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1. Introduction

The BurnSide ring \Omega(G) Of a finite grOup G iS the GrOthendieck ring
Of the categOry Of finite G-SetS with reSpect tO diSjOint uniOnS and carteSian
prOductS. It waS firSt intrOduced by SOlOmOn [1967] and haS been ever
Since Studied by many peOple in Several fieldS. ESpecially DreSS [1971],
[1973] ShOw that the GrOthendieck ringS Of “baSed categOrieS” pOSSeSSeS

Similar prOpertieS tO the BurnSide ringS Of finite grOupS (the exiStence Of an
embedding mapping \phi , Mackey prOperty, FrObeniuS reciprOcity, DreSS induc-
tiOn theOrem, etc.) and he applied them tO abStract inductiOn theOry. HOw-
ever there iS rOOm fOr develOpment in hiS theOry. FirSt an \mathscr{S}_{f} topos (that
iS, a tOpOS with finite hOm-SetS) iS much better than a baSed categOry aS

a baSe Of DreSS theOry. (On tOpOS theOry, refer tO JOhnStOne [1977].) Sec-
Ondly many prOpertieS Of the BurnSide ringS are brOught nOt frOm the
diStributive prOperty Of finite G-SetS but frOm a few prOpertieS Of the categOry
Of finite G-SetS (i. e . the regularity Of the categOry, particu 1 unique epi-
mOnO factOrizatiOn, c . f. [Gri. 1971] ) , and SO it iS pOSSible tO define and
Study the BurnSide ring even fOr a regular categOry.

In view Of tOpOS theOry, cOmbinatOrial theOry iS theOry Of \mathscr{S}_{f} toposes
which SatiSfy AxiOm Of ChOice, and finite grOup theOry iS theOry Of BOOlean
\mathscr{S}_{f}-tOpOSeS. When we Study the BurnSide ringS Of tOpOSeS and regular
categOrieS, we are intereSted in twO extremal caSeS, that iS, finite SemigrOupS
and finite pOSetS (and the functOr categOrieS Of them tO the categOry Of finite
SetS). In thiS paper, we try the caSe Of finite pOSetS. (I am preparing paperS

about the general caSe and the Semi-grOup caSe).

In SectiOn 2, we intrOduce the cOncept Of P-SetS (a P-Set iS a finite-Set-
valued cOntravariant functOr On the pOSet P viewed aS a categOry) and give
three definitiOnS Of the BurnSide ringS Of a pOSet, that iS, the K_{0} ring the
G_{0}-ring and Z[P] . In TheOrem 2, we ShOw that fOr a finite pOSet P, G_{0}(P)

and Z[P] are bOth iSOmOrphic tO the M\"obius ring A(P) . In SectiOn 3, we
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study some adjoint functors between the category of P-sets and mappings
between M\"obius rings induced from them. Following Baclawski [1979], we
can regard a P-set as a sheaf of finite sets on P, where P is a topological
space in which ideals are open sets. Thus there corresponds the P-set X
to a “locally homeomorphism” Xarrow P (cf. [T. 1975]). Introducing the concept
of locally homeomorphism of posets, we can show that the M\"obius ring
functor makes a Green functor, that is, a multiplicative Mackey functor
satisfying the Frobenius reciprocity (Theorem 4). (On Mackey functors,
refer to Dress [1973].) Then we interest in transfer theorems and induction
theorems for M\"obius rings. We prove Dress induction theorem and a kind
of transfer theorem in Theorem 5 and 6. Finally we mention span rings
of posets.

Notation. We employ the usual terminology for posets and categories
as in [A. 1979], [M. 1971]. We denote the categories of finite sets, abelian
groups, posets by \mathscr{S}_{f}, \mathscr{A}l, \mathscr{Q} , respectively. For a category \mathscr{C} and an object
X, the comma category \mathscr{C}/X is the category with objects all morphisms to
X, and with morphisms f of (a:Aarrow X) to (b:Barrow X) those morphisms f
of A to B in for which bf=a. We regard a poset as a category as usual
([M. 1971, p. 11]). Refer to [A. 1979] for the \zeta , \mu , \delta functions on posets.
The disjoint union (coproduct) and direct product of posets P and Q are
denoted by P+Q and P\cross Q .

2. The Burnside rings of finite posets

After this let P, Q be finite posets ( = partially ordered sets). The
M\"obius ring A(P) of P is a free abelian group on P with product defined on
basis by

x \cdot y=\sum_{z}(\sum_{t\leqq x,y}\mu(z, t))z ,

where \mu is the M\"obius function on P.
We regard the poset P as a category as in [M. 1971, p. 11]. By \hat{P} we

denote the category of contravariant functors of P to S_{f}, the category of
finite sets. An object of \hat{P} is called a P-set, and a morphism is called a
P-map. Thus a P-set X consists of P-indexed finite sets X^{i} and restriction
maps

res_{i}^{j} : X^{j}-X^{i} : x-x|i . i\leqq j

satisfying the conditions :
(\prime i) x|i=x for i\in P, x\in X^{i} ;
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(ii) (z|j)|i=z|i for i\leqq j\leqq k, z\in X^{k} .
Furthermore, a P map f:Xarrow Y consists of a family (f^{i} : X^{i}arrow Y^{i})_{i\in P} which
is compatible with restriction maps. The category \hat{P} is an \mathscr{S}_{f} topos (John-

s ome [1977] ) and it is finitely complete and finitely cocomplete ((c0-) limits
are constructed elementwise).

Defifinition of K_{0} and G_{0} . Let \mathcal{E} be a skeletally small category with
finite coproducts. Then K_{0}(\mathcal{E}) is the free abelian group on isomorphism
classes [X] modulo the relations [X+Y]=[X]+[Y] . Let M(\mathcal{E}) be the
subgroup of K_{0}(\mathcal{E}) generated by elements of the form [A]-[B]-[C]+[D]
for some pushout diagram

A\rangle-B

C\rangle-D\check{\downarrow}\check{\downarrow}

with four monomorphisms ; and then we set G_{0}(\mathcal{E})=K_{0}(\mathcal{E})/M(\mathcal{E}) .
For example, if \mathcal{E} is the category of finitely generated R-modules for

a ring R, then G_{0}(\mathcal{E}) coincides with the ordinary Grothendieck group G_{0}(R) ;
moreover if \mathcal{E} is the category of finite G-sets for a finite group G, then
K_{0}(\mathcal{E}) as well as G_{0}(\mathcal{E}) is the Burnside ring of G.

In general if \mathcal{E} is a small topos (e. g.\hat{P}) , then K_{0}(\mathcal{E}) has the structure
of a commutative ring ([X]. [ Y]=[X\cross Y]) and M(\mathcal{E}) is an ideal of K_{0}(\mathcal{E}) ,

and so G_{0}(\mathcal{E}) is also a commutative ring.

Defifinition of the Burnside ring Z[\mathscr{A}] . Let \mathscr{A} be a finite skeletal
category. Let Z[\mathscr{A}] be the free abelian group with basis Obj(\mathscr{A}) , and let
Z^{\iota\alpha} be the Obj(\mathscr{A}) -indexed direct product. Then we have a linear map

\phi:Z[\mathscr{A}]-Z^{{?}} : A|-(|hom (I, A)| ) .

Assume that the following conditions hold:
(a) \phi is injective.
(b) The image of \phi is a subring of Z.
Under this assumption, Z[\mathscr{A}] becomes a commutative ring with an injective
ring homomorphism \phi . This ring Z[\mathscr{A}] is also called the Burnside ring
of \mathscr{A} .

If \mathscr{A} is a skeletal finite full subcategory of a regular category (e. g .
toposes, abelian categories, posets) and it is closed with respect to epimorphic
images, then (a) and (b) hold. In case where \mathscr{A} is a skeleton of the category
of transitive G-set, then the Burnside ring Z[\mathscr{A}] defined as above is isomor-
phic to the ordinary Burnside ring of G.
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Let P be a finite poset. We set

K_{0}(P)=K_{0}(\hat{P}) : G_{0}(P)=G_{0}(\hat{P}) .

All of rings K_{0}(P) , G_{0}(P) , Z[P] are suitable to be the “Burnside rings” of
P. For example the embedding theorem for K_{0} (cf. [D. 1973, Proposition
4. 3]) has the following form:

THEOREM 1. The ring homomorphism

\phi=(\phi^{C}) : K_{0}(P)-Z^{Con(\hat{P})} : [X]-(’|hom_{P}(C, X)|)_{c}

is an injection, where Con (\hat{P}) is the representatives of isomorphism classes
of connected P-sets. (A P-set is called connected provided it is not the
coproduct of any two nonempty P-subsets.)

Similarly as in Yoshida [198 ?], this theorem follows easily from an LDU-
Pro position of the Hom-set matrix (|hom(A, B)|) ; so we omit the proof.l)
However, K_{0}(P) is in general too large; in fact if P is not discrete, then
K_{0}(P) contains a polynomial ring with countably many variables. So we are
mainly interested in G_{0}(P) and Z[P] ; the embedding theorems for them
are simple.

THEOREM 2. Let P be a fifinite poset viewed as a category. Then the
following hold:

(i) The Burnside ring Z[P] can be defifined and it has the same
multiplication table as the M\"obius ring A(P) .

(ii) There are ring isomorphism \phi, \phi’,\overline{\eta} with \phi=\phi’\overline{\eta} as follows:
\phi:A(P)-Z^{P} : i|-(\zeta(j, i))_{j\in P’}.

\phi’ : G_{0}(P)-Z^{P} : [X]I-(|X^{j}|)_{j\in P} ,

\overline{\eta} : A(P)-G_{0}(P):i1-[h_{i}]

PROOF. ( i) In the category P,

|hom_{P}(i,j)|=\zeta(i,j)=\{
1 if i\leqq j

0 otherwise.

Since the matrix (\zeta(i,j))_{i,j\in P} has clearly an inverse in GL(|P|, Z) , the linear
map

\phi:Z[P]-Z^{P} : j-(\zeta(i,j))_{i}

1) Add in proof. The similar result is proved by Lov\’asz (Acta Sci. Math. (Szeged), 33
(1972), 319-322).
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is an isomorphism of abelian groups. Thus the Burnside ring Z[P] can be
defined as a ring isomorphism to Z^{P} through \phi, and so the multiplication
i\cdot j is defined by \phi^{-1}(\phi(i)\cdot\phi(j)) . Assume that i\cdot j=\Sigma_{k}a(k)k, so that acting
\phi, we have that

\Sigma_{k}a(k)\zeta(l, k)=\zeta(l, i)\zeta(l,j) for l\in P .

By the M\"obius inversion,

a(m)=\Sigma_{k,l}a(k)\mu(m, l)\zeta(l, k)

=\Sigma_{l}\mu(m, l)\zeta(l, i)\zeta(l,j)

Hence we have

i \cdot j=\sum_{k}(\sum_{l\leqq i,j}\mu(k, l))k

This multiplication coincides to one of the M\"obius ring A(P) .
(ii) Since the functor X\mapsto X^{j} preserves pushout diagrams and mon0-

morphisms, it induces a ring homomorphism
\phi’ : G_{0}(P)-Z^{P} : [X]-(|X^{j}|)_{j\in P} ,

Furthermore, the Yoneda functor Parrow\hat{P} : i\mapsto h_{i} induces a linear map

\eta:A(P)-K_{0}(P) : i|-[h_{i}]

Since \phi’([h_{i}])=(\zeta(j, i))_{j\in P}=\phi(i) , we have the commutative diagram:

A(P)K_{0}(P)\underline{\eta}

\phi\downarrow \backslash \overline{\eta} \downarrow nat
Z^{P}

\overline{\phi’}G_{0}(P)

A nonempty P-set A is called irreducible provided A has a unique maximal
P-subset. We shall first prove that any [X]\in G_{0}(P) is a linear combination
of some classes [A] of irreducible P-sets A in G_{0}(P) . This follows from an
easy induction argument on \Sigma_{i}|X^{i}| . In fact if X has two maximal P-subsets
Y and Z, and X=Y\cup Z, and so

[X]=[Y\cup Z]=[Y]+[Z]-[Y\cap Z] in G_{0}(P)

Since by induction hypothesis [Y] and [Z] are already linear combinations
of classes of irreducible P-sets, so is [X] , as required. Now irreducible P-
sets are representable, that is, if A is irreducible then there exists i in P
such that A is isomorphic to h_{i} ; in fact, h_{i}’s are (pr0-) generators in P and
each h_{i} has no nontrivial quotient objects. Thus we have that G_{0}(P) is
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generated by [h_{i}] , i\in P . This means that \overline{\eta} : iarrow[h_{i}] is surjective. Since
\phi=\phi’\overline{\eta} is a ring isomorphism and \phi’ is a ring homomorphism, we conclude
from the surjective of \overline{\eta} that \phi’ and \overline{\eta} are ring-isomorphisms. The theorem
is proved.

By the M\"obius inversion, we have that \phi’(e_{i})=(\delta_{i,j})_{j\in P} . Thus by the
theorem, primitive idempotents of G_{0}(P) have the form

e_{i}=\Sigma_{j}\mu(j, i)[h_{j}]

It is well-known that primitive idempotents of the M\"obius ring A(P) has the
form

\delta_{i}=\Sigma_{j\mu}(j, i)j

and that j=\Sigma_{i\leqq j}\delta_{i} .
Let k be a principal ideal domain (e . g. , a field). We write k\hat{P} for the

functor category of P^{op} to the category of finitely generated k-modules. The
category k\hat{P} is abelian and tensor products are defined; thus we obtain the
Grothendieck ring G_{0}(k\hat{P}) . The free functor

F:\hat{P}-k\hat{P}:XI-kX (=(kX^{i})_{i\in P})

preserves finite colimits and monomorphisms; and it maps products to tensor
products ; and so it induces a ring homomorphism

\pi:G_{0}(P)-G_{0}(k\hat{P}) : [X]|-[kX]
Furthermore there is also a ring homomorphism

\chi:G_{0}(k\hat{P})-Z^{P} : [M]|-(rank_{k} M^{i})_{i\in P} .

By Theorem 2 (ii), \phi’=\chi\pi is an isomorphism ; and by Baclawski [1979,
Lemma 5], \pi is surjective. Thus the above \pi and \chi are isomorphisms, and so

G_{0}(k\hat{P})\equiv A(P)\cong G_{0}(P)\equiv Z^{P}

3. Functorial properties of M\"obius rings

In this section, we study some maps between M\"obius rings induced from
an order preserving map. We will show that the M\"obius rings give a
contravariant functor A^{*} of 0, the category of finite posets and order-pre-
serving maps, to rings and a functor A_{!} of \mathscr{Q}_{lh} , the category of finite posets
and locally homeomorphisms, to abelian groups and furthermore that the
pair of these functors satisfies Mackey property and Frobenius reciprocity
(Theorem 4).
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Through this section, let f:Parrow Q be an order preserving map between
posets P, Q. For any q\in Q , we define subposets of P as follows:

f/q:=\{p\in P|f(p)\leqq q\}j

q\backslash f:=\{p\in P|q\leqq f(p)\}

Adjoint functors f..-\dashv f^{*}\dashv f_{*} . The map f:Parrow Q induces an inverse
image functor which is defined by:

f^{*}: Q-\hat{P}:(B^{j})_{j\in Q}I-(B^{f(i)})_{i\in P}

This functor has left and right adjoint functors (MacLane [1971, Chapter X]):

\hat{P}\frac{}{f_{*}}\frac{f_{!}}{arrow f’-}Q , f_{||}-\dashv f^{*}\dashv f_{*}

The right adjoint f_{*} is called a direct image functor. These three functors
are constructed on objects as follows :

(i) f_{\mathfrak{l}\mathfrak{l}}(X)^{a}=I^{-}[\{i\}\cross X^{i}/\sim i\in a\backslash f’-

where \sim is the least equivalence relation such that (i, x)\sim(j, y) whenever
i\leqq j and y|i=x .

(ii) f^{*}(Y)^{i}=Y^{f(i)}

(iii) f_{*}(X)^{a}=\{(x_{i})\in\Gamma\overline{|}X^{i}|x_{j}|ii\in f/a=x_{i} for i\leqq j\} .

The inverse image functor f^{*} preserves limits and colimits, and so f^{*} induces
ring homomorphism f^{*}: K_{0}(Q)arrow K_{0}(P) and f^{*}: A(Q)arrow A(P) by Theorem 2.
Let a\in Q and let \delta_{a}(=\Sigma_{b}\mu(b, a)b) be the primitive idempotent of A(Q) .
Then in A(P) , we have

f^{*}(a)= \sum_{i\in P}(\sum_{j\in f/a}\mu(i,j))i .

f^{*}( \delta_{a})=\sum_{i\in f^{-1}(a)}\delta_{i}

In fact it follows from M\"obius inversion that the isomorphism \phi:j\mapsto(\zeta(i,j))_{i}

(Theorem 2 (ii)) maps both sides to the same elements.

Galois maps. The direct image functor f^{*} does not always preserve
coproducts. (It preserves coproducts if and only if q\backslash f is connected for any
q\in Q.) Greene [1973] gives a condition that the direct image functor f^{*}

induces a ring homomorphism between M\"obius rings. Let f:Parrow Q be an
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Galois map (that is, f has a right adjoint g:Qarrow P). Then f^{*} has a right
adjoint g* , and so f^{*}\cong g*preserves not only limits but also colimits, whence
f_{*} induces ring homomorphisms f_{*}: K_{0}(P)arrow K_{0}(Q) and f^{*}: A(P)arrow A(Q) .
The last ring homomorphism is the same as in Greene [1973, Theorem 2].

In fact, for any i\in P, we have

f_{*}(i)=g^{*}(i)= \sum_{a}(’\sum_{b\epsilon g/i}\mu(a, b))a

= \sum_{a}(\sum_{b\leqq f(i)}\mu(a, b)) a by adjunction

= \sum_{a}\delta(a,f(i)) a by M\"obius inversion

=f(i) .

Adjount functors \Sigma_{f}\dashv f^{*}\dashv\Pi_{f}. Let f:Xarrow Y be a P-map between P-
sets. Then by the fundamental theorem of topos theory (Johnstone [1977,

Theorem 1. 42 and Corollary 1. 44]), f induces three functors as follows:

\hat{P}/X\frac{}{\Pi_{f}}\frac{\Sigma_{f}}{arrow f^{*-}}\hat{P}/Y\wedge \Sigma_{f}\dashv f^{*}\dashv\Pi_{f} .

The pullback functor f^{*} is defined as the operatioon of pulling back along

f. The functor \Sigma_{f} is defined by the composition a\mapsto fa .
An order preserving map h : Parrow Q is called a locally homeomorphism

if h gives a bijection of J_{x}(=\{y\in P|y\leqq x\}) to J_{h(x)} for each x\in P. For
example, an order preserving injection h of P to Q is locally homeomor-
phism if and only if P is isomorphic to an ideal of Q through h. Let
\mathscr{Q}_{lh} be the category of finite posets and locally homeomorphisms. For a
P-set X, the set

X =]\lrcorner\{i\}\cross X^{i}i\in P

becomes a poset by

(i, x)\leqq(j, y) iff i\leqq j and y|i=x .

Then the projection p_{X} : \tilde{X}arrow P:(i, x)\mapsto i is a locally homeomorphism ; and
each P map f:Xarrow Y induces a locally homeomorphism

\tilde{f}:X_{-\tilde{Y}:}(i, x)-(i,f^{i}(x))

Conversely let Aarrow Ph be a locally homeomorphism ; then for ariy i\leqq j in
P and a\in h^{-1}(j) , the set h^{-1}(i)\cap J_{a} consists of a unique element a|i ; and
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so we obtain a P-set (h^{-1}(i))_{i\in P} of which restriction map is defined by a\mapsto a|i .
These correspondence gives an equivalence

\mathscr{Q}_{lh}/P\cong\hat{P}

Furthermore, for each P-set X, this equivalence gives
\hat{P}/X\cong\hat{X} (\cong \mathscr{Q}_{lh}/X)

These equivalences are natural with respect to pullback functors and inverse
image functors. Thus two functors P\mapsto\hat{P} and P\mapsto rG_{lh}/P from posets to the
category of toposes and essential geometric morphisms are equivalent. Since
\Sigma_{f} : \hat{P}/X- \hat{P}/Y induced by a P map f preserves not only colimits but also
pullbacks (and so monomorphisms), it follows from Theorem 2 that any
locally homeomorphism h : Parrow Q induces an additive homomorphism

h_{!} : A(P)-A(Q) : x|-h(x)
Hence the M\"obius ring functor A is a functor which to each locally

homeomorphism h assigns a ring homomorphism h^{*} and an additive hom0-
morphism h_{!} with h^{*} contravariant and h_{!} covariant.

Lemma 3. In a pullback diagram of fifinite posets

g\downarrow RS\underline{p}\overline{q}Q’- P\downarrow f

if q is a locally homeomorphism, then so is p and the following diagram
is commutative without natural isomorphism:

g^{*}\hat{\downarrow}R\hat{S}\underline{p_{!}}\overline{q_{!}}\hat{Q}\hat{P\downarrow}f^{*}

PROOF. There corresponds a Q-set Y to a locally homeomorphism
q:Sarrow Q, and so we may assume that q=p_{Y} : S=\tilde{Y}arrow Q . Set X=f^{*}(Y)\in\hat{P}.
Then we have a pullback diagram

S=\tilde{Y}X\downarrow\overline{p_{Y}}\underline{p_{X}}PQ\downarrow
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Thus it follows from the uniqueness of pullbacks that p is a locally home0-
morphism. We may beforehand assume that R=\tilde{X}, p=p_{X}, q=q_{Y} . Consider
the following diagram :

\frac{p_{!}}{1\downarrow}

\hat{R}=\hat{X}-\sim\hat{P}/X\underline{\Sigma_{Y}}\hat{P}

g*\uparrow \uparrow f^{*} \uparrow f^{*}

\hat{S}=\hat{\tilde{Y|}}-\sim\Omega/Y\overline{\sum_{-}X}Q\uparrow

-q_{!}

Two inner squares and two triangles are commutative, and so the outer
square is also commutative, proving the lemma.

THEOREM 4. ( i) The pair A=(A^{*}, A_{!}) of the functors
A^{*}: \mathscr{Q}_{lh}^{op}-\mathscr{A}l:P_{I-}A(P) , f^{1}-f^{*} ,

A_{1} : \mathscr{Q}_{lh}-\mathscr{A}l:P|-A(P) , f^{1-}f_{1}

is a Green functor (Dress [1971], [1973]), that is, the following hold:
(a) (Mackey decomposition) For any pullback diagram

f’\downarrow RS\underline{g’}\overline{g}QP\downarrow f

in \mathscr{Q}_{lh}, the following diagram is commutative:

A(R)\underline{g_{!}’}A(P)

f’*\uparrow |f^{*}

A(S)\overline{g_{!}}A(Q)

i j
(b) If Parrow P+Qarrow Q is a coproduct diagram in \mathscr{Q}_{lh} then

A(P) \frac{i^{*}}{\frac{}{i_{!}}}A(P+Q)\frac{\frac{j^{*}}{}}{j_{!}}A(Q)

is a biproduct diagram of abelian groups.
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(c) For any locally homeomorphism f, the map f^{*} is a ring homO-
morphism.

(d) (Frobenius reciprocity) Let f:Parrow Q be a locally homeomorphism.
Then for any x\in A(P) and y\in A(Q) ,

f| (x)y=f_{I}(xf^{*}(y))

(ii) If a poset P is the union of two ideals I and J of P with injec-
tions i:Iarrow P and j:Jarrow P, then

(id_{A(P)}-i_{1}i^{*})(id_{A(P\rangle}-j_{1}j^{*})=0 on A(P)

PROOF. (a) This is a special case of Lemma 3. (b) Set R=P+Q.
Then there exist R-sets X and Y which correspond to locally homeomorphism
i:Parrow R and j:Qarrow R, that is, X=P,\tilde{Y}=Q, i=p_{X}, j=p_{Y}. Thus we have
a coproduct diagram Xarrow 1arrow Y, where 1 is a final object in \hat{R} . Now consider
the functors

\hat{R}/X\underline{\underline{X^{*}}}\Sigma_{X}\hat{R}\overline{\overline{\Sigma_{Y}}}Y^{*}\hat{R}/Y

Then in functor categories, we have, without natural isomorphisms,

1_{\hat{R}}=\Sigma_{X}X^{*}+\Sigma_{Y}Y^{*} ,

X^{*}\Sigma_{X}=1_{\hat{R}/x} , Y^{*}\Sigma_{Y}=1_{\hat{R}/Y} ,

Y^{*}\Sigma_{X}=0 : X^{*}\Sigma_{Y}=0 .
Applying G_{0} on these equalities, we see that the two lines of the following
diagram are biproduct diagrams :

G_{0}(\hat{R}/X)--G_{0}(\hat{R})--G_{0}(\hat{R}/Y) .
\cong\downarrow \cong\downarrow \cong\downarrow

A(P)i^{*} \overline{\overline{i_{!}}}A(R)\frac{\frac{j^{*}}{}}{j_{!}}A(Q)

(c) This has been already shown.
(d) Let A be a Q-set which corresponds to the locally homeomorphism f :
Parrow Q, so that A(P)\cong G_{0}(Q/A) and A(Q)\cong G_{0}(Q) . Thus it will suffice to

show that Frobenius reciprocity for G_{0}(Q/A)\overline{arrow}G_{0}(Q) holds. Let Xarrow Ax be
an object of Q/A and let Y be an object of Q. Then we have

\Sigma_{A}(XA)\cross Y=X\cross Y\underline{x}
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Furthermore since

X\cross YA\cross Y\underline{x\cross 1}

\pi_{1}\downarrow \downarrow\pi_{1}

X
\overline{x}

A

is a pullback diagram,

\Sigma_{A}((Xarrow A)\cross(A\cross YA))=X\cross Y\underline{x}\underline{\pi_{1}}

Hence we have

\Sigma_{A}(x)\cross Y=\Sigma_{A}(x\cross f^{*}(Y))

This shows the Frobenius reciprocities for K_{0} , G_{0} and for the M\"obius rings A.
(ii) This follows easily from the direct verification.
REMARK. Similarly, the K_{0}-functor becomes a Green functor.
Similarly as in the case of the Burnside ring of a finite group, there is

an induction theorem and a transfer theorem (or fusion theorem) for M\"obius
rings. First Dress induction theorem (Dress [1971, Theorem 7. 1], Yoshida
[1983] ) which generalizes Artin induction theorem holds in the best form.

THEOREM 5. (Dress induction theorem) Let h:Parrow Q be a locally
homeomorphism and set

I_{P}(Q) : = Im (h_{!} : A(P)-A(Q)) ,

K_{P}(Q):= Ker (h^{*}: A(Q)-A(P))(\backslash

Then I_{P}(Q) andK_{P}(Q) are ideals of A(Q) and

A(Q)=I_{P}(Q)\oplus K_{P}(Q)(

PROOF. It follows from Theorem 4 (i) (c), (d) that K_{P}(Q) and I_{P}(Q) are
ideals of A(Q) . Furthermore since

h_{!} : i|-h(i) for i\in P ,

h^{*}:
\delta_{a}|-\sum_{i6h^{-1}(a)}\delta_{i} for a\in Q ,

where \delta_{a} is a primitive idempotent and has the form

\delta_{a}=\sum_{b\leqq a}\mu(b, a)b ,
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and since \{\delta_{a}|a\in Q\} is a Z-basis of A(Q) , we have that K_{P}(Q) is generated

by elements \delta_{a}, a\in Q-h(P) . Clearly, I_{P}(Q) is generated by h(i) , i\in P. Let

i\in P. Then by the locally homeomorphism of h, we have

\delta_{h(i)}=\sum_{b\leqq h(i)}\mu(b, a)b

= \sum_{j\leqq i}\mu (h(j) , h(i) ) h(j)

\in I_{P}(Q)(

Thus
1= \sum_{a\in h(P)}\delta_{a}+\sum_{b\not\in h(P)}\delta_{b}

\in I_{P}(Q)+K_{P}(Q) ,

and so A(Q)=I_{P}(Q)+K_{P}(Q) . By the Frobenius reciprocity (Theorem 3 (i)

(d) ) , (I_{P}(Q)\cap K_{P}(Q))^{2}=0 . But A(Q) has no non-zero nilpotent elements

(Theorem 2), and so I_{P}(Q)\cap K_{P}(Q)=0 , whence A(Q)=I_{P}(Q)\oplus K_{P}(Q) , prov-

ing the theorem.
Next we show a transfer theorem which corresponds to the focal sub-

group theorem in finite group theory (c. f . Gorenstein [1968, Theorem 7. 3. 4],

Cartan-Eilenberg [1956, Theorem 7. 10. 1], Dress [1974, Proposition 3. 2] ) .

Let h:Parrow Q be a locally homeomorphism. We definea subposet P_{h}^{n}(n\geqq 0)

of the direct product P^{m} by

P_{h}^{n}=\{(_{X_{0}^{ }},\cdots, x_{n-1})|x_{i}\in P, h(x_{0})=\cdots=h(x_{n-1})\}

and we denote p_{i} : P_{h}^{n+1}arrow P_{h}^{n} the projection which omits the i-th factor,

0\leqq i\leqq n . For the convenience, we set P_{h}^{0}=Q , P_{h}^{1}=P and p_{0}=h : P_{h}^{1}arrow P_{h}^{0} .
Then we have two chain complexes:

0-A(Q)A(P)A(P_{h}^{1})\underline{d^{0}}\underline{d^{1}}\underline{d^{2}} ...

0-A(Q)A(P)A(P_{h}^{1})\overline{d_{0}}\overline{d_{1}}\overline{d_{2}}
...

where d^{n}= \sum_{i=0}^{n}(-1)^{i}p_{i^{*}} , d_{n}= \sum_{i=0}^{n}(-1)_{i}p_{i!} .

THEOREM 6. If the locally homeomorphism h : Parrow Q is surjective,

then the above sequences are exact.

PROOF. We work in the category \mathscr{Q}_{lh}/Q(\cong Q) . The map (h:Parrow Q)\mapsto

A(P) gives a Mackey functor on \mathscr{Q}_{lh}/Q . Since h is surjective, h_{!} : A(P)arrow

A(Q) is also surjective. Thus the theorem follows from Dress theorem
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(Dress [1973, Section 3, Corollary 1], tom Dieck [1979, Proposition 6. 16 and
Theorem 6. 2 . -]).

Span rings. We finally mention a ring which is like to matrix rings,
Hecke rings and incidence algebras. Let G be a Green functor on a category
\mathcal{E} ([D. 1973]) and X an object of \mathcal{E} . Then the abelian group G(X\cross X)

has another associative ring structure which is called the span ring with
respect to G by the following bilinear map:

G(X\cross X)\cross G(X\cross X)

\downarrow\pi_{12}^{*}\cross\pi_{23}^{\star_{1}}

G(X\cross X\cross X)\cross G(X\cross X\cross X)

\downarrow multi

G(X\cross X\cross X)

\downarrow\pi_{13^{*}}

G(X\cross X) ,

where \pi_{ij} is the projection to the (i,j) -factor. We denote the span ring by
G(X\cross X)_{s} in order to distinguish it from the ring G(X\cross X) with ordinary
multiplication of the Green functor. (The ordinary multiplication corresponds
to the Hadamard product of matrices).

If M is a Mackey functor on \mathcal{E} and it is furthermore a “G-module”,
then M(X) is a module over the span ring G(X\cross X)_{s} .

We consider about span rings with respect to M\"obius ring functor A.
Let h:Parrow Q be a locally homeomorphism of finite posets and define a
subposet P\cross_{h}P of P\cross P consisting of pairs (x, y) of elements of P such that
h(x)=h(y) . Then the multiplication * in the span ring A(P\cross {}_{h}P)_{s} is given
as follows :

(a, b)^{*}(c, d)= \sum_{(x,y)\leqq(a,d)}\sum_{z\leqq b,c}\mu_{Q}(h(x) , h(z))(x, y) .

Remember that if X is a Q-set corresponding to h , then the locally home0-
morphism P\cross {}_{h}Parrow Q corresponds to the Q-set X\cross X and A(P\cross {}_{h}P)_{s}\cong

G_{0}(Q/X\cross X)_{s} . The action of the span ring A(P\cross_{h}P)_{s} on A(P) is given by

(a, b)^{*}c= \sum_{x\leqq a}\sum_{z\leqq b,c}\mu_{Q}(h(x) , h(z))x .

For each k\in Q , define a linear map of the span ring to the matrix ring

\psi_{k} : A(P\cross {}_{h}P)_{s}-Mat(h^{-1}(k)\cross h^{-1}(k);Z)

by
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\psi_{k}(a, b)_{x,y}=\{
1 if x\leqq a and y\leqq b

0 otherwise.

Then \psi_{k} is a ring homomorphism and the map

\psi=(\psi_{k}) : A(P \cross {}_{h}P)_{s}-\prod_{k\in Q} Mat (h^{-1}(k)\cross h^{-1}(k) ; Z)

is a ring isomorphism.
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