Hypoellipticity for a class of pseudodifferential operators

By Junichi ARAMAKI

(Received August 1, 1980; Revised December 8, 1980)

§ 0. Introduction

In the present paper we shall consider a class of pseudo-differential operators P on a manifold X whose characteristic set Σ is the union of two closed conic submanifolds Σ_1 and Σ_2 . This class is denoted by $OPL_k^{m,M_1,M_2}(X; \Sigma_1, \Sigma_2)$. Under some quasi-transversality and involutiveness, we shall give a necessary and sufficient condition for hypoellipticity of P by constructing the parametrix.

When $\Sigma_1 = \Sigma_2$, our class nearly coincides with $OPL_k^{m,M_1+M_2}(X; \Sigma_1)$ introduced by Helffer [5] or Sjöstrand [10]. Moreover in the case where $M_1=2$, k=2 and Σ_1 is involutive, Boutet de Monvel [2] gives a necessary and sufficient condition for existence of a parametrix of P in $OPS^{-m,-2}$ (more general class than ours) which is also equivalent to the hypoellipticity for P with loss of 1-derivative. For general M_1 , [5] gives a necessary and sufficient condition for hypoellipticity of P with loss of $M_1/2$ -derivatives.

When Σ_1 and Σ_2 intersect transversally and Σ_i (i=1, 2), $\Sigma_1 \cap \Sigma_2$ are involutive, Aramaki [1] constructs parametrices for the operators of a slightly different class.

The plan of this paper is as follows: In §1, we introduce a class of pseudo-differential operators and study the symbol calculus and the associatad invariances of P using the technique developed by [5], [1]. Finally we give the main theorem (Theorem 1.10). §2 is the preparations for the proof of our theorem. Mainly we consider the class $OPS^{m,M_1,M_2}(X; \Sigma_1, \Sigma_2)$ which is a generalization of the class $OPS^{m,M_1}(X; \Sigma_1)$ introduced by [2]. In §3, we give the proof of the Theorem 1.10. §4 is devoted to a study of the special case of type $P=P_1 \cdot P_2 + P_3$. Finally in §5, we apply the results of §4 to the system of the type

$$\boldsymbol{P} = \begin{pmatrix} P_1 & A \\ B & P_2 \end{pmatrix}$$

where A and B are lower order terms.

\S 1. A class of operators and the associated invariances

Let X be a paracompact C^{∞} manifold of dimension n and $T^*X - \{0\}$ be the cotangent bundle minus the zero section.

DEFINITION 1.1. Let Σ_1 and Σ_2 be closed conic submanifolds of codimensions μ_1 and μ_2 in $T^*X - \{0\}$ respectively and let $m \in \mathbb{R}$, M_1 , $M_2 \in \mathbb{Z}^+$ (non-negative integers), $k \ge 2$ an integer. Then the space $OPL_k^{m,M_1,M_2}(X; \Sigma_1, \Sigma_2)$ is the set of all pseudo-differential operators $P \in L^m(X)$ (for the notation, see Hörmander [7], [8]) such that for every local coodinate system $V \subset X$, P has a symbol of the form

(1.2) $p(x,\xi) \sim \sum_{j=0}^{\infty} p_{m-j/k}(x,\xi)$ with $p_{m-j/k}(x,\xi)$ positively-homogeneous of degree m-j/k with respect to ξ (j integral) and satisfy:

(1.2) For every $K \subset \subset V$, there exists a constant $C_K > 0$ such that

$$\frac{|p_{m-j/k}(x,\xi)|}{|\xi|^{m-j/k}} \leq C_K \sum_{\substack{k_1+k_2=j\\ 0\leq k_1\leq M_1\\ 0\leq k_2\leq M_2}} d_{\Sigma_1}(x,\xi)^{M_1-k_1} d_{\Sigma_2}(x,\xi)^{M_2-k_2},$$

We also introduce the set $OPL_{k,c}^{m,M_1,M_2}(X; \Sigma_1, \Sigma_2) \subset OPL_k^{m,M_1,M_2}(X; \Sigma_1, \Sigma_2)$ for which the $p_{m-j/k}$ in (1.1) can be taken to be zero when j/k is not an integer.

REMARK 1.2. $OPL_k^{m,M_1,M_2}(X; \Sigma_1, \Sigma_2)$ reduces to $OPL_k^{m,M_1}(X; \Sigma_1)$ of [5] when $M_2=0$ and to $OPL^{m,M_1}(X; \Sigma_1)$ of [10] when $M_2=0$ and k=2.

It is clear that if $\Sigma_1 \cap \Sigma_2$ is a submanifold, we have

$$OPL_k^{m,M_1,M_2}(X; \Sigma_1, \Sigma_2) \subset OPL_k^{m,M_1+M_2}(X; \Sigma_1 \cap \Sigma_2).$$

The class of symbols satisfying (1. 1) and (1. 2) in an open cone $U \subset T^*X - \{0\}$ is denoted by $L_k^{m,M_1,M_2}(U; \Sigma_1, \Sigma_2)$.

By a routine consideration (c. f. [7], [8]) we set the followings:

PROPOSITION 1.3. Let $P_1 \in OPL_k^{m_1,M_1}(X; \Sigma_1)$ and $P_2 \in OPL_k^{m_2,M_2}(X; \Sigma_2)$ where one of the factors is properly supported. Then we have

$$P_1 \cdot P_2 \in OPL_k^{m_1+m_2,M_1,M_2}(X; \Sigma_1, \Sigma_2)$$

Let $\Sigma_1 \cap \Sigma_2$ be a submanifold. If q_1 and q_2 are elements in L_k^{m,M_1,M_2}

 $(U; \Sigma_1, \Sigma_2)$ where U is a conic neighbourhood of $\rho \in \Sigma_1 \cap \Sigma_2$, we define the following equivalence relation:

 $q_1 \equiv q_2$ in U if and only if $q_1 - q_2 \in L_k^{m, M_1 + M_2 + 1}(U; \Sigma_1 \cap \Sigma_2)$.

PROPOSITION 1.5. Let p be a symbol in $L_k^{m,M_1,M_2}(T^*X-\{0\}; \Sigma_1, \Sigma_2)$ and let $\rho \in \Sigma_1 \cap \Sigma_2$. Then there exists a conic neighbourhood U of ρ such that $q \in L_k^{m,M_1,M_2}(U; \Sigma_1, \Sigma_2)/L_k^{m,M_1+M_2+1}(U; \Sigma_1 \cap \Sigma_2)$ defined by

(1.3)
$$q \equiv \exp\left(-\frac{1}{2i}\sum_{j=1}^{n}\left(\frac{\partial}{\partial x_{j}}\frac{\partial}{\partial \xi_{j}}\right)\right) \cdot p$$
$$= \sum_{t=0}^{\infty} \frac{(-1)^{t}}{t!} \left(\frac{1}{2i}\sum_{j=1}^{n}\frac{\partial}{\partial x_{j}}\frac{\partial}{\partial \xi_{j}}\right)^{t} \cdot p$$

is invariant under a locally homogeneous canonical transformation: χ ; $U \rightarrow T^* \mathbb{R}^n - \{0\}$.

REMARK 1.6. If $p \in L_k^{m,M_1,M_2}(U; \Sigma_1, \Sigma_2)$ and k>2, the class q given by the formula (1.3) coincides with

$$\sum_{j=0}^{M_1+M_2} p_{m-j/k} \mod L_k^{m,M_1+M_2+1}(U; \Sigma_1 \cap \Sigma_2).$$

Now let U be a conic neighbourhood of $\rho \in \Sigma_1 \cap \Sigma_2$. Let

$$q = \sum_{j=0}^{M_1+M_2} q_{m-j/k} \in L^{,m,M_1,M_2}(U\,;\,\Sigma_1,\Sigma_2)/L^{m,M_1+M_2+1}_k(U\,;\,\Sigma_1\cap\Sigma_2)$$

be a symbol associated with p in U. Define a $(M_1 + M_2 - j)$ -linear form, denoted by $\tilde{q}_{m-j/k}(\rho)$, on $T_{\rho}(T^*X - \{0\})$ by: For $Y_1, Y_2, \dots, Y_{M_1+M_2-j} \in T_{\rho}(T^*X - \{0\})$,

(1.4)
$$\tilde{q}_{m-j/k}(\rho) (Y_1, Y_2, \dots, Y_{M_1+M_2-j})$$

= $\frac{1}{(M_1+M_2-j)!} \tilde{Y}_1 \tilde{Y}_2 \cdots \tilde{Y}_{M_1+M_2-j} q_{m-j/k}) (\rho)$

where \tilde{Y} means a vector field extending Y to a neighbourhood of ρ . It is clear that $\tilde{q}_{m-j/k}(\rho)$ is independent of the choice of the representative of q.

DEFINITION 1.7. For every $\rho \in \Sigma_1 \cap \Sigma_2$, we define

(1.5)
$$\tilde{q}(\rho, Y) = \sum_{j=0}^{M_1+M_2} \tilde{q}_{m-j/k}(\rho)(Y, Y, \dots, Y) \text{ for all } Y \in T_{\rho}(T^*X - \{0\}).$$

If $\rho \in \Sigma_1 \setminus \Sigma_2$, p belongs to $L_k^{m,M_1}(U; \Sigma_1)$ for some conic neighbourhood U of ρ . So if we apply Proposition 1.5 to p with $\Sigma_1 = \Sigma_2$, $M_2 = 0$, we can also define $\tilde{q}(\rho, Y)$ for $\rho \in \Sigma_1 \setminus \Sigma_2$. Similarly define $\tilde{q}(\rho, Y)$ for $\rho \in \Sigma_2 \setminus \Sigma_1$. Therefore, for every $\rho \in \Sigma = \Sigma_1 \cup \Sigma_2$, we can define

$$\Gamma_{\rho} = \left\{ \tilde{q}(\rho, Y) ; Y \in T_{\rho} (T^* X - \{0\}) \right\}.$$

REMARK 1.8. When $M_2=0$, $M_1=k=2$, we have $q_m=p_m$ and $q_{m-1}=p_{m-1}-\frac{1}{2i}\sum_{l=1}^{n}\frac{\partial}{\partial x_l}\frac{\partial}{\partial \xi_l}p_m$. In this case $\tilde{q}(\rho, Y)$ is the sum of the transversal hessian of p_m and the subprincipal symbol of P at ρ .

PROPOSITION 1.9. Let q_1 and q_2 be the symbols associated with p_1 and p_2 respectively. Then the symbol q associated with the composition of p_1 and p_2 is given by the formula:

$$q \equiv \left(\exp\left(\frac{1}{2i} \sum_{l=1}^{n} \frac{\partial}{\partial x_{l}} \frac{\partial}{\partial \xi_{l}}\right) \cdot q_{1} \right) \# \left(\exp\left(\frac{1}{2i} \sum_{l=1}^{n} \frac{\partial}{\partial x_{l}} \frac{\partial}{\partial \xi_{l}}\right) \cdot q_{2} \right)$$

where # designs the composition of the symbols.

Next we describe the hypotheses on Σ_1 and Σ_2 . Let Σ_1 and Σ_2 be closed conic submanifolds in $T^*X - \{0\}$ of codimension μ_1 and μ_2 respectively. (H. 1) Σ_1 and Σ_2 intersect quasi-transversally. That is, $\Sigma_1 \cap \Sigma_2$ is a closed conic submanifold such that for every point $\rho \in \Sigma_1 \cap \Sigma_2$,

$$T_{\rho}(\Sigma_1 \cap \Sigma_2) = T_{\rho}\Sigma_1 \cap T_{\rho}\Sigma_2.$$

Locally this means: If the codimension of $\Sigma_1 \cap \Sigma_2$ is equal to $(\mu_1 + \mu_2) - \nu_0$, there exist positively-homogeneous functions

$$u_1^{(1)}, \cdots, u_{\nu_1}^{(1)}, u_1^{(0)}, \cdots, u_{\nu_0}^{(0)}, u_1^{(2)}, \cdots, u_{\nu_2}^{(2)},$$

 $du_i^{(i)}$ $(j=1, 2, \dots, \nu_i, i=1, 0, 2)$ being linearly independent such that

$$\begin{split} \varSigma_1 & \text{ is defined by } \quad u_1^{(1)} = \cdots = u_{\nu_1}^{(1)} = u_1^{(0)} = \cdots = u_{\nu_0}^{(0)} = 0 \text{ ,} \\ \varSigma_2 & \text{ by } \quad u_1^{(0)} = \cdots = u_{\nu_0}^{(0)} = u_1^{(2)} = \cdots = u_{\nu_2}^{(2)} = 0 \text{ ,} \end{split}$$

and

$$\Sigma_1 \cap \Sigma_2$$
 by $u_1^{(1)} = \cdots = u_{\nu_1}^{(1)} = u_1^{(0)} = \cdots = u_{\nu_0}^{(0)} = u_1^{(2)} = \cdots = u_{\nu_2}^{(2)} = 0$

Here $\nu_1 = \mu_1 - \nu_0$, $\nu_2 = \mu_2 - \nu_0$ (≥ 0).

(H.2) Σ_1 , Σ_2 and $\Sigma_1 \cap \Sigma_2$ are involutive, *i.e.* if $u_1^{(1)}, \dots, u_{\nu_1}^{(1)}, u_1^{(0)}, \dots, u_{\nu_0}^{(0)}, u_1^{(2)}, \dots, u_{\nu_1}^{(2)}$ are as above, then

$$\{u_{j}^{(i)}, u_{j'}^{(i)}\} = \{u_{k}^{(0)}, u_{k'}^{(0)}\} = \{u_{j}^{(i)}, u_{k}^{(0)}\} = 0 \quad \text{on } \Sigma_{i} \ (i = 1, 2)$$

and

$$\{u_j^{(1)}, u_l^{(2)}\} = 0$$
 on $\Sigma_1 \cap \Sigma_2$.

(H.3) The radial vector $\sum_{l=1}^{n} \xi_l \frac{\partial}{\partial \xi_l}$ is linearly independent of $H_{u(j)}$, $j=1, \dots, \nu_i$, i=1, 0, 2. Here we denote by H_f the Hamilton vector field and by $\{f, g\}$ their Poisson bracket for C^{∞} functions f, g on $T^*X - \{0\}$.

Then we obtain the following:

THEOREM 1.10. Let P be in $OPL_k^{m,M_1,M_2}(X; \Sigma_1, \Sigma_2)$ and be elliptic outside $\Sigma = \Sigma_1 \cap \Sigma_2$. Assume that (H. 1), (H. 2) and (H. 3) are satisfied. Then P is hypoelliptic at $\rho \in \Sigma_1 \cap \Sigma_2$ with loss of $(M_1 + M_2)/k$ -derivatives if and only if

(1.6) Γ_{ρ} does not meet the origin.

Here we say that P is hypoelliptic at ρ with loss of $(M_1+M_2)/k$ -derivatives if $u \in \mathscr{D}'(X)$ and $Pu \in H^s$ at ρ implies $u \in H^{s+m-(M_1+M_2)/k}$ at ρ .

We also obtain a sufficient condition for the usual hypoellipticity:

COROLLARY 1.11. Let P be in $OPL_k^{m,M_1,M_2}(X; \Sigma_1, \Sigma_2)$ and be elliptic outside $\Sigma = \Sigma_1 \cup \Sigma_2$. Then P is hypoelliptic with loss of $(M_1 + M_2)/k$ -derivatives, if for every $\rho \in \Sigma = \Sigma_1 \cup \Sigma_2$, Γ_ρ does not meet the origin and moreover:

(A) When k>2, (H.1) and (H.3) are satisfied (note that (H.2) is unnecessary).

(B) When k=2, (H. 1), (H. 2) and (H. 3) are satisfied. Here we say that P is hypoelliptic with loss of $(M_1+M_2)/k$ -derivatives if for all open set O in X, $u \in \mathscr{D}'(X)$ and $Pu \in H^s_{loc}(O)$ implies $u \in H^{s+m-(M_1+M_2)/k}_{loc}(O)$.

Finally we give a simple example :

EXAMPLE 1. 12. Let $P = D_{x_1}^2 D_{x_2}^2 + a D_{x_1}^2 D_{x_3} + 2b D_{x_1} D_{x_2} D_{x_3} + c D_{x_2}^2 D_{x_3} + d(D_{x_1}^2 + D_{x_2}^2 + D_{x_3}^2)$ in \mathbb{R}^3 where a, b, c and d are complex numbers. Let $\mathcal{A}_d = \{\lambda d + \mu; \lambda \ge 1, \mu \ge 0\}$ and \mathcal{A} be the set of values of the quadratic form corresponding to the symmetric matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$. Then P is hypoelliptic at $\rho = (x_1^0, x_2^0, x_3^0, 0, 0, \xi_3^0)$ with loss of 2-derivatives if and only if $(\operatorname{sgn}(\xi_3^0)) \cdot \mathcal{A} + \mathcal{A}_d$ does not meet the origin.

In fact, if we set $\Sigma_1 = \{\xi_1 = 0\}$ and $\Sigma_2 = \{\xi_2 = 0\}$, $P \in OPL_{2,c}^{4,2,2}(\mathbb{R}^3; \Sigma_1, \Sigma_2)$. Then

$$\Gamma_{\rho} = \left\{ |\xi_{3}^{0}|^{2} \eta_{1}^{2} \eta_{2}^{2} + |\xi_{3}^{0}| \xi_{3}^{0} (a\eta_{1}^{2} + 2b\eta_{1}\eta_{2} + c\eta_{2}^{2}) + d\left(|\xi_{3}^{0}|^{2} (\eta_{1}^{2} + \eta_{2}^{2}) + (\xi_{3}^{0})^{2} \right); \ (\eta_{1}, \eta_{2}) \in \mathbf{R}^{2} \right\},$$

therefore Theorem 1.10 leads to the conclusion.

§ 2. The preparations for the proof of Theorem 1.10 and Corollary 1.11

In this section we introduce the class of operators in which we construct the parametrix of $P \in OPL_k^{m,M_1,M_2}(X; \Sigma_1, \Sigma_2)$. (c. f. Helffer [6])

Let U be an open cone in $T^*X - \{0\} = S^*X \times \mathbb{R}^+$ where S^*X is the

cosphere bundle of X. We denote by $u = (u^{(1)}, u^{(0)}, u^{(2)}, v, r)$ the variables in U. Let Σ_1 and Σ_2 be the subcones defined by

$$\Sigma_1 = \{ u^{(1)} = u^{(0)} = 0 \}, \ \Sigma_2 = \{ u^{(0)} = u^{(2)} = 0 \}$$

where

$$u^{(i)} = (u_1^{(i)}, \dots, u_{\nu_i}^{(i)}) \quad (i = 1, 0, 2)$$
$$v = (v_1, \dots, v_{(2n-1) - (\nu_1 + \nu_0 + \nu_2)})$$

and $u_{j}^{(i)}$ $(j=1, \dots, \nu_i, i=1, 0, 2)$, v_l $(l=1, \dots, (2n-1)-(\nu_1+\nu_0+\nu_2))$ are functions of positively-homogeneous of degree 0. We set

$$\rho_{\Sigma_i} = \left\{ \sum_{j=1}^{\nu_i} |u^{(i)}|^2 + \sum_{j=1}^{\nu_0} |u^{(0)}|^2 + r^{-2/k} \right\}^{1/2}, \qquad (i = 1, 2).$$

DEFINITION 2.1. Let m, M_1 , $M_2 \in \mathbf{R}$. Then we denote by S^{m,M_1,M_2} $(U; \Sigma_1, \Sigma_2)$ the set of all C^{∞} functions a(u) on U such that for any $j \in \mathbf{Z}_+$ and any multi-indeces $\alpha_1 \in (\mathbf{Z}_+)^{\nu_1}$, $\alpha_0 \in (\mathbf{Z}_+)^{\nu_0}$, $\alpha_2 \in (\mathbf{Z}_+)^{\nu_2}$, $\beta \in (\mathbf{Z}_+)^{(2n-1)-(\nu_1+\nu_0+\nu_2)}$, we have

$$\left| \left(\frac{\partial}{\partial u^{(1)}} \right)^{\alpha_1} \left(\frac{\partial}{\partial u^{(0)}} \right)^{\alpha_0} \left(\frac{\partial}{\partial u^{(2)}} \right)^{\alpha_2} \left(\frac{\partial}{\partial v} \right)^{\beta} \left(\frac{\partial}{\partial r} \right)^{j} a \right|$$

$$\leq r^{m-j} \sum_{k_1 + k_2 = |\alpha_0|} \rho_{\Sigma_1}^{M_1 - |\alpha_1| - k_1} \rho_{\Sigma_2}^{M_2 - |\alpha_2| - k_2} .$$

Here we use the notation $f \leq g$ if for any subcone $U' \subset U$ with compact basis and any $\varepsilon > 0$, there exists a constant C > 0 such that $0 \leq f \leq Cg$ in U' when $r > \varepsilon$.

REMARK 2.2. (1) Note that we can also express the above definition in the invariant fashion. (c. f. [2], [6])

(2) $S^{m,M_1,M_2}(T^*X-\{0\}; \Sigma_1, \Sigma_2) \subset S^{m-((M_1)_-+(M_2)_-)/k}$ with $\rho=1-1/k$ and $\delta=1/k$ where $(s)_-=\inf(0,s)$ for real s. In fact, since $\rho_{\Sigma_i}^{-1} \leq r^{1/k}$, the right hand side in the definition is estimated by

$$r^{m-j}\rho_{\Sigma_1}^{M_1}\rho_{\Sigma_2}^{M_2}r^{(|\alpha_1|+|\alpha_0|+|\alpha_2|)/k}$$

Here by definition of ρ_{Σ_i} , we have $\rho_{\Sigma_i}^{M_i} \leq r^{-(M_i)} - k$.

Note that if k>2, we have $\delta < \rho$ and if k=2, $\rho = \delta = 1/2$.

The following three propositions follow from a routine consideration. (c. f. [2])

PROPOSITION 2.3. For M_1 , $M_2 \ge 0$ integers, we have

 $L_k^{m,M_1,M_2}(U; \Sigma_1, \Sigma_2) \subset S^{m,M_1,M_2}(U; \Sigma_1, \Sigma_2)$.

PROPOSITION 2.4. If $p_1 \in S^{m,M_1,M_2}(U; \Sigma_1, \Sigma_2)$ and $p_2 \in S^{m',M'_1,M'_2}(U; \Sigma_1, \Sigma_2)$,

then $p_1 \cdot p_2 \in S^{m+m', M_1+M'_1, M_2+M'_2}(U; \Sigma_1, \Sigma_2).$

PROPOSITION 2.5. If
$$p \in S^{m,M_1,M_2}(U; \Sigma_1, \Sigma_2)$$
 and satisfies
 $|p| \ge r^m \rho_{\Sigma_1}^{M_1} \rho_{\Sigma_2}^{M_2}$,

then

$$p^{-1} \in S^{-m, -M_1, -M_2}(U; \Sigma_1, \Sigma_2).$$

\S 3. Proofs of Theorem 1.10 and Corollary 1.11

(1) Sufficiency of Theorem 1.10 and Corollary 1.11

(A) The case k>2. Let $\rho \in \Sigma_1 \cap \Sigma_2$ and U be a conic neighbourhood of ρ . By Remark 1.6, the class q defined by Proposition 1.5 has the following form:

$$q \sim \sum_{j=0}^{M_1+M_2} p_{m-j/k}(x,\xi)$$
.

Therefore by definition 1.7,

$$\tilde{q}(\rho, Y) = \sum_{j=0}^{M_1+M_2} \tilde{p}_{m-j/k}(\rho)(Y, \cdots, Y), \ Y \in T_{\rho}(T^*X - \{0\})$$

where the (M_1+M_2-j) -linear form $\tilde{p}_{m-j/k}(\rho)$ on $T_{\rho}(T^*X-\{0\})$ is defined in the same way as (1.4). Then our hypothesis (1.6) implies

(3.1)
$$p'(x,\xi) = \sum_{j=0}^{M_1+M_2} p_{m-j/k}(x,\xi) \neq 0$$
 at $\rho \in \Sigma_1 \cap \Sigma_2$.

Thus for every $\rho \in \Sigma_1 \cap \Sigma_2$, there exists a conic neighbourhood U of ρ and constants C_1 and C_2 such that

$$(3.2) |p(x,\xi)| \ge C_1 |\xi|^{m-(M_1+M_2)/k} for all (x,\xi) \in U and |\xi| \ge C_2.$$

By Taylor's formula, in a conic neighbourhood of ρ , we can write:

$$p' = \sum_{j=0}^{M_1+M_2} \sum_{(\alpha_1,\alpha_0,\alpha_2)} a_{\alpha_1,\alpha_0,\alpha_2,j} (u^{(1)})^{\alpha_1} (u^{(0)})^{\alpha_0} (u^{(2)})^{\alpha_2}$$

where $(\alpha_1, \alpha_0, \alpha_2)$ in the summation range all multi-indices such that $|\alpha_1| + |\alpha_0| + |\alpha_2| = M_1 + M_2 - j$, $|\alpha_1| \le M_1$, $|\alpha_2| \le M_2$. Moreover $u^{(i)}$ (i=1, 0, 2) are functions of positively-homogeneous of degree 0 defining Σ_i in (H. 1) and $a_{\alpha_1,\alpha_0,\alpha_2,j}$ of degree m-j/k. Since

$$\rho_{\Sigma_1 \cap \Sigma_2} = \left\{ |u^{(1)}|^2 + |u^{(0)}|^2 + |u^{(2)}|^2 + r^{-2/k} \right\}^{1/2}$$

it is clear that if we assign to r the weight 1, to $(u^{(1)}, u^{(0)}, u^{(2)})$ the weight

-1/k, to v the weight 0, then p' and $r^m \rho_{\Sigma_1 \cap \Sigma_2} M_1 + M_2$ have the same degree $m - (M_1 + M_2)/k$ of quasi-homogeneity. Thus by (3.1) and Proposition 2.5, we have

$$p'^{-1} \in S^{-m, -(M_1+M_2)}(U''; \Sigma_1 \cap \Sigma_2) \quad \text{for some } U'' \subset U'.$$

$$p_{(\beta)}^{(\alpha)} \in S^{m-|\alpha|, M_1+M_2-(|\alpha|+|\beta|)}(U''; \Sigma_1 \cap \Sigma_2), \quad \text{we see}$$

$$p_{(\beta)}^{(\alpha)} \cdot p^{-1} \in S^{-|\alpha|, -(|\alpha|+|\beta|)}(U''; \Sigma_1 \cap \Sigma_2).$$

Since

Therefore with some constants
$$C_3$$
, $C_4 > 0$,

(3.3)
$$|p_{(\beta)}^{(\alpha)}(x,\xi)| \leq C_3 |\xi|^{-(1-1/k)|\alpha|+(1/k)|\beta|} |p(x,\xi)|$$

for all $(x, \xi) \in U''$ and $|\xi| \ge C_4$. Thus (3.2) and (3.3) show that Hörmander's condition [7; Theorem 4.2] is satisfied, so P is hypoelliptic at $\rho \in \Sigma_1 \cap \Sigma_2$ with loss of $(M_1 + M_2)/k$ -derivatives. If $\rho \in \Sigma_1 \setminus \Sigma_2$, $L_k^{m,M_1,M_2}(U; \Sigma_1, \Sigma_2) = L_k^{m,M_1}(U; \Sigma_1)$ for some conic neighbourhood of ρ . So we can apply the above arguments with $\Sigma_1 = \Sigma_2$, $M_2 = 0$. It is similar to the case $\rho \in \Sigma_2 \setminus \Sigma_1$. Thus we complete the proof.

(B) The case k=2.

LEMMA 3.1. Assume that the closed conic submanifolds Σ_1 and Σ_2 satisfy (H.1), (H.2) and (H.3). Then for every $\rho \in \Sigma_1 \cap \Sigma_2$, there exists a conic neighbourhood U of ρ and a homogeneous canonical transformation $\chi: U \rightarrow T^* \mathbb{R}^n - \{0\}$ such that

$$\chi(\Sigma_i) = \{\xi_1^{(i)} = \dots = \xi_{\nu_i}^{(i)} = \xi_1^{(0)} = \dots = \xi_{\nu_0}^{(0)} = 0\}, \quad i = 1, 2$$

where

$$(x,\xi) = (x^{(1)}, x^{(0)}, x^{(2)}, x', \xi^{(1)}, \xi^{(0)}, \xi^{(2)}, \xi') \in T^* \mathbf{R}^n - \{0\}$$

and

(3.4)
$$\begin{aligned} x^{(1)} &= (x_1, \cdots, x_{\nu_1}) & \hat{\xi}^{(1)} &= (\xi_1, \cdots, \xi_{\nu_1}) \\ x^{(0)} &= (x_{\nu_1+1}, \cdots, x_{\nu_1+\nu_0}) & \hat{\xi}^{(0)} &= \xi_{\nu_1+1}, \cdots, \xi_{\nu_1+\nu_0}) \\ x^{(2)} &= (x_{\nu_1+\nu_0+1}, \cdots, x_{\nu_1+\nu_0+\nu_2}) & \hat{\xi}^{(2)} &= (\xi_{\nu_1+\nu_0+1}, \cdots, \xi_{\nu_1+\nu_0+\nu_2}) \end{aligned}$$

PROOF. With the notations in (H. 1) if we define locally

$$\begin{split} \Sigma_{10} &= \{ u_{1}^{(1)} = = u_{\nu_{1}}^{(1)} = 0 \} \\ \Sigma_{00} &= \{ u_{1}^{(0)} = = u_{\nu_{0}}^{(0)} = 0 \} \\ \Sigma_{20} &= \{ u_{1}^{(2)} = = u_{\nu_{2}}^{(2)} = 0 \} , \end{split}$$

it is easy to see that they intersect transversally and

$$\Sigma_1 = \Sigma_{10} \cap \Sigma_{00} \qquad \Sigma_2 = \Sigma_{20} \cap \Sigma_{00}$$
 .

Therefore under the hypotheses (H. 1), (H. 2) and (H. 3), there exists locally a canonical transformation from some conic neighbourhood U of ρ into $T^*\mathbb{R}^n - \{0\}$ such that

$$\chi(\Sigma_{i0}) = \{\xi_{1}^{(i)} = \dots = \xi_{\nu_{i}}^{(i)} = 0\}, \quad i = 1, 0, 2.$$

(c. f. [1], Grigis and Lascar [4], Duistermaat and Hörmander [3]) This completes the proof.

Since the hypotheses and the conclusions of Theorem 1.10 and Corollary 1.11 are invariant under the above canonical transformation, we are reduced to the case: $X = \mathbf{R}^n$ and

$$\Sigma_i = \{ \xi_1^{(i)} = \dots = \xi_{\nu_i}^{(i)} = \xi_1^{(0)} = \dots = \xi_{\nu_0}^{(0)} = 0 \}, \quad i = 1, 2$$

with the notations in (3.4). Then in a conic neighbourhood of $\rho \in \Sigma_1 \cap \Sigma_2$, we have

(3.5)
$$P = \sum_{j=0}^{M_1+M_2} \sum_{(\alpha_1,\alpha_0,\alpha_2)} A_{\alpha_1,\alpha_0,\alpha_2,j} (D_{x^{(1)}})^{\alpha_1} (D_{x^{(0)}})^{\alpha_0} (D_{x^{(2)}})^{\alpha_2}$$

where $A_{\alpha_1,\alpha_0,\alpha_2,j}$ are classical pseudo-differential operators of order $m-(M_1+M_2)+j/2$. Then the hypothesis (1.6) implies

$$p'(x, \xi) = \sum_{j=0}^{M_1+M_2} p_{m-j/k}(x, \xi) \neq 0$$
 at ρ ,

because the $\frac{\partial}{\partial x_i}$ are all tangent to $\Sigma_1 \cap \Sigma_2$. Therefore we have

$$q'(x,\xi) = p'^{-1}(x,\xi) \in S^{-m,-(M_1+M_2)}(U; \Sigma_1 \cap \Sigma_2)$$

similarly to the case (A). If we set Q' = q'(x, D), the symbol of $Q' \cdot P$ is asymptotically equal to

$$1+\sum_{|\alpha|\geq 1}\frac{1}{\alpha!}q'^{(\alpha)}D_x^{\alpha}p.$$

Again since the $\frac{\partial}{\partial x_j}$ are all tangent to $\Sigma_1 \cap \Sigma_2$, the second term in the right hand side belongs to $S^{-1/2,0}(U; \Sigma_1 \cap \Sigma_2)$. Thus we have

$$Q' \boldsymbol{\cdot} P = I - R' \qquad \text{with} \quad R' \in OPS^{-1/2,0}(\boldsymbol{R}^n \ ; \ \boldsymbol{\varSigma}_1 \cap \boldsymbol{\varSigma}_2) \, .$$

Finally if we set $Q \sim \sum_{k=0}^{\infty} (R')^k \cdot Q$, then $Q \cdot P \sim I$. If $\rho \in \Sigma_1 \setminus \Sigma_2$ or $\rho \in \Sigma_2 \setminus \Sigma_1$, it is similar to the case (A). This completes the proof. (2) Necessity of Theorem 1.10

We suppose that Γ_{ρ} contains the zero for some point $\rho = (x^0, \xi^0) \in \Sigma_1 \cap \Sigma_2$. We may assume the same form as (3.5) *i.e.*

$$P = \sum_{j=0}^{M_1+M_2} \sum_{(\pmb{a}_1,\pmb{a}_0,\pmb{a}_2)} A_{\alpha_1,\alpha_0,\alpha_2,j} (D_{x^{(1)}})^{\alpha_1} (D_{x^{(0)}})^{\alpha_0} (D_{x^{(2)}})^{\alpha_2}$$

where $A_{\alpha_1,\alpha_0,\alpha_2,j}$ are of order $m - (M_1 + M_2) + (1 - 1/k) j$. For brevity, we may assume $x^0 = 0$, $\xi^0 = (0)^{(1)}, (0)^{(0)}, (0)^{(2)}, 0, \dots, 0, 1)$ ($\xi^0_n = 1$). Then our hypothesis on $\tilde{q}(\rho, Y)$ means:

(3.6)
$$\sum_{j=0}^{M_1+M_2} \sum a_{\alpha_1,\alpha_0,\alpha_2,j}(0,\dots,0,\xi_n^0) (\eta^{(1)})^{\alpha_1} (\eta^{(0)})^{\alpha_0} (\eta^{(2)})^{\alpha_2} = 0$$

for some $(\eta^{(1)}, \eta^{(0)}, \eta^{(2)}) \in \mathbb{R}^{(\nu_1 + \nu_0 + \nu_2)}$ where $a_{\alpha_1, \alpha_0, \alpha_2, j}$ are the principal symbols of $A_{\alpha_1, \alpha_0, \alpha_2, j}$. Here if we assign to $(\eta^{(1)}, \eta^{(0)}, \eta^{(2)})$ the weight 1, to ξ_n^0 the weight k/(k-1), we can regard the left hand side in (3.6) as quasi-homogeneous symbol of degree $(km - (M_1 + M_2))/(k-1)$ of type (1, k(k-1)). Then by [9; Lemma 7.1] (c.f. [1; Proposition 3.1]), there exists a distribution u such that the wave front set $WF(u) = \{(x^0, \lambda\xi^0); \lambda > 0\}$ and $Pu \in H^s$ at ρ but $u \notin H^{s+m-(M_1+M_2)/k}$ at ρ . This completes the proof.

§ 4. The special case of type $P = P_1 \cdot P_2 + P_3$

Let $P_1 \in OPL_k^{m_1,M_1}(X; \Sigma_1)$ and $P_2 \in OPL_k^{m_2,M_2}(X; \Sigma_2)$ where one of the factors is properly supported and elliptic outside Σ_1 and Σ_2 respectively. By Proposition 1.3, $P_1 \cdot P_2 \in OPL_k^{m_1+m_2,M_1,M_2}(X; \Sigma_1, \Sigma_2)$. Then we shall consider the operator of the following type:

$$(4.1) P = P_1 \cdot P_2 + P_3$$

where

$$P_{3} \in OPL_{k}^{m_{1}+m_{2}-1/k,M_{1}-1,M_{2}}(X; \Sigma_{1}, \Sigma_{2}) \cup OPL_{k}^{m_{1}+m_{2}-1/k,M_{1},M_{2}-1}(X; \Sigma_{1}, \Sigma_{2})$$

PROPOSITION 4.1. Assume that Σ_1 and Σ_2 satisfy (H.1), (H.2) and (H.3). Then $\tilde{q}_i(\rho, Y)$ be the associated forms of P_i (i=1, 2, 3) given by (1.5). Then for every $\rho \in \Sigma_1 \cap \Sigma_2$, we have

$$\tilde{q}(\rho, Y) = \tilde{q}_1(\rho, Y) \cdot \tilde{q}_2(\rho, Y) + \tilde{q}_3(\rho, Y), \ Y \in T_{\rho}(T^*X - \{0\}).$$

PROOF. First we calculate the q in Proposition 1.5. Let q_i be the associated symbols given by (1.3) (i=1,2,3) in a conic neighbourhood U of ρ . By our hypotheses (H.1), (H.2) and (H.3),

$$p_1 # p_2 = p_1 \cdot p_2$$

and

$$q_i \equiv p_i \quad (i = 1, 2, 3) \qquad \text{modulo} \ \ L_k^{m_1 + m_2, M_1 + M_2 + 1}(U; \ \Sigma_1 \cap \Sigma_2)$$

Thus by Proposition 1.9, we have

$$q \equiv q_1 \cdot q_2 + q_3 \, .$$

Since

$$q_{m_1+m_2-j/k} = \sum_{t+s=j} q_{1,m_1-t/k} q_{2,m_2-s/k} + q_{3,m_1+m_2-j/k}$$
,

we readily see

$$\tilde{q}(\rho, Y) = \tilde{q}_1(\rho, Y) \cdot \tilde{q}_2(\rho, Y) + \tilde{q}_3(\rho, Y)$$
.

Thus by Theorem 1.10 and Corollary 1.11, we have

THEOREM 4.1. Assume that Σ_1 and Σ_2 satisfy (H. 1), (H. 2) and (H. 3)and let $\rho \in \Sigma_1 \cap \Sigma_2$. Then P is hypoelliptic at ρ with loss of $(M_1 + M_2)/k$ derivatives if and only if

$$\tilde{q}_1(\rho, Y) \cdot \tilde{q}_2(\rho, Y) + \tilde{q}_3(\rho, Y) \neq 0$$
 for all $Y \in T_{\rho}(T^*X - \{0\})$.

Next for $\rho \in \Sigma_1 \setminus \Sigma_2$, it is easy to see

$$\tilde{q}(\rho, Y) = \tilde{q}_1(\rho, Y) \cdot p_{2,m_2}(\rho) + \tilde{q}_3(\rho, Y)$$

and for $\rho \in \Sigma_2 \backslash \Sigma_1$,

$$\tilde{q}(\rho, Y) = p_{1,m_1}(\rho) \cdot \tilde{q}_2(\rho, Y) + \tilde{q}_3(\rho, Y)$$

where p_{1,m_1} and p_{2,m_2} are the principal symbols of p_1 and p_2 respectively. Therefore we have

COROLLARY 4.3. Under the hypotheses in the above theorem, if, for every $\rho \in \Sigma = \Sigma_1 \cup \Sigma_2$,

$$\tilde{q}(\rho, Y) \neq 0$$
 for all $Y \in T_{\rho}(T^*X - \{0\})$,

P is hypoelliptic with loss of $(M_1 + M_2)/k$ -derivatives.

EXAMPLE 4.4. (1) Let $P=P_1 \cdot P_2 + P_3$ in \mathbf{R}^4 where

$$P_{1} = D_{x_{1}}^{2} + D_{x_{2}}^{2} + aD_{x_{4}},$$

$$P_{2} = D_{x_{2}}^{2} + D_{x_{3}}^{2} + bD_{x_{4}},$$

$$P_{3} = c(D_{x_{1}}^{2} + D_{x_{2}}^{2} + D_{x_{3}}^{2} + D_{x_{4}}^{2})$$

and a, b and c be complex numbers.

Let $\rho = (x_1^0, x_2^0, x_3^0, x_4^0, 0, 0, 0, \xi_4^0)$ $(\xi_4^0 \neq 0)$. Put $\Delta_{a,b,\xi_4^0} = \{\lambda \operatorname{sgn}(\xi_4^0) \ (a+b) + \mu; \lambda, \mu \ge 0\}$. Then if

 $ab+c+\Delta_{a,b,\xi_1}$ does not meet the origin,

P is hypoelliptic at ρ with loss of 2-derivatives.

In fact, if we set $\Sigma_1 = \{\xi_1 = \xi_2 = 0\}$, $\Sigma_2 = \{\xi_2 = \xi_3 = 0\}$, $P \in POL_{2,c}^{4,2,2}(\mathbb{R}^4; \Sigma_1, \Sigma_2)$. Then we have

$$\Gamma_{\rho} = \left\{ \left(|\xi_{4}^{0}|(\eta_{1}^{2} + \eta_{2}^{2}) + a\xi_{4}^{0} \right) \left(|\xi_{4}^{0}|(\eta_{2}^{2} + \eta_{3}^{2}) + b\xi_{4}^{0} \right) + c(\xi_{4}^{0})^{2}; \ (\eta_{1}, \eta_{2} \in \mathbb{R}^{2} \right\}.$$

$$(2) \quad \text{Let } P = (D_{x_{1}}^{4} + x_{1}^{4}(D_{x_{2}}^{4} + D_{x_{3}}^{4})(D_{x_{2}}^{4} + x_{2}^{4}(D_{x_{1}}^{4} + D_{x_{3}}^{4}) + a(D_{x_{1}}^{6} + D_{x_{2}}^{6} + D_{x_{3}}^{6}) \text{ in } \mathbb{R}^{3}$$

where a is a complex number. Let $\rho = (0, 0, x_3^0, 0, 0, \xi_3^0)$. Then P is hypoelliptic at ρ with loss of 2-derivatives if and only if

$$a+[0, +\infty)$$
 does not meet the origin.

In fact, if we set $\Sigma_1 = \{\xi_1 = x_1 = 0\}$, $\Sigma_2 = \{\xi_2 = x_2 = 0\}$, $P \in OPL_{4,c}^{8,4,4}(\mathbb{R}^3; \Sigma_1, \Sigma_2)$. Then we have

$$\Gamma_{\rho} = \left\{ |\xi_{3}^{0}|^{6}(\eta_{1}^{4} + y_{1}^{4})(\eta_{2}^{4} + y_{2}^{4}) + c|\xi_{3}^{0}|^{6}; (y_{1}, y_{2}, \eta_{1}, \eta_{2}) \in \mathbb{R}^{4} \right\}.$$

§ 5. The case of system

For brevity, let $P_i \in OPL_{2^{1/2}}^{1,1}(X; \Sigma_i)$ be elliptic outside Σ_i (i=1, 2), and let $A, B \in OPL_{1,0}^{1/2}(X)$ $(=L_{1,0}^{1/2}, for the notation, see [6])$. We consider the following system

$$P = \begin{pmatrix} P_1 & A \\ B & P_2 \end{pmatrix}$$
.

By using Corollary 4.3, we can prove

THEOREM 5.1. Auusme that Σ_1 and Σ_2 satisfy (H. 1), (H. 2) and (H. 3). Then **P** is hypoelliptic with loss of 1/2-derivative if, for $\rho \in \Sigma = \Sigma_1 \cup \Sigma_2$ and for all $Y \in T_{\rho}(T^*X - \{0\})$,

$$\begin{split} \tilde{q}_1(\rho, Y) &\neq 0 & \text{when} \quad \rho \in \Sigma_1 \backslash \Sigma_2, \\ \tilde{q}_2(\rho, Y) &\neq 0 & \text{when} \quad \rho \in \Sigma_2 \backslash \Sigma_1, \\ \tilde{q}_1(\rho, Y) \cdot \tilde{q}_2(\rho, Y) - a^0(\rho) \cdot b^0(\rho) &\neq 0 & \text{when} \quad \rho \in \Sigma_1 \cap \Sigma_2. \end{split}$$

Here a^0 and b^0 are the principal symbols of A and B respectively. In particular, the system is subelliptic with loss of 1/2-derivatives.

PROOF. If we set

$$\widehat{oldsymbol{P}}=egin{pmatrix} P_2 & -A\ -B & P_1 \end{pmatrix}$$
 ,

we have

$$\widehat{\boldsymbol{P}} \boldsymbol{\cdot} \boldsymbol{P} = \begin{pmatrix} P_2 \boldsymbol{\cdot} P_1 - A \boldsymbol{\cdot} B & [P_2, A] \\ [P_1 \boldsymbol{\cdot} B] & P_1 \boldsymbol{\cdot} P_2 - B \boldsymbol{\cdot} A \end{pmatrix} .$$

Since $P_2 \cdot P_1 - A \cdot B$, $P_1 \cdot P_2 - B \cdot A \in OPL_2^{2,1,1}(X; \Sigma_1, \Sigma_2)$, under our hypotheses, there exist left parametrices Q_1 , $Q_2 \in OPS^{-2,-1,-1}(X; \Sigma_1, \Sigma_2)$ such that

$$\begin{aligned} Q_1 \bullet (P_2 \bullet P_1 - A \bullet B) &\sim I, \\ Q_2 \bullet (P_1 \bullet P_2 - B \bullet A) &\sim I \end{aligned}$$

where I is the identity operator. Thus if we put

$$oldsymbol{Q}^{\prime\prime}=egin{pmatrix} Q_1&0\0&Q_2 \end{pmatrix}$$
 ,

we have

$$Q^{\prime\prime} \cdot \widehat{P} \cdot P = I - R$$

where I is the identity matrix and

$$oldsymbol{R} = egin{pmatrix} 0 & R_{1} \ R_{2} & 0 \end{pmatrix}$$
 ,

 $R_1 = Q_1 = [P_2, A], R_2 = Q_2 \cdot [P_1, B] \in OPL^{-3/2, -1, -1}(X; \Sigma_1 \cap \Sigma_2) \subset OPL^{-1/2}(X).$ By the standard technique, we find that

$$\boldsymbol{Q} = \sum_{j=0}^{\infty} \langle \boldsymbol{R} \rangle^{j} \cdot \boldsymbol{Q}^{\prime\prime} \cdot \hat{\boldsymbol{P}} \in OPL^{-1/2}_{-1/2}(X)$$

is a left parametrix of **P**. This completes the proof.

Example 5.2. Let

$$\boldsymbol{P} = \begin{pmatrix} D_{x_1} + a | D_{(x_2, x_3)} |^{1/2} & c | D_{(x_1, x_2, x_3)} |^{1/2} \\ d | D_{(x_1, x_2, x_3)} |^{1/2} & D_{x_2} + b | D_{(x_1, x_3)} |^{1/2} \end{pmatrix} \text{ in } \boldsymbol{R}^3$$

where

$$\begin{split} |D_{(x_2,x_3)}| &= (D_{x_2}^2 + D_{x_3}^2)^{1/2} ,\\ |D_{(x_1,x_3)}| &= (D_{x_1}^2 + D_{x_3}^2)^{1/2} ,\\ |D_{(x_1,x_2,x_3)}| &= (D_{x_1}^2 + D_{x_2}^2 + D_{x_3}^2)^{1/2} \end{split}$$

and a, b, c and d are complex numbers. Put $\Delta_{a,b} = \{\lambda a + \mu b + \nu; \lambda, \mu, \nu \in \mathbb{R}\}$. Then if

Im $a \neq 0$, Im $b \neq 0$

and

 $ab-cd+\Delta_{a,b}$ does not meet the origin,

P is hypoelliptic with loss of 1/2-derivative.

In fact, we have

$$\begin{split} \Gamma_{\rho} &= \left\{ |\xi_{(2,3)}^{0}|^{1/2} (\eta_{1} + a) \; ; \; \eta_{1} \in \boldsymbol{R} \right\} & \text{if } \rho \in \Sigma_{1} \backslash \Sigma_{2} \; , \\ &= \left\{ |\xi_{(1,3)}^{0}|^{1/2} (\eta_{2} + b) \; ; \; \eta_{2} \in \boldsymbol{R} \right\} & \text{if } \rho \in \Sigma_{2} \backslash \Sigma_{1} \; , \\ &= \left\{ |\xi_{3}^{0}| \left((\eta_{1} + a) \left(\eta_{2} + b \right) - cd \right) \; ; \; (\eta_{1}, \eta_{2}) \in \boldsymbol{R}^{2} \right\} & \text{if } \rho \in \Sigma_{1} \cap \Sigma_{2} . \end{split}$$

References

- ARAMAKI, J.: On a class of pseudo-differential operators and hypoellipticity, Hokkaido Math. J. Vol. IX No. 1 (1980), 46-58.
- BOUTET DE MONVEL, L.: Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm. Pure and Appl. Math. 27 (1974), 585-639.
- [3] DUISTERMAAT, J. J. and HÖRMANDER, L.: Fourier integral operators II, Acta Math. 128 (1972), 183-269.
- [4] GRIGIS, M. A. and LASCAR, R.: Équations locales d'un système de sous-variétés involutives, C. R. Acad. Sc. Paris 283 (1976), 503-506.
- [5] HELFFER, B.: Invariant associés à une classe d'opérateurs pseudo-différentiels et applications à L'hypoellipticité, Ann. Inst. Fourier, Grenoble 26 (1976), 55-70.
- [6] HELFFER, B.: Construction de parametrix pour des opérateurs pseudo-différentiels caracteristiques sur reunion de deux cones lisses, Bull. Soc. Math. France, Memoire, 51-52 (1977), 63-123.
- [7] HÖRMANDER, L.: Pseudo-differential operators and hypoelliptic equations, Amer. Math. Soc. Symp. Pure Math. 10 (1966), Singular integrals 138-183.
- [8] HÖRMANDER, L.: Fourier integral operators I, Acta Math. 127 (1971), 79-183.
- [9] LASCAR, R.: Propagation des singularités des solutions d'équations pseudodifférentielles quasi homogénes, Ann. Inst. Fourier, Grenoble 27 (1977), 79-123.
- [10] SJÖSTRAND, J.: Parametrices for pseudo-differential operators with multiple characteristics, Arkiv för Mat. 12 (1974), 85–130.

Department of Mathematical Science Faculty of Science and Engineering Tokyo Denki University

28