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Introduction

As is well known, the study of the transformation equations for modular
forms has one of its origins in Klein’s work [5], and many authors, e . g. ,
Kiepert [4], Hurwitz [3], Fricke [1] and Herglotz [2], did certain contribu-
tions in this theory. For a modular form h of weight k on the congruence
subgroup \Gamma_{0}(N) of SL_{2}(Z) , the transformation equation for h is defined by

\Phi(X;h)=I^{-}I_{\alpha\in r_{0}(N)\backslash SL_{2}(Z)}(X-h|_{k}\alpha)=0 ,

where h|_{k}\alpha denotes the usual action of \alpha\in SL_{2}(Z) of weight k (for the nota-
time, see \S 1). The above mentioned references are mainly concerned with
\Delta(Nz) and related functions as h for the discriminant function \Delta .

For a long time, the importance of the investigation of these equations
has been in the mind of the first author of this paper.

Now recently, Shimura [11] proved the algebraicity at certain integers
of the zeta function defined by

D(m,f, g)=\sum_{n- 1}^{\infty}a(n)b(n)n^{-s} ,

where f= \sum_{n=1}^{\infty}a(n)e(nz)(e(z)=\exp(2\pi iz)) is a primitive cusp form on \Gamma_{0}(N)

of weight k and g= \sum_{n=0}^{\infty}b(n)e(nz) is an arithmetic modular form on \Gamma_{0}(N)

of weight l less than k. Then D(m,f, g) for (k+l)/2-1<m<k is an alge-
braic number times the Petersson self inner product of f and a power of \pi .
We take as h the product of .q and a certain Eisenstein series E_{\lambda,N}^{*} which
is utilized in his proof of the algebraicity of D(m,f, g) . Then the sum of
\mu-th power of all the roots of \Phi(X;h)=0 can be expressed as a finite linear
combination of primitive forms of level 1 with the coefficients D(m,f, g’) for
g’=g^{\mu}(E_{\lambda,N}^{*})^{\mu-1} . In fact, we have

THEOREM. For an arbitrary element .q\in S_{l}(\Gamma_{0}(N)) and for any posi-
tive integers \mu and \lambda>2 , we have

(i) Tr (gE_{\lambda,N}^{*})^{\mu}=c \sum_{J\in P(k\mu)}\frac{D(k\mu-1,fg^{\mu}(E_{\lambda,N}^{*})^{\mu-1})}{\pi^{k\mu}\langle ff\rangle},,f
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with c=3\cdot 4^{-(k\mu-1)}\Gamma(k\mu-1) . Here k=l+\lambda;P(k\mu) is the set of all primitive
forms in S_{k\mu}(SL_{2}(Z));S_{\nu}(\Gamma) stands for the space of cusp forms of weight
\nu on \Gamma for \Gamma=\Gamma_{0}(N) or SL_{2}(Z);E_{\lambda,N}^{*} is the Eisenstein series defifined by

E_{\lambda,N}^{*}(z)= \sum_{\gamma\in\Gamma_{\infty}\backslash \Gamma_{0}(N)}(cz+d)^{-\lambda} (\gamma=(\begin{array}{ll}a bc d\end{array})) ,

where \Gamma_{\infty}=\{\pm(\begin{array}{ll}/_{1} n0 1\end{array}) |n\in Z\} (cf. [11, (2. 6)]) ; Tr is the trace operator of
S_{k\mu}(\Gamma_{0}(N)) to S_{k\mu}(SL_{2}(Z)) defifined by

Tr (h)= \sum_{\alpha\in\Gamma_{0}(N)\backslash SL_{2}(Z)}h|_{k\mu}\alpha for h\in S_{k\mu}(\Gamma_{0}(N))

One can specialize the equation \Phi(X;h)=0 at any elliptic curve \mathcal{E}

defined over Q in the usual manner described in \S 3. Suppose that 8 is
uniformized by the Weierstrass \wp -function with modulus (\omega_{1}, \omega_{2}) and assume
the following conditions:

(1) the cusp form g has Fourier coefficients in Q ;
(2) the specialized equation of \Phi(X;gE_{\lambda,N}^{*}) at \mathcal{E}_{/q} is irreducible in

Q [X] ;
(3) the space S_{k\mu}(SL_{2}(Z)) is spanned by an element f= \sum_{n=1}^{\infty}a(n)e(nz)

of P(k\mu) and its conjugates
f^{\sigma}(z)= \sum_{n=1}^{\infty}a(n)^{\sigma}e(nz) for \sigma\in Aut(C)

Under the assumption (2), let K_{N} be the field generated over Q by the root
(2\pi/\omega_{2})^{k}g(\omega_{1}/\omega_{2})E_{\lambda,N}^{A}(\omega_{1}/\omega_{2}) of the specialized equation and let K_{f} be the Hecke
field generated over Q by all the Fourier coefficients of f. Then we have

COROLLARY. We have the following equality:

(ii) Tr_{K_{N}/Q}\{(2\pi/\omega.\circ)^{k}g(\omega_{1}/\omega_{2})E_{\lambda,N}^{*}(\omega_{1}/\omega_{2})\}^{\mu}

=c Tr_{K_{f}/Q}\{\frac{D(k\mu-1,fg^{\mu}(E_{\lambda,N}^{*})^{\mu-1})}{\pi^{k\mu}\langle f,f\rangle},(2\pi/\omega_{2})^{k\mu}f(\omega_{1}/\omega_{B})\} ,

where c is the constant in the theorem.
One can regard this equality (ii) as a reciprocity law for two distinct

fields K_{N} and K_{f}. In fact, as may be well known and will be explained in
\S 3, the field K_{N} coincides with the field Q(j,j’) generated by the j\cdot invariant

j=j(\omega_{1}/\omega_{2}) of \mathcal{E} and j’=j(N\omega_{1}/\omega_{2}) . Note that K_{N} is contained in the field
of N-section points of \mathcal{E} . On the other hand, as proved by Shimura [11,

D(k\mu-1,f, g^{\mu}(E_{\lambda,N}^{*})^{\mu-1})

Th. 3], the value
\overline{\pi^{k\mu}\langle f,f\rangle}

in the right-hand side of the equality

(ii) is contained in the field K_{f}, and as will be seen in \S 3, (2\pi/\omega_{2})^{k\mu}f(\omega_{1}/\omega_{2})

also belongs to K_{f}. Therefore the right-hand side of the equality (ii) is the



Transformation equations and the special values of Shimura’s zeta functions 349

trace of the number

\frac{D(k\mu-1,fg^{\mu}(E_{\lambda,N}^{*}1^{\mu-1})}{\pi^{k\mu}\langle f,f\rangle},(2\pi/\omega_{2})^{k\mu}f(\omega_{1}/\omega_{2})

from K_{f} to Q, and meanwhile the left-hand side is the trace of the number

\{(2\pi/\omega_{2})^{k}g(\omega_{1}/\omega_{2})E_{\lambda,N}^{*}(\omega_{1}/oe)\}^{\mu}

from K_{N} to Q. This is why we call the equality (ii) the reciprocity law
between K_{N} and K_{f}. The importance of these fields is needless to say.

Those who are familiar with the Eichler-Selberg trace formula may
find a similarity between our result and the method of calculation of the
eigenvalues of Hecke operators. Especially, the power sum of the roots of
our equation is a sum of the special values of Shimura’s zeta functions and
that of eigenvalues of Hecke operators is a sum of class numbers of imaginary
quadratic fields.

It should be noted that the method using power sums and Newton’s
formulas is classically adopted in the investigation of transformation equations
(e . g. , Hurwitz [3, pp. 580-590]).

Here is a summary of the paper: The theorem will be proved in \S 4.
For the convenience of the readers, we will give a short and very elementary

account of the theory of transformation equations in \S \S 1, 2 and 3, and thus
one can read the result without any knowledge of this theory beforehand.
If the reader is familiar with this subject, we recommend him to proceed
into \S 4 directly. A numerical example of the transformation equations will
be given in \S 5. More examples will be published in [7] by one of the
authors of the present paper.

\S 1. Transformation equations of Fricke type

In this section, we are going to give an exposition of classical results
on modular forms. The details may be found in Fricke [1].

Let \Gamma be a congruence subgroup of SL_{2}(Z) containing

\Gamma(N)=\{\gamma\in SL_{2}(Z)|\gamma\equiv 1 mod N\}

for a positive integer N, and \mathscr{M}_{k}(\Gamma) be the space of modular forms of
weight k on \Gamma The element f of \mathscr{M}_{k}(\Gamma) is a function on the upper half
complex plane \mathfrak{H} with the properties:

( 1. 1_{a}) f is holomorphic on \mathfrak{H} ;

( 1. 1_{b}) Writing (f|_{k}\gamma)(z)=\det(\gamma)^{k/2}f(\gamma(z))(cz+d)^{-k} for \gamma=(\begin{array}{ll}a b.c d\end{array}) \in GL_{2}^{+}(R)

=\{\alpha\in GL_{2}(R)|\det(\alpha)>0\} , we have f|_{k}\gamma=f for all \gamma\in\Gamma ;
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( 1. 1_{c}) f|_{k}\gamma has the Fourier expansion of the form: \sum_{n=0}^{\infty}a(n)e(nz/N) at
i\infty for all \gamma\in SL_{2}(Z)(e(z)=\exp(2\pi iz)) .
The space \mathscr{M}_{k}(\Gamma) is naturally isomorphic to the space of functions F on

\mathfrak{Z}=\{\omega={}^{t}(\omega_{1}, oe)\in C^{2}|(\ \neq 0 , Im (\omega_{1}/\omega_{2})>0\}

with the properties:

( 1. 2_{a}) F is holomorphic on \mathfrak{Z} ;
( 1. 2_{b}) F(\lambda\omega)=\lambda^{-k}F(\omega) for all \lambda\in C^{\cross} , F(\gamma\omega)=F(\omega) for all \gamma\in\Gamma ;
( 1. 2_{c}) Writing (F|\gamma)(\omega)=F(\gamma\omega) for \gamma\in GL_{2}^{+}(R) , we have
(F| \gamma)(^{l}(z, 1))=\sum_{n=0}^{\infty}a(n)e(nz/N) for all \gamma\in SL_{2}(Z)(z\in \mathfrak{H}) .
This isomorphism assigns f(z)=F(^{t}(z, 1))\in \mathscr{M}_{k}(\Gamma) to F as above. In fact,

we have \gamma(\begin{array}{l}z1\end{array})=(_{1}^{\gamma(z)})(cz+d) for \gamma=(\begin{array}{ll}a bc d\end{array}) \in GL_{2}^{+}(R) and z\in \mathfrak{H} ; thus for F

with ( 1. 2_{a,b,c}) and \gamma\in\Gamma, we see

f(\gamma(z))=F(^{t}(\gamma(z), 1))=F(\gamma(\begin{array}{l}z1\end{array}) (cz+d)^{-1})=(cz+d)^{k}F(\gamma(\begin{array}{l}z1\end{array}) )

=(cz+d)^{k}F(t(z, 1))=(cz+d)^{k}f(z)r

This proves ( 1. 1_{b}) . The conditions ( 1. 1_{a,c}) for f are obvious from ( 1. 2_{a,c})

for F. The inverse correspondence can be defined as

F(\iota(\omega_{1}, \omega_{2}))=\omega_{2}^{-k}f(z) for f\in \mathscr{M}_{k}(\Gamma) (z=\omega_{I}/\omega_{2})(

We call the function F corresponding to f as above the homogeneous form
of f. Classically the homogeneous form is used often (e . g. see [1]), and is
rather more suited for our later use. This is because we recall here the
definition of the homogeneous form. We hereafter identify the space \mathscr{M}_{k}(\Gamma)

with that of the homogeneous forms on \mathfrak{Z} .
Now we are going to give some explanation on the process of forming

the transformation equation of f in \mathscr{M}_{k}(\Gamma) . Let R be a complete set of
representatives for \Gamma\backslash SL_{2}(Z) , and define

(1. 3) \Phi(X;f)=\overline{1} I \alpha\in R(X-f|_{k}\alpha)=\sum_{m=0}^{tl}(-1)^{m}\sigma_{m}(f)X^{d-m}’.

where d=[SL_{2}(Z):\Gamma] and \sigma_{m}(f) is the m-th elementary symmetric function
of variables \{f|_{k}\alpha\}_{a\in R} . The equation \Phi(X;f)=0 will be called the transfor-
mation equation of f. We see easily that

(1. 4) \sigma_{m}(f)\in \mathscr{M}_{km}(SL_{2}(Z))\tau

It is well known that \sigma_{m}(f) can be expressed uniquely as an isobaric poly-
nomial of g_{2} and g_{3} , where g_{2}\in \mathscr{M}_{4}(SL_{2}(Z)) and g_{3}\in \mathscr{M}_{6}(SL_{2}(Z)) are defined by
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g_{2}(l( \omega_{1}, \omega_{2}))=60\sum_{m,nC- Z}’(m\omega_{1}+n\omega_{2})^{-4}

=(2 \pi/\omega_{2})^{4}\{\frac{1}{12}+20\sum_{n=1}^{\infty}(\sum_{0<aI’\iota}d^{3})e(nz)\} ,

and
g_{3}(^{\iota}( \omega_{1}, \omega_{2}))=140\sum_{m,n\in Z}’(m\omega_{1}+n\omega_{2})^{-6}

=(2 \pi/\omega_{2})^{6}\{\frac{1}{216}-\frac{7}{3}\sum_{n=1}^{\infty}(\sum_{0<(lIn}d^{5})e(nz)\} .

Let us explain this in more detail. As classically known, we can take a ca-
nonical basis of \mathscr{M}_{k}(SL_{2}(Z)) for even k\geqq 4 as described below: We know that

r=\dim \mathscr{M}_{k}(SL_{2}(Z))\backslash =[k/12] or [k/12]+1

according as k\equiv 2 mod 12 or not.
Then 4a+6b=k-12(r-1) has the unique solution with non-negative integers
a and b. Put

( 1. 5_{a}) h_{i}=(12g_{2})^{a}(216g_{3})^{b\dagger 2(r-1-i)}\Delta^{i} (0\leqq i\leqq r-1) ,\cdot

where \Delta=g_{2}^{3}-27g_{3}^{2}=(2\pi/\omega_{2})^{12}e(z)i^{-}I_{n=1}^{\infty}(1-e(nz))^{24} . Write

h_{i}(c( \omega_{1}, \omega_{2}))=(2\pi/\omega_{2})^{k}\sum_{j=0}^{\infty}c(i,j)e(jz)

Then c(i,j) are rational integers and the matrix of the Fourier coefficients
has the convenient form:

( 1. 5_{b}) (c(i, j))_{i,j=0,1,\cdots,r-1}=(11..*0\cdot 1)

This shows that \{h_{0}, \cdots, h_{r-1}\} is a basis of \mathscr{M}_{k}(SL_{2}(Z)) ; in particular, every
modular form h= \sum_{n=0}^{\infty}c(n)e(nz) of \mathscr{M}_{k}(SL_{2}(Z)) is a linear combination of
h_{i} with coefficients in \Lambda=Z[c(n)|0\leqq n<r] . Thus we can express h as an
isobaric polynomial of g_{2} and g_{3} with coefficients in \Lambda . The uniqueness
of the polynomial follows from [12, Prop. 2. 27 and its proof]. The integrality
over \Lambda of the expression of h by the basis h_{i} will guarantee the integrality
of the specialized equation discussed in \S 3 (see the statement below (3. 6) in
\S 3). In order to determine the coefficients of this isobaric polynomial, one
may use the Fourier coefficients of (2\pi/\omega_{2})^{-4}g_{2} , (2\pi/\omega_{2})^{-6}g_{3} and (2\pi/\omega_{2})^{-k}h

instead of those of g_{2} , g_{3} and h. When we deal with those isobaric poly-
nomials, we hereafter drop the factor of the power of 2\pi/\omega_{2} .

To relate our equations to those classically investigated, we are going
to specialize the group \Gamma to
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\Gamma_{0}(N)=\{(\begin{array}{ll}a bc d\end{array})\in SL_{2}(Z)|c\equiv 0 mod N\}

The above argument still holds even for meromorphic modular forms f of
weight k, but in this case, the coefficients of \Phi(X;f) become rational func-
tions of g_{2} and g_{3} . For example, let us take the usual J-invariant; namely,
J is defined by

J(z)=12^{3}g_{2}(z)^{3}/\Delta(z)t

We may take J(Nz) as f ; then the equation \Phi(X;J(Nz))=0 is classically
called the transformation (or modular) equation of level N (cf. Fricke [1,
II . 3. 2, pp. 342-349] or Shimura [9, \S 5] ) .

\S 2. Transformation equations of arithmetic modular functions

In this section, we first recall Shimura’s theory of arithmetic modular
functions and then explain its relation to transformation equations. The main
reference is his book [12, Chap. 6].

For a positive integer N, we write \mathscr{F}_{N} for the field of modular functions
on \mathfrak{H}/\Gamma(N) of the form g/f for some f, g\in \mathscr{M}_{k}(\Gamma(N))(k>0) with Fourier
coefficients in k_{N}=Q(e(1/N)) . We further define for a subring \Lambda of C and
\Gamma=\Gamma_{0}(N) , \Gamma_{1}(N) or \Gamma(N) ,

\mathscr{M}_{k}(\Gamma;\Lambda)=\{f\in \mathscr{M}_{k}(\Gamma)|f(z)=\sum_{n=0}^{\infty}a(n)e(nz/N) , a(n)\in\Lambda for all n\}\tau

Here \Gamma_{1}(N) is a subgroup of \Gamma_{0}(N) defined by

\Gamma_{1}(N)=\{(\begin{array}{ll}a bc d\end{array})\in SL_{2}(Z)|a\equiv d\equiv 1 mod N, c\equiv 0 mod N\}

We can define an action of \sigma\in Ga1(k_{N}/Q) on \mathscr{M}_{k}(\Gamma;k_{N}) by

f^{\sigma}(z)= \sum_{n=0}^{\infty}a(n)^{\sigma}e(nz/N) for f(z)= \sum_{n=0}^{\infty}a(n)e(nz/N)

Then this action is known to be well defined (cf. [10, \S 4 Prop. 4]). Thus,
for h=g/f\in \mathscr{F}_{N} with g, f\in \mathscr{M}_{k}(\Gamma(N);k_{N}) , h^{\sigma}=g^{\sigma}/f^{\sigma} is also contained in \mathscr{F}_{N}

and this gives an action of Gal (k_{N}/Q) on \mathscr{F}_{N} . In [12], \mathscr{F}_{N} is defined as
the field generated over Q by J(z) and

f_{a}( \omega)=\frac{g_{2}(\omega)g_{3}(\omega)}{\Delta(\omega)}\wp(a\omega;\omega) (\omega\in_{1}\mathfrak{Z}’)

for all a=(r/N, s/N) with 0\leqq r<N, 0\leqq s<N and (r, s)\neq(0,0) , where

\wp_{(u} _{;} _{\omega)=u^{-2}+\sum_{l\in L(_{v})}’},[(u-l)^{-2}-l^{-2}]

for L(\omega)=Z\omega_{1}+Z\omega_{2} , \omega=^{t}(\omega_{1}, \omega_{2}) .
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By [12, Prop. 6. 9], this definition is equivalent to the one given above. The
function f_{a} for a\in Q^{2}-Z^{2} depends only on a mod Z, and f_{-a}=f_{a} .

It is known by [12, Th. 6. 6] that \mathscr{F}_{N} is a finite Galois extension of
\mathscr{F}_{1}=Q(J) , and Gal (\mathscr{F}_{N}/Q(J))\cong GL_{2}(Z/NZ)/\{\pm 1\} , where \gamma\in GL_{2}(Z/NZ)/\{\pm 1\}

acts on f_{a} and J through
f_{a^{\gamma}}=f_{a\gamma} and J^{\gamma}=J

Then the action of \sigma\in Ga1(k_{N}/Q) on \mathscr{F}_{N} as defined above corresponds to the
matrix

(\begin{array}{ll}1 00 d\end{array})\in GL_{2}(Z/NZ)/\{\pm 1\}

when e(1/N)^{\sigma}=e(d/N) (cf. [10, \S 4 Prop. 4]). Furthermore, the field \mathscr{F}_{N}

contains k_{N} and, as seen in [12, Th. 6. 6], the element \gamma\in GL_{2}(Z/NZ)/\{\pm 1\}

acts on e(1/N) as e(1/N)^{\gamma}=e(\det(\gamma)/N) . Since f_{a\gamma}=f_{a}|\gamma by the definition of
f_{a}, every \gamma\in SL_{2}(Z) defines an automorphism of \mathscr{F}_{N} and the corresponding
element of GL_{2}(Z/NZ)/\{\pm 1\}(=Ga1(\mathscr{F}_{N}/Q(J))) is the natural image \gamma mod N
in GL_{2}(Z/NZ)/\{\pm 1\} .

Let us put

U_{0}(N)=\{(\begin{array}{ll}\prime a b0 d\end{array})\in GL_{2}(Z/NZ)|a , d\in(Z/NZ)^{\cross} , b\in Z/NZ\} ,

and
U_{1}(N)=\{\pm(\begin{array}{ll}1 b0 d\end{array}) \in GL_{2}(Z/NZ)|d\in(Z/NZ)^{X’} , b\in Z/NZ\}

Let \mathscr{K}_{N} and \mathscr{L}_{N} be the subfields of \mathscr{F}_{N} corresponding to U_{0}(N)/\{\pm 1\} and
U_{1}(N)/\{\pm 1\} , respectively. Then by [12, Prop. 6. 9], we know

(2. 1) If h=f/g with g, f\in \mathscr{M}_{k} ( \Gamma_{0}(N) ; Q) (resp. \mathscr{M}_{k}(\Gamma_{1}(N) ; Q) ), then h\in \mathscr{K}_{N}

(resp. \mathscr{L}_{N}).

By [10, Th. 6], (2. 1) can be generalized as

(2. 2) If h=f/g with g, f\in \mathscr{M}_{k}(\Gamma_{0}(N);K) (resp. \mathscr{M}_{k}(\Gamma_{1}(N) ; K) ), then h\in

K\mathscr{K}_{N} (resp. K\mathscr{L}_{N}) for any algebraic number fifield K.
For \varphi\in \mathscr{K}_{N}, if \varphi^{\sigma}\neq\varphi for any non-trivial isomorphism \sigma of \mathscr{K}_{N} into

\mathscr{F}_{N} over Q(J) , then \varphi gives a generator of \mathscr{K}_{N} over Q(J) . Thus, by our
construction of \Phi(X;\varphi) , we know that

(2. 3) \Phi(X;\varphi) is irreducible as an element of Q(J)[X] if \varphi|\gamma\neq\varphi for \gamma\in

\Gamma_{0}(N)\backslash SL_{2}(Z) and \gamma\neq 1 .
In fact, one can take a representative set for U_{0}(N)\backslash GL_{2}(Z/NZ) in
\Gamma_{0}(N)\backslash SL_{2}(Z) . In general, when f is an element of \mathscr{M}_{k}(\Gamma_{0}(N);Q) , then
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(2. 4) \Phi(X;f/g) is irreducible for a Q-rational meromorphic modular form
g of weight k on SL_{2}(Z) if f|_{k}\gamma\neq f for any \gamma\in\Gamma_{0}(N)\backslash SL_{2}(Z) and \gamma\neq 1 .

Now, if we form the transformation equation \Phi(X;f)=0 for f\in \mathscr{F}_{N},
\Phi(X;f)=0 gives an equation of f over Q(J) . Especially, when we take
J(Nz) as f, the classical transformation equation \Phi(X;J(Nz))=0 gives the
defining equation of the field \mathscr{K}_{N} over Q(J) (cf. [12, p. 157]).

\S 3. Specialization of transformation equations at elliptic curves
In this section, we specialize transformation equations at an elliptic curve

defined over Q.
It is known by Tate [13, Th. 3. 2 and Remark 3, p. 40] that every

elliptic curve defined over Q has a minimal model over Z, which is defined
by the equation of the form:

(3. 1) y^{2}+a_{1}xy+a_{3}y=x^{3}+a_{2}x^{2}+a_{4}x+a_{6}

with a_{1} , \cdots , a_{6}\in Z . Take the minimal model defined by the equation (3. 1).
Then according to [13, (1. 2)], putting

(3. 2) \{\begin{array}{l}b_{2}=a_{1}^{2}+4a_{2},b_{4}=a_{1}a_{3}+2a_{4;}b_{6}=a_{3}^{2}+4a_{6},b_{8}=a_{1}^{2}a_{6}-a_{1}a_{3}a_{4}+4a_{2}a_{6}+a_{2}a_{3}^{2}-a_{4}^{2},12\overline{g}_{2}=b_{2}^{2}-24b_{4}.216\overline{q}_{s}=-b_{2}^{3}+36b_{2}b_{4}-216b_{6},\Delta^{-}=-b_{2}^{2}b_{8}-8b_{4}^{3}-27b_{o^{2}}+9b_{2}b_{4}b_{6}=\overline{g}_{2}^{3}-27\overline{g}_{3^{2}}..\end{array}

we know that the curve \mathcal{E} defined by

y^{2}=4x^{3}-\overline{g}_{2}x-\overline{g}_{3}

is isomorphic over Q to the curve (3. 1). Thus

(3. 3) 12\overline{g}_{2},216\overline{g}_{3} and \Delta^{-} are all rational integers.

This is why we have started from the minimal model (3. 1).
As is well known, by choosing a suitable basis \{c_{1}, c_{2}\} of the singular

homology group H_{1}(\mathcal{E};Z) , we see that \omega={}^{t}(\omega_{1}, \omega_{2}) for \omega_{1}=.\uparrow_{c_{1}}dx/y, a_{\acute{2}}=

.|_{c_{2}}dx/y satisfies:
(3. 4_{a}) \omega\in \mathfrak{Z} ;

( 3. 4_{b}) g_{2}(\omega)=\overline{g}_{2} , g_{3}(\omega)=\overline{g}_{3} and \Delta(\omega)=\Delta^{-}
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Thus the Weierstrass functions \wp(u;\omega) and \wp’(u;\omega) uniformize the elliptic
curve \mathcal{E} (cf. [12, 4. 2]) ; namely, we know

C/L(\omega)\equiv \mathcal{E}(C)\subset P^{2}(C) ,
(3. 5)

u\mapsto(\wp(u ; \omega), \wp’(u ; \omega), 1)

where L(\omega)=Z\omega_{1}+Z\omega_{2} and \mathcal{E}(C) is the group of C-rational points of \mathcal{E} .
Now we consider the transformation equation \Phi(X;f)=0 for a modular

form f of \mathscr{M}_{k}(\Gamma) as in \S 1. For a subring \Lambda of C, we assume
(3. 6) all the coefficients \sigma_{m}(f) of the polynomial \Phi(X;f) have \Lambda -rational
Fourier expansions.

Then every \sigma_{m}(f) is expressed as a \Lambda -linear combination of \{h_{i}\} in ( 1. 5_{a}) .
By substituting \overline{g}_{2} and \overline{g}_{3} for g_{2} and g_{3} in the isobaric polynomials of \sigma_{m}(f) ,
we obtain an equation \Phi(X;f, \mathcal{E})=0 over \Lambda . This equation will be called
the specialized equation of \Phi(X;f)=0 at \mathcal{E} .

We suppose \Gamma=\Gamma_{0}(N) for a positive integer N, and put

C=\{ ( \wp(a\omega_{2} ; ^{\omega}) , \wp’(a\omega_{2} ; ^{\omega}) , 1)\in P^{2}(C)|a=r/N, 0\leqq r<N, r\in Z\}\subset \mathcal{E}(C)
‘

Then we define a field K_{N} by the fixed field in \overline{Q} by all automorphisms \sigma

of \overline{Q} such that there is an isomorphism over \overline{Q} of (\mathcal{E}, C) onto (\mathcal{E}^{\sigma}, C^{\sigma}) .
To consider the structure (\mathcal{E}, C) is equivalent to consider the pair (\mathcal{E}, \mathcal{E}/C)

for the quotient \mathcal{E}/C of \mathcal{E} by the subgroup C. Thus K_{N} is generated over
Q by the J-invariants of \mathcal{E} and \mathcal{E}/C ; namely, we have

K_{N}=Q ( J(\omega_{1}/\omega_{2}) , J(N\omega_{1}/\omega_{2})).
If every coefficient of \Phi(X;h) for h\in S_{k}(\Gamma_{0}(N)) has Q-rational Fourier
expansion and if the specialized equation \Phi(X;h, \mathcal{E})=0 is irreducible over
Q, then K_{N} is generated over Q by the root (2\pi/\omega_{2})^{k}h(\omega_{1}/\omega_{2}) of \Phi(X;h, \mathcal{E})=0 .
Thus the definition of K_{N} in the corollary in Introduction coincides with that
given here. This fact follows easily from the argument in the proof of the
following proposition. It is well known (cf. [12, p. 157]) that

\mathscr{K}_{N}=Q(J(z), J(Nz))

This shows

(3. 7) K_{N} is the residue fifield of the valuation of \mathscr{K}_{N} at the point \omega_{1}/\omega_{2}\in \mathfrak{H} .
Put \mathcal{E}[N]=\{x\in \mathcal{E}|Nx=0\} . Then we see from (3. 5) that

(3. 8) \mathcal{E}[N]\cong(Z/NZ)^{2} through (Z/NZ)^{2}\ni a\mapsto(\wp(a\omega;\omega), \wp’(a\omega;\omega), 1)\in \mathcal{E}[N]
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Let F_{N} be the smallest field of rationality of \mathcal{E}[N] over Q. Then F_{N} is

a finite Galois extension of Q and through the isomorphism (3. 8), we can
identify Gal (F_{N}/Q) with a subgroup of GL_{2}(Z/NZ) . Put

U_{0}(N)=\{(\begin{array}{ll}a bc d\end{array})\in GL_{2}(Z/NZ)|c=0\}

Then we see from the construction of \mathscr{F}_{N} in [12, Chap. 6] that

(3. 9) if Gal (F_{N}/Q)=GL_{2}(Z/NZ) , then K_{N} is the fixed field of U_{0}(N) .

PROPOSITION. Assume (3. 6) for f\in \mathscr{M}_{k}(\Gamma_{0}(N)) . Then \Phi(X;f, \mathcal{E}) belongs

to \Lambda[X] and \Phi(X;f, \mathcal{E})=0 has at least one root in \Lambda K_{N}.

PROOF. The fact \Phi(X;f, \mathcal{E})\in\Lambda[X] was already shown; so we are

going to prove the second one. To reduce the problem to the case of

modular functions, we want to find a modular form \psi of weight k with
\psi(\omega)\neq 0 whose behavior under any automorphism over Q(J) is known. Put

(3. 10) \delta(\omega)=\Delta(\omega)^{1/6}=(2\pi/\omega_{2})^{2}e(z/6)\overline{[}[_{n=1}^{\infty}(1-e(nz))^{4}

(\omega={}^{t}(\omega_{1}, \omega_{2})\in \mathfrak{Z} , z=\omega_{1}/\omega_{2})

Then it is known by Hurwitz [3, p. 566] that \delta\in S_{2}(\Gamma(6)) . By the addition

formula combined with the definition of the Siegel functions g_{a} for a\in Q^{2}

as in Kubert-Lang [6, p. 29], we know

(3. 11) \wp(\frac{1}{2}\omega_{1} ; \omega)-\wp(\frac{1}{2}\omega_{2} ; \omega)=-\frac{g_{a+b}(\omega)q_{a-b}(\omega)}{g_{a}^{2}(\omega)g_{b}^{2}(\omega)}.\delta(\omega)

for a=( \frac{1}{2},0) , b=(0, \frac{1}{2}) .

The function \frac{g_{a+b}g_{a-b}}{g_{a}^{2}g_{b}^{2}} is contained in \mathscr{F}_{6} (cf. [6, K3, p. 28]). Thus \delta(\omega) is

contained in F_{6} . For f as in the proposition, we know \varphi=f/\delta^{k/2} is contained
in \Lambda \mathscr{F}_{6N}. Any automorphism \sigma of \Lambda \mathscr{F}_{6N} over \mathscr{F}=\Lambda \mathscr{K}_{N} can be represented

by an element \gamma\in\Gamma_{0}(N) and d\in(Z/6NZ)^{\cross} so that \sigma=(\begin{array}{ll}1 00 d\end{array}) ( \gamma mod 6N) \in

GL_{2}(Z/6NZ) . Then we see \varphi^{\sigma}=(f|\gamma)/(\delta^{k/2}|\gamma)=f/(\delta^{k/2}|\gamma) from the definition.

On the other hand, we see \delta|\gamma=\zeta(\gamma)\delta for a 6-th root \zeta(\gamma) of unity by [3,

p. 566]. Any automorphism \sigma’ of \Lambda F_{6N} over F=\Lambda K_{N} can be naturally lifted

to an automorphism \sigma of \Lambda \mathscr{F}_{6N} over \mathscr{F} by Hilbert’s theory of decomposition

groups. The automorphism \sigma is represented by \gamma and d as above, and we

see from (3. 11) that
\delta(\omega)^{\sigma’}=(\delta|\gamma)(\omega)=\zeta(\gamma)\delta(\omega)
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Thus f(\omega)=\delta(\omega)^{k/2}\varphi(\omega) is invariant under all the automorphisms of \Lambda F_{6N} over
F. Note that \delta(\omega)\neq 0 by (3. 10). Then this shows the proposition.

Let us now give some remarks. When f is a modular form of level 1
with algebraic Fourier coefficients, then it is clear from the definition of the
basis \{h_{i}\} as in ( 1. 5_{a}) that

(3. 12) the isobaric polynomial P(g_{2}, g_{3}) off in g_{2} and g_{3} has coefficients in
the fifield K_{f} ,

where K_{f} is the field generated over Q by all the Fourier coefficients of f.
Furthermore, if f(z)= \sum_{n=0}^{\infty}a(n)e(nz)\in \mathscr{M}_{k}(SL_{2}(Z)) , it is known that
f^{\sigma}(z)= \sum_{n=0}^{\infty}a(n)^{\sigma}e(nz) again belongs to \mathscr{M}_{k}(SL_{2}(Z)) for any automorphism \sigma

of C. Especially,

(3. 13) the isobaric polynomial of f^{\sigma} is given by P^{\sigma}(g_{2}, g_{3}) ,

where \sigma acts on P(g_{2}, g_{s^{)}}, through its coefficients.
Now we consider the transformation equation \Phi(X;gE_{\lambda,N}^{*})=0 as in the

introduction. Note that if h\in \mathscr{M}_{\nu}(\Gamma_{0}(N);Q) , then by virtue of [11, Th. 3],
for any primitive form f\in S_{\kappa}(SL_{2}(Z)) and for any m\in Z with
(\kappa+\nu)/2-1<m<\kappa ,

(3. 14_{a}) \frac{D(m,f,h)}{\pi^{\kappa}\langle ff\rangle},\in K_{f} ;

(3. 14_{b}) \{\frac{D(m,f,h)}{\pi^{\kappa}\langle ff\rangle},\}^{\sigma}=\frac{D(m,f^{\sigma},h)}{\pi^{l}\langle f^{\sigma},f^{\sigma}\rangle} for any automorphism \sigma of C

Now take an elliptic curve \mathcal{E} defined over Q. Then the sum S_{\mu} of \mu -th
power of all the roots of \Phi(X;gE_{\lambda,N}^{*}, \mathcal{E})=0 is expressed by the theorem as

S_{\mu}=c \sum_{J\in P(k\mu^{)^{\frac{D(k\mu-1,fg^{\mu}(E_{\lambda,N}^{*})^{\mu-1})}{\pi^{k\mu}\langle ff\rangle}}}}’,(\frac{2\pi}{\omega_{2}})^{k\mu}f(\omega_{1}/\omega_{2})(

Note that E_{\lambda,N}^{*} has Q-rational Fourier expansion. Then for any automor-
phism \sigma of C, we know from (3. 13) and (3. 14_{b}) that if g\in S_{l}(\Gamma_{0}(N);Q) , then

(3. 15) \{\frac{D(k\mu-1,f,g^{\mu}(E_{\lambda,N}^{*})^{\mu-1})}{\pi^{k\mu}\langle ff\rangle},(\frac{2\pi}{\omega_{2}})^{k\mu}f(\omega_{1}/\omega_{2})\}^{\sigma}

= \frac{D(k\mu-1,f^{\sigma},g^{\mu}(E_{\lambda,N}^{*})^{\mu-1})}{\pi^{k\mu}\langle f^{\sigma},f^{\sigma}\rangle}(\frac{2\pi}{\omega_{2}})^{k\mu}f^{\sigma}(\omega_{1}/\omega_{2}) .

This shows S_{\mu}\in Q for every \mu ; namely, \Phi(X;gE_{\lambda,N}^{*}, \mathcal{E})\in Q[X] .
When h\neq h|\gamma for h=gE_{\lambda,N}^{*} with any \gamma\in SL_{2}(Z)-\Gamma_{0}(N) ,

(3. 16) \Phi(X;gE_{\lambda,N}^{*}, \mathcal{E}) is irreducible over Q except for fifinitely many
elliptic curves \mathcal{E} .
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\S 4. Proof of the theorem

Let \mathfrak{F} be a fundamental domain for \mathfrak{H}/SL_{2}(Z) and m(\mathfrak{F}) the volume of
\mathfrak{F} relative to the measure y^{-2}dxdy . We know m(\mathfrak{F})=\pi/3 . Let R be a
complete set of representatives for \Gamma_{0}(N)\backslash SL_{2}(Z) . Then \mathfrak{F}_{0}=\cup\alpha\in R\alpha^{-1}(\mathfrak{F}) is
a fundamental domain for \mathfrak{H}/\Gamma_{0}(N) . For f\in S_{\kappa}(\Gamma_{0}(N)) and h\in \mathscr{M}_{\kappa}(\Gamma_{0}(N)) ,

the normalized Petersson inner product is defined by

\langle f, h\rangle=m(\mathfrak{F}_{0})^{-1}\int_{\mathfrak{F}_{Q}},\overline{f(z)}h(z)y^{\kappa-2}dxdy (z=x+iy) ,\cdot

where m(\mathfrak{F}_{0}) is the volume of \mathfrak{F}_{0} relative to the measure y^{-2}dxdy .
Take an arbitrary element h of S_{\nu}(\Gamma_{0}(N)) and let E_{\lambda,N}^{*} be the Eisenstein

series of weight \lambda>2 as in the introduction, then E_{\lambda,N}^{*}\in \mathscr{M}_{\lambda}(\Gamma_{0}(N)) . Put
\kappa=\lambda+\nu . Then for a primitive form f on SL_{2}(Z) of weight \kappa , we have

m(\mathfrak{F})\langle f, Tr (hE_{\lambda,N}^{\star_{1}})\rangle

= \int_{\mathfrak{F}}\overline{f}(\sum_{a\in R}hE_{\lambda,N}^{*}|_{\kappa}\alpha)y^{\kappa-2}dxdy

= \int_{\mathfrak{F}_{0}}\overline{f}hE_{\lambda,N}^{*}y^{\kappa-2}dxdy

=(4\pi)^{-(\kappa-1)}\Gamma(\kappa-1)D(\kappa-1,f, h)1

The last equality follows from the equality at s=\kappa-1 of [11, (2.3)]. On
the other hand, we can write

Tr (hE_{\lambda,N}^{*})= \sum_{f\in P(\kappa}{}_{)}C(f)f with c(f)\in C ,

where P(\kappa) is the set of all primitive forms in S_{\kappa}(SL_{2}(Z)) . By the orth-
gonality for primitive forms under the Petersson inner product, c(f) is
expressed as

c(f)=\langle f, Tr (hE_{\lambda,N}^{*})\rangle/\langle f,f\rangle

Thus we have

(4. 1) Tr (hE_{\lambda,N}^{*})=(4 \pi)^{-(\kappa-1)}\Gamma(\kappa-1)m(\mathfrak{F})^{-1}\sum_{f\in P(_{\kappa})}\frac{D(\kappa-1,fh)}{\langle ff\rangle},’ f

=3 \cdot 4^{-(\iota-1)}\Gamma(\kappa-1)\sum_{f\in P(_{\kappa})}\frac{D(\kappa-1,fh)}{\pi^{\kappa}\langle f,f\rangle},f(

Now, let g be an element of S_{l}(\Gamma_{0}(N)) . For a positive integer \mu , we take
g^{\mu}(E_{\lambda,N}^{*})^{\mu-1} as h in (4. 1). Then we have

Tr (gE_{\lambda,N}^{*})^{\mu}=3 \cdot 4^{-(k\mu-1)}\Gamma(k\mu-1)\sum_{J\in P(k\mu^{)}}\frac{D(k\mu-1,fg^{\mu}(E_{\lambda,N}^{*})^{\mu-1})}{\pi^{k\mu}\langle ff\rangle},,f ,
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where k=l+\lambda . Thus proves the theorem.

\S 5. Numerical examples

We shall give an example of the transformation equation \Phi(X;gE_{\lambda,N}^{*})=0

and the specialized equations \Phi(X;gE_{\lambda,N}^{*}, \mathcal{E})=0 at several elliptic curves \mathcal{E} .
A few more examples of this type of equations will be published in [7].

Let us take a primitive form h\in S_{4}(\Gamma_{0}(5)) . Since we know
dim S_{4}(\Gamma_{0}(5))=1 , h is uniquely determined. Put g=-5\cdot 13h to guarantee Z-
rationality of the equation. Then the transformation equation \Phi(X;gE_{4,5}^{*_{1}},)=0

is given by

\Phi(X;gE_{4,5}^{A})=X^{6}-25(12g_{2})\Delta X^{4}-1440\Delta^{2}X^{3}+155(12g_{2})^{2}\Delta^{2}X^{2}

+\{(12g_{2})(216g_{3})^{2}\Delta^{2}+18096(12g_{2})\Delta^{3}\}X

+\{65(216g_{3})^{2}\Delta^{3}+538240\Delta^{4}\}

=0t

The coefficients of this equation are calculated through the Newton formula
by the power sums Tr (gE_{4,5}^{*})^{\mu} given below :

\mu
| Tr (gE_{4,5}^{*})^{\mu}

654321 | 7610(216g_{3})^{2}\Delta^{3}+16815360\Delta^{4}630(12g_{2})^{2}\Delta^{2}4320\Delta^{2}50(12g_{2})\Delta-5(12g_{2})(216g_{3})^{2}\Delta^{2}+89520(12g_{2})\Delta^{3}0

In what follows, we are going to give the specialized equations
\Phi(X;gE_{4,5}^{*}, \mathcal{E})=0 at several elliptic curves \mathcal{E} defined over Q. We first list
the curves where we specialize the above transformation equation
\Phi(X;gE_{4,5}^{*})=0 :

Case A : y^{2}=4x^{3}- \frac{2^{2}}{3}x+\frac{19}{3^{3}} (11A);

Case B : y^{2}=4x^{3}-2^{2}x+1 (37A) ;

Case C : y^{2}=4x^{3}- \frac{2^{3}\cdot 5}{3}x+\frac{251}{3^{3}} (37 B) ;
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Case D : y^{2}=4x^{3}+2^{3}\cdot 3x-2^{3} ;

Case E : y^{2}=4x^{3}+1 (27 A) [

The curve in Case A is isogeneous to the modular curve X_{0}(11)_{/e}(\cong \mathfrak{H}/\Gamma_{0}(11)) .
This curve is referred in [14] as 11A. The curves in Case B and Case C

correspond the distinct non-isogeneous factors of the jacobian variety of
X_{0}(37)_{/Q} . The curve in Case D is found in Serre [8, 5. 9. 2], which has
potential everywhere good reduction. The curve in Case E has complex
multiplication under Q(\sqrt{-3}) . The specialized equations \Phi(X;gE_{4,5}^{*}, \mathcal{E})=0

at these elliptic curves are listed as:

\frac{\mathcal{E}}{Case}A

||X^{6}+4400X^{4}-174240X^{3}+480^{\cdot}1280X^{2}-340643072X+5881529280Discriminantoftheir_{2reduciblefactorofdegree}5C_{onstant}termoftheirreducib1efactorofdegree5=(X-22)(X^{b}+22X^{4}+4884X^{3}-66792X^{2}+3331856X-267342240)==-2^{24}\cdot 5^{3}\cdot 11^{8}\cdot 19\cdot 389^{2}\cdot 142939^{2}-2^{b}\cdot 3\cdot 5\cdot 11^{2}\cdot 4603\Phi(X,gE_{4,5}^{*},\mathcal{E})

\frac{CaseB1X^{6}-4+11623607305604400X^{4}-1971360X^{3}+Discri\min ant=2^{36}\cdot 3^{12}\cdot 5^{b}\cdot 11^{6}Constantterm=2^{6}\cdot 5\cdot 37^{3}\cdot 717}{CaseC1X^{6}-1+1428409737312048000X^{4}-1971360X^{3}+54321Discri\min ant=2^{36}\cdot 5^{b}\cdot 37^{12}\cdot 97^{2}Constantterm=2^{6}\cdot 3\cdot 5\cdot 37^{3}}.\cdot.\frac{1112.42044237^{2}}{92000X^{2}+1029841968640X}488897280X^{2}+47063460096X29374937251^{4}\cdot 158512865466953^{2}

Case D

|X^{6}-111974400X^{4}-348285173760X^{3}+3109490031329280X^{2} c_{0}term=2^{30}\cdot 3^{20}\cdot 5\cdot 31\cdot 53Discri\min_{nstant}ant=2^{1b6}\cdot 3^{102}\cdot 5^{b}\cdot 523^{2}\cdot 1993^{2}+19395514284707414016X+30756189783160164188160

Case E
|X^{6}-1049760X^{3}+226351350720 cterm=2^{6}\cdot 3^{12}\cdot 5\cdot 11^{3}Discri\min_{onstant}ant=2^{36}\cdot 3^{66}\cdot 5^{b}\cdot 11^{6}\cdot 17^{6}
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In the above table, all the factors of the specialized equations are irreducible
over Q. The factors of the discriminants and the constant terms are primes
if they are less than 10^{10} ; otherwise, we do not know whether they are prime
or not.
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