P^{\Lambda}$ with rank 1 projective C-module P^{Λ} and $P_{1} \bigotimes_{\Lambda} P_{2} \cong \Lambda \bigotimes_{C} P^{\Lambda}_{1} \bigotimes_{C} P^{\Lambda}_{2}$ for two-sided Λ -modules P_{1} and P_{2} satisfying (1) and (2), $I(\Lambda)$ is a homomorphic image of I(C). Let $[J] \in I(C)$ be in the kernel of $\beta: I(C) \to I(\Lambda)$, $\beta([J]) = [J \bigotimes_{C} \Lambda]$. Then $J \bigotimes_{C} \Lambda = P$ is isomorphic to Λ as a (Γ, Λ) -module. Put $P = u\Lambda$. Then for any $\gamma \in \Gamma$, we have $\gamma u = u\gamma$, and for any $\lambda \in \Lambda$, we have $\lambda u = u\lambda'$ for some $\lambda' \in \Lambda$. It can be easily seen that the map $\sigma: \sigma(\lambda) = \lambda'$ is a Γ -endomorphism of Λ . As P is a submodule of $\Lambda \oplus \cdots \oplus \Lambda$, cu = uc for all $c \in C$. Therefore σ fixes the elements of C. By Theorem 2 in [2], σ is a Γ -automorphism of Λ and $P \cong_{\sigma} \Lambda$. Thus we have proved the following theorem.

THEOREM 3. If Λ is an H-separable extension of Γ , then

$$1 \longrightarrow O(\Lambda/\Gamma) \longrightarrow I(C) \longrightarrow I(\Lambda) \longrightarrow 1$$

is exact.

References

[1] K. HIRATA: Some types of separable extensions of rings, Nagoya Math. J., 33 (1968), 107-115.

- [2] T. NAKAMOTO and K. SUGANO: Note on H-separable extensions, Hokkaido Math. J., 4 (1975), 295-299.
- [3] A. ROSENBERG and D. ZELINSKY: Automorphisms of separable algebras, Pacific J. Math., 11 (1961) 1109-1117.
- [4] K. SUGANO: Separable extensions of quasi-Frobenius rings, Algebra-Berichte, 28 (1975), Uni-Druck München.
- [5] K. SUGANO: Note on automorphisms in separable extensions of non commutative ring, to appear.

Chiba University