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Non-existence of higher order non-singular
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0. Introduction

In [6] Pohl formulated and studied the higher order complex analytic
geometry and recently in [10] Watanabe studied higher order non-singular
holomorphic embeddings of algebraic manifolds into Grassmann manifolds.
In this note we study non-existences of higher order non-singular holomorphic
immersions of complex projective spaces and their non-singular complex
hypersurfaces into complex projective spaces by means of Chern classes.
Our main results are Theorem 2. 2 and Corollary 3. 3. It is well known
that non-singular complex algebraic curves of degree >2 in a complex pr0-

jective plane have inflection points. The statement (iii) of Corollary 3. 3 is
a generalization of this fact to a case of higher dimension and higher order.
Let P_{m} be the m-dimensional complex projective space and for q\geq 2, we
denote a non-singular complex hypersurface of degree q in P_{n+1} by V_{n}(q) .
In [2] Feder proved the following theorem.

THEOREM 0. 1. If f:P_{n}arrow P_{N} is a holomorphic immersion and N<2n ,

then deg (f)=1, where deg (/) is a degree of f (see Section 2 of this note).
Furthermore in [7] Samsky proved the following theorem.
THEOREM 0. 2. If f : V_{n}(q)arrow P_{N} is a holomorphic immersion and

N<2n , then deg (f)=1, where deg (f) is a degree of f (see Section 3 of
this note).

In our terminology, holomorphic immersions may be regarded as first
order non-singular holomorphic mappings or holomorphic mappings without
0-th order inflection points (see Section 1 of this note). Hence the statement
(i) of Theorem 2. 2 (Corollary 3. 3 resp.) is a result for the higher order
case of the above Theorem 0. 1 (0. 2 resp.). The proofs much depend upon
symmetric power operations in K-theory which Suzuki [8, 9] firstly used
in KO-theory to show non-existences of higher order non-singular differ
entiable immersions of real (and complex resp.) projective spaces into euclidean
or real (and complex resp.) projective spaces. The author is grateful to Mr.
Watanabe for enlightening conversations and advices.
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1. Preliminaries.

Let \etaarrow M_{n} be a holomorphic vector bundle of rank m over a complex
manifold M_{n} of complex dimension n and let \phi:\etaarrow C^{N+1} be a holomorphic
mapping which is complex linear on each fibre of \eta . Then we call \phi a
realization of \eta . We say that the realization \phi is non-singular at x\in M_{n}

if \phi|_{x} is of maximal rank, where \phi|_{x} is a restriction of \phi to the fibre \eta_{x} at
x and that \phi is non-singular if \phi is non-singular at each x\in M_{n} . \phi is non-
singular if and only if \phi is injective or surjective on each fibre of \eta as
m\leqq N+1 or m\geqq N+1 , respectively. For k\geqq 0 , we put

\mu(n, k)=(\begin{array}{l}n+k-1k\end{array})-
,

\nu(n, k)=(\begin{array}{l}n+kk\end{array})-1

We denote the k-fold symmetric tensor product of \eta by

O^{k}\eta(O^{0}\eta=1, O^{1}\eta=\eta Ii

where 1 is a trivial complex line bundle over M_{n} . It is a holomorphic
vector bundle over M_{n} of rank \mu(m, k) . Let \xiarrow M_{n} be a holomorphic line
bundle over M_{n} . Now we introduce a holomorphic vector bundle \Delta_{p}\xi over
M_{n} of rank \nu(n, k)+1 which is called the p-th derivative of \xi and defined
by Pohl in [6]. Its precise definition and detailed discussion are described
in [6], [10] but we explain roughly it. For “n-multi indices”ji . e. , n-tuples
of non-negative integers \alpha=(\alpha_{1}, \cdots, \alpha_{n}) , \beta=(\beta_{1}, \cdots, \beta_{n}) , we put \alpha+\beta=(\alpha_{1}+\beta_{1} ,
\ldots , \alpha_{n}+\beta_{n}) , |\alpha|=\alpha_{1}+\cdots+\alpha_{n} and \alpha!=\alpha_{1} ! \cdots\alpha_{n} !. Suppose that (U;z^{1_{ }},\cdots, z^{n})

is a holomorphic local chart of M_{n} and that (e) is a holomorphic local frame
field on U of \xi, where e is a holomorphic section of \xi|_{U} such that e_{x}\neq 0 for
each x\in U. For each n-multi index \alpha=(\alpha_{1}, \cdots, \alpha_{n}) with |\alpha|>0 , we set

D_{z}^{\alpha}= \frac{\partial^{|a|}}{(\partial z^{1})^{\alpha_{1}}\cdots(\partial z^{n})^{\alpha}n}

Then the holomorphic local frame field on U of \Delta_{p}\xi is of the form:

(D_{z}^{\alpha}\cdot e;|\alpha|\leqq p)j

where the following properties :

D_{z}^{\alpha}\cdot e=e (for |\alpha|=0),

D_{z}^{\gamma}\cdot(\sigma+\tau)=D_{z}^{\gamma}\cdot\sigma+D_{z}^{1}..\tau ,

D_{z}^{\gamma} \cdot(h\sigma)=\sum_{\alpha+\beta=\gamma}\frac{(\alpha+\beta)!}{\alpha!\beta!}(D_{z}^{\alpha}h)D_{z}^{\beta}\cdot\sigma
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hold for each n -multi index \gamma , any holomorphic sections \sigma , \tau of \xi_{U} and any
holomorphic function h on U. Moreover suppose that ( V;w^{1}, \cdots, w^{n}) is
another holomorphic local chart of M_{n} such that U\cap V\neq\phi and that (/) is
another holomorphic local frame field on V of \xi . Let g_{VU}, J_{VU} be transition
functions of \xi , \tau(M_{n}) on U\cap V, respectively, where \tau(M_{n}) is the holomorphic
tangent bundle of M_{n} . Let \Delta_{p}g_{VU} : U\cap V- GL(\nu(n, p)+1;C) be the transi-
tion function of \Delta_{p}\xi . Then we have that

(e)=(f) g_{VU}, (D_{z}^{i} ; 1\leqq i\leqq n)=(D_{w}^{i} ; ^{1}\leqq i\leqq n)J_{VU} ,

(D_{z}^{\alpha}\cdot e;|\alpha|\leqq p)=(D_{w}^{\alpha}.f;|\alpha|\leqq p)\Delta_{p}g_{VU} ,

J_{p}’(jJ_{VU}=(0.\cdot.......A_{11}A_{00}A_{01}...\cdot.\cdot.\cdot.\cdot\cdot.\cdot--.-.\cdot.\cdot..----...-..A_{0p}0^{!}\cdot-\cdots-\cdots\cdot--\cdot--\cdot\cdot 0\backslash .\backslash A_{pp}|\backslash |i\backslash |\iota\cdot\cdot\backslash ||\backslash .\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash .\backslash \backslash \backslash \backslash \backslash \backslash \backslash A_{p-1p}\backslash \iota_{1}||I||’|||||] ,

where A_{jj}=O^{j}J_{m}\otimes g_{vu} is the transition function of O^{j}\tau(M_{n})\otimes\xi(0\leqq j\leqq p) ;
A_{jk} is a matrix of type (\mu(n,j) , \mu(n, k)) whose components are holomorphic
functions involving partial derivatives of g_{VU} of order \leqq k-j(0\leqq j<k\leqq p) .
In [3] Feldman pointed out that \Delta_{p}\xi is regarded as J_{p}(\xi^{*})^{*} , where \xi^{*} is the
dual bundle of \xi and J_{p}(\xi^{*}) denotes the holomorphic vector bundle of p-jets
of sections of \xi^{*} . We have the following holomorphic short exact sequence
(see [6, \S III. 1).

0arrow\Delta_{p-1}\xiarrow\Delta_{p}\xiarrow O^{p}\tau(M_{n})\otimes\xiarrow 0 :

where \Delta_{0}\xi=\xi . Hence \Delta_{p}\xi is topological isomorphic to

( \sum_{j=0}^{p}O^{j}\tau(M_{n}))\otimes\xi ,

where \sum denotes Whitney sum. By \sum_{j=0}^{p}O^{j}\tau(M_{n})=O^{p}(\tau(M_{n})+1) , we have
the following proposition.

PROPOSITION 1. 1. \Delta_{p}\xi is topologically isomorphic to

O^{p}(\tau(M_{n})+1)\otimes\xi

Next we assume that a holomorphic line bundle \xi over M_{n} and its
realization \phi:\xiarrow C^{N+1} are given. We introduce the canonical realization
D_{p}(\phi):\Delta_{p}\xiarrow C^{N+1} induced by \phi . Its detailed discussion is described in [6;

Theorem 3. 12]. Let (D_{z}^{a}\cdot e;|\alpha|\leqq p) be the above holomorphic local frame
field on U of \Delta_{p}\xi . Then D_{p}(\phi) is given by
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D_{p}(\phi)|_{x}((D_{z}^{\alpha}\cdot e)_{x})=(D_{z}^{\alpha}(\phi(e)))_{x}\in C^{N+1}(|\alpha|\leqq p)

at each x\in U. Let P_{N} be the N-dimensional complex projective space and
let \pi : \gamma_{N}arrow P_{N} be the universal complex line bundle over P_{N} . We may think
of \gamma_{N} as consisting of all pairs (y, v) , where y\in P_{N} is a complex line through
the origin of C^{N+1} and v is a vector of y. The projection \pi is defined by
\pi(y, v)=y . Let \sigma:\gamma_{N}arrow C^{1V\dagger 1} be the mapping (y, v)\mapsto v . Then \sigma is a realiza-
tion of \gamma_{N} . Now let f:M_{n}arrow P_{N} be a holomorphic immersion of a complex
manifold M_{n} of complex dimension n into P_{N}(n\leqq N) . f^{-1}\gamma_{N} denotes the
pull-back of \gamma_{N} by f. Then we have a bundle mapping \hat{f}:f^{-1}\gamma_{N}arrow\gamma_{N} over

f. Clearly the mapping \sigma\circ\hat{f}:f^{-1}\gamma_{N}arrow C^{N\dagger 1} is a realization of f^{-1}\gamma_{N} . We say
that the immersion f:M_{n}arrow P_{N} is non-singular of order p at x\in M_{n} if the
canonical realization D_{p}(\sigma\circ\hat{f}) : \Delta_{p}f^{-1}\gamma_{N^{-}}C^{1v+1} induced by \sigma\circ\hat{f} is non-singular
at x and that f is non-singular of order p if f is non-singular of order p
at each x\in M_{n} . f is non-singular of order p if and only if D_{p}(\sigma\circ\hat{f}) is
injective or surjective on each fibre of \Delta_{p}f^{-1}\gamma_{N} as \nu(n, p)\leq N or \nu(n, p)\geq N,
respectively. If \nu(n.p)\leq N and f is non-singular of orader p, then it is non-
singular of order k for 1\leq k\leq p . A holomorphic immersion into the complex
projective space is first order non-singular. Suppose that k\geq 1 , \nu(n, k)\leq N

and that the holomorphic immersion f is non-singular of order k. Unless fis non-singular of order k+1 at x\in M_{n} , we say that x is a k-th order
infnlectionn point of f. If p\geq 2 , \nu(n, p)\leq N and unless the holomorphic im-
mersion f is non-singular of order p, then f has at least one inflection point
of order \leq p-1 . For k\geq 1 and a holomorphic immersion f:M_{n}arrow P_{N}(n\leq N) ,
we denote by

\delta_{k}(f) : \Delta_{k}f^{-1}\gamma_{N}-\hat{C}^{N+1}

the holomorphic homomorphism that the canonical realization D_{k}(\sigma\circ\hat{f}) in-
duces, where \hat{C}^{N+1} denotes a product bundle M_{n}\cross C^{N+1} . Moreover if f is
non-singular of order p, we denote the cokernel or the kernel of \delta_{p}(f) by
Coker \delta_{p}(f) or Ker \delta_{p}(f) as \nu(n, p)\leq N or \nu(n, p)\geq N, respectively. Then
Coker \delta_{p}(f) , Ker \delta_{p}(f) are holomorphic vector bundles of rank N-\nu(n, p) ,
\nu(n, p)-N, respectively. We will give an example of a p-th order non-
singular holomorphic embedding. Let (\zeta_{0} : \zeta_{1} : \cdots : \zeta_{n}) be homogeneous coor-
dinates for the n-dimensional complex projective space P_{n} . One gets a
holomorphic embedding

v_{p} : P_{n^{-}}P_{\nu(n,p)}

by mapping (\zeta_{0} : \zeta_{1} : \cdots : \zeta_{n}) into (M_{0}(p) : M_{1}(p):\cdots : M_{\nu(n,p)}(p)) , where M_{0}(p) ,
M_{1}(p) , \cdots , M_{y(n,p)}(p) are all possible distinct monomials of degree p in \zeta_{0} ,
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\zeta_{1} , \cdots , \zeta_{n} . It is easily shown that v_{p} is non-singular of order p. It is called
a Veronese embedding.

Last we explain the symmetric power operations in K-theorey that we
use in Section 2 and 3. Let X be a finite connected CW-complex and e(X)
a set of all isomorphism classes of complex vector bundles over X. e(X)
is a commutative semiring with 1 in which the addition and multiplication
are induced by the Whitney sum and tensor product of complex vector
bundles over X. For k\geq 1 and a complex line bundle \xi over X, \xi^{k} , \xi^{0}, \xi^{-1},
\xi^{-k} denote a k-fold tensor product of \xi , trivial complex line bundle 1, dual
bundle of \xi, k-fold tensor product of \xi^{-1}, respectively. For [\eta]\in e(X) , we
put O^{j}[\eta]=[O^{j}\eta](j\geq 0) , where [ ] denotes an isomorphism class of a com-
plex vector bundle over X. Then the operations O^{j}(j\geq 0) have the following
properties :

i) O^{0}(x)=1 , O^{1}(x)=x for x\in e(X) ,
ii) O^{k}(x+y)= \sum_{i+j=k}O^{i}(x)O^{j}(y) for x, y\in e(X) ,

iii) O^{j}([\xi])=[\xi^{j}]=[\xi]^{j} for [\xi]\in e(X) , where \xi is a complex line bundle.
Let K(X) be a ring completion of e(X) and let \theta:e(X)arrow K(X) be a natural
semiring homomorphism. We set

O_{t}(x)= \sum_{j=0}^{\infty}t^{j}O^{j}(x)

for an indeterminate t and each x\in e(X) . Let A(X) denote the multiplica-
tive group of formal power series in t with coefficients in K(X) and constant
term 1. Then the properties i), ii) assert that O_{t} defines a homomorphism
of e(X) into A(X) . Hence we get a homomorphism O_{t} : K(X)arrow A(X) .
Taking the coefficients of O_{t} , this defines operators O^{j} : K(X)arrow K(X)(j\geq 0)

which are called the symmetric power operators. Properties i), ii) continue
to hold for these O^{j} but property iii) holds only in \theta(e(X)) . Hereafter by
a complex vector bundle itself we denote its isomorphism class too. Note
that for a complex line bundle \xi ,

O_{t}(\xi)=(1-t\xi)^{-1} .

2. The case of complex projective spaces

Let f:P_{n}arrow P_{N} be a holomorphic mapping. If f^{-1}\gamma_{N} is topologically
isomorphic to \gamma_{n}^{d} , we say that f is of degree d and denote the degree of f
by deg (f). For holomorphic mappings f, g:P_{n}arrow P_{N}, if deg (f)\neq\deg(g) ,

then f is not homotopic to g. It is shown by Feder in [2] that for any
d>0 , there exists a holomorphic immersion or embedding f:P_{n}arrow P_{N} of
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degree d as 2n\leq N or 2n+1\leq N, respectively. It is well known that \tau(P_{n})

+1=(n+1)\gamma_{n}^{-1} in K(P_{n}) . Hence we have

O_{t}(\tau(P_{n})+1)=O_{t}((n+1)\gamma_{n}^{-1})=(1-t\gamma_{n}^{-1})^{-(n+1)}

= \sum_{p- 0}^{\infty}t^{p} (\begin{array}{l}n+pp\end{array}) \gamma_{n}^{-p}=\sum_{p=0}^{\infty}t^{p}O^{p}(\tau(P_{n})+1)

Therefore we have the following lemma.

Lemma 2. 1. In K(P_{n})

O^{p}(\tau(P_{n})+1)=(\begin{array}{ll}n +p p\end{array}) \gamma_{n}^{-p}

Let \alpha\in H^{2}(P_{n} ; Z) be the first Chren class of \gamma_{n}^{-1} . Then the additive
order of \alpha^{m} is infinite for 1\leq m\leq n and \alpha^{n\dagger 1}=0 . Now we prove the follow-
ing theorem which is one of the main results.

THEOREM 2. 2. Suppose that p\geq 2 and that f:P_{n}arrow P_{N} is a holO-
morphic immersion of degree d>0 .

(i) As \nu(n, p)\leq N<\nu(n, p)+n , if d\neq p , then f has at least one infiec-
tion point of order \leq p-1 .

(ii) As \nu(n, p)-n<N\leq\nu(n, p) , if f is non-singular of order p, then
d=p.

PROOF. Since (ii) is proved in the same manner as (i), we prove only
(i). It follows from Proposition 1. 1 and Lemma 2. 1 that

\Delta_{p}f^{-1}\gamma_{N}=(\begin{array}{l}n+pp\end{array}) \gamma_{n}^{d-p}

in K(P_{n}) . Suppose that f is non-singular of order p. Then Coker \delta_{p}(f)

is a complex vector bundle of rank N-\nu(n, p)<n . Moreover we have

Coker \delta_{p}(f)=\hat{C}^{N+1}-(\begin{array}{l}n+pp\end{array}) \gamma_{n}^{d-p}

in K(P_{n}) . Hence the total Chern class of Coker \delta_{p}(f) is given by

c(Coker\delta_{p}(f))=(1-(d-p)\alpha)^{-(\nu(n,p)+1)}

Thus the n -th Chern class of it is given by

c_{n}(Coker\delta_{p}(f))=(^{\nu(n,p)+n}n)(d-p)^{n}\alpha^{n}
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Hence c_{n}(Coker\delta_{p}(f))\neq 0 . This contradicts that the rank of Coker\delta_{p}(f)

is less than n . q . e . d .
REMARK. If \nu(n, p)-n<N<\nu(n, p)+n , then the above result is best

possible. In fact there exists the p-th order non-singular embedding f :
P_{n}arrow P_{N} of degree p. It is made of the Veronese embedding v_{p} after the
same manner as the proof of Theorem 1. 2 in [2]. S. Watanabe informed
me that if N\leq\nu(n,p)-n or \nu(n, p)+n\geq N, then for d>p\geq 2 , there exists
a p-th order non-singular embeddi\dot{n}gf:P_{n}arrow P_{N} of degree d (see [10]).

3. The case of complex hypersurfaces

For q\geq 2 , we denote a non-singular complex hypersurface of degree q

in P_{n+1} by V_{n}(q) . Let j:V_{n}(q)arrow P_{n+1} be a canonical inclusion. We write
\xi_{n}=j^{-1}\gamma_{n+1} , where j^{-1}\gamma_{n+1} is a pull-back of \gamma_{n+1} by j. Then \xi_{n}arrow V_{n}(q) is
a holomorphic line bundle. F. Hirzebruch has shown that the holomorphic
normal bundle of V_{n}(q) in P_{n+1} is given by \nu(V_{n}(q))=\xi_{n}^{-q} (see [4; p. 69]).

Hence we get \tau(V_{n}(q))+1=(n+2)\xi_{n}^{-1}-\xi_{n}^{-q} in K(V_{n}(q)) . Therefore we have

O_{t}(\tau(V_{n}(q))+1)=O_{t}((n+2)\xi_{n}^{-1})(o_{t}(\xi_{n}^{-q}))^{-1}

=(1-t\xi_{n}^{-1})^{-(n+2)}(1-t\xi_{n}^{-q})

= \{\sum_{k=0}^{\infty}t^{k} (\begin{array}{ll}n+1+ kk \end{array}) \xi_{n}^{-k}\}(1-t\xi_{n}^{-q})

=1+ \sum_{p=1}^{\infty}t^{p}\{ (\begin{array}{ll}n+1+ pp \end{array}) \xi_{n}^{-p}-(\begin{array}{l}n+pp-1\end{array}) \xi_{n}^{-p-q+1}\}

Hence the following lemma has been shown.

LEMMA 3. 1. In K(V_{n}(q)) , for p>0

O^{p}(\tau(V_{n}(q))+1)=(\begin{array}{ll}n +1+p p\end{array}) \xi_{n}^{-p}-(\begin{array}{l}n+pp-1\end{array}) \xi_{n}^{-p-q+1} .

Let \beta\in H^{2}(V_{n}(q);Z) be the first Chern class of \xi_{n}^{-1} . Then the additive
order of \beta^{m} is infinite for 0\leq m\leq n and \beta^{n+1}=0 . Let f:V_{n}(q)arrow P_{N}(n+1\leq

N) be a holomorphic immersion. If f^{-1}\gamma_{N} is topologically isomorphic to \xi_{n}^{d} ,
we say that f is of degree d and write deg (f)=d. It follows from Theorem
(4) in [7] that for any d>0 , there exists a holomo:\cdot phic immersion or embed-
ding f:V_{n}(q)-P_{N} of degree d as 2n\leq N or 2n\cdot\vdash- 1\leq N, respectively. For
holomorphic immersions f, g:V_{n}(q)arrow P_{N}, if \deg|f ) \neq\deg(g) , then f is not
homotopic to g. S. Watanabe informed me that if N\leq\nu(n, p)-n or \nu(n,p)+

n\geq N, then for d>p\geq 2 , there exists a p-th order non-singular holomorphic
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embedding f:V_{n}(q)arrow P_{N} of degree d (see [10]). We prove the following
theorem.

THEOREM 3. 2. Suppose that \nu(n, p)-n<N<\nu(n, p)+n and that there
exists a p-th order non-singular holomorphic immersion f:V_{n}(q)arrow P_{N} of
degree d>0 . Put

A.=(\begin{array}{l}n+pp-1\end{array}) . B=0 (\begin{array}{ll}n +1+p p\end{array}) .

a=q-1-(d-p) , b=d-p .
(i) If N\geq\nu(n, p) , then for any m with N-\nu(n, p)<m\leq n ,

(1)_{m} \sum_{k=0}^{m} (\begin{array}{l}Am-k\end{array})(\begin{array}{l}B-1+kk\end{array}) a^{m-k}b^{k}=0

(ii) If N\leq\nu(n, p) , then for any m with \nu(n, p)-N<m\leq n ,

(2)_{m} \sum_{k=0}^{m} (A -1+k k)(\begin{array}{l}Bm-k\end{array}) a^{k}b^{m-k}=0

PROOF. Since (ii) is proved in the same manner as (i), we prove only
(i). It follows from Proposition 1. 1 and Lemma 3. 1 that in K(V_{n}(q)) ,

\Delta_{p}f^{-1}\gamma_{N}=B\xi_{n}^{b}-A\xi_{n}^{-a}

Since \nu(n, p)\leq N, Coker \delta_{p}(f) is a complex vector bundle of rank N-\nu(n, p) .
Moreover we have

Coker \delta_{p}(f)=\hat{C}^{n+1}-B\xi_{n}^{b}+A\xi_{n}^{-a}

in K(V_{n}(q)) . Hence its total Chern class is given by

c( Coker\delta_{p}(f))=\frac{(1+a\beta)^{A}}{(1-b\beta)^{B}}

Thus for any m with N-\nu(n, p)<m\leq n , its m-th Chern class

c_{m}( Coker\delta_{p}(f))=\sum_{k=0}^{m} (\begin{array}{l}Am-k\end{array})(\begin{array}{l}B-1+kk\end{array}) a^{m-k}b^{k}\beta^{m}

must vanish. q. e . d .
COROLLARY 3. 3. Suppose that p\geq 2 and that f:V_{n}(q)arrow P_{N} is a holO-

morphic immersion of degree d>0 .
(i) As \nu(n, p)\leq N<\nu(n, p)+n , if p\leq d<p+q, then f has at least one

inflection point of order \leq p-1 .
(ii) As \nu(n, p)-n<N\leq\nu(n, p) , if f is non-singular of order p, then
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0<d<p or p+q\leq d.
(iii) As N=\nu(n, p) , unless n=1 and q=2, then for any d>0 , f has

at least one inflection point of order \leq p-1 .

PROOF. (i), (ii) As p\leq d<p+q, since a=q-1-(d-p)\geq 0 , b=d-p\geq 0

and a+b=q-1>0 , the left sides of (1)_{n} , (2)_{n} are not vanishing.
(iii) For any d>0 , unless n=1 and q=2, then the left side of (1)_{1} or

(1)_{2} is not vanishing. q . e . d .
REMARK. As n=1, q>2 , p=2 and d=1, (iii) of Corollary 3. 3 is a clas-

sical fact on non-singular complex algebraic curves in P_{2} .
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