Indefinite Einstein hypersurfaces with nilpotent shape operators

By Martin A. MAGID (Received August 30, 1983)

§ 1. Introduction

In [4], A. Fialkow classified Einstein hypersurfaces in indefinite space forms if the shape operator is diagonalizable. In [7], it was shown that if the shape operator A is not diagonalizable at each point then there are two possibilities: either $A^2=0$ or $A^2=-b^2I$, where b is a non-zero constant. In this paper those Einstein hypersurfaces with $A^2=0$ and rank A maximal are classified. The main results are the following.

- 2. 2 THEOREM. If $f: M_n^{2n} \to N^{2n+1}(c)$ is an isometric immersion of M_n^{2n} into a space form of constant curvature c with $A^2=0$ and rank A=n, then the kernel of A is an integrable, totally isotropic and parallel n-dimensional distribution on M. (Here M has signature (n, n). This is a consequence of the conditions on A.)
 - 2. 3 COROLLARY. If f is as above and n>1, then c=0.

In Theorem 4.2, isometric immersions $f: M_n^{2n} \to \mathbb{R}^{2n+1}$ with $A^2 = 0$ and rank A = n are classified locally.

The Einstein hypersurfaces classified in Theorem 4.2 provide a large family of examples of manifolds which have been studied extensively. A. G. Walker [10, 11, 12] and others (see [13], p. 278 for other references) investigated manifolds with parallel fields of planes. R. Rosca and others ([9], [1], [3]) study manifolds with spin-euclidean connections. In this case the spinor fields can be covariantly differentiated.

If $f: M_1^n \to N_1^{n+1}(c)$ is an isometric immersion with $A^2 = 0$ and rank A = 1, then M_1^n also has constant sectional curvature c. L. Graves [5] classifies such f if c = 0 and M is complete. In [6], Graves and Nomizu show that for $n \ge 4$ there are no umbilic-free isometric imbeddings from $S_1^n(1)$ into $S_1^{n+1}(1)$.

$\S 2$. Kernel of A is parallel

Let A be a symmetric operator in a vector space V with a non-degenerate inner product (,), so that $(Au, v) = (u, Av) \forall u, v \in V$. If $A^2 = 0$, we can find a basis of V, $\{\hat{L}_1, L_1, \dots, \hat{L}_n, L_n, E_1, \dots, E_p\}$, with respect to which

Here L_i , \hat{L}_j are lightlike, $(L_i, \hat{L}_j) = -\delta_{ij}$, $(E_k, E_l) = \pm \delta_{kl}$ and all other inner products are 0. If the ratio of the rank of A to the dimension of V is to be as large as possible, then p=0, giving a basis $\{\hat{L}_1, L_1, \dots, \hat{L}_n, L_n\}$ with $A\hat{L}_i=0$ and $AL_i=\hat{L}_i$. In this case V is even dimensional and has signature (n,n) [7].

If $f: M^m \to N^{m+1}$ is a non-degenerate isometric immersion and ξ is a unit normal vector field on M, then the shape operator A of f is defined by

$$\tilde{\mathcal{V}}_{X}\xi = -AX$$
,

where \tilde{V} is the indefinite Riemannian connection on N. $A: TM \to TM$ and is symmetric on each T_xM , with respect to the metric on T_xM .

2.1 Lemma. If $f: M_n^{2n} \to N^{2n+1}(c)$ is an isometric immersion with $A^2 = 0$ and rank A = n, then there are vector fields $\tilde{L}_1, \dots, \tilde{L}_n$ defined in a neighborhood of any point of M such that $(\tilde{L}_i, \tilde{L}_j) = 0 = (A\tilde{L}_i, A\tilde{L}_j)$ and $(A\tilde{L}_i, \tilde{L}_j) = -\delta_{ij}$.

PROOF. Because A is symmetric and $A^2=0$, $(AX, AY)=(A^2X, Y)=0$ holds for all tangent vectors X, Y.

Choose $x \in M$. It was noted above that in $T_x M$ there are vectors $(L_1)_x$, \cdots , $(L_n)_x$ such that $(L_i, L_j)_x = 0$, $(AL_i)_x \neq 0$ and $(AL_i, L_j)_x = -\delta_{ij}$, $i, j = 1, \dots, n$. Extend the $(L_i)_x$ smoothly in a neighborhood of x so that $(L_i, L_j) = 0$. This can be done by extending the appropriate orthonormal frame fields. By continuity, $AL_i \neq 0$ in some, possibly smaller, neighborhood.

į

Consider the smooth *n*-dimensional distribution on this neighborhood given by span $\{L_1, \dots, L_n\}$. We can define an auxiliary negative definite inner product h on this distribution by

$$h(L_i, L_j) = (AL_i, L_j)$$
.

h is symmetric, bilinear and negative definite near x. Applying the Gram-Schmidt process to $\{L_1, \dots, L_n\}$ gives $\{\tilde{L}_1, \dots, \tilde{L}_n\}$ such that

$$h(\tilde{L}_i, \tilde{L}_j) = -\delta_{ij}$$
.

These are the desired vector fields. Q. E. D.

2. 2 THEOREM. If $f: M_n^{2n} \to N^{2n+1}(c)$ is an isometric immersion of M_n^{2n} into a space form of constant curvature c with $A^2=0$ and rank A=n, then the kernel of A is an integrable, totally isotropic and parallel n-dimensional distribution on M.

PROOF. In [7], it was proved that kernel A is integrable, totally geodesic and totally isotropic (namely, totally degenerate). A totally geodesic distribution S is one where

$$\nabla_X Y \in S$$
, if $X, Y \in S$.

To prove that kernel A is parallel we must show that

$$\nabla_U X \in \ker A$$
 if $X \in \ker A$ and $U \in TM$

or, equivalently, that

$$A(\nabla_U X) = 0$$
 if $AX = 0$.

In order to do this, let $x \in M$ and choose vector fields in a neighborhood of x, $\{L_1, \dots, L_n, AL_1, \dots, AL_n\}$, as in the lemma.

Consider Codazzi's equation with L_i and L_j , $1 \le i$, $j \le n$:

$$V_{L_i}(AL_j) - A(V_{L_i}L_j) = V_{L_j}(AL_i) - A(V_{L_j}L_i)$$
.

Taking the inner product of both sides of this equation with AL_k gives

$$(\nabla_{L_i} A L_j, A L_k) = (\nabla_{L_i} A L_i, A L_k) \tag{\dagger}$$

since $A^2=0$. Denoting AL_j by $L_{j'}$, $j=1, \dots, n$, and defining Γ_{BC}^D , the Christoffel symbols, as usual, we have

$$abla_{L_i} L_{j'} = \sum\limits_{k=1}^n \Gamma_{ij}^k, L_k + \Gamma_{ij}^{k'}, L_{k'}.$$

(†) becomes

$$\Gamma^k_{ij'} = \Gamma^k_{ji'}, \qquad 1 \leqslant i, j, k \leqslant n.$$
 (1)

Because the connection in M is metric, $L_i(AL_j, AL_k) = 0 = (V_{L_i}AL_j, AL_k) + (AL_j, V_{L_i}AL_k)$, so that

$$\Gamma^k_{ij'} + \Gamma^j_{ik'} = 0$$
, $1 \leqslant i, j, k \leqslant n$. (2)

Combining (1) and (2), we see that $\Gamma_{ij}^{k}=0$ for all $1 \leq i$, j, $k \leq n$. In fact,

$$\Gamma^{k}_{ij'} = \Gamma^{k}_{ji'} = -\Gamma^{i}_{jk'} = -\Gamma^{i}_{kj'} = \Gamma^{j}_{ki'} = \Gamma^{j}_{ik'} = -\Gamma^{k}_{ij'}.$$
(1) (2) (1) (2)

The fact that the kernel of A is totally geodesic gives $\Gamma_{i'j'}^k=0$. Thus $\Gamma_{Bj'}^k=0$ for $B=1, \dots, n, 1', \dots, n', 1 \le j, k \le n$. This means the kernel of A is parallel. Q. E. D.

2. 3 COROLLARY. Let n>1. If $f: M_n^{2n} \to N^{2n+1}(c)$ is an isometric immersion of M_n^{2n} into a space form of constant curvature c with $A^2=0$ and rank A=n, then c=0.

Proof. The Gauss equation of this isometric immersion is

$$R(X, Y) Z = c(X \wedge Y) Z + (\xi, \xi) (AX \wedge AY) Z$$

where R is the curvature tensor of M, X, Y, $Z \in T_x M$, and ξ is a unit normal field. Let Z be a vector field in ker A. Expanding the Gauss equation, we have

$$\begin{split} & \boldsymbol{\mathcal{V}_{X}}\boldsymbol{\mathcal{V}_{Y}}Z - \boldsymbol{\mathcal{V}_{Y}}\boldsymbol{\mathcal{V}_{X}}Z - \boldsymbol{\mathcal{V}_{(X,Y)}}Z \\ & = c\Big((Y,Z)\;X - (X,Z)\;Y\Big) \pm \Big((AY,Z)\;AX - (AX,Z)\;AY\Big)\;. \end{split}$$

Since AZ=0, this becomes

$$\nabla_{X}\nabla_{Y}Z - \nabla_{Y}\nabla_{X}Z - \nabla_{[X,Y]}Z = c((Y,Z)X - (X,Z)Y).$$

By Theorem 2.2 the left-hand side of this equation is in ker A. Given dim M>2, we can choose X and Y linearly independent with (X, Z)=0, (Y, Z)=1, and X not in ker A. Then the right-hand side is cX, which is in ker A iff c=0. Q. E. D.

L. Graves and K. Nomizu [6] give an example of a Lorentz surface M_1^2 isometrically immersed in S_1^3 with A satisfying $A^2=0$ and rank A=1, so the restriction on n cannot be removed.

§ 3. Examples

Before proceeding to the proofs of Theorems 4.1 and 4.2, let us examine a few examples of Einstein hypersurfaces M_n^{2n} with $A^2=0$ and rank A=n.

3.1 Example. B-scroll over a null curve in R_1^3 [5].

 R_1^3 is Lorentz 3-space, with signature (-, +, +). Consider a null curve x(s) in R_1^3 , so that $(\dot{x}(s), \dot{x}(s)) = 0$. A null curve with a frame $\{A(s), B(s), C(s)\}$ is called a Cartan-framed null curve if the following conditions hold. A(s), B(s) are null; (C(s), C(s)) = 1; (A(s), B(s)) = -1; all other inner products are zero along x(s); and the Frenet equations of the derivatives of A(s), B(s), C(s) along x(s) have the form:

$$\frac{dx(s)}{ds} = A(s),$$

$$\frac{dA(s)}{ds} = k_2(s) C(s),$$

$$\frac{dB(s)}{ds} = k_3(s) C(s),$$

$$\frac{dC(s)}{ds} = k_3(s) A(s) + k_2(s) B(s),$$

The surface f(u, s) = x(s) + uB(s) is called a B-scroll over the null curve x(s). It is Lorentz and is flat iff $k_3(s) = 0$. In this case,

$$A = \begin{bmatrix} 0 & -k_2(s) \\ 0 & 0 \end{bmatrix}$$

with respect to $\{\partial/\partial u, \partial/\partial s\}$, where the unit normal $\xi(u, s) = C(s)$. $(\overline{V}A) = 0$ iff $k_2(s)$ is constant. If $k_2 \equiv 1$, the surface is given by

$$x(s) + uB(s) = \left(\frac{s^3}{6\sqrt{2}} + \frac{s}{\sqrt{2}}, \frac{s^3}{6\sqrt{2}} - \frac{s}{\sqrt{2}}, \frac{s^2}{2}\right) + u\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right).$$

Graves calls this the B-scroll over the null cubic.

3. 2. Example. Sum of B-scrolls.

For $j=1, \dots, n$, let $(u_j, s_j) \in I_j \times J_j \subset \mathbf{R} \times \mathbf{R}$ and suppose $f_j(u_j, s_j) = (a_j(u_j, s_j), b_j(u_j, s_j), c_j(u_j, s_j))$ are n flat B-scrolls in \mathbf{R}_1^3 which, when written as $x_j(s_j) + u_j B_j$ satisfy the following initial conditions:

$$x_j(0) = 0$$
, $\dot{x}_j(0) = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$, $B_j = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$

and $C_i(0) = (0, 0, 1)$.

We can define a parametrized hypersurface in R_n^{2n+1} by

$$f(u_1, s_1, \dots, u_n, s_n)$$

$$= (a_1(u_1, s_1), \dots, a_n(u_n, s_n), b_1(u_1, s_1),$$

$$\dots, b_n(u_n, s_n), c_1(u_1, s_1) + \dots + c_n(u_n, s_n)),$$

where R_n^{2n+1} has signature (n, n+1). This hypersurface has

$$A = \begin{bmatrix} 0 & -k_1 & & & & \\ 0 & 0 & & & & \\ & & \ddots & & & \\ & & & 0 & -k_n \\ & & & 0 & 0 \end{bmatrix}.$$

If each $k_i(s_i)$ is constant, then $\nabla A = 0$.

If rank A is constant but not equal to n, ker A may not be parallel.

3. 3 Example. A 4-dimensional scroll with $A^2=0$, rank A constant and ker A not parallel.

According to W. Bonner [2], for every smooth k(s), there is a null curve x(s) in \mathbb{R}^4 with frame $\{X(s), Y(s), Z(s), C(s)\}$ such that (X(s), Y(s)) = -1, X(s) = -1, and Y(s) = -1 are null, Z(s) = -1 and Y(s) = -1 are unit spacelike and whose derivatives are

$$\frac{dx(s)}{ds} = X(s),$$

$$\frac{dX(s)}{ds} = C(s),$$

$$\frac{dY(s)}{ds} = k(s) Z(s),$$

$$\frac{dZ(s)}{ds} = k(s) X(s),$$

$$\frac{dC(s)}{ds} = + Y(s).$$

Let x(s) be considered as a null curve in \mathbb{R}_1^5 by looking at (x(s), 0) with frame $\{(X(s), 0), \dots, (C(s), 0), W(s)\}$, where $W(s) = W \equiv (0, 0, 0, 0, 1)$.

The Lorentz 4-surface parametrized by f(u, s, t, v) = x(s) + uY(s) + tZ(s) + vW(s) has, with $\xi(u, s, t, v) = (C(s), 0)$, shape operator

$$A = \begin{bmatrix} 0 & -1 & & \\ 0 & 0 & & \\ & & 0 & \\ & & & 0 \end{bmatrix}$$

with respect to $\{\partial/\partial u, \partial/\partial s, \partial/\partial t, \partial/\partial v\}$. It is easy to see that the kernel of

A, spanned by Y(s), Z(s), W(s), is not parallel. In fact, $\nabla_{\partial/\partial s} \partial/\partial t = k(s) X(s)$ is not in ker A. Thus, if the rank of A is not maximal, then the kernel of A need not be parallel.

§ 4. Local Characterization of M_n^{2n} isometrically immersed in R_n^{2n+1} with $A^2=0$ and rank A=n

4.1 THEOREM. Let $f: M_n^{2n} \to \mathbb{R}_n^{2n+1}$ be an isometric immersion with rank A=n. Then kernel A is an integrable, totally isotropic, parallel distribution on M_n^{2n} iff $A^2=0$.

PROOF. If $A^2=0$, the conclusion was obtained in the proof of Theorem 2.2.

Assume then that ker A is integrable, parallel and totally isotropic. By a motion of \mathbb{R}_n^{2n+1} we can assume that ker A is spanned by $B_i = (e_i, e_i, 0)$, $i=1, \dots, n$, where e_1, \dots, e_n is the standard basis of \mathbb{R}^n . If (x_1, \dots, x_{2n}) is a local coordinate system for M_n^{2n} , then the normal unit vector field ξ must have the following form because it is perpendicular to ker A.

$$\xi_{f(\vec{x})} = \left(\xi_1(\vec{x}), \cdots, \xi_n(\vec{x}), \xi_1(\vec{x}), \cdots, \xi_n(\vec{x}), 1\right).$$

Then,

$$D_{ extstyle \partial A_j} \xi = D_{ extstyle \partial A_j} \Big(\sum_{i=1}^n \xi_i(\vec{x}) \; B_i + (0, 0, \, \cdots, \, 0, \, 1) \Big)$$

which is in ker A. Thus, $-A(D_{\partial/\partial x_j}\xi)=0=A^2(\partial/\partial x_j)$. Q. E. D.

4. 2 THEOREM. $f: M_n^{2n} \to \mathbb{R}_n^{2n+1}$ is an isometric immersion with $A^2 = 0$ and rank A = n iff, around each $x \in M$, there is a coordinate system $(t_1, \dots, t_n, u_1, \dots, u_n)$ such that f has the following form:

$$f(\vec{t},\vec{u}) = (g_1(\vec{t}), \dots, g_n(\vec{t}), g_1(\vec{t}) + t_1, \dots, g_n(\vec{t}) + t_n, G(\vec{t})) + \sum u_j B_j.$$

Here $\vec{t} = (t_1, \dots, t_n)$, $\vec{u} = (u_1, \dots, u_n)$, B_i , $1 \le i \le n$ are as in the proof of Theorem 4.1, g_1, \dots, g_n , $G: U \subset \mathbb{R}^n \to \mathbb{R}$ are smooth and $\det \left[\frac{\partial^2 G}{\partial t_i \partial t_j} \right] \neq 0$.

Remark. Locally, then, each such M_n^{2n} is an n-planed hypersurface.

PROOF. Assume we are given such an isometric immersion. The kernel of A is integrable. Thus, given any x_0 in M, we can find a local coordinate system $(s_1, \dots, s_n, v_1, \dots, v_n)$ around x_0 so that ker A is given by $s_1 = c_1, \dots, s_n = c_n$, where the c_i 's are constants.

We also can assume, as in Theorem 4.1, that, by a motion of \mathbb{R}_n^{2n+1} ,

(ker A)_{f(x)} is spanned by B_1, \dots, B_n . Define $g(\vec{s}) = f(\vec{s}, 0)$. It is clear then that M_n^{2n} can be locally parametrized near $g(\vec{s})$, with a change of coordinates, by

$$f(\vec{s}, \vec{u}) = g(\vec{s}) + \sum_{j=1}^{n} u_j B_j$$
.

The unit normal $\xi(\vec{s}, \vec{u})$ is of the form

$$\xi(\vec{s}, \vec{u}) = (\xi_1(\vec{s}), \dots, \xi_n(\vec{s}), \xi_1(\vec{s}), \dots, \xi_n(\vec{s}), 1).$$

In order for f to have the required properties, several conditions must be satisfied.

- i) Rank A = n iff $\{\partial \xi/\partial s_1, \dots, \partial \xi/\partial s_n\}$ is linearly independent.
- ii) M_n^{2n} inherits a non-degenerate metric iff det $[(\partial g/\partial s_i, B_i)] \neq 0$.
- iii) ξ is normal iff $(\partial g/\partial s_i, \xi) = 0$ $i = 1, \dots, n$.

If $g(\vec{s}) = (g_1(\vec{s}), \dots, g_{2n+1}(\vec{s}))$, let $h_i(\vec{s}) = g_{n+i}(\vec{s}) - g_i(\vec{s})$ $i = 1, \dots, n$. Condition ii can be rewritten as

ii') det $[\partial h_i/\partial s_i] \neq 0$,

while iii becomes

iii')
$$\sum_{i=1}^{n} \xi_i (\partial h_i / \partial s_j) + \partial g_{2n+1}(\vec{s}) / \partial s_j = 0$$
 $j = 1, \dots, n$.

Finally, in order to insure that A_{ϵ} is symmetric and that the mixed partials of g_{2n+1} be equal, we need

iv)
$$\sum_{k=1}^{n} (\partial \xi_k / \partial s_i) (\partial h_k / \partial s_j) = \sum_{k=1}^{n} (\partial \xi_k / \partial s_j) (\partial h_k / \partial s_i)$$
.

By ii', we can change coordinates from $(s_1, \dots, s_n, u_1, \dots, u_n)$ to $(h_1, \dots, h_n, u_1, \dots, u_n)$ which we rename $(t_1, \dots, t_n, u_1, \dots, u_n)$. With this new coordinate system, ii' is automatically fulfilled, while iii' becomes

iii'')
$$\xi_j + \partial g_{2n+1}(\vec{t})/\partial t_j = 0$$
,

and iv becomes

$$\mathrm{iv}'$$
) $\partial \xi_j/\partial t_i = \partial \xi_i/\partial t_j$ $i, j = 1, \dots, n$.

Summarizing, we see that after the changes of coordinates, we must have

- i) $\{\partial \xi/\partial t_1, \dots, \partial \xi/\partial t_n\}$ linearly independent;
- iii") $\xi_j = -\partial g_{2n+1}(\vec{t})/\partial t_j$; and
- iv') $\partial \xi_i/\partial t_i = \partial \xi_i/\partial t_i$.

Given the immersion f, let $G(\vec{t}) = g_{2n+1}(\vec{t})$ which is smooth. Then by iii",

 $\xi_j = -\partial G/\partial t_j$, and we have $\partial \xi_j/\partial t_i = -\partial^2 G/\partial t_i \partial t_j = -\partial^2 G/\partial t_j \partial t_i = \partial \xi_i/\partial t_j$ so that iv' is satisfied. The only condition we must impose on $G(\vec{t})$ is det $[\partial^2 G/\partial t_i \partial t_j] \neq 0$, so that i holds. Thus, given any such f, we have transformed it into the desired form. It is easy to check that any f in this form has $A^2 = 0$ and rank A = n. Q. E. D.

We show that sums of B-scrolls in 3.2 Example do not, even locally, exhaust M_n^{2n} as in 4.2 Theorem.

 $T_x(M_n^{2n})$ can be given the structure of a commutative algebra using the covariant derivative of A.

$$X \cdot Y := \nabla_X (AY) - A(\nabla_X Y)$$

For any 4-dimensional sum of two B-scrolls with $\nabla A \neq 0$ we can find a basis $\{e_1, e_2, u_1, u_2\}$ of T_x with the following products.

 $e_1 \cdot e_1 = u_1$ and $e_2 \cdot e_2 = u_2$, while all others are zero. (If $\nabla A = 0$, $X \cdot Y = 0$ everywhere.)

Use the classification theorem to define an M_2^4 in R_2^5 by setting $g_1=0=g_2$ and $G(t_1,t_2)=t_2^3+t_1^2t_2+t_1+t_2$. Then there is a basis $\{f_1,f_2,v_1,v_2\}$ of T_0M so that the non-zero products are

$$f_1 \cdot f_1 = 2v_2$$
,
 $f_2 \cdot f_2 = -6v_2$,
 $f_1 \cdot f_2 = 2v_1$.

These two 4-dimensional algebras are not isomorphic. Thus, the second hypersurface is not a sum of B-scrolls.

Bibliography

- [1] G. ARCA: Variétés pseudo-riemanniennes structurées par une connexion spineuclidienne et possédant la propriété de Killing, C. R. Acad. Sc. Paris, t. 290 (12 Mai 1980), pp. 839-842.
- [2] W. B. BONNER: Null curves in a Minkowski spacetime, Tensor, N. S., vol. 20 (1969), pp. 229-242.
- [3] A. CRUMEYROLLE: Dérivations, formes et opérateurs usuels sur les champs spinoriels des variétés différentiables de dimension paire, Ann. Inst. H. Poincaré, vol. XVI, no. 3 (1972), pp. 171-201.
- [4] A. FIALKOW: Hypersurfaces of a space of constant curvature, Ann. of Math. 39 (1938), pp. 762-785.
- [5] L. GRAVES: Codimension-one isometric immersions between Lorentz spaces, Trans. A. M. S. 252 (1979), pp. 367-392.
- [6] L. GRAVES and K. NOMIZU: Isometric immersions of Lorentzian space forms, Math. Ann. 233 (1978), pp. 125-136.

- [7] M. MAGID: Shape operators of Einstein hypersurfaces in indefinite space forms, Proc. A. M. S., vol. 84, no. 2 (1982), pp. 237-242.
- [8] M. MAGID: Indefinite Einstein hypersurfaces with imaginary principal curvatures, to appear in Houston J. of Math.
- [9] R. ROSCA: Sous-variétés pseudo-minimales et minimales d'une variété pseudoriemannienne structurée par une connexion spin-euclidienne, C. R. Acad. Sc. Paris, t. 290 (18 Fevrier 1980), pp. 331-333.
- [10] A. G. WALKER: On parallel fields of partially null vector spaces, Quart. J. of Math., vol. 20 (1949), pp. 135-145.
- [11] A. G. WALKER: A canonical form for a Riemannian space with a parallel field of null planes, Quart J. of Math. (2) 1 (1950), pp. 69-79.
- [12] A. G. WALKER: Canonical forms II: parallel partially null planes, Quart J. of Math. (2) 1 (1950), pp. 147-152.
- [13] T. J. WILLMORE: Differential Geometry, Oxford University Press, 1959.

Department of Mathematics Wellesley College Wellesley, MA 02181, U.S.A.