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Indefinite Einstein hypersurfaces with

nilpotent shape operators

By Martin A. MAGID
(Received August 30, 1983)

§ 1. Introduction

In [4], A. Fialkow classified Einstein hypersurfaces in indefinite space
forms if the shape operator is diagonalizable. In [7], it was shown that if the
shape operator A is not diagonalizable at each point then there are two
possibilities : either A?=0 or A?= —#?I, where b is a non-zero constant. In
this paper those Einstein hypersurfaces with A?=0 and rank A maximal are
classified. The main results are the following.

2.2 THEOREM. If f: M>™—>N¥%1(c) {s an isometric immersion of M
into a space form of constant curvature ¢ with A*=0 and rank A=n, then
the kernel of A is an integrable, totally isotropic and parallel n-dimensional
distribution on M. (Here M has signature (n,n). This is a consequence of
the conditions on A.)

2.3 COROLLARY. If f is as above and n>1, then c¢=0.

In [Theorem 4.2, isometric immersions f: MZ—R**"! with A’=0 and
rank A=n are classified locally.

The Einstein hypersurfaces classified in [Theorem 4.2 provide a large
family of examples of manifolds which have been studied extensively. A. G.
Walker [10, 11, 12] and others (see [13], p. 278 for other references) investi-
gated manifolds with paralle] fields of planes. R. Rosca and others ([9], [1],
[3]) study manifolds with spin-euclidean connections. In this case the spinor
fields can be covariantly differentiated.

If £: M~N*(c) is an isometric immersion with A*=0 and rank A=1,
then M also has constant sectional curvature c¢. L. Graves classifies
such £ if ¢c=0 and M is complete. In [6], Graves and Nomizu show that
for n>4 there are no umbilic-free isometric imbeddings from S7*(1) into

Sr(D).
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§ 2. Kernel of A is parallel

Let A be a symmetric operator in a vector space V with a non-degenerate
inner product ( , ), so that (Au, v)=(u, Av) Vu, veV. If A?=0, we can find
a basis of V, {L,, L, ---, L., Ly, E, -, E,}, with respect to which
- O 1 -~
0 0

0J.

Here L; L; are lightlike, (L, L;)=—6, (Ey, E)==+0y and all other inner
products are 0. If the ratio of the rank of A to the dimension of V is to
be as large as possible, then p=0, giving a basis {L,, L, -+, L,, L,} with
AL,=0 and AL,=L, In this case V is even dimensional and has signature
(n, n) [7].

If f: M™»—Nm*1is a non-degenerate isometric immersion and & is a unit
normal vector field on M, then the shape operator A of f is defined by

VXSZ _AX’

where 7 is the indefinite Riemannian connection on N. A : TM—TM and is
symmetric on each 7, M, with respect to the metric on T, M.

2.1 LemMma. If f: M N?™*1(c) is an isometric immersion with A*=0
and rank A=n, then there are vector fields L,,---, L, defined in a neigh-
borhood of any point of M such that (L;, £;)=0=(AL;, AL)) and (AL, L;)=
—0ij.

Proor. Because A is symmetric and A?=0, (AX, AY)=(A%X, Y)=0
holds for all tangent vectors X, Y.

Choose x& M. It was noted above that in T, M there are vectors (L,),,
+++,(Ly)s such that (L; L;),=0, (AL;),+#0 and (AL;, L;)y=—0j, 1, j=1, -+, n.
Extend the (L;), smoothly in a neighborhood of x so that (L; L;)=0. This
can be done by extending the appropriate orthonormal frame fields. By con-
tinuity, AL;#0 in some, possibly smaller, neighborhood.
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Consider the smooth #n-dimensional distribution on this neighborhood
given by span {L,, -, L,}. We can define an auxiliary negative definite inner
product h on this distribution by

h(Li, L)) =(AL; Ly) .

h is symmetric, bilinear and negative definite near x. Applying the Gram-
Schmidt process to {Ly, -+, L.} gives {L,, ---, L,} such that

h(Ei) EJ) = —0ij -
These are the desired vector fields. Q. E.D.

2.2 THEOREM. If f: M*—N®*1(c) is an isometric immersion of M
into a space form of constant curvature ¢ with A*=0 and rank A=n, then
the kernel of A is an integrable, totally isotropic and parallel n-dimensional
distribution on M.

Proor. In [7], it was proved that kernel A is integrable, totally geodesic
and totally isotropic (namely, totally degenerate). A totally geodesic distribu-
tion .S is one where

FYES, if X, YeS.
To prove that kernel A is parallel we must show that
FoXcker A if XckerA and UeTM
or, equivalently, that
APy X)=0 if AX=0.

In order to do this, let x& M and choose vector fields in a neighborhood
of r, {L, -+, L,, AL, ---, AL,}, as in the lemma.
Consider Codazzi’s equation with L; and L; 1<1, j<n:

Vi (AL)— AWy L) =V, (AL)— AWy, L) .
Taking the inner product of both sides of this equation with AL; gives

(VL,; ALj’ ALk) = (VLj ALia ALk) ( T)
since A2=0. Denoting AL; by Ly, j=1, -+, n, and defining I'Z;, the Chris-
toffel symbols, as usual, we have

Vi Ly=3 I L+T% Ly .

k=1

(f) becomes

Iy, =r%., 1<i,j, k<n. - (1)
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Because the connection in M is metric, L,(AL;, AL)=0=(F, AL; AL,)
+(AL]', VLi ALk>, SO that
I, +ri, =0, 1<yq, 5, k<n. (2)
Combining (1) and (2), we see that I'};,=0 for all 1<y, j, k<n. In fact,

Il =T% = —Ti= Tl =Ty =Th = —T%,.
me o oo e

The fact that the kernel of A is totally geodesic gives I'%,,=0. Thus
x#»=0 for B=1,---,n, 1',---, 7, 1<j, k<n. This means the kernel of A
is parallel. Q.E.D.

2.3 CorROLLARY. Let n>1. If f: M?—N™+t\(c) is an isometric immer-
sion of M;" into a space form of constant curvature ¢ with A*=0 and
rank A=n, then c¢=0.

~ Proor. The Gauss equation of this isometric immersion is
R(X,Y) Z=c(XN\Y) Z+( &) (AXNAY) Z,

where R is the curvature tensor of M, X,Y,Z&T, M, and & is a unit
normal field. Let Z be a vector field in ker A. Expanding the Gauss equa-
tion, we have

VaVyZ—VyVxZ—Vign Z .
=c((Y, 2) X~ (X, Z) Y)+ ((AY, 2) AX—(AX, Z) AY).
Since AZ=0, this becomes
Vel yZ—=VsVxZ—VinZ=c((Y, Z) X—(X, 2) Y).

By [Theorem 2,2 the left-hand side of this equation is in ker A. Given
dim M>2, we can choose X and Y linearly independent with (X, Z)=0,
(Y,Z)=1, and X not in ker A. Then the right-hand side is ¢X, which is
in ker A iff c=0. Q.E.D.

- L. Graves and K. Nomizu give an example of a Lorentz surface
M} isometrically immersed in S} with A satisfying A?2=0 and rank A=1, so
the restriction on n cannot be removed.

§ 3. Examples

Before proceeding to the proofs of Theorems 4. 1 and 4, 2, let us examine
a few examples of Einstein hypersurfaces M?* with A?2=0 and rank A=n.

3.1 ExaMPLE. B-scroll over a null curve in R? [5].
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R is Lorentz 3-space, with signature (—, +, +). Consider a null curve
z(s) in R%, so that (#(s), 2(s))=0. A null curve with a frame {A(s), B(s),
C(s)} is called a Cartan-framed null curve if the following conditions hold.
A(s), B(s) are null ; (C(s), C(s))=1; (A(s), B(s))=—1 all other inner products
are zero along z(s); and the Frenet equations of the derivatives of A(s), B(s),
C(s) along z(s) have the form:

50 a0,

425 _ s ),

dfjf) = ky(s) C(s),

dSES) = ky(s) A(s)+ky(s) B(s),

The surface f(u,s)=x(s)4+uB(s) is called a B-scroll over the null curve x(s).
It is Lorentz and is flat iff ks(s)=0. In this case,

A— [0 —kz(s.)].
0 0

with respect to {9/du, 9/ds}, where the unit normal &(u,s)=C(s). (FA)=0 iff
ky(s) is constant. If k=1, the surface is given by

oty (o +i7 wr —v7 2) e Ve o)

Graves calls this the B-scroll over the null cubic.

3.2. ExampLE. Sum of B-scrolls.

For j=1,---,n, let (u;, s,)€1;x J,C Rx R and suppose f;(u;, s;)=(a;(uj sy),
b(uys;), c;(uy s;) are n flat B-scrolls in R} which, when written as x;(s;) +
u; B; satisfy the following initial conditions :

PP R S S RO € B oY)

and C;(0)=(0, 0, 1).
We can define a parametrized hypersurface in R**! by

f(ul’ Sy vy Upy Sn)
— <a1<ul’ Sl)a T an(un; Sn)’ bl(ul, Sl)’

"ty bn (um Sn>’ G (ul, Sl) + te +Cn (una sn)> ’
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where R¥*1 has signature (n,n+1). This hypersurface has

(0 —& )
0 O

0 —k&,
L 0 O

If each k;(s;) is constant, then FA=0.
If rank A is constant but not equal to 7, ker A may not be parallel.

J e

3.3 ExaMPLE. A 4-dimensional scroll with A?=0, rank A constant and
ker A not parallel.

According to W. Bonner [2], for every smooth k(s), there is a null curve
z(s) in R} with frame {X(s), Y(s), Z(s), C(s)} such that (X(s), Y(s))=-—1, X

and Y are null, Z and C are unit spacelike and whose derivatives are

o = X0,
]
20—y 219,
A2 — k9 x09,
dgﬁs) = +Y(s).

Let x(s) be considered as a null curve in R} by looking at (x(s), 0) with
frame {(X(s), 0), ---,(C(s), 0), W(s)}, where W(s)=W=(0, 0,0, 0, 1).

The Lorentz 4-surface parametrized by f(u, s, ¢, v)=x(s)+uY(s)+tZ(s)+
vW(s) has, with &(u, s, ¢, v)=(C(s), 0), shape operator

r0 -1 7
0 0

L 0.
with respect to {d/du, 9/ds, d/ot, d/ov}. It is easy to see that the kernel of
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A, spanned by Y(s), Z(s), W(s), is not parallel. In fact, V250/0t = k(s) X(s)
is not in ker A. Thus, if the rank of A is not maximal, then the kernel of
A need not be parallel,

§4. Local Characterization of M2 isometrically immersed
in R with A’)=0 and rank A=n

4.1 THEOREM. Let f: M*— R+ be an isometric immersion with rank
A=n. Then kernel A is an integrable, totally isotropic, parallel distribu-
tion on MZ™ iff A*=0.

Proor. If A2=0, the conclusion was obtained in the proof of
2.2.

Assume then that ker A is integrable, parallel and totally isotropic. By
a motion of R™! we can assume that ker A is spanned by B;=(e;, ¢;,0),
i=1,.--,n, where e, -, e, is the standard basis of R". If (z;, -*, Zsm) is a
local coordinate system for M?", then the normal unit vector field § must
have the following form because it is perpendicular to ker A.

& = (&(@), -+ €@, 61(D), - €a(@), 1) -
Then,

Da/axjf = Da/axj(ilgi(i) Bz+(0, 07 ) 0! 1))

which is in ker A. Thus, — A (Dys,8) = 0= A*3/oz,). Q.E.D.

4.2 THEOREM. f: MZ—R¥*1 {5 an isometric immersion with A*=0
and rank A=n iff, around each xE M, there is a coordinate system (t1y *+*y Lns
Uy, -+, Uy) sSuch that f has the following form:

F,8) = (6@ -+ 0@, D+t -+ Gal®) +ta G@)+ S5 By

Here i=(t,, -+, t,), Z=(tty, -+, Un), By, 1<i<n are as in the proof of Theorem
4.1, gy, -+, g, G: UCR*—R are smooth and det [0*G/dt;0t;] +0.

ReEMARK. Locally, then, each such M?" is an n-plahed hypersurface.

PROOF. Assume we are given such an isometric immersion. The kerngl
of A is integrable. Thus, given any z, in M, we can find a local coordinate
system (s, ==, Sp» Uy, ***» Vn) around z, so that ker A is given by s;=¢;, -,
s,=Cn, Where the ¢;’s are constants.

We also can assume, as in [Theorem 4.1, that, by a motion of R},
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(ker A)sry is spanned by B, -+, B,. Define g(s)=f(s,0). It is clear then that
M;" can be locally parametrized near ¢(3), with a change of coordinates, by

16,0 =9+ 5 s B,.
The unit normal &(s,%) is of the form

66 1) = (66 -+ &), 646), - £, 1)

In order for f to have the required properties, several conditions must
be satisfied. '

i) Rank A=n iff {0§/ds,, -+, 0¢/0s,} is linearly independent.
i) M;* inherits a non-degenerate metric iff det [(dg/ds; B,)]+0.
iii) & is normal iff (dg/ds;, &) =0 i=1, ---, n.

If g(g):(g1<§)9 B g2n+1(§>)’ let h@(g) — gn+z(§)—gz(§) Z: 1, e, M. COIlditiOIl
il can be rewritten as

i) det [9hy/ds;] £ 0,

while iii becomes
i) 33 60hi35) +30ma (35, =0  j=1,-,m.

Finally, in order to insure that A, is symmetric and that the mixed partials
of @41 be equal, we need

iv) kz:(as,c/asi) (9hefds,) = él(ask/as,-) (9hs/0s,) .

By ii’, we can change coordinates from (s, ---, S,, %y, -+, u,) to (hy, -+, by,
U, +++, u,) which we rename (¢, -+, t,, uy, -+, u,). With this new coordinate
system, ii’ is automatically fulfilled, while iii’ becomes

i) &5+ 3ans(B/0t; =0,
and iv becomes
V') 0&;/ot; = o¢;/ot; i, j=1,-n.
Summarizing, we see that affer the changes of coordinates, we must have

i) {0g/aty, -+, 0&/0t,} linearly independent ;
i) &5 = —09an1(?)/0¢; ; and
iV,) afj/ati == a&/atj .

" 'Given the immersion f, let G(£)}=¢;,41(¢) which is smooth. Then.by iii”’,
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g,= —0G/ot;, and we have o¢,/ot;= —3°G/dt;0t ;= —*G/dt;0t;=0&;/dt; so that
iv' is satisfied. The only condition we must impose on G() is det [0*G/d¢;0t,]
+0, so that i holds. Thus, given any such f, we have transformed it into
the desired form. It is easy to check that any f in this form has A?=0
and rank A=n. Q.E.D.

We show that sums of B-scrolls in 3.2 Example do not, even locally,
exhaust M as in 4.2 Theorem.

T,(M?) can be given the structure of a commutative algebra using the

covariant derivative of A.
X‘ Y: - Vx(AY) —A(VxY)

For any 4-dimensional sum of two B-scrolls with FA+0 we can find a
basis {e, e, uy, #s) of T, with the following products.

ejre;=u; and e;ee;=u; while all others are zero. (If FA=0, X-Y=0
everywhere.)

Use the classification theorem to define an M3 in R} by setting ¢;=0=g¢,
and G(ty, to) =t+t%ty+t,+t,. Then there is a basis {f,fs v, va} of ToM
so that the non-zero products are

ﬁ'ﬂ =2v,,
Joofo = —6v;,
ﬂ‘ﬁ = 27)1 .

These two 4-dimensional algebras are not isomorphic. Thus, the second
hypersurface is not a sum of B-scrolls.
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