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\S 0. Introduction

In the present paper we shall consider a class of pseud0-differential
operators P on a manifold X whose characteristic set \Sigma is the union
of two closed conic submanifolds \Sigma_{1} and \Sigma_{2} . This class is denoted by
OPL_{k}^{m,M_{1\prime}M_{2}}(X;\Sigma_{1}, \Sigma_{2}) . Under some quasi-transversality and involutiveness,

we shall give a necessary and sufficient condition for hypoellipticity of P

by constructing the parametrix.
When \Sigma_{1}=\Sigma_{2}, our class nearly coincides with OPL_{k}^{m,M_{1}+M_{2}}(X;\Sigma J

introduced by Helffer [5] or Sj\"ostrand [10]. Moreover in the case where
M_{1}=2 , k=2 and \Sigma_{1} is involutive, Boutet de Monvel [2] gives a necessary

and sufficient condition for existence of a parametrix of P in OPS^{-m,-2}

(more general class than ours) which is also equivalent to the hypoellipticity
for P with loss of 1-derivative. For general M_{1} , [5] gives a necessary and
sufficient condition for hypoellipticity of P with loss of M_{1}/2 -derivatives.

When \Sigma_{1} and \Sigma_{2} intersect transversally and \Sigma_{i}(i=1,2) , \Sigma_{1}\cap\Sigma_{2} are
involutive, Aramaki [1] constructs parametrices for the operators of a slightly
different class.

The plan of this paper is as follows: In \S 1, we introduce a class of
pseud0-differential operators and study the symbol calculus and the associatad
invariances of P using the technique developed by [5], [1]. Finally we give

the main theorem (Theorem 1. 10). \S 2 is the preparations for the proof
of our theorem. Mainly we consider the class OPS^{m,M_{1\prime}M_{2}}(X;\Sigma_{1}, \Sigma_{2}) which
is a generalization of the class OPS^{m,M_{1}}(X;\Sigma_{1}) introduced by [2]. In \S 3,

we give the proof of the Theorem 1. 10. \S 4 is devoted to a study of the
special case of type P=P_{1}\cdot P_{2}+P_{3} . Finally in \S 5, we apply the results of
\S 4 to the system of the type

P=(\begin{array}{ll}P_{1} AB P_{2}\end{array})

where A and B are lower order terms.
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\S 1. A class of operators and the associated invariances
Let X be a paracompact C^{\infty} manifold of dimension n and T^{*}X-\{0\}

be the cotangent bundle minus the zero section.
DEFINITION 1. 1. Let \Sigma_{1} and \Sigma_{2} be closed conic submanifolds of cod\iota-

mensions \mu_{1} and \mu_{2} in T^{*}X-\{0\} respectively and let m\in R, M_{1} , M_{2}\in Z^{+}

(non-negative integers), k\geq 2 an integer. Then the space oPL_{k}^{m,M_{1},M_{2}}(X;\Sigma_{1}, \Sigma_{2})

is the set of all pseudO-differential operators P\in L^{m}(X) (for the notation,
see H\"ormander [7], [8] ) such that for every local coodinate system V\subset X,
P has a symbol of the form
(1. 2) p(x, \xi)\sim\sum_{j- 0}^{\infty}p_{m-j/k}(x, \xi) with p_{m-j/k}(x, \xi) positively-homogeneous of de-
gree m-j/k with respect to \xi (j integral) and satisfy:
(1. 2) For every K\subset\subset V, there exists a constant C_{K}>0 such that

\frac{|p_{m-j/k}(x,\xi)|}{|\xi|^{m-jk}},\leq C_{K}

0 \leq k\leq M_{1}0\leq k_{2}^{1}\leq M_{2}\sum_{k_{1}+k_{2}=j},d_{\Sigma 1}(x, \xi)^{M_{1}-k_{1}}d_{\Sigma 2}(x, \xi)^{M_{2}-k_{2}}

,

0\leq j\leq M_{1}+M_{2} , for all (x9\xi) \in K\cross(R^{n}-\{0\}) and |\xi|\geq 1 . Here d_{\Sigma}(ix, \xi)=

\inf_{(y,\eta)\in\Sigma i}(|y-x|+|\eta^{-}\frac{\xi}{|\xi|}) are the distances from (x, \frac{\xi}{|\xi|}) to \Sigma_{i} , i=1,2 .
We also introduce the set OPL_{k,c}^{m_{1}\mathfrak{l}I_{1},M_{2}},(X;\Sigma_{1}, \Sigma_{2})\subset OPL_{k}^{m,M_{1\prime}M_{2}}(X;\Sigma_{1}, \Sigma_{2})

for which the p_{m-j/k} in (1. 1) can be taken to be zero when j/k is not an
integer.

REMARK 1. 2. OPL_{k}^{m,M_{1\prime}M_{2}}(X;\Sigma_{1}, \Sigma_{2}) reduces to OPL_{k}^{m,M_{1}}(X;\Sigma_{1}) of [5]
when M_{2}=0 and to OPL^{m,M_{1}}(X;\Sigma_{1}) of [10] when M_{2}=0 and k=2 .

It is clear that if \Sigma_{1}\cap\Sigma_{2} is a submanifold, we have
OPL_{k}^{m,M_{1\prime}M_{2}}(X;\Sigma_{1}, \Sigma_{2})\subset OPL_{k}^{m,M_{1}+M_{2}}(X;\Sigma_{1}\cap\Sigma_{2})

The class of symbols satisfying (1. 1) and (1. 2) in an open coneU\subset

T^{*}X-\{0\} is denoted by L_{k}^{m,M_{1},M_{2}} (U ; \Sigma_{1}, \Sigma_{2}) .
By a routine consideration (c. f. [7], [8]) we set the followings:
PROPOSITION 1. 3. Let P_{1}\in OPL_{k}^{m_{1},M_{1}}(X;\Sigma_{1}) and P_{2}\in OPL_{k}^{m_{2},M_{2}}(X;\Sigma_{2})

where one of the factors is properly supported. Then we have
P_{1}\cdot P_{2}\in OPL_{k}^{m_{1}+m_{2},M_{1},M_{2}}(X;\Sigma_{1}, \Sigma_{2})

PROPOSITION 1. 4. L_{k}^{mM_{1},M_{2}}, (T^{*}X-\{0\} ; \Sigma_{1}, \Sigma_{2})\subset L_{k}^{m+1/k,M_{1}+1,M_{2}}(T^{*}X-\{0\} ;
\Sigma_{1} , \Sigma_{2})\cap L_{k}^{m+1/k,M_{1\prime}M_{2}+1}(T^{*}X-\{0\} ; \Sigma_{1}, \Sigma_{2}) .

Let \Sigma_{1}\cap\Sigma_{2} be a submanifold. If q_{1} and q_{2} are elements in L_{k}^{m,M_{1\prime}M_{2}}
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(U;\Sigma_{1}, \Sigma_{2}) where U is a conic neighbourhood of \rho\in\Sigma_{1}\cap\Sigma_{2} , we define the
following equivalence relation:

q_{1}\equiv q_{2} in U if and only if q_{1}-q_{2}\in L_{k}^{m,M_{1}+M_{2}+1}(U;\Sigma_{1}\cap\Sigma_{2}) .
PROPOSITION 1. 5. Let p be a symbol in L_{k}^{m,M_{1},M_{2}}(T^{*}X-\{0\} ; \Sigma_{1}, \Sigma_{2})

and let \rho\in\Sigma_{1}\cap\Sigma_{2} . Then there exists a conic neighbourhood U of \rho such
that q\in L_{k}^{m,M_{1},M_{2}} (U ; \Sigma_{1}, \Sigma_{2})/L_{k}^{m,M_{1}\dagger M_{2}+1}(U ; \Sigma_{1}\cap\Sigma_{2}) defifined by

(1. 3) q \equiv\exp(-\frac{1}{2i}\sum_{j1}^{n}(\frac{\partial}{\partial x_{j}}\frac{\partial}{\partial\xi_{j}}))\cdot p

= \sum_{l0}^{\infty}\frac{-1)^{t}}{t!}((\frac{1}{2i}\sum_{j1}^{n}\frac{\partial}{\partial x_{j}}\frac{\partial}{\partial\xi_{j}})^{t}\cdot p

\dot{\iota}s invariant under a locally homogeneous canonical transformation: \chi ;
Uarrow T^{*}R^{n}-\{0\} .

REMARK 1. 6. If p\in L_{k}^{m,M_{1},M_{2}}(U;\Sigma_{1}, \Sigma_{2}) and k>2 , the class q given by
the formula (1. 3) coincides with

\sum_{j=0}^{M_{1}+_{1}1f_{2}}p_{m-j/k} modulo L_{k}^{m,M_{1}+M_{2}+1}(U;\Sigma_{1}\cap\Sigma_{2})

Now let U be a conic neighbourhood of \rho\in\Sigma_{1}\cap\Sigma_{2} . Let

q= \sum_{j=0}^{1f_{1}+M_{2}}q_{m-j/k}\in L_{k}^{m,M_{1},M_{2}}’(U;\lrcorner\Sigma_{1}, \Sigma_{2})/L_{k}^{m,M_{1}+M_{2}+1}(U;\Sigma_{1}\cap\Sigma_{2})

be a symbol associated with p in U. Define a (M_{1}+M_{2}-j) -linear form, denoted
by \tilde{q}_{m-j/k}(\rho) , on T_{\rho}(T^{*}X-\{0\}) by: For Y_{1} , Y_{2} , \cdots , Y_{M_{1}+M_{2}-j}\in T_{\rho}(T^{*}X-\{0\}) ,

(1. 4) \tilde{q}_{m-j/k}(\rho)(Y_{1}, Y_{2}, \cdots, Y_{M_{1}+M_{2}-j})

= \frac{1}{(M_{1}+M_{2}-j)!}\tilde{Y}_{1}\tilde{Y}_{2}\cdots\tilde{Y}_{M_{1}+M_{2}-j}q_{m-j/k})(\rho)

where \tilde{Y} means a vector field extending Y to a neighbourhood of \rho . It is
clear that \tilde{q}_{m-j/k}(\rho) is independent of the choice of the representative of q.

DEFINITION 1. 7. For every \rho\in\Sigma_{1}\cap\Sigma_{2} , we defifine

(1. 5) \tilde{q}(\rho, Y)=\sum_{j=0}^{M_{1}+M_{2}}\tilde{q}_{m-j/k}(\rho) ( Y, Y, \cdots, Y) for all Y\in T_{\rho}(T^{*}X-\{0\})

If \rho\in\Sigma_{1}\backslash \Sigma_{2} , p belongs to L_{k}^{n\iota,M_{1}}(U;\Sigma_{1}) for some conic neighbourhood U of
\rho . So if we apply Proposition 1. 5 to p with \Sigma_{1}=\Sigma_{2} , M_{2}=0 , we can also
defifine \tilde{q}(\rho, Y) for \rho\in\Sigma_{1}\backslash \Sigma_{2} . Similarly defifine \tilde{q}(\rho, Y) for \rho\in\Sigma_{2}\backslash \Sigma_{1} . There-
fore, for every \rho\in\Sigma=\Sigma_{1}\cup\Sigma_{2} , we can defifine

\Gamma_{\rho}=\{\tilde{q}(\rho, Y) ; Y\in T_{\rho}(T^{*}X-\{0\})\}
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REMARK 1. 8. When M_{2}=0 , M_{1}=k=2 , we have q_{m}=p_{m} and q_{m-1}=

p_{m-1}- \frac{1}{2i}\sum_{l=1}^{n}\frac{\partial}{\partial x_{l}}\frac{\partial}{\partial\xi_{l}}p_{m} . In this case \tilde{q}(\rho, Y) is the sum of the transversal

hessian of p_{m} and the subprincipal symbol of P at \rho .

PROPOSITION 1. 9. Let q_{1} and q_{2} be the symbols associated with p_{1} and
p_{2} respectively. Then the symbol q associated with the composition of p_{1}

and p_{2} is given by the formula:
q \equiv(\exp(\frac{1}{2i}\sum_{l=1}^{n}\frac{\partial}{\partial x_{l}}\frac{\partial}{\partial\xi_{l}})\cdot q_{1})\#(exp ( \frac{1}{2i}\sum_{-1}^{n}\frac{\partial}{\partial x_{l}}\frac{\partial}{\partial\xi_{l}})\iota-\cdot q_{2})

where \# designs the composition of the symbols.

Next we describe the hypotheses on \Sigma_{1} and \Sigma_{2} . Let \Sigma_{1} and \Sigma_{2} be
closed conic submanifolds in T^{*}X-\{0\} of codimension \mu_{1} and \mu_{2} respectively.
(H. 1) \Sigma_{1} and \Sigma_{2} intersect quasi-transversally. That is, \Sigma_{1}\cap\Sigma_{2} is a closed
conic submanifold such that for every point \rho\in\Sigma_{1}\cap\Sigma_{2} ,

T_{\rho}(\Sigma_{1}\cap\Sigma_{2})=T_{\rho}\Sigma_{1}\cap T_{\rho}\Sigma_{2} .

Locally this means : If the codimension of \Sigma_{1}\cap\Sigma_{2} is equal to (\mu_{1}+\mu_{2})-\nu_{0} ,

there exist positively-homogeneous functions
u_{1}^{(1)} , \cdots , u_{\nu_{1}}^{(1)} , u_{1}^{(0)} , \cdots , u_{\nu_{0}}^{(0)} , u_{1}^{(2)} , \cdots , u_{\nu_{2}}^{(2)} ,

du_{j}^{(i)}(j=1,2, \cdots, \nu_{i}, i=1,0,2) being linearly independent such that

\Sigma_{1} is defined by u_{1}^{(1)}=\cdots=u_{\nu_{1}}^{(1)}=u_{1}^{(0)}=\cdots=u_{\nu_{0}}^{(0)}=0 ,

\Sigma_{2} by u_{1}^{(0)}=\cdots=u_{\nu_{0}}^{(0)}=u_{1}^{(2)}=\cdots=u_{\nu_{2}}^{(2)}=0 ,

and
\Sigma_{1}\cap\Sigma_{2} by u_{1}^{(1)}=\cdots=u_{\nu_{1}}^{(1)}=u_{1}^{(0)}=\cdots=u_{\nu_{0}}^{(0)}=u(\begin{array}{l}21\end{array})=\cdots=u_{\nu_{2}}^{(2)}=0

Here \nu_{1}=\mu_{1}-\nu_{0} , \nu_{2}=\mu_{2}-\nu_{0}(\geq 0) .

(H. 2) \Sigma_{1} , \Sigma_{2} and \Sigma_{1}\cap\Sigma_{2} are involutive, i . e . if u_{1}^{(1)} , \cdots , u_{\nu_{1}}^{(1)} , u_{1}^{(0)} , \cdots , u_{\nu_{0}}^{(0)} , u_{1}^{(2)} ,
\ldots , u_{\nu_{2}}^{(2)} are as above, then

\{u^{(i)}j’ u^{(i)}j’\}=\{u^{(0)}k’ u^{(0)}k’\}=\{u_{j}^{(i)}, u_{k}^{(0)}\}=0 on \Sigma_{i}(i=1,2)

and
\{u_{j}^{(1)}, u(\begin{array}{l}2l\end{array})\}=0 on \Sigma_{1}\cap\Sigma_{2} .

(H. 3) The radial vector \sum_{\iota-1}^{n}\xi_{l}\frac{\partial}{\partial\xi_{l}} is linearly independent of H_{u_{j}^{(i}}, , j=1 , \cdots ,

\nu_{i} , i=1,0,2 . Here we denote by H_{f} the Hamilton vector field and by \{f, q\}

their Poisson bracket for C^{\infty} functions f, g on T^{*}X-\{0\} .
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Then we obtain the following :

THEOREM 1. 10. Let P be in OPL_{k}^{m,M_{1},M_{2}}(X;\Sigma_{1}, \Sigma_{2}) and be elliptic
outside \Sigma=\Sigma_{1}\cap\Sigma_{2} . Assume that (H. 1), (H. 2) and (H. 3) are satisfified. Then
P is hypoelliptic at \rho\in\Sigma_{1}\cap\Sigma_{2} with loss of (M_{1}+M_{2})/k -derivatives if and
only if
(1. 6) \Gamma_{\rho} does not meet the origin.

Here we say that P is hypoelliptic at \rho with loss of (M_{1}+M_{2})/k-derivatives
if u\in \mathscr{D}’(X) and Pu\in H^{s} at \rho implies u\in H^{s+m-(M_{1}+M_{2})/k} at \rho .

We also obtain a sufficient condition for the usual hypoellipticity :

COROLLARY 1. 11. Let P be in OPL_{k}^{m,M_{1},M_{2}}(X;\Sigma_{1}, \Sigma_{2}) and be elliptic
outside \Sigma=\Sigma_{1}\cup\Sigma_{2} . Then P is hypoelliptic with loss of (M_{1}+M_{2})/k -deriva-
tives, iffor every \rho\in\Sigma=\Sigma_{1}\cup\Sigma_{2} , \Gamma_{\rho} does not meet the origin and moreover:

(A) When k>2 , (H. 1) and (H. 3) are satisfified (note that (H. 2) is un-
necessary).

(B) When k=2, (H. 1), (H. 2) and (H. 3) are satisfified.
Here we say that P is hypoelliptic with loss of (M_{1}+M_{2})/k -derivatives iffor
all open set O in X, u\in \mathscr{D}’(X) and Pu\in H_{lOC}^{s}(O) implies u\in H_{loc}^{s+m-(M_{1}+M_{2})/k}(O) .

Finally we give a simple example:

EXAMPLE 1. 12. Let P=D_{x_{1}}^{2}D_{x_{2}}^{2}+aD_{x_{1}}^{2}D_{x_{J}}+2bD_{x_{1}}D_{x_{2}}D_{x_{s}}+cD_{x_{2}}^{2}D_{x_{d}}+

d(D_{x_{1}}^{2}+D_{x_{2}}^{2}+D_{x_{3}}^{2}) in R^{3} where a, b, c and d are complex numbers. Let \Delta_{d}=

\{\lambda d+\mu;\lambda\geq 1, \mu\geq 0\} and \Delta be the set of values of the quadratic form cor-

responding to the symmetric matrix (\begin{array}{ll}a bb c\end{array}) . Then P is hypoelliptic at \rho=

(x_{1}^{0}, x_{2}^{0}, x_{3}^{0},0,0, \xi_{3}^{0}) with loss of 2-derivatives if and only if (sgn (\xi_{3}^{0}) ) \cdot\Delta+\Delta_{d} does
not meet the origin.

In fact, if we set \Sigma_{1}=\{\xi_{1}=0\} and \Sigma_{2}=\{\xi_{2}=0\} , P\in OPL_{2,c}^{4,2,2} (R^{3} ; \Sigma_{1}, \Sigma_{2}) .
Then

\Gamma_{\rho}=\{|\xi_{3}^{0}|^{2}\eta_{1}^{2}\eta_{2}^{2}+|\xi_{3}^{0}|\xi_{3}^{0}(a\eta_{1}^{2}+2b\eta_{1}\eta_{2}+c\eta_{2}^{2})+d(|\xi_{3}^{0}|^{2}(\eta_{1}^{2}+\eta_{2}^{2})+(\xi_{3}^{0})^{2}) ; (\eta_{1}, \eta_{2})\in R^{2}\} ,

therefore Theorem 1. 10 leads to the conclusion.

\S 2. The preparations for the proof of Theorem 1. 10 and
Corollary 1. 11

In this section we introduce the class of operators in which we construct
the parametrix of P\in OPL_{k}^{m,M_{1},M_{2}}(X;\Sigma_{1}, \Sigma_{2}) . (c. f . Helffer [6])

Let U be an open cone in T^{*}X-\{0\}=S^{*}X\cross R^{+} where S^{*}X is the
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cosphere bundle of X. We denote by u=(u^{(1)}, u^{(0)}, u^{(2)}, v, r) the variables in
U. Let \Sigma_{1} and \Sigma_{2} be the subcones defined by

\Sigma_{1}=\{u^{(1)}=u^{(0)}=0\} , \Sigma_{2}=\{u^{(0)}=u^{(2)}=0\}

where
u^{(i)}=(u_{1}^{(i)}, \cdots, u_{\nu_{i}}^{(i)}) (i=1,0, 2)

v=(v_{1}, \cdots, v_{(2n-1)-(\nu_{1}+\nu_{0}+\nu_{2}}))

and u_{j}^{(i)} (j=1, \cdots, \nu_{i}, i=1,0, 2) , v_{l}(l=1, \cdots, (2n-1)-(\nu_{1}+\nu_{0}+\nu_{2})) are functions
of positively-homogeneous of degree 0. We set

\rho_{\Sigma}i=\{\sum_{j=1}^{\nu_{i}}|u^{(i)}|^{2}+\sum_{j=1}^{\nu_{0}}|u^{(0)}|^{2}+r^{-2/k}\}^{1/2} , (i=1,2)

DEFINITION2.1. Let m, M_{1} , M_{2}\in R . Then we denote by S^{m,M_{1},M_{2}}

(U;\Sigma_{1}, \Sigma_{2}) the set of all C^{\infty} functions a(u) on U such that for any j\in Z_{+}

and any multi-indeces \alpha_{1}\in(Z_{+})^{\nu_{1}} , \alpha_{0}\in(Z_{+})^{\nu_{0}} , \alpha_{2}\in(Z_{+})^{\nu_{2}} , \beta\in(Z_{+})^{(2n-1)-(\nu_{1}+\nu_{0}+)}\nu_{2} ,

we have

|( \frac{\partial}{\partial u^{(1)}})^{\alpha_{1}}(\frac{\partial}{\partial u^{(0)}})^{\alpha_{0}}(\frac{\partial}{\partial u^{(2)}})^{\alpha_{2}}(\frac{\partial}{\partial v})^{\beta}(\frac{\partial}{\partial r})^{j}a|

\leq r^{m-j}\sum_{k_{1}+k_{2}=|a_{0}|}\rho_{\Sigma_{1}}\rho\Sigma_{2}M_{1}-|\alpha_{1}|-k_{1}M_{2}-|\alpha_{2}|-k_{2}1

Here we use the notation f\leq g if for any subcone U\subset U with compact
basis and any \epsilon>0 , there exists a constant C>0 such that 0\leq f\leq Cg in
U’ when r>\epsilon .

REMARK 2. 2. (1) Note that we can also express the above definition
in the \dot{1}nvariant fashion, (c. f. [2], [6])
(2) S^{m,M_{1\prime}M_{2}}(T^{*}X-\{0\} ; \Sigma_{1}, \Sigma_{2})\subset S_{\rho,\delta}^{m-((M_{1})+(M_{2})}--)/k with \rho=1-1/k and \delta=1/k

where (s)_{-}= \inf(0, s) for real s. In fact, since \rho_{\Sigma}^{-1}i\leq r^{1/k} , the right hand
side in the definition is estimated by

r^{m-j}\rho_{\Sigma_{1}\rho_{\Sigma_{2}}r^{(|\alpha_{1}|+|\alpha_{0}|+|\alpha_{2}|)/k}}^{M_{1}M_{2}}

Here by definition of \rho\Sigma i ’ we have \rho_{\Sigma}^{M_{i}}i\leq r^{-(M_{i^{)}-/k}} .
Note that if k>2 , we have \delta<\rho and if k=2, \rho=\delta=1/2 .
The following three propositions follow from a routine consideration,

(c. f. [2])

PROPOSITION 2. 3. For M_{1} , M_{2}\geq 0 integers, we have
L_{k}^{m,M_{1},M_{2}}(U;\Sigma_{1}, \Sigma_{2})\subset S^{m,M_{1},M_{2}}(U;\Sigma_{1}, \Sigma_{2}) .

PROPOSITION 2. 4. If p_{1}\in S^{m,M_{1},M_{2}}(U;\Sigma_{1}, \Sigma_{2}) and p_{2}\in S^{m’,M_{\acute{1}},M_{\acute{2}}}(U;\Sigma_{1}, \Sigma_{2}) ,



Hypoellipticity for a class of pseudO-differential operators 21

then p_{1}\cdot p_{2}\in S^{m+m’,M_{1}+M_{\acute{1}\prime}M_{2}+M_{\acute{2}}}(U;\Sigma_{1}, \Sigma_{2}) .

PROPOSITION 2. 5. If p\in S^{m,M_{1\prime}M_{2}}(U;\Sigma_{1}, \Sigma_{2}) and satisfifies
|p|\geq r^{m}\rho_{\Sigma_{1}}^{M_{1}}\rho_{\Sigma_{2}}^{M_{2}}’.

then

p^{-1}\in S^{-m,-M_{1},-M_{2}}(U;\Sigma_{1}, \Sigma_{2}) .

\S 3. Proofs of Theorem 1.10 and Corollary 1. 1I

( 1) Sufficiency of Theorem 1. 10 and Corollary 1. 11
(A) The case k>2 . Let \rho\in\Sigma_{1}\cap\Sigma_{2} and U be a conic neighbourhood

of \rho . By Remark 1. 6, the class q defined by Proposition 1. 5 has the follow-
ing form :

q \sim\sum_{j=0}^{M_{1}+M_{2}}p_{m-j/k}(x, \xi)

Therefore by definition 1. 7,

\tilde{q}(\rho, Y)=\sum_{j- 0}^{M_{1}+M_{2}}\tilde{p}_{m-j/k}(\rho)(Y, \cdots, Y) , Y\in T_{\rho\backslash }^{(}T^{*}X-\{0\})

where the (M_{1}+M_{2}-j) -linear form \tilde{p}_{m-j/k}(\rho) on T_{\rho}(T^{*}X-\{0\}) is defined in
the same way as (1. 4). Then our hypothesis (1. 6) implies

(3. 1) p’(x, \xi)=\sum_{j-0}^{M_{1}+M_{2}}p_{m-j/k}(x, \xi)\neq 0 at \rho\in\Sigma_{1}\cap\Sigma_{2} .

Thus for every \rho\in\Sigma_{1}\cap\Sigma_{2} , there exists a conic neighbourhood U of \rho and
constants C_{1} and C_{2} such that

(3. 2) |p(x, \xi)|\geq C_{1}|\xi|^{m-(M_{1}+M_{2})/k} for all (x, \xi)\in U and |\xi|\geq C_{2} .

By Taylor’s formula, in a conic neighbourhood of \rho , we can write :

p’= \sum_{j0}^{M_{1}+M_{2}}\sum_{(\alpha_{1},\alpha_{0}\alpha_{2})}a_{\alpha_{1’}\alpha_{0’}\alpha_{2},j(u^{(1)})^{\alpha_{1}}(u^{(0)})^{a_{0}}(u^{(2)})^{a_{2}}}

where (\alpha_{1}, \alpha_{0}, \alpha_{2}) in the summation range all multi-indices such that |\alpha_{1}|+|\alpha_{0}|+

|\alpha_{2}|=M_{1}+M_{2}-j, |\alpha_{1}|\leq M_{1} , |\alpha_{2}|\leq M_{2} . Moreover u^{(i)}(i=1,0,2) are functions
of positively-homogeneous of degree 0 defining \Sigma_{i} in (H. 1) and a_{\alpha_{1},\alpha_{0},a_{2},j} of
degree m-j/k. Since

\rho_{\Sigma_{1^{\cap\Sigma_{2}}}}=\{|u^{(1)}|^{2}+|u^{(0)}|^{2}+|u^{(2)}|^{2}+r^{-2/k}\}^{1/2} ,

it is clear that if we assign to r the weight 1, to (u^{(1)}, u^{(0)}, u^{(2)}) the weight
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-1/k, to v the weight 0, then p’ and r^{m}\rho_{\Sigma_{1}\cap\Sigma_{2}}^{M_{1}+M_{2}} have the same degree
m-(M_{1}+M_{2})/k of quasi-homogeneity. Thus by (3. 1) and Proposition 2. 5,

we have
p^{\prime-1}\in S^{-m,-(M_{1}+M_{2})} (U’ ; \Sigma_{1}\cap\Sigma_{2}) for some U’\subset U’

Since p_{(\beta)}^{(\alpha)}\in S^{m-|\alpha|,M_{1}+M_{2}-(|\alpha|+|\beta|)} (U’ ; \Sigma_{1}\cap\Sigma_{2}) , we see
p_{(\beta)}^{(\alpha)}\cdot p^{-1}\in S^{-|\alpha|,-(|\alpha|+|\beta|)}(U’ ; ^{\Sigma_{1}}\cap\Sigma_{2})

Therefore with some constants C_{3} , C_{4}>0 ,

(3. 3) |p\{_{\beta)}^{a)}(x, \xi)|\leq C_{3}|\xi|^{-(1-1/k)|\alpha|+(1/k)|\beta|}|p(x, \xi)|

for all (x, \xi)\in U’ and |\xi|\geq C_{4} . Thus (3. 2) and (3. 3) show that H\"ormander’s

condition [7 ; Theorem 4. 2] is satisfied, so P is hypoelliptic at \rho\in\Sigma_{1}\cap\Sigma_{2}

with loss of (M_{1}+M_{2})/k -derivatives. If \rho\in\Sigma_{1}\backslash \Sigma_{2} , L_{k}^{m,M_{1\prime}M_{2}}(U;\Sigma_{1}, \Sigma_{2})=L_{k}^{m,M_{1}}

(U;\Sigma_{1}) for some conic neighbourhood of \rho . So we can apply the above
arguments with \Sigma_{1}=\Sigma_{2} , M_{2}=0 . It is similar to the case \rho\in\Sigma_{2}\backslash \Sigma_{1} . Thus
we complete the proof.

(B) The case k=2.

Lemma 3. 1. Assume that the closed conic submanifolds \Sigma_{1} and \Sigma_{2}

satisfy (H. 1), (H. 2) and (H. 3). Then for every \rho\in\Sigma_{1}\cap\Sigma_{2} , there exists
a conic neighbourhood U of \rho and a homogeneous canonical transformation
\chi : Uarrow T^{*}R^{n}-\{0\} such that

\chi(\Sigma_{i})=\{\xi_{1}^{(i)}=\cdots=\xi_{\nu_{i}}^{(i)}=\xi_{1}^{(0)}=\cdots=\xi_{\nu_{0}}^{(0)}=0\} , i=1,2
where

(x, \xi)=(x^{(1)}, x^{(0)}, x^{(2)}, x’, \xi^{(1)}, \xi^{(0)}, \xi^{(2)}, \xi’)\in T^{*}R^{n}-\{0\}

and

(3. 4) x^{(1)}=(x_{1^{ }},\cdots, x_{\nu_{1}}) \xi^{(1)}=(\xi_{1^{ }},\cdots, \xi_{\nu_{1}})

x^{(0)}=(X_{\nu_{1}+1}^{ },\cdots, x_{\nu_{1}+\nu_{0}}) \xi^{(0)}=\xi_{\nu_{1}+1} , \cdots , \xi_{\nu_{1}+\nu_{0}})

x^{(2)}=(x_{\nu_{1}+\nu_{0}+1}, \cdots, x_{\nu_{1}+\nu_{0}+\nu_{2}}) \xi^{(2)}=(\xi_{\nu_{1}++1}\nu_{0}’ \cdots, \xi_{\nu_{1}+\nu_{0}+\nu_{2}})\cap

PROOF. With the notations in (H. 1) if we define locally

\Sigma_{10}=\{u_{1}^{(1)}= =u_{\nu_{1}}^{(1)}=0\}

\Sigma_{00}=\{u_{1}^{(0)}= =u_{\nu_{0}}^{(0)}=0\}

\Sigma_{20}=\{u(\begin{array}{l}21\end{array})= =u_{v_{2}}^{(2)}=0\} ,

it is easy to see that they intersect transversally and
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\sum_{1}=\sum_{10}\cap\sum_{00} \sum_{2}=\sum_{20}\cap\sum_{00} .

Therefore under the hypotheses (H. 1), (H. 2) and (H. 3), there exists locally
a canonical transformation from some conic neighbourhood U of \rho into
T^{*}R^{n}-\{0\} such that

\chi(\Sigma_{i0})=\{\xi_{1}^{(i)}=\cdots=\xi_{\nu_{i}}^{(i)}=0\} : i=1,0,2
(c . f. [1], Grigis and Lascar [4], Duistermaat and H\"ormander [3]) This com-
pletes the proof.

Since the hypotheses and the conclusions of Theorem 1. 10 and Corollary
1. 11 are invariant under the above canonical transformation, we are reduced
to the case: X=R^{n} and

\Sigma_{i}=\{\xi_{1}^{(i)}=\cdots=\xi_{\nu_{i}}^{(i)}=\xi_{1}^{(0)}=\cdots=\xi_{\nu_{0}}^{(0)}=0\} , i=1,2
with the notations in (3. 4). Then in a conic neighbourhood of \rho\in\Sigma_{1}\cap\Sigma_{2},
we have

(3. 5) P=^{M_{1}+M_{2}}\underline{\rangle\neg 1}

j-0
\sum_{(a_{1},a_{0},\alpha_{2})}A_{a_{1’}\alpha_{0\prime}\alpha_{2},j}(D_{x^{(1)}})^{\alpha_{1}}(D_{x^{(0)}})^{a_{0}}(D_{x^{(2}},)^{\alpha_{2}}

where A_{\alpha_{1},\alpha_{0},\alpha_{2},j} are classical pseud0-differential operators of order m-(M_{1}+

M_{2})+j/2 . Then the hypothesis (1. 6) implies

p’(x, \xi)=\sum_{j=0}^{M_{1}+M_{2}}p_{m-j/k}(x, \xi)\neq 0 at \rho r

because the \frac{\partial}{\partial x_{j}} are all tangent to \Sigma_{1}\cap\Sigma_{2} . Therefore we have

q’(x, \xi)=p^{\prime-1}(x, \xi)\in S^{-m,-(M_{1}+M_{2})}(U;\Sigma_{1}\cap\Sigma_{2})

similarly to the case (A). If we set Q’=q’(x, D), the symbol of Q’\cdot P is
asymptotically equal to

1+ \sum_{|\alpha|\geq 1}\frac{1}{\alpha!}q’D_{x}^{\alpha}(\alpha)p .

Again since the \frac{\partial}{\partial x_{j}} are all tangent to \Sigma_{1}\cap\Sigma_{2} , the second term in the right

hand side belongs to S^{-1/2,0}(U;\Sigma_{1}\cap\Sigma_{2}) . Thus we have

Q’\cdot P=I-R’ with R’\in OPS^{-1/2,0}(R^{n} ; \Sigma_{1}\cap\Sigma_{2})

Finally if we set Q \sim\sum_{k=0}^{\infty}(R’)^{k}\cdot Q , then Q\cdot P\sim I.
If \rho\in\Sigma_{1}\backslash \Sigma_{2} or \rho\in\Sigma_{2}\backslash \Sigma_{1} , it is similar to the case (A). This completes the
proof.
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(2) Necessity of Theorem 1. 10
We suppose that \Gamma_{\rho} contains the zero for some point \rho=(x^{0}, \xi^{0})\in\Sigma_{1}\cap\Sigma_{2} .

We may assume the same form as (3. 5) i . e .

P= \sum_{j-0}^{M_{1}+M_{2}}\sum_{(\alpha_{1},\alpha_{0},\alpha_{2})}A_{\alpha_{1’}a_{0},\alpha_{2},j(D_{x^{(1)}})^{\alpha_{1}}(D_{x^{(0)}})^{\alpha_{0}}(D_{x^{(2}},)^{\alpha_{2}}}

where A_{\alpha_{1},\alpha_{0},\alpha_{2},j} are of order m-(M_{1}+M_{2})+(1-1/k)j . For brevity, we may
assume x^{0}=0 , \xi^{0}=(0)^{(1)} , (0)^{(0)} , (0)^{(2)} , 0, \cdots , 0, 1) (\xi_{n}^{0}=1) . Then our hypothesis
on \tilde{q}(\rho, Y) means:

(3. 6) M_{1}M_{2} \frac{{?}_{1}+}{j=}0\sum a_{\alpha_{1},\alpha_{0},\alpha_{2},j(0,\cdots,0,\xi_{n}^{0})(\eta^{(1)})^{\alpha_{1}(\eta^{(0)})^{\alpha_{0}}(\eta^{(2)})^{\alpha_{2}}=0}

for some (\eta^{(1)}, \eta^{(0)}, \eta^{(2)})\in R^{(\nu_{1}++\nu_{2}}y_{0}) where a_{\alpha_{1},\alpha_{0},\alpha_{2},j} are the principal symbols
of A_{\alpha_{1},a_{0},\alpha_{2},j} . Here if we assign to (\eta^{(1)}, \eta^{(0)}, \eta^{(2)}) the weight 1, to \xi_{n}^{0} the
weight k/(k-1) , we can regard the left hand side in (3.6) as quasi-hom0-
geneous symbol of degree (km-(M_{1}+M_{2}))/(k-1) of type (1, k(k-1)) . Then
by [9; Lemma 7. 1] (c . f . [1 ; Proposition 3. 1]), there exists a distribution
u such that the wave front set WF(u)=\{(x^{0}, \lambda\xi^{0}) ; \lambda>0\} and Pu\in H^{s} at \rho

but u\not\in H^{s+m-(M_{1}+M_{2})/k} at \rho . This completes the proof.

\S 4. The special case of type P=P_{1}\cdot P_{2}+P_{3}

Let P_{1}\in OPL_{k}^{m_{1},M_{1}}(X;\Sigma_{1}) and P_{2}\in OPL_{k}^{m_{2},M_{2}}(X;\Sigma_{2}) where one of the
factors is properly supported and elliptic outside \Sigma_{1} and \Sigma_{2} respectively. By
Proposition 1. 3, P_{1}\cdot P_{2}\in OPL_{k}^{m_{1}+m_{2\prime}M_{1},M_{2}}(X;\Sigma_{1}, \Sigma_{2}) . Then we shall consider
the operator of the following type :

(4. 1) P=P_{1}\cdot P_{2}+P_{3}

where
P_{3}\in OPL_{k}^{m_{1}+m_{2}-1/k,M_{1}-1,M_{2}}(X;\Sigma_{1}, \Sigma_{2})\cup OPL_{k}^{m_{1}+m_{2}-1/k,M_{1},M_{2}-1}(X;\Sigma_{1}, \Sigma_{2})

PROPOSITION 4. 1. Assume that \Sigma_{1} and \Sigma_{2} satisfy (H. 1), (H. 2) and
(H. 3). Then \tilde{q}_{i}(\rho, Y) be the associated forms of P_{i}(i=1,2,3) given by

(1. 5). Then for every \rho\in\Sigma_{1}\cap\Sigma_{2} , we have

\tilde{q}(\rho, Y)=\tilde{q}_{1}(\rho, Y)\cdot\tilde{q}_{2}(\rho, Y)+\tilde{q}_{3}(\rho, Y) , Y\in T_{\rho}(T^{*}X-\{0\})

PROOF. First we calculate the q in Proposition 1. 5. Let q_{i} be the
associated symbols given by (1. 3) (i=1,2,3) in a conic neighbourhood U

of \rho . By our hypotheses (H. 1), (H. 2) and (H. 3),

p_{1}\# p_{2}=p_{1}\cdot p_{2}
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and

q_{i}\equiv p_{i} (i=1,2,3) modulo L_{k}^{m_{1}+m_{2\prime}M_{1}+M_{2}+1}(U;\Sigma_{1}\cap\Sigma_{2}) .
Thus by Proposition 1. 9, we have

q\equiv q_{1}\cdot q_{2}+q_{3} .
Since

q_{m_{1}+m_{2}-j/k}= \sum_{l+sj}q_{1,m_{1}-l/k}q_{2,m_{2}-s/k}+q_{3,m_{1}+?r\iota_{2}-j/k}’.

we readily see
\tilde{q}(\rho, Y)=\tilde{q}_{1}(\rho, Y)\cdot\tilde{q}_{2}(\rho, Y)+\tilde{q}_{3}(\rho, Y)

Thus by Theorem 1. 10 and Corollary 1. 11, we have

THEOREM 4. 1. Assume that \Sigma_{1} and \Sigma_{2} satisfy (H. 1), (H. 2) and (H. 3)
and let \rho\in\Sigma_{1}\cap\Sigma_{2} . Then P is hypoelliptic at \rho with loss of (M_{1}+M_{2})/k -

derivatives if and only if
\tilde{q}_{1}(\rho, Y)\cdot\tilde{q}_{2}(\rho, Y)+\tilde{q}_{3}(\rho, Y)\neq 0 for all Y\in T_{\rho}(T^{*}X-\{0\})\tau

Next for \rho\in\Sigma_{1}\backslash \Sigma_{2} , it is easy to see

\tilde{q}(\rho, Y)=\tilde{q}_{1}(\rho, Y)\cdot p_{2,m_{2}}(\rho)+\tilde{q}_{3}(\rho, Y)

and for \rho\in\Sigma_{2}\backslash \Sigma_{1} ,

\tilde{q}(\rho, Y)=p_{1,m_{1}}(\rho)\cdot\tilde{q}_{2}(\rho, Y)+\tilde{q}_{3}(\rho, Y)

where p_{1,m_{1}} and p_{2,m_{2}} are the principal symbols of p_{1} and p_{2} respectively.
Therefore we have

COROLLARY 4. 3. Under the hypotheses in the above theorem, if for
every \rho\in\Sigma=\Sigma_{1}\cup\Sigma_{2} ,

\tilde{q}(\rho, Y)\neq 0 for all Y\in T_{\rho}(’T^{*}X-\{0\}),\cdot

P is hypoelliptic with loss of (M_{1}+M_{2})/k-derivatives.

EXAMPLE 4. 4. (1) Let P=P_{1}\cdot P_{2}+P_{3} in R^{4} where
P_{1}=D_{x_{1}}^{2}+D_{x_{2}}^{2}+aD_{x_{4}\prime}.
P_{2}=D_{x_{2}}^{2}+D_{x_{3}}^{2}+bD_{x_{4}} ,

P_{3}=c(D_{x_{1}}^{2}+D_{x_{2}}^{2}+D_{x_{3}}^{2}+D_{x_{4}}^{2})

and a, b and c be complex numbers.
Let \rho=(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}, x_{4}^{0},0,0,0, \xi_{4}^{0})(\xi_{4}^{0}\neq 0) . Put \Delta_{a,b,\xi_{4^{=}}^{0}}\{\lambda sgn(\xi_{4}^{0})(a+b)+\mu ;

\lambda, \mu\geq 0\} . Then if
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ab+c+\Delta_{a,b,\xi_{4}^{0}} does not meet the origin,

P is hypoelliptic at \rho with loss of 2-derivatives.
In fact, if we set \Sigma_{1}=\{\xi_{1}=\xi_{2}=0\} , \Sigma_{2}=\{\xi_{2}=\xi_{3}=0\} , P\in POL_{2,c}^{4,2,2}(R^{4} ; \Sigma_{1}, \Sigma_{2}) .

Then we have

\Gamma_{\rho}=\{(|\xi_{4}^{0}|(\eta_{1}^{2}+\eta_{2}^{2})+a\xi_{4}^{0})(|\xi_{4}^{0}|(\eta_{2}^{2}+\eta_{3}^{2})+b\xi_{4}^{0})+c(\xi_{4}^{0})^{2} ; (\eta_{1}, \eta_{2}\in R^{2}\}(

(2) Let P=(D_{x_{1}}^{4}+x_{1}^{4}(D_{x_{2}}^{4}+D_{x_{3}}^{4})(D_{x_{2}}^{4}+x_{2}^{4}(D_{x_{1}}^{4}+D_{x_{3}}^{4})+a(D_{x_{1}}^{6}+D_{x_{2}}^{6}+D_{x_{3}^{6}}) in R^{3}

where a is a complex number. Let \rho=(0,0, x_{3}^{0},0,0, \xi_{3}^{0}) . Then P is hyp0-
elliptic at \rho with loss of 2-derivatives if and only if

a+[0, +\infty) does not meet the origin.

In fact, if we set \Sigma_{1}=\{\xi_{1}=x_{1}=0\} , \Sigma_{2}=\{\xi_{2}=x_{2}=0\} , P\in OPL_{4,c}^{8,4,4}(R^{3} ; \Sigma_{1}, \Sigma_{2}) .
Then we have

\Gamma_{\rho}=\{|\xi_{3}^{0}|^{6}(\eta_{1}^{4}+y_{1}^{4})(\eta_{2}^{4}+y_{2}^{4})+c|\xi_{3}^{0}|^{6} ; (y_{1}, y_{2}, \eta_{1}, \eta_{2})\in R^{4}\}

\S 5. The case of system

For brevity, let P_{i}\in OPL_{2}^{1,1}(X;\Sigma_{i}) be elliptic outside \Sigma_{i}(i=1,2) , and
let A, B\in OPL_{1,0}^{1/2}(X) ( =L_{1,0}^{1/2} , for the notation, see [6]). We consider the
following system

P=(\begin{array}{ll}P_{1} AB P_{2}\end{array})

By using Corollary 4. 3, we can prove

THEOREM 5. 1. Auusme that \Sigma_{1} and \Sigma_{2} satisfy (H. 1), (H. 2) and {H. 3).
Then P is hypoelliptic with loss of 1/2-derivative if for \rho\in\Sigma=\Sigma_{1}\cup\Sigma_{2}

and for all Y\in T_{\rho}(T^{*}X-\{0\}) ,

\tilde{q}_{1}(\rho, Y)\neq 0 when \rho\in\Sigma_{1}\backslash \Sigma_{2} ,

\tilde{q}_{2}(\rho, Y)\neq 0 when \rho\in\Sigma_{2}\backslash \Sigma_{1} ,

\tilde{q}_{1}(\rho, Y)\cdot\tilde{q}_{2}(\rho, Y)-a^{0}(\rho)\cdot b^{0}(\rho)\neq 0 when \rho\in\Sigma_{1}\cap\Sigma_{2} .
Here a^{0} and b^{0} are the principal symbols of A and B respectively. In
particular, the system is subelliptic with loss of 1/2-derivatives.

PROOF. If we set

\hat{P}=(\begin{array}{ll}P_{2} -A-B P_{1}\end{array})

,
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we have

\hat{P}\cdot P=(\begin{array}{ll}P_{2}\cdot P_{1}-A\cdot B [P_{2},A][P_{1}\cdot B] P_{1}\cdot P_{2}-B\cdot A\end{array})

Since P_{2}\cdot P_{1}-A\cdot B, P_{1}\cdot P_{2}-B\cdot A\in OPL_{2}^{2,1,1}(X;\Sigma_{1}, \Sigma_{2}) , under our hypotheses,
there exist left parametrices Q_{1} , Q_{2}\in OPS^{-2,-1,-1}(X;\Sigma_{1}, \Sigma_{2}) such that

Q_{1}\cdot(P_{2}\cdot P_{1}-A\cdot B)\sim I .
Q_{2}\cdot(P_{1}\cdot P_{2}-B\cdot A)\sim I

where I is the identity operator.
Thus if we put

Q’=(\begin{array}{ll}Q_{1} 00 Q_{2}\end{array})

,

we have
Q’\cdot\hat{P}\cdot P=I-R

where I is the identity matrix and

R=(\begin{array}{ll}0 R_{1}R_{2} 0\end{array}),\cdot

R_{1}=Q_{1}=[P_{2}, A] , R_{2}=Q_{2}\cdot[P_{1}, B]\in OPL^{-3/2,-1,-1}(X;\Sigma_{1}\cap\Sigma_{2})\subset OPL_{1/2}^{-1./2}(X) . By
the standard technique, we find that

Q= \sum_{j-0}^{\infty}(R)^{j}\cdot Q’\cdot\hat{P}\in OPL_{1/2}^{-1/2}(X)

is a left parametrix of P. This completes the proof.

EXAMPLE5.2. Let

P=
(\begin{array}{ll}D_{x_{1}}+a|D_{(x_{2’}x_{3})}|^{1/2} c|D_{(x_{1},x_{2},x_{3})}|^{1/2}d|D_{(x_{1’}x_{2},x_{3})}|^{1/2} D_{x_{2}}+b|D_{(x_{1’}x_{3})}|^{1/2}\end{array})

in R^{3}

where
|D_{(x_{2},x_{3})}|=(D_{x_{2}}^{2}+D_{x_{3}}^{2})^{1/2} ,

|D_{(x_{1\prime}x_{3})}|=(D_{x_{1}}^{2}+D_{x_{3}}^{2})^{1/2} ,

|D_{(x_{1\prime}x_{2’}x_{3})}|=(D_{x_{1}}^{2}+D_{x_{2}}^{2}+D_{x_{3}}^{2})^{1/2}

and a, b, c and d are complex numbers. Put \Delta_{a,b}=\{\lambda a+\mu b+\nu;\lambda, \mu, \nu\in R\} .
Then if
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Im a\neq 0 ,

Im b\neq 0

and
ab-cd+\Delta_{a,b} does not meet the origin,

P is hypoelliptic with loss of 1/2-derivative.
In fact, we have

\Gamma_{\rho}=\{|\xi_{(2,3)}^{0}|^{1/2}(\eta_{1}+a) ; \eta_{1}\in R\} if \rho\in\Sigma_{1}\backslash \Sigma_{2} ,

=\{|\xi_{(1,3)}^{0}|^{1/2}(\eta_{2}+b);\eta_{2}\in R\} if \rho\in\Sigma_{2}\backslash \Sigma_{1} ,

=\{|\xi_{3}^{0}|((\eta_{1}+a)(\eta_{2}+b)-cd) ; (\eta_{1}, \eta_{2})\in R^{2}\} if \rho\in\Sigma_{1}\cap\Sigma_{2} .
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