Hypoellipticity for a class of pseudodifferential operators

By Junichi Aramaki
(Received August 1, 1980 ; Revised December 8, 1980)

§ 0. Introduction

In the present paper we shall consider a class of pseudo-differential operators P on a manifold X whose characteristic set Σ is the union of two closed conic submanifolds Σ_{1} and Σ_{2}. This class is denoted by $O P L_{k}^{m, M_{1}, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right)$. Under some quasi-transversality and involutiveness, we shall give a necessary and sufficient condition for hypoellipticity of P by constructing the parametrix.

When $\Sigma_{1}=\Sigma_{2}$, our class nearly coincides with $O P L_{k}^{m, M_{1}+M_{2}}\left(X ; \Sigma_{1}\right)$ introduced by Helffer [5] or Sjöstrand [10]. Moreover in the case where $M_{1}=2, k=2$ and Σ_{1} is involutive, Boutet de Monvel [2] gives a necessary and sufficient condition for existence of a parametrix of P in $O P S^{-m,-2}$ (more general class than ours) which is also equivalent to the hypoellipticity for P with loss of 1 -derivative. For general M_{1}, [5] gives a necessary and sufficient condition for hypoellipticity of P with loss of $M_{1} / 2$-derivatives.

When Σ_{1} and Σ_{2} intersect transversally and $\Sigma_{i}(i=1,2), \Sigma_{1} \cap \Sigma_{2}$ are involutive, Aramaki [1] constructs parametrices for the operators of a slightly different class.

The plan of this paper is as follows: In $\S 1$, we introduce a class of pseudo-differential operators and study the symbol calculus and the associatad invariances of P using the technique developed by [5], [1]. Finally we give the main theorem Theorem 1.10). § 2 is the preparations for the proof of our theorem. Mainly we consider the class $O P S^{m, M_{1}, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right)$ which is a generalization of the class $O P S^{m, M_{1}}\left(X ; \Sigma_{1}\right)$ introduced by [2]. In $\S 3$, we give the proof of the Theorem $1.10 . \S 4$ is devoted to a study of the special case of type $P=P_{1} \cdot P_{2}+P_{3}$. Finally in $\S 5$, we apply the results of $\S 4$ to the system of the type

$$
\boldsymbol{P}=\left(\begin{array}{ll}
P_{1} & A \\
B & P_{2}
\end{array}\right)
$$

where A and B are lower order terms.

§ 1. A class of operators and the associated invariances

Let X be a paracompact C^{∞} manifold of dimension n and $T^{*} X-\{0\}$ be the cotangent bundle minus the zero section.

Definition 1.1. Let Σ_{1} and Σ_{2} be closed conic submanifolds of codrmensions μ_{1} and μ_{2} in $T^{*} X-\{0\}$ respectively and let $m \in \boldsymbol{R}, M_{1}, M_{2} \in \boldsymbol{Z}^{+}$ (non-negative integers), $k \geq 2$ an integer. Then the space $O P L_{k}^{m, M_{1}, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right)$ is the set of all pseudo-differential operators $P \in L^{m}(X)$ (for the notation, see Hörmander [7], [8]) such that for every local coodinate system $V \subset X$, P has a symbol of the form
(1.2) $p(x, \xi) \sim \sum_{j=0}^{\infty} p_{m-j / k}(x, \xi)$ with $p_{m_{-j} / k}(x, \xi)$ positively-homogeneous of $d e$ gree $m-j / k$ with respect to ξ (j integral) and satisfy:
(1.2) For every $K \subset \subset V$, there exists a constant $C_{K}>0$ such that

$$
\frac{\left|p_{m-j / k}(x, \xi)\right|}{|\xi|^{m-j / k}} \leq C_{K} \sum_{\substack{k_{1}+k_{2}=j \\ 0 \leq k_{1} \leq M_{1} \\ 0 \leq k_{2} \leq M_{2}}} d_{\Sigma_{1}}(x, \xi)^{M_{1}-k_{1}} d_{\Sigma_{2}}(x, \xi)^{M_{2}-k_{2}}
$$

$0 \leq j \leq M_{1}+M_{2}$, for all $(x, \xi) \in K \times\left(\boldsymbol{R}^{n}-\{0\}\right)$ and $|\xi| \geq 1$. Here $d_{\Sigma_{i}}(x, \xi)=$ $\inf _{(y, y) \in \Sigma_{i}}\left(|y-x|+\left\lvert\, \eta-\frac{\xi}{|\xi|}\right.\right)$ are the distances from $\left(x, \frac{\xi}{|\xi|}\right)$ to $\Sigma_{i}, i=1,2$.

We also introduce the set $O P L_{k, c}^{m, M_{1}, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right) \subset O P L_{k}^{m, M_{1}, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right)$ for which the $p_{m-j / k}$ in (1.1) can be taken to be zero when j / k is not an. integer.

Remark 1. 2. $O P L_{k}^{m, M_{1}, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right)$ reduces to $O P L_{k}^{m, M_{1}}\left(X ; \Sigma_{1}\right)$ of [5] when $M_{2}=0$ and to $O P L^{m, M_{1}}\left(X ; \Sigma_{1}\right)$ of [10] when $M_{2}=0$ and $k=2$.

It is clear that if $\Sigma_{1} \cap \Sigma_{2}$ is a submanifold, we have

$$
O P L_{k}^{m, M_{1}, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right) \subset O P L_{k}^{m, M_{1}+M_{2}}\left(X ; \Sigma_{1} \cap \Sigma_{2}\right)
$$

The class of symbols satisfying (1.1) and (1.2) in an open cone $U \subset$ $T^{*} X-\{0\}$ is denoted by $L_{k}^{m, M_{1}, M_{2}}\left(U ; \Sigma_{1}, \Sigma_{2}\right)$.

By a routine consideration (c.f. [7], [8]) we set the followings:
Proposition 1.3. Let $P_{1} \in O P L_{k}^{m_{1}, M_{1}}\left(X ; \Sigma_{1}\right)$ and $P_{2} \in O P L_{k}^{m_{2}, M_{2}}\left(X ; \Sigma_{2}\right)$ where one of the factors is properly supported. Then we have

$$
P_{1} \cdot P_{2} \in O P L_{k}^{m_{1}+m_{2}, M_{1}, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right) .
$$

Proposition 1.4. $L_{k}^{m}, M_{1}, M_{2}\left(T^{*} X-\{0\} ; \Sigma_{1}, \Sigma_{2}\right) \subset L_{k}^{m+1 / k, M_{1}+1, M_{2}}\left(T^{*} X-\{0\} ;\right.$ $\left.\Sigma_{1}, \Sigma_{2}\right) \cap L_{k}^{m+1 / k, M_{1}, M_{2}+1}\left(T^{*} X-\{0\} ; \Sigma_{1}, \Sigma_{2}\right)$.

Let $\Sigma_{1} \cap \Sigma_{2}$ be a submanifold. If q_{1} and q_{2} are elements in $L_{k}^{m, M_{1}, M_{2}}$
$\left(U ; \Sigma_{1}, \Sigma_{2}\right)$ where U is a conic neighbourhood of $\rho \in \Sigma_{1} \cap \Sigma_{2}$, we define the following equivalence relation:
$q_{1} \equiv q_{2}$ in U if and only if $q_{1}-q_{2} \in L_{k}^{m, M_{1}+M_{2}+1}\left(U ; \Sigma_{1} \cap \Sigma_{2}\right)$.
Proposition 1.5. Let p be a symbol in $L_{k}^{m, M_{1}, M_{2}}\left(T^{*} X-\{0\} ; \Sigma_{1}, \Sigma_{2}\right)$ and let $\rho \in \Sigma_{1} \cap \Sigma_{2}$. Then there exists a conic neighbourhood U of ρ such that $q \in L_{k}^{m, M_{1}, M_{2}}\left(U ; \Sigma_{1}, \Sigma_{2}\right) / L_{k}^{m, M_{1}+M_{2}+1}\left(U ; \Sigma_{1} \cap \Sigma_{2}\right)$ defined by

$$
\begin{align*}
q \equiv & \exp \left(-\frac{1}{2 i} \sum_{j=1}^{n}\left(\frac{\partial}{\partial x_{j}} \frac{\partial}{\partial \xi_{j}}\right)\right) \cdot p \tag{1.3}\\
& =\sum_{t=0}^{\infty} \frac{(-1)^{t}}{t!}\left(\frac{1}{2 i} \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial \xi_{j}}\right)^{t} \cdot p
\end{align*}
$$

is invariant under a locally homogeneous canonical transformation : χ; $U \rightarrow T^{*} \boldsymbol{R}^{n}-\{0\}$.

REMARK 1.6. If $p \in L_{k}^{m, M_{1}, M_{2}}\left(U ; \Sigma_{1}, \Sigma_{2}\right)$ and $k>2$, the class q given by the formula (1.3) coincides with

$$
\sum_{j=0}^{M_{1}+M_{2}} p_{m-j / k} \text { modulo } L_{k}^{m, M_{1}+M_{2}+1}\left(U ; \Sigma_{1} \cap \Sigma_{2}\right) .
$$

Now let U be a conic neighbourhood of $\rho \in \Sigma_{1} \cap \Sigma_{2}$. Let

$$
q=\sum_{j=0}^{M_{1}+M_{2}} q_{m-j / k} \in L_{k}^{, m, M_{1}, M_{2}}\left(U ; \Sigma_{1}, \Sigma_{2}\right) / L_{k}^{m, M_{1}+M_{2}+1}\left(U ; \Sigma_{1} \cap \Sigma_{2}\right)
$$

be a symbol associated with p in U. Define a $\left(M_{1}+M_{2}-j\right)$-linear form, denoted by $\tilde{q}_{m-j / k}(\rho)$, on $T_{\rho}\left(T^{*} X-\{0\}\right)$ by: For $Y_{1}, Y_{2}, \cdots, Y_{M_{1}+M_{2}-j} \in T_{\rho}\left(T^{*} X-\{0\}\right)$,

$$
\begin{align*}
& \tilde{q}_{m-j / k}(\rho)\left(Y_{1}, Y_{2}, \cdots, Y_{M_{1}+M_{2}-j}\right) \tag{1.4}\\
& \left.\quad=\frac{1}{\left(M_{1}+M_{2}-j\right)!} \tilde{Y}_{1} \tilde{Y}_{2} \cdots \tilde{Y}_{M_{1}+M_{2}-j} q_{m-j / k}\right)(\rho)
\end{align*}
$$

where \tilde{Y} means a vector field extending Y to a neighbourhood of ρ. It is clear that $\tilde{q}_{m-j / k}(\rho)$ is independent of the choice of the representative of q.

Definition 1.7. For every $\rho \in \Sigma_{1} \cap \Sigma_{2}$, we define

$$
\begin{equation*}
\tilde{q}(\rho, Y)=\sum_{j=0}^{M_{1}+M_{2}} \tilde{q}_{m-j / k}(\rho)(Y, Y, \cdots, Y) \text { for all } Y \in T_{\rho}\left(T^{*} X-\{0\}\right) \tag{1.5}
\end{equation*}
$$

If $\rho \in \Sigma_{1} \backslash \Sigma_{2}, p$ belongs to $L_{k}^{m, M_{1}}\left(U ; \Sigma_{1}\right)$ for some conic neighbourhood U of ρ. So if we apply Proposition 1.5 to p with $\Sigma_{1}=\Sigma_{2}, M_{2}=0$, we can also define $\tilde{q}(\rho, Y)$ for $\rho \in \Sigma_{1} \backslash \Sigma_{2}$. Similarly define $\tilde{q}(\rho, Y)$ for $\rho \in \Sigma_{2} \backslash \Sigma_{1}$. Therefore, for every $\rho \in \Sigma=\Sigma_{1} \cup \Sigma_{2}$, we can define

$$
\Gamma_{\rho}=\left\{\tilde{q}(\rho, Y) ; Y \in T_{\rho}\left(T^{*} X-\{0\}\right)\right\} .
$$

REmARK 1.8. When $M_{2}=0, M_{1}=k=2$, we have $q_{m}=p_{m}$ and $q_{m-1}=$ $p_{m-1}-\frac{1}{2 i} \sum_{l=1}^{n} \frac{\partial}{\partial x_{l}} \frac{\partial}{\partial \xi_{l}} p_{m}$. In this case $\tilde{q}(\rho, Y)$ is the sum of the transversal hessian of p_{m} and the subprincipal symbol of P at ρ.

Proposition 1.9. Let q_{1} and q_{2} be the symbols associated with p_{1} and p_{2} respectively. Then the symbol q associated with the composition of p_{1} and p_{2} is given by the formula:

$$
q \equiv\left(\exp \left(\frac{1}{2 i} \sum_{l=1}^{n} \frac{\partial}{\partial x_{l}} \frac{\partial}{\partial \xi_{l}}\right) \cdot q_{1}\right) \#\left(\exp \left(\frac{1}{2 i} \sum_{l=1}^{n} \frac{\partial}{\partial x_{l}} \frac{\partial}{\partial \xi_{l}}\right) \cdot q_{2}\right)
$$

where \# designs the composition of the symbols.
Next we describe the hypotheses on Σ_{1} and Σ_{2}. Let Σ_{1} and Σ_{2} be closed conic submanifolds in $T^{*} X-\{0\}$ of codimension μ_{1} and μ_{2} respectively. (H.1) $\quad \Sigma_{1}$ and Σ_{2} intersect quasi-transversally. That is, $\Sigma_{1} \cap \Sigma_{2}$ is a closed conic submanifold such that for every point $\rho \in \Sigma_{1} \cap \Sigma_{2}$,

$$
T_{\rho}\left(\Sigma_{1} \cap \Sigma_{2}\right)=T_{\rho} \Sigma_{1} \cap T_{\rho} \Sigma_{2}
$$

Locally this means: If the codimension of $\Sigma_{1} \cap \Sigma_{2}$ is equal to $\left(\mu_{1}+\mu_{2}\right)-\nu_{0}$, there exist positively-homogeneous functions

$$
u_{1}^{(1)}, \cdots, u_{\nu_{1}}^{(1)}, u_{1}^{(0)}, \cdots, u_{\nu_{0}}^{(0)}, u_{1}^{(2)}, \cdots, u_{\nu_{2}}^{(2)}
$$

$d u_{j}^{(i)}\left(j=1,2, \cdots, \nu_{i}, i=1,0,2\right)$ being linearly independent such that
Σ_{1} is defined by $u_{1}^{(1)}=\cdots=u_{\nu_{1}}^{(1)}=u_{1}^{(0)}=\cdots=u_{\nu_{0}}^{(0)}=0$,

$$
\Sigma_{2} \quad \text { by } \quad u_{1}^{(0)}=\cdots=u_{\nu_{0}}^{(0)}=u_{1}^{(2)}=\cdots=u_{\nu_{2}}^{(2)}=0
$$

and

$$
\Sigma_{1} \cap \Sigma_{2} \quad \text { by } \quad u_{1}^{(1)}=\cdots=u_{\nu_{1}}^{(1)}=u_{1}^{(0)}=\cdots=u_{\nu_{0}}^{(0)}=u_{1}^{(2)}=\cdots=u_{\nu_{2}}^{(2)}=0
$$

Here $\nu_{1}=\mu_{1}-\nu_{0}, \nu_{2}=\mu_{2}-\nu_{0}(\geq 0)$.
(H. 2) $\quad \Sigma_{1}, \Sigma_{2}$ and $\Sigma_{1} \cap \Sigma_{2}$ are involutive, i.e. if $u_{1}^{(1)}, \cdots, u_{\nu_{1}}^{(1)}, u_{1}^{(0)}, \cdots, u_{\nu_{0}}^{(0)}, u_{1}^{(2)}$, $\cdots, u_{\nu_{2}}^{(2)}$ are as above, then

$$
\left\{u_{j}^{(i)}, u_{\left.j^{(i)}\right\}}^{(i)}=\left\{u_{k}^{(0)}, u_{k^{\prime}}^{(0)}\right\}=\left\{u_{j}^{(i)}, u_{k}^{(0)}\right\}=0 \quad \text { on } \Sigma_{i}(i=1,2)\right.
$$

and

$$
\left\{u_{j}^{(1)}, u_{l}^{(2)}\right\}=0 \quad \text { on } \quad \Sigma_{1} \cap \Sigma_{2}
$$

(H.3) The radial vector $\sum_{l=1}^{n} \xi_{l} \frac{\partial}{\partial \xi_{l}}$ is linearly independent of $H_{u^{(i)}}, j=1, \cdots$, $\nu_{i}, i=1,0,2$. Here we denote by H_{f} the Hamilton vector field and by $\{f, g\}$ their Poisson bracket for C^{∞} functions f, g on $T^{*} X-\{0\}$.

Then we obtain the following:
Theorem 1.10. Let P be in $O P L_{k}^{m, M_{1}, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right)$ and be elliptic outside $\Sigma=\Sigma_{1} \cap \Sigma_{2}$. Assume that (H. 1), (H. 2) and (H.3) are satisfied. Then P is hypoelliptic at $\rho \in \Sigma_{1} \cap \Sigma_{2}$ with loss of $\left(M_{1}+M_{2}\right) / k$-derivatives if and only if

$$
\begin{equation*}
\Gamma_{\rho} \text { does not meet the origin. } \tag{1.6}
\end{equation*}
$$

Here we say that P is hypoelliptic at ρ with loss of $\left(M_{1}+M_{2}\right) / k$-derivatives if $u \in \mathscr{D}^{\prime}(X)$ and $P u \in H^{s}$ at ρ implies $u \in H^{s+m-\left(M_{1}+M_{2}\right) / k}$ at ρ.

We also obtain a sufficient condition for the usual hypoellipticity:
Corollary 1.11. Let P be in OPL $_{k}^{m, M_{1}, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right)$ and be elliptic outside $\Sigma=\Sigma_{1} \cup \Sigma_{2}$. Then P is hypoelliptic with loss of $\left(M_{1}+M_{2}\right) / k$-derivatives, if for every $\rho \in \Sigma=\Sigma_{1} \cup \Sigma_{2}, \Gamma_{\rho}$ does not meet the origin and moreover:
(A) When $k>2$, (H.1) and (H.3) are satisfied (note that (H.2) is unnecessary).
(B) When $k=2$, (H.1), (H.2) and (H.3) are satisfied.

Here we say that P is hypoelliptic with loss of $\left(M_{1}+M_{2}\right) / k$-derivatives if for all open set O in $X, u \in \mathscr{D}^{\prime}(X)$ and $P u \in H_{l o c}^{s}(\mathrm{O})$ implies $u \in H_{l o c}^{s+m-\left(u_{1}+M_{2}\right) / k}(\mathrm{O})$.

Finally we give a simple example:
Example 1. 12. Let $P=D_{x_{1}}^{2} D_{x_{2}}^{2}+a D_{x_{1}}^{2} D_{x_{3}}+2 b D_{x_{1}} D_{x_{2}} D_{x_{3}}+c D_{x_{2}}^{2} D_{x_{3}}+$ $d\left(D_{x_{1}}^{2}+D_{x_{2}}^{2}+D_{x_{3}}^{2}\right)$ in \boldsymbol{R}^{3} where a, b, c and d are complex numbers. Let $\Delta_{d}=$ $\{\lambda d+\mu ; \lambda \geq 1, \mu \geq 0\}$ and Δ be the set of values of the quadratic form corresponding to the symmetric matrix $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$. Then P is hypoelliptic at $\rho=$ $\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}, 0,0, \xi_{3}^{0}\right)$ with loss of 2 -derivatives if and only if $\left(\operatorname{sgn}\left(\xi_{3}^{0}\right)\right) \cdot \Delta+\Delta_{d}$ does not meet the origin.

In fact, if we set $\Sigma_{1}=\left\{\xi_{1}=0\right\}$ and $\Sigma_{2}=\left\{\xi_{2}=0\right\}, P \in O P L_{2, c}^{4,2,2}\left(\boldsymbol{R}^{3} ; \Sigma_{1}, \Sigma_{2}\right)$. Then

$$
\Gamma_{\rho}=\left\{\left|\xi_{3}^{0}\right|_{1}^{2} \eta_{1}^{2} \eta_{2}^{2}+\left|\xi_{3}^{0}\right| \xi_{3}^{0}\left(a \eta_{1}^{2}+2 b \eta_{1} \eta_{2}+c \eta_{2}^{2}\right)+d\left(\left|\xi_{3}^{0}\right|^{2}\left(\eta_{1}^{2}+\eta_{2}^{2}\right)+\left(\xi_{3}^{0}\right)^{2}\right) ;\left(\eta_{1}, \eta_{2}\right) \in \boldsymbol{R}^{2}\right\},
$$

therefore Theorem 1.10 leads to the conclusion.

§ 2. The preparations for the proof of Theorem 1.10 and Corollary 1.11

In this section we introduce the class of operators in which we construct the parametrix of $P \in O P L_{k}^{m, M_{1}, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right)$. (c. f. Helffer [6])

Let U be an open cone in $T^{*} X-\{0\}=S^{*} X \times \boldsymbol{R}^{+}$where $S^{*} X$ is the
cosphere bundle of X. We denote by $u=\left(u^{(1)}, u^{(0)}, u^{(2)}, v, r\right)$ the variables in U. Let Σ_{1} and Σ_{2} be the subcones defined by

$$
\Sigma_{1}=\left\{u^{(1)}=u^{(0)}=0\right\}, \Sigma_{2}=\left\{u^{(0)}=u^{(2)}=0\right\}
$$

where

$$
\begin{aligned}
& u^{(i)}=\left(u_{1}^{(i)}, \cdots, u_{v_{i}}^{(i)}\right) \quad(i=1,0,2) \\
& v=\left(v_{1}, \cdots, v_{(2 n-1)-\left(v_{1}+v_{0}+v_{2}\right)}\right)
\end{aligned}
$$

and $u_{j}^{(i)}\left(j=1, \cdots, \nu_{i}, i=1,0,2\right), v_{l}\left(l=1, \cdots,(2 n-1)-\left(\nu_{1}+\nu_{0}+\nu_{2}\right)\right)$ are functions of positively-homogeneous of degree 0 . We set

$$
\rho_{\Sigma_{i}}=\left\{\sum_{j=1}^{\nu_{i}}\left|u^{(i)}\right|^{2}+\sum_{j=1}^{\nu_{0}}\left|u^{(0)}\right|^{2}+r^{-2 / k}\right\}^{1 / 2}, \quad(i=1,2)
$$

Definition 2.1. Let $m, M_{1}, M_{2} \in \boldsymbol{R}$. Then we denote by $S^{m, M_{1}, M_{2}}$ $\left(U ; \Sigma_{1}, \Sigma_{2}\right)$ the set of all C^{∞} functions a(u) on U such that for any $j \in \boldsymbol{Z}_{+}$ and any multi-indeces $\alpha_{1} \in\left(\boldsymbol{Z}_{+}\right)^{\nu_{1}}, \alpha_{0} \in\left(\boldsymbol{Z}_{+}\right)^{\nu_{0}}, \alpha_{2} \in\left(\boldsymbol{Z}_{+}\right)^{\nu_{2}}, \quad \beta \in\left(\boldsymbol{Z}_{+}\right)^{(2 n-1)-\left(\nu_{1}+\nu_{0}+\nu_{2}\right)}$, we have

$$
\begin{aligned}
& \left|\left(\frac{\partial}{\partial u^{(1)}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial u^{(0)}}\right)^{\alpha_{0}}\left(\frac{\partial}{\partial u^{(2)}}\right)^{\alpha_{2}}\left(\frac{\partial}{\partial v}\right)^{\beta}\left(\frac{\partial}{\partial r}\right)^{j} a\right| \\
& \quad \leqslant r^{m-j} \sum_{k_{1}+k_{2}=\left|\alpha_{0}\right|} \rho_{\Sigma_{1}}^{M_{1}-\left|\alpha_{1}\right|-k_{1}} \rho_{\Sigma_{2}}^{M_{2}-\left|\alpha_{2}\right|-k_{2}}
\end{aligned}
$$

Here we use the notation $f \leqslant g$ if for any subcone $U^{\prime} \subset U$ with compact basis and any $\varepsilon>0$, there exists a constant $C>0$ such that $0 \leq f \leq C g$ in U^{\prime} when $r>\varepsilon$.

Remark 2.2. (1) Note that we can also express the above definition in the invariant fashion. (c.f. [2], [6])
(2) $\quad S^{m, M_{1}, M_{2}}\left(T^{*} X-\{0\} ; \Sigma_{1}, \Sigma_{2}\right) \subset S_{\rho, \hat{o}}^{m-\left(\left(M_{1}\right)-+\left(M_{2}\right)_{-}\right) / k}$ with $\rho=1-1 / k$ and $\delta=1 / k$ where $(s)_{-}=\inf (0, s)$ for real s. In fact, since $\rho_{\Sigma_{i}}{ }^{-1} \leq r^{1 / k}$, the right hand side in the definition is estimated by

$$
r^{m-j} \rho_{\Sigma_{1}}^{M_{1}} \rho_{\Sigma_{2}}{ }^{M_{2}} r^{\left(\left|\alpha_{1}\right|+\left|\alpha_{0}\right|+\left|\alpha_{2}\right|\right) / k}
$$

Here by definition of $\rho_{\Sigma_{i}}$, we have $\rho_{\Sigma_{i}}{ }^{M_{i}} \leqslant r^{-\left(M_{i}\right)-/ k}$.
Note that if $k>2$, we have $\delta<\rho$ and if $k=2, \rho=\delta=1 / 2$.
The following three propositions follow from a routine consideration. (c. f. [2])

Proposition 2.3. For $M_{1}, M_{2} \geq 0$ integers, we have

$$
L_{k}^{m, M_{1}, M_{2}}\left(U ; \Sigma_{1}, \Sigma_{2}\right) \subset S^{m, M_{1}, M_{2}}\left(U ; \Sigma_{1}, \Sigma_{2}\right) .
$$

Proposition 2.4. If $p_{1} \in S^{m, M_{1}, M_{2}}\left(U ; \Sigma_{1}, \Sigma_{2}\right)$ and $p_{2} \in S^{m^{\prime}, M_{1}^{\prime}, M_{2}^{\prime}}\left(U ; \Sigma_{1}, \Sigma_{2}\right)$,
then $p_{1} \cdot p_{2} \in S^{m+m^{\prime}, M_{1}+M_{1}^{\prime}, M_{2}+M_{2}^{\prime}}\left(U ; \Sigma_{1}, \Sigma_{2}\right)$.
Proposition 2.5. If $p \in S^{m, M_{1}, M_{2}}\left(U ; \Sigma_{1}, \Sigma_{2}\right)$ and satisfies

$$
|p| \gtrsim r^{m} \rho_{\Sigma_{1}}^{M_{1}} \boldsymbol{\rho}_{\Sigma_{2}}^{M_{2}},
$$

then

$$
p^{-1} \in S^{-m,-M_{1},-M_{2}}\left(U ; \Sigma_{1}, \Sigma_{2}\right) .
$$

§ 3. Proofs of Theorem 1.10 and Corollary 1.11

(1) Sufficiency of Theorem 1.10 and Corollary 1. 11
(A) The case $k>2$. Let $\rho \in \Sigma_{1} \cap \Sigma_{2}$ and U be a conic neighbourhood of ρ. By Remark 1.6, the class q defined by Proposition 1.5 has the following form:

$$
q \sim \sum_{j=0}^{M_{1}+M_{2}} p_{m-j / k}(x, \xi) .
$$

Therefore by definition 1.7 ,

$$
\tilde{q}(\rho, Y)=\sum_{j=0}^{M_{1}+M_{2}} \tilde{p}_{m-j / k}(\rho)(Y, \cdots, Y), Y \in T_{\rho}\left(T^{*} X-\{0\}\right)
$$

where the $\left(M_{1}+M_{2}-j\right)$-linear form $\tilde{p}_{m-j / k}(\rho)$ on $T_{\rho}\left(T^{*} X-\{0\}\right)$ is defined in the same way as (1.4). Then our hypothesis (1.6) implies

$$
\begin{equation*}
p^{\prime}(x, \xi)=\sum_{j=0}^{M_{1}+M_{2}} p_{m-j / k}(x, \xi) \neq 0 \quad \text { at } \rho \in \Sigma_{1} \cap \Sigma_{2} . \tag{3.1}
\end{equation*}
$$

Thus for every $\rho \in \Sigma_{1} \cap \Sigma_{2}$, there exists a conic neighbourhood U of ρ and constants C_{1} and C_{2} such that

$$
\begin{equation*}
|p(x, \xi)| \geq C_{1}|\xi|^{m-\left(\Lambda_{1}+M_{2}\right) / k} \quad \text { for all }(x, \xi) \in U \text { and }|\xi| \geq C_{2} . \tag{3.2}
\end{equation*}
$$

By Taylor's formula, in a conic neighbourhood of ρ, we can write :

$$
p^{\prime}=\sum_{j=0}^{M_{1}+M_{2}} \sum_{\left(\alpha_{1}, \alpha_{0}, \alpha_{2}\right)} a_{\alpha_{1}, \alpha_{0}, \alpha_{2}, j}\left(u^{(1)}\right)^{\alpha_{1}}\left(u^{(0)}\right)^{\alpha_{0}}\left(u^{(2)}\right)^{\alpha_{2}}
$$

where $\left(\alpha_{1}, \alpha_{0}, \alpha_{2}\right)$ in the summation range all multi-indices such that $\left|\alpha_{1}\right|+\left|\alpha_{0}\right|+$ $\left|\alpha_{2}\right|=M_{1}+M_{2}-j,\left|\alpha_{1}\right| \leq M_{1},\left|\alpha_{2}\right| \leq M_{2}$. Moreover $u^{(i)}(i=1,0,2)$ are functions of positively-homogeneous of degree 0 defining Σ_{i} in (H.1) and $a_{\alpha_{1}, \alpha_{0}, \alpha_{2}, j}$ of degree $m-j / k$. Since

$$
\rho_{\Sigma_{1} \cap \Sigma_{2}}=\left\{\left|u^{(1)}\right|^{2}+\left|u^{(0)}\right|^{2}+\left|u^{(2)}\right|^{2}+r^{-2 / k}\right\}^{1 / 2},
$$

it is clear that if we assign to r the weight 1 , to $\left(u^{(1)}, u^{(0)}, u^{(2)}\right)$ the weight
$-1 / k$, to v the weight 0 , then p^{\prime} and $r^{m} \rho_{\Sigma_{1} \cap \Sigma_{2}}{ }^{M_{1}+M_{2}}$ have the same degree $m-\left(M_{1}+M_{2}\right) / k$ of quasi-homogeneity. Thus by (3.1) and Proposition 2.5, we have

$$
p^{\prime-1} \in S^{-m,-\left(M_{1}+M_{2}\right)}\left(U^{\prime \prime} ; \Sigma_{1} \cap \Sigma_{2}\right) \quad \text { for some } U^{\prime \prime} \subset U^{\prime}
$$

Since

$$
\begin{aligned}
& p_{(\beta)}^{(\alpha)} \in S^{m-|\alpha|, M_{1}+M_{2}-(|\alpha|+|\beta|)}\left(U^{\prime \prime} ; \Sigma_{1} \cap \Sigma_{2}\right), \quad \text { we see } \\
& p_{(\beta)}^{(\alpha)} \cdot p^{-1} \in S^{-|\alpha|,-(|\alpha|+|\beta|)}\left(U^{\prime \prime} ; \Sigma_{1} \cap \Sigma_{2}\right) .
\end{aligned}
$$

Therefore with some constants $C_{3}, C_{4}>0$,

$$
\begin{equation*}
\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \leq C_{3}|\xi|^{-(1-1 / k)|\alpha|+(1 / k)|\beta|}|p(x, \xi)| \tag{3.3}
\end{equation*}
$$

for all $(x, \xi) \in U^{\prime \prime}$ and $|\xi| \geq C_{4}$. Thus (3.2) and (3.3) show that Hörmander's condition [7; Theorem 4.2] is satisfied, so P is hypoelliptic at $\rho \in \Sigma_{1} \cap \Sigma_{2}$ with loss of $\left(M_{1}+M_{2}\right) / k$-derivatives. If $\rho \in \Sigma_{1} \backslash \Sigma_{2}, L_{k}^{m, M_{1}, M_{2}}\left(U ; \Sigma_{1}, \Sigma_{2}\right)=L_{k}^{m, M_{1}}$ $\left(U ; \Sigma_{1}\right)$ for some conic neighbourhood of ρ. So we can apply the above arguments with $\Sigma_{1}=\Sigma_{2}, M_{2}=0$. It is similar to the case $\rho \in \Sigma_{2} \backslash \Sigma_{1}$. Thus we complete the proof.
(B) The case $k=2$.

Lemma 3.1. Assume that the closed conic submanifolds Σ_{1} and Σ_{2} satisfy (H.1), (H.2) and (H.3). Then for every $\rho \in \Sigma_{1} \cap \Sigma_{2}$, there exists a conic neighbourhood U of ρ and a homogeneous canonical transformation $\chi: U \rightarrow T * \boldsymbol{R}^{n}-\{0\}$ such that

$$
\chi\left(\Sigma_{i}\right)=\left\{\xi_{1}^{(i)}=\cdots=\xi_{\nu_{i}}^{(i)}=\xi_{1}^{(0)}=\cdots=\xi_{\nu_{0}}^{(0)}=0\right\}, \quad i=1,2
$$

where

$$
(x, \xi)=\left(x^{(1)}, x^{(0)}, x^{(2)}, x^{\prime}, \xi^{(1)}, \xi^{(0)}, \xi^{(2)}, \xi^{\prime}\right) \in T^{*} \boldsymbol{R}^{n}-\{0\}
$$

and

$$
\begin{array}{ll}
x^{(1)}=\left(x_{1}, \cdots, x_{\nu_{1}}\right) & \xi^{(1)}=\left(\xi_{1}, \cdots, \xi_{\nu_{1}}\right) \tag{3.4}\\
x^{(0)}=\left(x_{\nu_{1}+1}, \cdots, x_{\nu_{1}+\nu_{0}}\right) & \left.\xi^{(0)}=\xi_{\nu_{1}+1}, \cdots, \xi_{\nu_{1}+\nu_{0}}\right) \\
x^{(2)}=\left(x_{\nu_{1}+\nu_{0}+1}, \cdots, x_{\nu_{1}+\nu_{0}+\nu_{2}}\right) & \xi^{(2)}=\left(\xi_{\nu_{1}+\nu_{0}+1}, \cdots, \xi_{\nu_{1}+\nu_{0}+\nu_{2}}\right) .
\end{array}
$$

Proof. With the notations in (H.1) if we define locally

$$
\begin{array}{ll}
\Sigma_{10}=\left\{u_{1}^{(1)}=\right. & \left.=u_{\nu_{1}}^{(1)}=0\right\} \\
\Sigma_{00}=\left\{u_{1}^{(0)}=\right. & \left.=u_{\nu_{0}}^{(0)}=0\right\} \\
\Sigma_{20}=\left\{u_{1}^{(2)}=\right. & \left.=u_{\nu_{2}}^{(2)}=0\right\}
\end{array}
$$

it is easy to see that they intersect transversally and

$$
\Sigma_{1}=\Sigma_{10} \cap \Sigma_{00} \quad \Sigma_{2}=\Sigma_{20} \cap \Sigma_{00} .
$$

Therefore under the hypotheses (H.1), (H.2) and (H.3), there exists locally a canonical transformation from some conic neighbourhood U of ρ into $T * \boldsymbol{R}^{n}-\{0\}$ such that

$$
\chi\left(\Sigma_{i 0}\right)=\left\{\xi_{1}^{(i)}=\cdots=\xi_{\nu_{i}}^{(i)}=0\right\}, \quad i=1,0,2 .
$$

(c. f. [1], Grigis and Lascar [4], Duistermaat and Hörmander [3]) This completes the proof.

Since the hypotheses and the conclusions of Theorem 1.10 and Corollary 1.11 are invariant under the above canonical transformation, we are reduced to the case: $X=\boldsymbol{R}^{n}$ and

$$
\Sigma_{i}=\left\{\xi_{1}^{(i)}=\cdots=\xi_{\nu_{i}}^{(i)}=\xi_{1}^{(0)}=\cdots=\xi_{v_{0}}^{(0)}=0\right\}, \quad i=1,2
$$

with the notations in (3.4). Then in a conic neighbourhood of $\rho \in \Sigma_{1} \cap \Sigma_{2}$, we have

$$
\begin{equation*}
P=\sum_{j=0}^{M_{1}+M_{2}} \sum_{\left(\alpha_{1}, \alpha_{0}, \alpha_{2}\right)} A_{\alpha_{1}, \alpha_{0}, \alpha_{2}, j}\left(D_{\left.x^{(1)}\right)^{\alpha_{1}}}\left(D_{x^{(0)}}\right)^{\alpha_{0}}\left(D_{x^{(2)}}\right)^{\alpha_{2}}\right. \tag{3.5}
\end{equation*}
$$

where $A_{\alpha_{1}, \alpha_{0}, \alpha_{2}, j}$ are classical pseudo-differential operators of order $m-\left(M_{1}+\right.$ $\left.M_{2}\right)+j / 2$. Then the hypothesis (1.6) implies

$$
p^{\prime}(x, \xi)=\sum_{j=0}^{M_{1}+M_{2}} p_{m-j / k}(x, \xi) \neq 0 \quad \text { at } \rho,
$$

because the $\frac{\partial}{\partial x_{j}}$ are all tangent to $\Sigma_{1} \cap \Sigma_{2}$. Therefore we have

$$
q^{\prime}(x, \xi)=p^{\prime-1}(x, \xi) \in S^{-m,-\left(M_{1}+M_{2}\right)}\left(U ; \Sigma_{1} \cap \Sigma_{2}\right)
$$

similarly to the case (A). If we set $Q^{\prime}=q^{\prime}(x, D)$, the symbol of $Q^{\prime} \cdot P$ is asymptotically equal to

$$
1+\sum_{|\alpha| \geq 1} \frac{1}{\alpha!} q^{\prime(\alpha)} D_{x}^{\alpha} p .
$$

Again since the $\frac{\partial}{\partial x_{j}}$ are all tangent to $\Sigma_{1} \cap \Sigma_{2}$, the second term in the right hand side belongs to $S^{-1 / 2,0}\left(U ; \Sigma_{1} \cap \Sigma_{2}\right)$. Thus we have

$$
Q^{\prime} \cdot P=I-R^{\prime} \quad \text { with } \quad R^{\prime} \in O P S^{-1 / 2,0}\left(\boldsymbol{R}^{n} ; \Sigma_{1} \cap \Sigma_{2}\right) .
$$

Finally if we set $Q \sim \sum_{k=0}^{\infty}\left(R^{\prime}\right)^{k} \cdot Q$, then $Q \cdot P \sim I$.
If $\rho \in \Sigma_{1} \backslash \Sigma_{2}$ or $\rho \in \Sigma_{2} \backslash \Sigma_{1}$, it is similar to the case (A). This completes the proof.
(2) Necessity of Theorem 1.10

We suppose that Γ_{ρ} contains the zero for some point $\rho=\left(x^{0}, \xi^{0}\right) \in \Sigma_{1} \cap \Sigma_{2}$. We may assume the same form as (3.5) i.e.

$$
P=\sum_{j=0}^{M_{1}+M_{2}} \sum_{\left(\alpha_{1}, \alpha_{0}, \alpha_{2}\right)} A_{\alpha_{1}, \alpha_{0}, \alpha_{2}, j}\left(D_{\left.x^{(1)}\right)}\right)^{\alpha_{1}}\left(D_{x^{(0)}}\right)^{\alpha_{0}}\left(D_{\left.x^{(2)}\right)^{\alpha_{2}}}\right.
$$

where $A_{\alpha_{1}, \alpha_{0}, \alpha_{2}, j}$ are of order $m-\left(M_{1}+M_{2}\right)+(1-1 / k) j$. For brevity, we may assume $\left.x^{0}=0, \xi^{0}=(0)^{(1)},(0)^{(0)},(0)^{(2)}, 0, \cdots, 0,1\right)\left(\xi_{n}^{0}=1\right)$. Then our hypothesis on $\tilde{q}(\rho, Y)$ means :

$$
\begin{equation*}
\sum_{j=0}^{M_{1}+M_{2}} \sum a_{\alpha_{1}, \alpha_{0}, \alpha_{2}, j}\left(0, \cdots, 0, \xi_{n}^{0}\right)\left(\eta^{(1)}\right)^{\alpha_{1}}\left(\eta^{(0)}\right)^{\alpha_{0}}\left(\eta^{(2)}\right)^{\alpha_{2}}=0 \tag{3.6}
\end{equation*}
$$

for some $\left(\eta^{(1)}, \eta^{(0)}, \eta^{(2)}\right) \in \boldsymbol{R}^{\left(\nu_{1}+\nu_{0}+\nu_{2}\right)}$ where $a_{\alpha_{1}, \alpha_{0}, \alpha_{2}, j}$ are the principal symbols of $A_{\alpha_{1}, \alpha_{0}, \alpha_{2}, j}$. Here if we assign to $\left(\eta^{(1)}, \eta^{(0)}, \eta^{(2)}\right)$ the weight 1 , to ξ_{n}^{0} the weight $k /(k-1)$, we can regard the left hand side in (3.6) as quasi-homogeneous symbol of degree $\left(k m-\left(M_{1}+M_{2}\right)\right) /(k-1)$ of type $(1, k(k-1))$. Then by [9; Lemma 7.1] (c.f. [1; Proposition 3.1]), there exists a distribution u such that the wave front set $W F(u)=\left\{\left(x^{0}, \lambda \xi^{0}\right) ; \lambda>0\right\}$ and $P u \in H^{s}$ at ρ but $u \notin H^{s+m-\left(M_{1}+M_{2}\right) / k}$ at ρ. This completes the proof.

$\S 4$. The special case of type $P=P_{1} \cdot P_{2}+P_{3}$

Let $P_{1} \in O P L_{k}^{m_{1}, M_{1}}\left(X ; \Sigma_{1}\right)$ and $P_{2} \in O P L_{k}^{m_{2}, M_{2}}\left(X ; \Sigma_{2}\right)$ where one of the factors is properly supported and elliptic outside Σ_{1} and Σ_{2} respectively. By Proposition 1.3, $P_{1} \cdot P_{2} \in O P L_{k}^{m_{1}+m_{2}, M_{1}, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right)$. Then we shall consider the operator of the following type:

$$
\begin{equation*}
P=P_{1} \cdot P_{2}+P_{3} \tag{4.1}
\end{equation*}
$$

where

$$
P_{3} \in O P L_{k}^{m_{1}+m_{2}-1 / k, M_{1}-1, M_{2}}\left(X ; \Sigma_{1}, \Sigma_{2}\right) \cup O P L_{k}^{m_{1}+m_{2}-1 / k, M_{1}, M_{2}-1}\left(X ; \Sigma_{1}, \Sigma_{2}\right)
$$

Proposition 4.1. Assume that Σ_{1} and Σ_{2} satisfy (H.1), (H.2) and (H.3). Then $\tilde{q}_{i}(\rho, Y)$ be the associated forms of $P_{i}(i=1,2,3)$ given by (1.5). Then for every $\rho \in \Sigma_{1} \cap \Sigma_{2}$, we have

$$
\tilde{q}(\rho, Y)=\tilde{q}_{1}(\rho, Y) \cdot \tilde{q}_{2}(\rho, Y)+\tilde{q}_{3}(\rho, Y), \quad Y \in T_{\rho}\left(T^{*} X-\{0\}\right)
$$

Proof. First we calculate the q in Proposition 1.5. Let q_{i} be the associated symbols given by (1.3) ($i=1,2,3$) in a conic neighbourhood U of ρ. By our hypotheses (H.1), (H.2) and (H.3),

$$
p_{1} \# p_{2}=p_{1} \cdot p_{2}
$$

and

$$
q_{i} \equiv p_{i} \quad(i=1,2,3) \quad \text { modulo } L_{k}^{m_{1}+m_{2}, M_{1}+M_{2}+1}\left(U ; \Sigma_{1} \cap \Sigma_{2}\right) .
$$

Thus by Proposition 1.9, we have

$$
q \equiv q_{1} \bullet q_{2}+q_{3}
$$

Since

$$
q_{m_{1}+m_{2}-j / k}=\sum_{t+s=j} q_{1, m_{1}-t / k} q_{2, m_{2}-s / k}+q_{3, m_{1}+m_{2}-j / k}
$$

we readily see

$$
\tilde{q}(\rho, Y)=\tilde{q}_{1}(\rho, Y) \cdot \tilde{q}_{2}(\rho, Y)+\tilde{q}_{3}(\rho, Y) .
$$

Thus by Theorem 1.10 and Corollary 1.11, we have
Theorem 4.1. Assume that Σ_{1} and Σ_{2} satisfy (H.1), (H.2) and (H.3) and let $\rho \in \Sigma_{1} \cap \Sigma_{2}$. Then P is hypoelliptic at ρ with loss of $\left(M_{1}+M_{2}\right) / k$ derivatives if and only if

$$
\tilde{q}_{1}(\rho, Y) \cdot \tilde{q}_{2}(\rho, Y)+\tilde{q}_{3}(\rho, Y) \neq 0 \quad \text { for all } Y \in T_{\rho}(T * X-\{0\}) .
$$

Next for $\rho \in \Sigma_{1} \backslash \Sigma_{2}$, it is easy to see

$$
\tilde{q}(\rho, Y)=\tilde{q}_{1}(\rho, Y) \cdot p_{2, m_{2}}(\rho)+\tilde{q}_{3}(\rho, Y)
$$

and for $\rho \in \Sigma_{2} \backslash \Sigma_{1}$,

$$
\tilde{q}(\rho, Y)=p_{1, m_{1}}(\rho) \cdot \tilde{q}_{2}(\rho, Y)+\tilde{q}_{3}(\rho, Y)
$$

where $p_{1, m_{1}}$ and $p_{2, m_{2}}$ are the principal symbols of p_{1} and p_{2} respectively. Therefore we have

Corollary 4.3. Under the hypotheses in the above theorem, if, for every $\rho \in \Sigma=\Sigma_{1} \cup \Sigma_{2}$,

$$
\tilde{q}(\rho, Y) \neq 0 \quad \text { for all } Y \in T_{\rho}\left(T^{*} X-\{0\}\right)
$$

P is hypoelliptic with loss of $\left(M_{1}+M_{2}\right) / k$-derivatives.
Example 4.4. (1) Let $P=P_{1} \cdot P_{2}+P_{3}$ in \boldsymbol{R}^{4} where

$$
\begin{aligned}
& P_{1}=D_{x_{1}}^{2}+D_{x_{2}}^{2}+a D_{x_{4}}, \\
& P_{2}=D_{x_{2}}^{2}+D_{x_{3}}^{2}+b D_{x_{4}}, \\
& P_{3}=c\left(D_{x_{1}}^{2}+D_{x_{2}}^{2}+D_{x_{3}}^{2}+D_{x_{4}}^{2}\right)
\end{aligned}
$$

and a, b and c be complex numbers.
Let $\rho=\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}, x_{4}^{0}, O, O, O, \xi_{4}^{0}\right)\left(\xi_{4}^{0} \neq 0\right)$. Put $\Delta_{a, b, \xi_{4}^{0}}=\left\{\lambda \operatorname{sgn}\left(\xi_{4}^{0}\right)(a+b)+\mu ;\right.$ $\lambda, \mu \geq 0\}$. Then if

$$
a b+c+\Delta_{a, b, 54} \text { does not meet the origin, }
$$

P is hypoelliptic at ρ with loss of 2 -derivatives.
In fact, if we set $\Sigma_{1}=\left\{\xi_{1}=\xi_{2}=0\right\}, \Sigma_{2}=\left\{\xi_{2}=\xi_{3}=0\right\}, P \in P O L_{2, c}^{4,2,2}\left(\boldsymbol{R}^{4} ; \Sigma_{1}, \Sigma_{2}\right)$.
Then we have

$$
\Gamma_{\rho}=\left\{\left(\left|\xi_{4}^{0}\right|\left(\eta_{1}^{2}+\eta_{2}^{2}\right)+a \xi_{4}^{0}\right)\left(\left|\xi_{4}^{0}\right|\left(\eta_{2}^{2}+\eta_{3}^{2}\right)+b \xi_{4}^{0}\right)+c\left(\xi_{4}^{0}\right)^{2} ; \quad\left(\eta_{1}, \eta_{2} \in \boldsymbol{R}^{2}\right\} .\right.
$$

(2) Let $P=\left(D_{x_{1}}^{4}+x_{1}^{4}\left(D_{x_{2}}^{4}+D_{x_{3}}^{4}\right)\left(D_{x_{2}}^{4}+x_{2}^{4}\left(D_{x_{1}}^{4}+D_{x_{3}}^{4}\right)+a\left(D_{x_{1}}^{6}+D_{x_{2}}^{6}+D_{x_{3}}^{6}\right)\right.\right.$ in \boldsymbol{R}^{3} where a is a complex number. Let $\rho=\left(0,0, x_{3}^{0}, 0,0, \xi_{3}^{0}\right)$. Then P is hypoelliptic at ρ with loss of 2 -derivatives if and only if

$$
a+[0,+\infty) \text { does not meet the origin. }
$$

In fact, if we set $\Sigma_{1}=\left\{\xi_{1}=x_{1}=0\right\}, \Sigma_{2}=\left\{\xi_{2}=x_{2}=0\right\}, P \in O P L_{4, c}^{8,4,4}\left(\boldsymbol{R}^{3} ; \Sigma_{1}, \Sigma_{2}\right)$. Then we have

$$
\Gamma_{\rho}=\left\{\left|\xi_{3}^{0 \mid}\right|^{6}\left(\eta_{1}^{4}+y_{1}^{4}\right)\left(\eta_{2}^{4}+y_{2}^{4}\right)+c \mid \xi_{3}^{0}{ }^{0} ; \quad\left(y_{1}, y_{2}, \eta_{1}, \eta_{2}\right) \in \boldsymbol{R}^{4}\right\} .
$$

§ 5. The case of system

For brevity, let $P_{i} \in O P L_{2}^{1,1}\left(X ; \Sigma_{i}\right)$ be elliptic outside $\Sigma_{i}(i=1,2)$, and let $A, B \in O P L_{1,0}^{1 / 2}(X)\left(=L_{1,0}^{1 / 2}\right.$, for the notation, see [6]]). We consider the following system

$$
\boldsymbol{P}=\left(\begin{array}{ll}
P_{1} & A \\
B & P_{2}
\end{array}\right) .
$$

By using Corollary 4.3, we can prove
Theorem 5.1. Auusme that Σ_{1} and Σ_{2} satisfy (H.1), (H.2) and (H.3). Then \boldsymbol{P} is hypoelliptic with loss of $1 / 2$-derivative if, for $\rho \in \Sigma=\Sigma_{1} \cup \Sigma_{2}$ and for all $Y \in T_{\rho}\left(T^{*} X-\{0\}\right)$,

$$
\begin{array}{lll}
\tilde{q}_{1}(\rho, Y) \neq 0 & \text { when } & \rho \in \Sigma_{1} \backslash \Sigma_{2}, \\
\tilde{q}_{2}(\rho, Y) \neq 0 & \text { when } & \rho \in \Sigma_{2} \backslash \Sigma_{1}, \\
\tilde{q}_{1}(\rho, Y) \cdot \tilde{q}_{2}(\rho, Y)-a^{0}(\rho) \cdot b^{0}(\rho) \neq 0 & \text { when } & \rho \in \Sigma_{1} \cap \Sigma_{2} .
\end{array}
$$

Here a^{0} and b^{0} are the principal symbols of A and B respectively. In particular, the system is subelliptic with loss of $1 / 2$-derivatives.

Proof. If we set

$$
\hat{\boldsymbol{P}}=\left(\begin{array}{rr}
P_{2} & -A \\
-B & P_{1}
\end{array}\right),
$$

we have

$$
\widehat{\boldsymbol{P}} \cdot \boldsymbol{P}=\left(\begin{array}{cc}
P_{2} \cdot P_{1}-A \cdot B & {\left[P_{2}, A\right]} \\
{\left[P_{1} \cdot B\right]} & P_{1} \cdot P_{2}-B \cdot A
\end{array}\right)
$$

Since $P_{2} \cdot P_{1}-A \cdot B, P_{1} \cdot P_{2}-B \cdot A \in O P L_{2}^{2,1,1}\left(X ; \Sigma_{1}, \Sigma_{2}\right)$, under our hypotheses, there exist left parametrices $Q_{1}, Q_{2} \in O P S^{-2,-1,-1}\left(X ; \Sigma_{1}, \Sigma_{2}\right)$ such that

$$
\begin{aligned}
& Q_{1} \cdot\left(P_{2} \cdot P_{1}-A \cdot B\right) \sim I, \\
& Q_{2} \cdot\left(P_{1} \cdot P_{2}-B \cdot A\right) \sim I
\end{aligned}
$$

where I is the identity operator.
Thus if we put

$$
\boldsymbol{Q}^{\prime \prime}=\left(\begin{array}{cc}
Q_{1} & 0 \\
0 & Q_{2}
\end{array}\right),
$$

we have

$$
\boldsymbol{Q}^{\prime \prime} \cdot \hat{\boldsymbol{P}} \cdot \boldsymbol{P}=\boldsymbol{I}-\boldsymbol{R}
$$

where \boldsymbol{I} is the identity matrix and

$$
\boldsymbol{R}=\left(\begin{array}{cc}
0 & R_{1} \\
R_{2} & 0
\end{array}\right)
$$

$R_{1}=Q_{1}=\left[P_{2}, A\right], R_{2}=Q_{2} \cdot\left[P_{1}, B\right] \in O P L^{-3 / 2,-1,-1}\left(X ; \Sigma_{1} \cap \Sigma_{2}\right) \subset O P L_{1 / 2}^{-1 / 2}(X) . \quad$ By the standard technique, we find that

$$
\boldsymbol{Q}=\sum_{j=0}^{\infty}(\boldsymbol{R})^{j} \cdot \boldsymbol{Q}^{\prime \prime} \cdot \hat{\boldsymbol{P}} \in O P L_{1 / 2}^{-1 / 2}(X)
$$

is a left parametrix of \boldsymbol{P}. This completes the proof.
Example 5.2. Let

$$
\boldsymbol{P}=\left(\begin{array}{cc}
D_{x_{1}}+a \mid D_{\left(x_{2}, x_{3}\right)} 1^{1 / 2} & c \mid D_{\left(x_{1}, x_{2}, x_{3}\right)^{1 / 2}} \\
d \mid D_{\left(x_{1}, x_{2}, x_{3}\right)^{1 / 2}}^{1 / 2} & \left.D_{x_{2}}+b \mid D_{\left(x_{1}, x_{3}\right)}\right)^{1 / 2}
\end{array}\right) \text { in } \boldsymbol{R}^{3}
$$

where

$$
\begin{aligned}
& \left|D_{\left(x_{2}, x_{3}\right)}\right|=\left(D_{x_{2}}^{2}+D_{x_{3}}^{2}\right)^{1 / 2}, \\
& \left|D_{\left(x_{1}, x_{3}\right)}\right|=\left(D_{x_{1}}^{2}+D_{x_{3}}^{2}\right)^{1 / 2}, \\
& \left|D_{\left(x_{1}, x_{2}, x_{3}\right)}\right|=\left(D_{x_{1}}^{2}+D_{x_{2}}^{2}+D_{x_{3}}^{2}\right)^{1 / 2}
\end{aligned}
$$

and a, b, c and d are complex numbers. Put $\Delta_{a, b}=\{\lambda a+\mu b+\nu ; \lambda, \mu, \nu \in \boldsymbol{R}\}$. Then if
$\operatorname{Im} a \neq 0$,
$\operatorname{Im} b \neq 0$
and

$$
a b-c d+\Delta_{a, b} \text { does not meet the origin, }
$$

\boldsymbol{P} is hypoelliptic with loss of $1 / 2$-derivative.
In fact, we have

$$
\begin{aligned}
& \Gamma_{\rho}=\left\{\left|\xi_{(2,3)}^{0}\right|^{1 / 2}\left(\eta_{1}+a\right) ; \eta_{1} \in \boldsymbol{R}\right\} \quad \\
&=\left\{\left|\xi_{(1,3)}^{0}\right|^{1 / 2}\left(\eta_{2}+b\right) ; \eta_{2} \in \boldsymbol{R}\right\} \quad \\
&=\left\{| \xi _ { 3 } ^ { 0 } | \left((\eta _ { 1 } + a) \left(\eta_{1} \backslash \Sigma_{2},\right.\right.\right. \\
& \text { if } \rho \in \Sigma_{2} \backslash \Sigma_{1}, \\
&
\end{aligned}
$$

References

[1] Aramaki, J.: On a class of pseudo-differential operators and hypoellipticity, Hokkaido Math. J. Vol. IX No. 1 (1980), 46-58.
[2] Boutet de Monvel, L.: Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm. Pure and Appl. Math. 27 (1974), 585-639.
[3] Duistermatat, J. J. and Hörmander, L.: Fourier integral operators II, Acta Math. 128 (1972), 183-269.
[4] Grigis, M. A. and Lascar, R.: Équations locales d'un système de sous-variétés involutives, C. R. Acad. Sc. Paris 283 (1976), 503-506.
[5] Helffer, B.: Invariant associés à une classe d'opérateurs pseudo-différentiels et applications à L'hypoellipticité, Ann. Inst. Fourier, Grenoble 26 (1976), 55-70.
[6] Helffer, B.: Construction de parametrix pour des opérateurs pseudo-différentiels caracteristiques sur reunion de deux cones lisses, Bull. Soc. Math. France, Memoire, 51-52 (1977), 63-123.
[7] Hörmander, L.: Pseudo-differential operators and hypoelliptic equations, Amer. Math. Soc. Symp. Pure Math. 10 (1966), Singular integrals 138-183.
[8] Hörmander, L.: Fourier integral operators I, Acta Math. 127 (1971), 79-183.
[9] LASCAR, R.: Propagation des singularités des solutions d'équations pseudodifférentielles quasi homogénes, Ann. Inst. Fourier, Grenoble 27 (1977), 79-123.
[10] SJöstrand, J.: Parametrices for pseudo-differential operators with multiple characteristics, Arkiv för Mat. 12 (1974), 85-130.

Department of Mathematical Science
Faculty of Science and Engineering Tokyo Denki University

