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A generalization of monodiffric function
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(Received November 22, 1982)

1. Introduction

The purpose of this paper is to introduce the generalized monodiffric
functions, namely, p-monodiffric functions, and to prove some interesting
properties of p monodiffric functions. When p=1 , our results reduce to the
classical theory of monodiffric functions which have been developed by
Berzsenyi [1, 2] , Kurowski [3] and the present author [4, 5] .

2. Definition and Notation

Let C be the complex plane, D=\{z\in C|z=x+iy\} where x, y\in\{pj|j=

0,1,2, \cdots\} and 0<p\leq 1 and f:Darrow C.

DEFINITION 1. The p monodiffric residue off at z is the value

M_{p}f(z)=(i-1)f(z)+f(z+ip)-if(z+p) (2. 1)

DEFINITION 2. The function f is said to be p monodiffric at z if
M_{p}f(z)=0 . The function f is said to be p monodiffric in D if it is p
monodiffric at any point in D {denoted by f\in M_{p}(D)) .

DEFINITION 3. The p monodiffric derivative f’ off is defined by

f’(z)= \frac{1}{2p}[(i-1)f(z)+f(z+p)-if(z+ip)] (2. 2)

We also use the symbols df/dz or D_{z}f to represent f’ . It is easy to see
that f’(z) can be formulated in the following forms:

f’(z)= \frac{f(z+p)-f(z)}{p} or f’(z)= \frac{1}{ip}[f(z+ip)-f(z)] , (2. 3)

if f\in M_{p}(D) at z.
DEFINITION 4. The line integral of f from z to z+hp is defined by

\int_{z}^{z+hp}f(t)dt=\{

hpf(z)

- \int_{z+hp}^{z}f(t)dt

if h=1 or i
(2. 4)

if h=-1 or -i
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More generally, if \Omega=\{a=z_{0}, Z_{1}^{ },\cdots, z_{n}=b\} is a discrete curve in D, then
the line integral of f from a to be along 12 is defined by

\int_{\Omega}f(t)dt=\int_{a}^{b}f(t)dt=\sum_{k=1}^{n}\int_{z_{k-1}}^{z_{k}}f(t)dt (2. 5)

3. Property

The following properties follow directly from the above definitions.

PROPOSITION 1. the line integral \int_{a}^{b}f(t)dt is independent of path in

D for every a, b\in D, if and only if f\in M_{p}(D) .
PROPOSITION 2. If a\in D andf is p monodiffric in D, then the function

F defined by F(z)= \int_{a}^{z}f(t)dt for z\in D, is also p monodiffric in D, and
F’(z)=f(z) for z\in D.

PROPOSITION 3. If f\in M_{p}(D) , then \int_{a}^{b}f’(t)dt=f(b)-f(a) .

4. The \bm{p} monodiffric exponential function

In [6] Isaacs introduced the monodiffric exponential function E(z)=
(1+a)^{x}(1+ia)^{y} for z=x+iy and a\not\in C. We extend it to p monodiffric as
follow : The p monodiffric exponential function e_{p}^{a,z} is defined by e_{p}^{a,z}=

(1+ap)^{f}(1+iap)^{k} for z=(j+ik)p, where j and k are integers. It is not
difficult to prove the following results.

PROPOSITION 4. (a) \frac{d^{n}}{dz^{n}}e_{p}^{a,z}=a^{n}e_{p}^{a,z}, where \frac{d^{n}}{dz^{n}} means n
,
th p monO-

diffric derivative,

(b) \frac{d^{n}}{dz^{n}}e_{p}^{a,z}\in M_{p}(D) for n=0,1,2, \cdots (4. 1)

THEOREM 1. The solution of the p monodiffric difference equation

\frac{dF}{dz}-aF(z)=0 with F(0)=c

is given by the p monodiffric function
F(z)=ce_{p}^{a,z} for every z\in D ,

where c is an arbitrary constant.
In general, we have
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THEOREM 2. Let a_{1} , a_{2} , \cdots , a_{n} be distinct roots of
a^{n}+c_{n-1}a^{n-1}+\cdots+c_{1}a+c_{0}=0 , (4. 2)

then the general solution to the n’th order p monodiffric linear homogeneous
difference equation

F^{(n)}(z)+c_{n-1}F^{(n-1)}(z)+\cdots+c_{n}F’(z)+c_{0}F(z)=0 (4. 3)

is F(z)= \sum_{k-1}^{n}B_{k}e_{p}^{a_{k},z}

where the coefficients B_{k}(k=1,2, \cdots, n) are arbitrary constants.

PROOF. Let F(z)=e_{p}^{a,z} . Then from Proposition 4, we have
(a^{n}+c_{n-1}a^{n-1}+\cdots+c_{1}a+c_{0})e_{p}^{a,z}=0

Since, a_{1} , a_{2}, \cdots , a_{n} are distinct roots of (4. 2), we obtain that e_{p}^{a_{k}.z}(k=1,2 ,
\ldots , n) is a solution of (4. 3). The general solution of (4. 3) is F(z)= \sum_{k=1}^{n}B_{k}e_{p}^{a_{k},z},

where B_{k}(k=1,2, \cdots, n) are arbitrary constants.

5. The \bm{p} monodiffric homogeneous difference equation of the n’th
order

In [4], the author shown that the monodiffric homogeneous difference
equation of the n’th order \sum_{k=0}^{n} (-1)^{k}C_{k}^{n}f(z+n-k)(1-a)^{k}=0 has monodiffric
general solution (In [4], Theorem 2, page 48). Now we want to generalize
this result to p monodiflric equation. We begin with the following pr0-
positions :

p_{ROPOSITION}5 .

(a) \frac{d}{da}e_{p}^{a,z}=(1+ap)^{j=1}(1+iap)^{k-1}\{z+ia(j+k)p^{2}\}

for z=(j+ik)p , (5. 1)

(b) \frac{d}{da}e_{p}^{a,z}\in M_{p}(D) (5. 2)

where \frac{d}{da}e_{p}^{a,z}=\lim_{harrow a}\frac{e_{p}^{(a\dagger h),z}-e_{p}^{a,z}}{h} for fixed point z\in D.
A proof is given by a straightforward calculation.

PROPOSITION 6. F(z)= \frac{d}{da}e_{p}^{a.z} is a solution of
(D_{z}-a)^{2}F(z)=0r (5. 3)
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and is also a solution of (D_{z}-a)^{m}F(z)=0 for any integer m\geqq 2 .

PROOF. Since, F(z)\in M_{p}(D) we obtain F’(z)= \frac{1}{p}[F(z+p)-F(z)] and

F’(z)= \frac{1}{p}[F’(z+p)-F’(z)]=\frac{1}{p^{2}}[F(z+2p)-2F(z+p)+F(z)]

Now (D_{z}-a)^{2}F(z)=F’(z)-2aF’(z)+a^{2}F(z)

= \frac{1}{p^{2}}[F(z+2p)-2(1+ap)F(z+p)+(1+ap)^{2}F(z)] , (5. 4)

substituting (5. 1) into the right-hand side of (5. 4), we have (D_{z}-a)^{2}F(z)=0 .

Therefore, \frac{d}{da}e_{p}^{a,z} is a solution of (5. 3). Furthermore, by the straight-

forward calculation, we get

F’(z)=(1+ap)^{j-1}(1+iap)^{k-1}[1+(z+p+ip)a+i(j+k+1)a^{2}p^{2}]1

It is easy to verify that M_{p}F’(z)=0 , i . e. , F’(z)\in M_{p}(D) and (D_{z}-a)^{m}F(z)=

(D_{z}-a)^{m-2}(D_{z}-a)^{2}F(z)=0 for m\geqq 2 .

PROPOSITION 7. Let H(z)= \frac{d^{2}}{da^{2}}e_{p}^{a,z} for z=(j+ik)p. Then we have

(a) H(z)=(1+ap)^{j-2}(1+iap)^{k-z}

\{z^{2}+(k-j)p^{2}+2iz(j+k-1)ap^{2}-(j+k)(j+k-1)a^{2}p^{4}\} , (5. 5)

(b) H(z)\in M_{p}(D) , (5. b.)

(c) (D_{z}-a)^{s}H(z)=0 , (5. 7)

(d) (D_{z}-a)^{m}H(z)=0 for m\geqq 3 . (5. 8)

PROOF. For fix z, we differentiate \frac{d}{da}e_{p}^{a,z} with respect to a directly,

the conclusion of (a) follows. Now we shall prove (b). Rewriting M_{p}H(z)=

(i-1)H(z)+H(z+ip)-iH(z+p) into the form M_{p}H(z)=(1+ap)^{j-2}(1+iap)^{k-2}

[A+Ba+Ca^{2}+Da^{3}] where the branket [ ] is the form of the polynomial
in a and A, B, C and D are constants, then we obtain A=0, B=0, C=0 and
D=0, and (D_{z}-a)^{3}H(z)=H(z+3p)-3(1+ap)H(z+2p)+3(1+ap)^{2}H(z+p)-

(1+ap)^{3}H(z) .
To prove (c), we rewrite (D_{z}-a)^{3}H(z) into the form (D_{z}-a)^{3}H(z)=(1+

ap)^{j+1}(1+iap)^{k-2}[Ez^{2}+Fz+G] , then E=0, F=0 and G=0. The proof of (d)

is obvious. This completes the proof, p monodiffric homogeneous difference
equation of the n’th order is of the form (D_{z}-a)^{n}f(z)=0 or
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\sum_{k=1}^{n} (-1)^{k}C_{k}^{n}(1+ap)^{k}f(z+(n-k)p)=0j (5. 9)

where C_{k}^{n}= \frac{n!}{(n-k)!k!} .
From the results of Proposition 6 and 7, we have the general solutions

of (5. 9) for n=2 and n=3 respectively as follows:
PROPOSITION 8.

(a) p monodiffric homogeneous difference equation of the second order

\sum_{k=0}^{2}(-1)^{k}C_{k}^{2}f(z+(2-k)p)(1+ap)^{k}=0

has p monodiffric general solution of the form
f(z)=c_{0}e_{p}^{a,z}+c_{1} \frac{d}{da}e_{p}^{a,z} .

(b) p monodiffric homogeneous difference equation of the third order

\sum_{k=0}^{3}(-1)^{k}C_{k}^{3}f(z+(3-k)p)(1+ap)^{k}=0

has p monodiffric general solution of the form
f(z)=c_{0}e_{p}^{a,z}+c_{1} \frac{d}{da}e_{p}^{a,z}+c_{2}\frac{d^{2}}{da^{2}}e_{p}^{a,z}’ ,

where the coefficients c_{i}(i=0,1,2) are arbitrary constants.

With the observation of the above Proposition 8, we have the following
more general result.

d^{n}

PROPOSITION 9. \overline{da^{n}}e_{p}^{a,z}\in M_{p}(D) (5. 10)

PROOF. Let E(a, z)=e_{p}^{a,z}, E_{a}^{(n)}(a, z)= \frac{d^{n}}{da^{n}}e_{p}^{a,z} for n\in N.
From Proposition 6 and 7, (5. 10) is true for n=1 and n=2. Suppose

it holds for n=k, then M_{p}E_{a}^{(k)}(a, z)=0 , so that

(i-1)E_{a}^{(k)}(a, z)+E_{a}^{(k)}(a, z+ip)-iE_{a}^{(k)}(a, z+p)=0 ,

(i-1)E_{a}^{(k)}(a+h, z)+E_{a}^{(k)}(a+h, z+ip)-iE_{a}^{(k)}(a+h, z+p)=0t

Substracting the first from the second of above equalities and dividing
by h, we have

(i-1) \frac{E_{a}^{(k)}(a+h,z)-E_{a}^{(k)}(a,z)}{h}+\frac{E_{a}^{(k)}(a+h,z+ip)-E_{a}^{(k)}(a,z+ip)}{h}

-i \frac{E_{a}^{(k)}(a+h,z+p)-E_{a}^{(k)}(a,z+p)}{h}=0
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Tending h to 0, we get

(i-1)E_{a}^{(k+1)}(a, z)+E_{a}^{(k+1)}(a, z+ip)-iE_{a}^{(k\dagger 1)}(a, z+p)=0\downarrow

Thus, M_{p}E_{a}^{(k+1)}(a, z)=0 for fixed z\in D.

PROPOSITION 10. (D_{z}-a)^{n} \frac{d^{n-1}}{da^{n-1}}e_{p}^{a.z}=0 for n=1,2,3, \cdots

PROOF. It is true for n=1 . Suppose it is true for n=k, i . e .

\{D_{l}-a)^{k}\frac{d^{k-1}}{da^{k-1}}e_{p}^{a.z}=0

Fixing z and diff\’erentiating with respect to a, we have

(D_{z}-a)^{k} \frac{d^{k}}{da^{k}}e_{p}^{a,p}-k(D_{z}-a)^{k-1}\frac{d^{k-1}}{da^{k-1}}e_{p}^{a,z}=01

Applying D_{l}-a , we have

(D_{z}-a)^{k+1} \frac{d^{k}}{da^{k}}e_{p}^{a,z}=k(D_{z}-a)^{k}\frac{d^{k-1}}{da^{k-1}}e_{p}^{a,z}=0 .

By induction, the proof is complete. In summary of the above develop-
ments we have

THEOREM 4. p monodiffric homogeneous difference equation of the

n’th order \sum_{k=0}^{n} (-1)^{k}C_{k}^{n}(1+ap)^{k}f(z+(n-k)p)=0 has p monodiffric general
n-1 d^{k}

solution f(z)= \sum_{k=0}c_{k}e_{p}^{a,z}\overline{da^{k}}, where the coefficients c_{k}(k=0,1, \cdots, n-1) are

arbitrary constants.

THEOREM 5. The general solution to the homogeneous p monodiffric
difference equation of the n’th order

F^{(n)}(z)+c_{n-1}F^{(n-1)}(z)+\cdots+c_{1}F’(z)+c_{0}F(z)=0

is F(z)= \sum_{k=1}^{p}\sum_{j=0}^{m_{k^{-1}}}B_{k,f}\frac{d^{j}}{da_{k}^{j}}e_{p}^{a_{k},z} ,

where a_{1} , a_{2}, \cdots , a_{p} with multiplicities m_{1} , m_{2}, \cdots , m_{p} respectively are the roots

of a^{n}+c_{n-1}a^{n-1}+\cdots+c_{1}a+c_{0}=0 and the coefficients B_{k,f} are arbitrary con-
stants.
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