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§ 0. Introduction

In the present paper we shall consider a class of pseudo-differential
operators P on a manifold X whose characteristic set 3 is the union
of two closed conic submanifolds ¥, and X, This class is denoted by
OPLmM¥:(X; 3, 5. Under some quasi-transversality and involutiveness,
we shall give a necessary and sufficient condition for hypoellipticity of P
by constructing the parametrix.

When X,=2J, our class nearly coincides with OPLp-¥+¥:(X; 3
introduced by Helffer or Sjostrand [10]. Moreover in the case where
M,=2, k=2 and 3, is involutive, Boutet de Monvel gives a necessary
and sufficient condition for existence of a parametrix of P in OPS™™?
(more general class than ours) which is also equivalent to the hypoellipticity
for P with loss of 1-derivative. For general M, gives a necessary and
sufficient condition for hypoellipticity of P with loss of M,/2-derivatives.

When X, and Y, intersect transversally and X, (i=1,2), 2;N2; are
involutive, Aramaki constructs parametrices for the operators of a slightly
different class.

The plan of this paper is as follows: In §1, we introduce a class of
pseudo-differential operators and study the symbol calculus and the associatad
invariances of P using the technique developed by [5], [1]. Finally we give
the main theorem (Theorem 1.10). §2 is the preparations for the proof
of our theorem. Mainly we consider the class OPS™¥:(X; 3, ¥y which
is a generalization of the class OPS™*:(X ;X)) introduced by [2]. In §3,
we give the proof of the Theorem 1.10. §4 is devoted to a study of the
special case of type P=P;+P,+P;. Finally in §5, we apply the results of
§4 to the system of the type

P= (Pl A)
B P

where A and B are lower order terms.



16 J. Aramaki

§1. A class of operators and the associated invariances

Let X be a paracompact C* manifold of dimension n and T%X— {0}
be the cotangent bundle minus the zero section.

DEFINITION 1.1. Let 3, and 3, be closed conic submanifolds of codi-
mensions gy and py in T* X—{0} respectively and let meR, M, M,cZ*
(non-negative integers), k>2 an integer. Then the space OPLM": (X, 3 3
is the set of all pseudo-differential operators Pe L"(X) ( for the notation,
see Hormander [7], [8]) such that for every local coodinate system VCX,
P has a symbol of the form

(oo

(1.2) plx, &)~ Y pm_j(x, &) with Pm—jn(x, &) positively-homogeneous of de-
=0
gree m—jlk with respect to & (j integral) and satisfy :
(1.2) For every KC CV, there exists a constant Cx>0 such that
An B G B dy(m gd (i,
S 1 K PRIy :

0<k, <M,
0<k, <M,

0<j<M,+M,, for all (x, €EKX(R*"—{0}) and |&>1. Here ds (z, &)=
inf <)y—xl+{p—él~> are the distances from <x, '—gT) to X, 1=1, 2.

(y,m)ex;

We also introduce the set OPLpPM:(X; 3, 2) COPLp-MM (X5 X0 5,

Jfor which the p,_;;, in (1.1) can be taken to be zero when Jjlk is not an.
integer.

REMaRk 1.2, OPLp™-:(X; ¥, %) reduces to OPL(X; %) of [5]
when M,=0 and to OPL™":(X; %)) of [10] when M,=0 and k=2.
It is clear that if 3;N2, is a submanifold, we have

OPLp"(X; 3y, ) COPLmM+M(X s 5N 3),).

The class of symbols satisfying (1. 1) and (1. 2) in an open cone Uc
T* X—{0} is denoted by Lp"o¥:(U; 3, ).
By a routine consideration (c.f. [7], [8]) we set the followings :

ProrositioN 1.3. Let P,eOPL™(X; X,) and P,eOPLy»":(X; X,
where one of the factors is properly supported. Then we have

Ps P,e OPLp#mMi (X, 5, 3 |

ProposITION 1.4. Ly oM (T* X— {0} ; 3, 3p) C Lp+tvesfvtt i (T X {0}
2y ) N Lpt Ve M1 (T X {0} 5 3, 3y).

Let 3;N2, be a submanifold. If ¢ and ¢, are elements in- Ly MM,

H
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(U; 3,3, where U is a conic neighbourhood of p£2X,NJY, we define the
following equivalence relation :
¢:1=g, in U if and only if ¢ —q¢e L0 ¥4 U; XN 2Y).

ProposiTION 1.5. Let p be a symbol in LpMo¥:(T* X—{0}; Y, 3,
and let p&3,N2, Then there exists a conic neighbourhood U of p such
that g LZL’M"M2<U; 21, 22)/L?’M1+M2+1<U; 21022) dqﬁned by

1 &/ 38 0
(1. 3) q=exp <— ‘21‘]-21(@ @»'P

is invariant under a locally homogeneous canonical transformation: X;
U—T*R"—{0}.

REMARK 1.6. If pe Lp"¥:(U; ¥, Y, and k>2, the class ¢ given by
the formula (1. 3) coincides with
M+ M,

37 Pm_jie modulo LA y({]: XN Yy).
—0

J
Now let U be a conic neighbourhood of p&X N2Y, Let

M+ M,
9= 2 gm-je € Lop (U 5 5y, 35)/ LAt 1(U 5 2N 3Y)

j=
be a symbol associated with p in U. Define a (M, + M,—j)-linear form, denoted
by Qm—j/k(p% on 71p<T* X— {0}> by : FOI' Yl, Y2’ s K’lf[1+M2—jETp(T* X_ {O}>)

(1.4) qm~j/k<40> (Yy, Yy, -, YM1+M2—_7‘>
1 o~ ~ A~
= M M=) 1 Y1 Yo Yo, Gnyue) (0)

where ¥ means a vector field extending Y to a neighbourhood of p. It is
clear that §n_jx(p) is independent of the choice of the representative of g.

DEFINITION 1.7. For every p=2X,N2%, we define
M+ M,
1.8 4o Y)= L Gngelo) (Y, Y, Y) for all YET,(T*X—{0}).
If pX\2,, p belongs to Ly (U; 3,) for some conic neighbourhood U of
o. So if we apply Proposition 1.5 to p with ¥;=23, M,=0, we can also
define G(o, Y) for pX\2,. Similarly define G(p, Y) for p2,\¥,. There-
fore, for every pcX=23U2%,; we can define

r,={alo, Y); YET,(T*X—{0})}.
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ReEMARK 1.8. When M,=0, M,=k=2, we have g,=p, and gn_,=

1 » 0 0 . . )
pm—l—*Z?f;lkafxT o pm- In this case G(p, Y) is the sum of the transversal
hessian of p, and the subprincipal symbol of P at p.
ProprosITION 1.9. Let g and g, be the symbols associated with p, and

p, respectively. Then the symbol q associated with the composition of p,
and p, is given by the formula:

_ L g 9 3 1o o
q:<eXp<7l;zz—:1 R 35z>.%>#<eXp<2i LZ_1 oz, a$l>°Q2>
where ¥ designs the composition of the symbols.

Next we describe the hypotheses on 2, and X, Let X, and 3, be
closed conic submanifolds in 7*X— {0} of codimension 4 and p, respectively.
(H.1) 2, and 2, intersect quasi-transversally. That is, YN 2, is a closed
conic submanifold such that for every point p=X, N2,

TP<21 ﬂ 22) = Tp21 m TP22 .

Locally this means: If the codimension of 3,2, is equal to (py+ ) —v,
there exist positively-homogeneous functions

1 1 0 0 2 2
u<1), ey u’ ), u(1), ey uio)’ u(1), ey ufz) ,

1

du® (j=1,2, v, i=1,0,2) being linearly independent such that

Y, is defined by «P=-=ul=uP = =uP =0,
3, by u@= - =uP=uyP==u®=0,

and
21N 2, by u¥ = =ul=u@ = =u0=uP = =4 =0,

Here Vlzlll—“l)(], Vg-—:flg—l)o (20)

(H.2) %, 3, and X N2J, are involutive, i.e. if 2T, -, ul®, 29, -+, ul®, P,

Yo

-, u® are as above, then
(wu®, 0} = (@@, a®} = @P, uPy =0 on 3, (i=1,2)
and
(W®,u?y =0  on 3 NJI,.

(H.3) The radial vector i&—a@{ is linearly independent of Hu(;_), j=1, -,
=1 l

v, i=1,0,2. Here we denote by H,; the Hamilton vector field and by {f, g}
their Poisson bracket for C* functions f, g on T* X—{0}.
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Then we obtain the following :

THEOREM 1.10. Let P be in OPLM™-M:(X; X, 3, and be elliptic
outside ¥ =313, Assume that (H. 1), (H. 2) and (H. 3) are satisfied. Then
P is hypoelliptic at p=3,N3, with loss of (M,+ M,)/k-derivatives if and
only if

(1. 6) I’, does not meet the origin.

Here we say that P is hypoelliptic at p with loss of (M,+ M,)/k-derivatives
if ueP'(X) and Pue H* at p implies uc H*m Mtk g,

We also obtain a sufficient condition for the usual hypoellipticity :

CoroLLARY 1.11. Let P be in OPL}"™:(X; 3,3, and be elliptic
outside ¥=23,U2%,. Then P s hypoelliptic with loss of (M,+ M,)/k-deriva-
tives, if for every pcX=23,U2,, I', does not meet the origin and moreover :

(A) When k>2, (H.1) and (H.3) are satisfied (note that (H.2) is un-
necessary).

(B) When k=2, (H.1), (H.2) and (H. 3) are satisfied.

Here we say that P is hypoelliptic with loss of (M,+ M,)/k-derivatives if for
all open set O in X, ue ' (X) and Puc H;,,(O) implies ue Hm Lt M) /kO),

Finally we give a simple example :

ExampLE 1.12. Let P=D,D. + aD,’D, + 2bD, D, D, + cD,D, +
d(D;+D;:+D;,’) in R® where a, b, ¢ and d are complex numbers. Let 4,=
{add+p; 2>1, p>0} and 4 be the set of values of the quadratic form cor-

a b
responding to the symmetric matrix (b ) Then P is hypoelliptic at p=
c

(28, 23, 23,0, 0, &) with loss of 2-derivatives if and only if (sgn (£}))-4+ 4, does
not meet the origin.
In fact, if we set X;={§=0} and 3,={£,=0}, P€OPLY?*(R?*; X, %,).
Then
I, ={ (&2 i+ 18&3ant + 2byume+ o) + (81305 +78) +€) 5 (o W ERY,
therefore [Theorem 1,10 leads to the conclusion.

§ 2. The preparations for the proof of Theorem 1.10 and
Corollary 1.11

In this section we introduce the class of operators in which we construct
the parametrix of PeOPLy"":(X; ¥, 3,). (c.f. Helffer [6])
Let U be an open cone in T*X—{0} =5*XXR* where S*X is the
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cosphere bundle of X. We denote by u=(u®, «®, u®, v,r) the variables in
U. Let 3, and Y, be the subcones defined by

3 ={u® =u® =0}, Jy={u® =u® =0}

where

u(i) - (u“l:)’ "t uf»?) (l = 1’ 0, 2)
V= (vl’ ) v(2n-—1)~(u1+v0+v2))

and «? (j=1, -, v, 1=1,0,2), v, (I=1, -+, (2n—1) —(v;+v,+v,)) are functions
of positively-homogeneous of degree 0. We set

Vi

i 1/2
pzi:{z |u®|2+ ]leum)lz_}_r—z/k} , ((i=1,2).
ki -

-1

DEFINITION 2.1. Let m, M, M,=R. Then we denote by S™:
(U; 3y, ) the set of all C* functions a(u) on U such that for any jEZ,
and any multi-indeces o E(Z,)", ayE(Z,)>, aE(Z,)?, BE(Z,)E P~ 0tn2,

we have
o \/ 0 \of 0 \=f o V/ aV
ou® ou® ou® ov ) \or ) @

<rmd Z 0=
kitk,=lay]

11‘[1—Itlll-—kl‘OZZMZ—IUIZI—ICZ .
Here we use the notation f<g if for any subcone U CU with compact
basis and any ¢>0, there exists a constant C>0 such that 0<f<Cqg in

U when r>e.

REMARK 2.2. (1) Note that we can also express the above definition
in the invariant fashion. (c.f. [2], [6])
(2) SmMH(T*X— {0} ; Xy, ) Sy M-+ with p=1—1/k and 6=1/k
where (s)_=inf (0,s) for real s. In fact, since p;'<r"% the right hand
side in the definition is estimated by

rm—jplel ‘OEZMZ r(]a1l+la0]+|a2()/lc .

Here by definition of p;, we have p;Mi<r#@-/%
Note that if £>2, we have 6<p and if k=2, p=0=1/2.

The following three propositions follow from a routine consideration.
(c. f. [2])

ProprosITION 2.3. For M, M,>0 integers, we have
LZl’Ml’Mz(U; 217 ZZ)CSm’MhM2<U; 21, 22) .
PROPOSITION 2.4. If pyeSm¥uis(U; 3, X, and p,& S 142(U ;5 3, 3),
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then pysp, & S™Hm Mt ML+ ([T, 5 3
ProrosiTION 2.5. If peS™M(U; 3, 3,) and satisfies
|pl=r™ s 05,
then
presS (g 3 Y.

§ 3. Proofs of Theorem 1.10 and Corollary 1.11

(1) Sufficiency of Theorem 1.10 and [Corollary 1. 11
(A) The case k>2. Let p3;N2, and U be a conic neighbourhood
of p. By Remark 1.6, the class g defined by [Proposition 1.5 has the follow-
ing form:

M+ M,

q~ Z Pm—j/k(x’$>-
j=0

Therefore by definition 1.7,

M+ M,

Ao V)= "2 Pu-snlp)(Y -, Y), YET,(T*X—(0})

where the (M,+ M,—j)-linear form p,_;i(0) on T,(T* X—{0}) is defined in
the same way as (1.4). Then our hypothesis (1.6) implies

M+ M,

(3.1) P8 = 2 pujlx,&x0 at p€2N2,.

Jj=0

Thus for every p=J3; N2, there exists a conic neighbourhood U of p and
constants C; and C, such that

(3.2) |p(x,8)|> Clemarmon for all (z,6)cU and |&]>G,.

By Taylor’s formula, in a conic neighbourhood of p, we can write :

. M,
P= 20 2 Qe O (@) (@)

J=0 (a,,a;.a,)
where (&, ap, ap) in the summation range all multi-indices such that |a| + || +
lag| =M+ My—j, |ay]| <M, |ar] <M, Moreover «® ({=1,0, 2) are functions
of positively-homogeneous of degree 0 defining X; in (H.1) and a ; of
degree m—j/k. Since

Ay5@p,5,

1/2

05 s, :{|u<1>lz+lu(o>|2+lu<2>|2+r—2/k} ’

it is clear that if we assign to r the weight 1, to («®, @, «®) the weight
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—1/k, to v the weight 0, then p' and 7™py ;**¥: have the same degree
—(M;+ M,)/k of quasi-homogeneity. Thus by (3.1) and [Proposition 2.5,
we have

pie S W (U7 YN 2)) for some U"C U .
Since P& € St Il iED ([ 3 (5, we see
PE;)) P IES—IaI,—(IaHIﬁl)(UN : Zln 2’2) .

Therefore with some constants C;, C;>0,

(3. 3) |P(ﬂ) x, & | < CS,EI—(l—l/k)lal+(1/k)lﬂl|P(x, E)l

for all (z,&)cU” and |§]|=>C,. Thus (3.2) and (3. 3) show that H6rmander’s
condition [7; Theorem 4.2] is satisfied, so P is hypoelliptic at pc3; N2,
with loss of (M;+ M,)/k-derivatives. If peX\2¥, Lp*"":(U; ¥, 3)=Lp™"
(U; 2, for some conic neighbourhood of p. So we can apply the above
arguments with X=X, M,=0. It is similar to the case p&23,\2,. Thus
we complete the proof.

(B) The case k=2.

LemMA 3.1. Assume that the closed conic submanifolds X, and X,
satisfy (H.1), (H.2) and (H.3). Then for every p&2 N2, there exists
a conic neighbourhood U of p and a homogeneous canonical transformation
x: U-T*R*— {0} such that

LE) =P = =)=V ="-=E0=0}, =12
where

(x, E) = (x“), @, x@ o EW L0 £D 5/) eT*Rr — {0}
and
(3. 4) = (z 0 1) §P =(En -1 6)

x©® = (CC»1+1’ ooy xv‘+vo> o — §g1+1, “oey §»1+p0)

x® = (x»1+»0+1s Tt xul+vo+v2> §® = (§v1+u0+1’ EA) Evl+vo+v2) .

Proor. With the notations in (H.1) if we define locally

Tp={uf= =u =0}
o= 1{u?V = :uﬁf,’)zo}
Ta=@d= =uP=0},

it is easy to see that they intersect transversally and
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21:2100200 Zzzzzoﬂzoo-
Therefore under the hypotheses (H. 1), (H.2) and (H. 3), there exists locally

a canonical transformation from some conic neighbourhood U of p into
T*R*—{0} such that
) ={P=-=60=0}, i=1,0,2.

(c.f. [1], Grigis and Lascar [4], Duistermaat and Hérmander [3]) This com-
pletes the proof.

Since the hypotheses and the conclusions of [Theorem 1,10 and Corollary

1.11 are invariant under the above canonical transformation, we are reduced
to the case: X=R" and

S= = =g =0 = =0 =0),  i=1,2

with the notations in (3.4). Then in a conic neighbourhood of p=X,N 23,
we have
Mxi‘Mz

(3. 5) P="5

J=0 (ay,a.a,)

A“l ’“o’“zxj(Dx(l)y’l (D.‘B(o))ao (Dx(z))az

where A, . .. ; are classical pseudo-differential operators of order m —(M;+

M,)+j/2. Then the hypothesis (1. 6) implies

M+ M,

P,(x’ 5): ].2;0 Pm-—j/k(x, E)#O at p;

because the ai are all tangent to Y,N2Y, Therefore we have
J

q (z, 8 =P Yz, &) .S ™=t ([T, 3 15,
similarly to the case (A). If we set Q' =¢ (z, D), the symbol of Q'+P is
asymptotically equal to

1
14+ % rd“Dip.

alzl a .

J
hand side belongs to S~Y20(U; ¥,N2%,. Thus we have
Q-P=I-R with R eOPSV2(R"; 3,N2%,).

. 0 : .
Again since the oy, are all tangent to X, 2, the second term in the right

Finally if we set Q~ i (R)k.Q, then Q-P~1.
k=0

If pe€3\3; or pe3,\%,, it is similar to the case (A). This completes the
proof.
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(2) Necessity of L heorem 1.10
We suppose that I', contains the zero for some point p=(% ) &3 N ..

p
We may assume the same form as (3.5) i.e.

M+ M,
P= Z Z Aal,ao,az,j(Dx(‘)yl(Dx(”)no(Dx(z))az
=0 (a,,a,,a,)
where A, ... ; are of order m—(M;+ M,)+(1—1/k)j. For brevity, we may
assume 2°=0, £=(0)?,(0)®,(0)®,0,---,0,1) (63=1). Then our hypothesis

on §(p, Y) means:

+
(3. 6) go 2 Ay agya 305 2o+ 0, 60) (p®) 1 (@) (n®) = 0

M+ M,
j

for some (y?, @, p@)= R**»*+? where a,,,.,; are the principal symbols
of A,.... Here if we assign to (y®,7?,7®) the weight 1, to &, the
weight k/(k—1), we can regard the left hand side in (3.6) as quasi-homo-
geneous symbol of degree (km—(M;+ M,))/(k—1) of type (1, k(k—1)). Then
by [9; Lemma 7.1] (c.f. [1; Proposition 3.1]), there exists a distribution
u such that the wave front set WF(u)={(z% 4£%; 2>0} and Puc H* at p
but wes Hstm+¥2/k at o This completes the proof.

§ 4. The special case of type P=P,-P,+ P,

Let P,eOPL™M(X; ¥) and P,OPL?":(X; X, where one of the
factors is properly supported and elliptic outside X, and Y, respectively. By
Proposition 1.3, PeP,cOPLptmMui(X; 3, 3,). Then we shall consider
the operator of the following type :

(4.1) P=P,.P,+P,

where
P,c OPLm+m— vk (X . 5 5 U QPLm+m— Vi1 X o 5 5y

PROPOSITION 4.1. Assume that X, and 3, satisfy (H.1), (H.2) and
(H.3). Then §lp, Y) be the associated forms of P; (i=1,2,3) given by
(1.5). Then for every p2iN 2, we have

3o, Y) =00, Y)qalo Y)+ s, Y), YET,(T*X—{0)).

Proor. First we calculate the ¢ in [Proposition 1.5. Let g; be the
associated symbols given by (1.3) (i=1,2,3) in a conic neighbourhood U
of p. By our hypotheses (H.1), (H.2) and (H.3),

P1#P2 =pi1°P2
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and
a=p; (=1,2,3) modulo Lp¥me A1 ([]. 3 N3,
Thus by Proposition 1.9, we have

d=q1°qtgs.
Since

Qm,+m,-jle = +Z q1,ml—t/kqz,mz—s/k+Q3,ml+1n2—j/k ’
tt+s=7j

we readily see
(7([0’ Y) :(71(10’ Y)'&Z(P’ Y>+qS(P’ Y) ‘
Thus by Theorem 1.10 and [Corollary 1. 11, we have

THEOREM 4.1. Assume that ¥, and %, satisfy (H.1), (H.2) and (H. 3)
and let peX N, Then P is hypoelliptic at p with loss of (M,+ M,)/k-
derivatives if and only if ' ' :

G0, Y)+@lo, Y)+Glo, V)0 for all YET,(T* X—{0}).
Next for pe3\23,, it is easy to see
qlo, Y) =G0, Y)+pom,(0)+%s(p, Y)
and for peX,\ 5,
4o, Y) = pim,(0)3:(0, Y)+3s(p0, Y)

where p;, and p,, are the principal symbols of p, and p, respectively.
Therefore we have

CoROLLARY 4.3. Under the hypotheses in the above theorem, if, for
every pd=2,U2,,

g, )50 for all YET,(T*X—{0}),
P is hypoelliptic with loss of (M;+ M,)/k-derivatives.
ExampLE 4.4. (1) Let P=P,+P,+ P, in R* where
P =D+ D +aD,, ,
P, = D;*+D;*+bD,, ,
Py = c(Dil+ D2+ Dy + Dyl)

and a, b and ¢ be complex numbers.
Let p=(ai, 23, x5, 23, 0, 0, 0, &) (§ix0). Put 4,5 4={2sgn (&) (a+b)+p;
A p>0}. Then if
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ab+c+da,4 does not meet the origin,

P is hypoelliptic at p with loss of 2-derivatives.
In fact, if we set 21:{5125220}, 22:{52:—-—53:0}, P6POL‘§:2012<R4; 21, 22).
Then we have
I, = {( 16107+ + ags) 1831 (r+ )+ B8+ (€5 (o 72 ERP).
(2) Let P=(D,i+xi(Dyi+ Do) (Dyt 4 23(Dit + D) + a(Dof + Dy} + D) in R?

where a is a complex number. Let p=(0,0, 23,0, 0,&5). Then P is hypo-
elliptic at o with loss of 2-derivatives if and only if

a-+[0, + o) does not meet the origin.
In fact, if we set 2={&=x,=0}, J,={6&=x,=0}, PEOPL}*(R?; 2, ).

Then we have

Fp = {’53’6(77%‘1‘2/‘1‘) (773—}—’3/3)—{—6]53[5; (Y15 Yo N 72) ER4} .

§ 5. The case of system

For brevity, let P,eOPL}'(X; 2, be elliptic outside ¥; (=1, 2), and
let A, BEOPLY}(X) (=LY% for the notation, see [6]). We consider the
following system

P= (Pl A
B P,).

By using (Corollary 4.3, we can prove

THEOREM b5.1. Auusme that 3, and ¥, satisfy (H. 1), (H. 2) and (H. 3).
Then P is hypoelliptic with loss of 1/2-derivative if, for pc2=23U2,
and for all YeT,(T* X—{0}),

Gi(p, Y) =0 when peX\2,,
go(o, Y) %0 when pEX,\2,
ql(p, Y)"j2(p’ Y>—a°(¢0)’b°(ﬂ)*€0 when p621ﬂ223

Here a* and b° are the principal symbols of A and B respectively. In
particular, the system is subelliptic with loss of 1/2-derivatives.

Proor. If we set
P=/ P, —A
5 n).
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we have

P.P=[P,.P,—A-B [P, A
[P,-B] P,-P,—B-A).
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Since P,+P,—A+B, P,+P,— B-Ac=OPL*(X; %, 2,), under our hypotheses,

there exist left parametrices Q,, Q,€OPS™ > +"Y(X; XY, Y,) such that
Ql'(Pz‘Pr“A‘B)"’I,
Qy+(PyePy—B-A)~1

where I is the identity operator.
Thus if we put

Q'=(Q O
" al.
we have |
Q' -P.P=I-R
where I is the identity matrix and

R2 O )

R,=Q,=[P,, A], R,=Q,:[P,, BlcOPL¥~v"1(X; ¥ N2, COPL/4(X).

the standard technique, we find that
Q=3 (Ry-@'-PeOPL(X)
j=0

is a left parametrix of P. This completes the proof.

ExampPLE 5.2. Let

P = Dﬂ”x_l_alD(xZ,xa)llm ClD(ar/",acz,aca,)Ill2
d‘D(ml,xz,xa)!l/z Dx2+le(ml’xa)[1/2 in Rs

where
|Des, 2| = (Do2 + D)2,
|Dea, 0p| = (D2 + D)2,
| D, 2,29 = (Dﬁ—}— Dxi 1 Dx§>1/2

and a, b, ¢ and d are complex numbers. Put 4,,={ia+pb+v; A, 1, vER}.

Then if
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and

J. Aramaki

Imax0,
Imbx0

ab—cd+4,, does not meet the origin,

P is hypoelliptic with loss of 1/2-derivative.
In fact, we have

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

I, ={|&hel"n+a); nER}  if pEI\Z,,
:{‘5?1,3)]1/2(772‘1‘[7); ﬁzER} if P622\21,

= {l53‘<(771+a) (772+b)-—cd> 5 (7o pz)ER2} if p2iN,.
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