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0. Introduction.

In this paper we will be concerned with the Cauchy problem:

\int Pu--f
(0. 1) ( D_{t}^{j}u|_{t=0}=g_{j} , j=0,1 , \ldots m-k-l,

for a class of differential operators P (t, x, D_{t} D_{x})with\ll regular singu-
larities\gg at t=0 . Precisely, for two positive integers k, m, k\leq m, P has
the fo r :

(0. 2) P=t^{k}P_{m}+t^{k-1}P_{m-1}+\ldots+ P_{m}

where the P_{m-j} are of order m-j, j=0 , ... rk, and have C^{\infty} coefficients
defined on some cylinder R_{t}\cross M(M=R^{n} or, more generally, M is a C^{\infty}n

-dimensional manifold without boundary).

We suppose that P_{m} is strictly hyperbolic with respect to dt and call P a
Fuchsian hyperbolic operator of weight m-k.

As in the case of an ordinary differential equation of Fuchs type (see

e . g . [2], [24] ) we are led to consider the (reduced) indicial polynomial of
P, i . e. , denoting by a_{m-j} the coefficient of D_{t}^{m-j} in P_{m-j} and supposing a_{m}\equiv 1 ,

the k-th order polynomial:

(0.3) I_{P}(x, \zeta)=\sum_{j=0}^{k}(\sqrt{-1}\underline{1})a_{m-j}(0, x)\zeta(\zeta-1)m-j\ldots (\zeta-(k-j-1)) ,

x\in M, \zeta\in C .

To make (0.1) meaningful, at least at a formal power series level, one
has to require that all the traces of u at t=0 can be recovered from the
Cauchy data g_{j} and the corresponding traces of f.

Implementing this fact is equivalent to impose the following Fuchs
condition on P :

(0. 4) I_{P}(x;\zeta)\neq 0 , \forall x\in M, \forall\zeta\in Z_{+}=\{0,1, \ldots\} .

Problem (0.1), even for more general classes of degenerate operators P,
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has been studied by several authors starting with the pioneering work of
Baouendi and Goulaouic [4] (see also [3]). In [4], under condition (0. 4),

Cauchy-Kowalewski and Holmgren type theorems (among others) were
proved supposing the coefficients of P to be analytic in the space variables
and sufficiently regular with respect to t. More recently, a deep analysis of
Cauchy problem (0. 1) for Fuchsian hyperbolic operators with analytic
coefficients has been performed by Tahara [19] in the hyperfunction
framework. In this important work existence and uniqueness results are
proved as well as structure theorems concerning the singularities of hyper-
function solutions of the equation Pu=f.

Operators with regular singularities have also been considered by
Kashiwara and Oshima [15] in the analytic setting.

It is worth noting that Fuchsian hyperbolic operators of the form (0. 2)

are microlocal models of operators with multiple characteristics of variable
multiplicity and non-involutive intersection. From this point of view we
mention here the work of \hat{O}aku [17] in the analytic category and B. L. P.
[6] in the C^{\infty} setting (see also the references quoted therein).

The above mentioned works give an almost complete picture of problem
(0. 1) in the analytic-hyperfunction situation. We think, however, that in
the C^{\infty} setting the available results concerning the Cauchy problem (0. 1) are
far from being as complete as in the analytic case.

The main contributions have been given by Tahara in a long series of
papers (see [20], [21]), where the author considers the Cauchy problem
(0. 1) for a wide class of operators including (0. 2) and gives various
existence and uniqueness results when the data f and gj are smooth functions
or belong to suitable Sobolev spaces which take into account the t-
degeneracy. The technique of proof relies essentially on energy estimates
for abstract singular equations and on a tricky reduction of (0. 1) to an
equivalent m\cross m singular system.

Contributions to the study of hyperbolic singular systems have been
given by Alinhac [1].

We mention also the important contribution given by Roberts [18] in
proving a Calderon type local uniqueness result for smooth flat solutions of
Cauchy problem (0.1).

However, as far as we know, results concerning C^{\infty} singularities of
distribution solutions of problem (0. 1) are still lacking. The aim of this
paper is to fill in part the gap existing between the analytic and C^{\infty} analysis
of problem (0. 1).

To be definite, we will suppose that the Cauchy data gj are distributions
on M while f is a regular distribution, i . e . f\in C^{\infty}(R_{t} ; \mathscr{D}’(M)) and:
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(0.5) WF(f)\cap\{t, x, \tau, \xi)\in T^{*}(R\cross M)|0|t\neq 0, \xi=0\}=\phi .

For regular distributions an adapted notion of wave front set will be
used; precisely, we say that a point (x, \xi)\in T^{*}M|0 does not belong to
\partial WF\varphi) iff for some classical pdo B(x, D_{x}) , elliptic near (x, \xi) , we have
Bf\in C^{\infty}(]-\epsilon, \epsilon[\cross M) for some \epsilon>0 (for this notion of boundary wave
front set we refer the reader to Chazarain [8] and Melrose-Sj\"ostrand [16] ) .

In the statement of our main result we denote by \Phi_{j},{}^{t}j=1 , \ldots m, the Hamil-
tonian flow on T^{*}M|0 of the hyperbolic roots \tau=\lambda_{j}(t, x, \xi) of the equation
\sigma_{m}(P_{m})(t, x, \tau, \zeta)=0 . For simplicity we state our theorem in the case
where M is a compact manifold.

THEOREM Let P a Fuchsian hyperbolic operator of weight m-k, defined
in R\cross M and satisfying condition (0. 4).

Then for every regular distribution f and for every Cauchy data
g_{j}\in \mathscr{D}’(M) , j=0,1 , \cdots m-k-l, there exists a unique regular distribution u

which solves (0. 1). Furthermore, the following description of the singularities
holds:

i) a WF(u) \subset\partial WFy)\cup\bigcup_{j=0}^{m-k-1}WF(g_{j}) .

ii) WF(u|(t\neq 0\cross M)\subset\{(t, x, \tau, \xi)|t\neq 0, (t, x, \tau, \xi)\in WFy)\{\cup

\bigcup_{j=1}^{m}/\backslash (t, x, \lambda_{j}(t, x, \xi), \xi)|\exists s, \frac{s}{t}\in]0,1[ , \exists(y, \eta)\in T^{*}M|0 ,

(s, y, \lambda_{j}(s, y, \eta), \eta)\in WFy) , (x, \xi)=\Phi_{j}^{t-s}(y, \eta)_{)}\cup

\bigcup_{j=1}^{m}\iota^{r}(t, x, \lambda_{j}(t, x, \xi), \xi)|t\neq 0 ,

\exists(y, \eta)\in\partial WF(f)\cup\bigcup_{r=0}^{m-k-1}WF(g_{r}) , (x, \xi)--\Phi_{j}^{t}(y, \eta) \{

iii) Denoting by N^{*}M the conormal bundle of { 0_{/}\cross M in R\cross M, we have:

WF(f)\cap N^{*}M=WFy)\cap N^{*}M.
iv) If for some x_{0}\in M we have:

a) \pi^{-1}(0, x_{0})\cap WF(f)=\phi(\pi : T^{*}(R\cross M)|0 - R\cross M is the
canonical projection) ,

b) (,\eta) , \xi_{0})\in^{m}\bigcup_{j=0}^{k-1}WF(g_{j}) , for some \xi_{0}\neq 0 ,

then there exists at least one j\in_{1}^{J}1 , \ldots . m ) such that either WF(u|l>()\cross M) or
WF(u|t<0\cross M) contains a small arc of the bicharacteristic defined by the

factor \tau-\lambda_{j}(t, x, \xi) and issued from the point (0, x_{0}, \lambda_{j}(0_{ \chi)},, \xi_{0}), \xi_{0}) .

We make some comments concerning the theorem.
Existence and uniqueness will be proved by constructing (see Chapt. 4)

a right and a left parametrix for P. This construction and the preparations
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which are needed form the core of the paper. We have been unable to
construct parametrices directly for P (this has been done in a very particular
case in [7] ) and therefore we decided to follow a somewhat different
procedure. In Chapt. 1 we show how an equation Pu=f for an operator of
weight 0, can be reduced to an equivalent (mod. C^{\infty}(R\cross M)) singular
system of the form:

(0.6) \mathscr{P}u= ( I_{N} tD_{t} -lA (t, x, D_{x})-B(t, x, D_{x}) ) u=f,

where A(t) and B (t) are N\cross N matrices of classical pdo’s of order 1 and
0 respectively, having the following crucial properties:

i) \sigma_{1}(A)(t, x, \xi) is a diagonal matrix whose eigenvalues are the
hyperbolic roots \lambda_{j}(t, x, \xi) , j=1 , \ldots m.

ii) Re \sigma_{0}(B)(0, x, \xi)\leq-I_{N} , for every (x, \xi)\in T^{*}M|0 .
In proving ii ) we exploit in an essential way the Fuchs condition (0. 4).

We point out that our reduction is rather different from the one performed by
Tahara [20] (the operators in (0. 6) are classical pdo’s and, more sub-
stantially, they depend smoothly on t, contrary to what happens in [20] ) .
In our reduction N is larger than m, precisely N=m(m+1)/2 .

We observe that for scalar operators of the form (0. 6) left and right
parametrices can be obtained with only minor modifications following the
explicit constructions performed by Hanges in [12]. Therefore, having the
system (0. 6), one is tempted to decouple this system as in the classical
strictly hyperbolic case (see e . g . Taylor [22]), by reducing it via an
intertwining elliptic operator, to a system of the same type with B(t) in a
diagonal (or block diagonal) form.

Unfortunately, the classical decoupling procedure breaks down in our
case due to the t-degeneracy. In Chapt. 3 we show that system (0. 6) can
actually be decoupled for large values of t|\xi| . Roughly speaking,
supposing A and B to be independent of (t, x) and taking partial Fourier
transform with respect to x in (0. 6), by putting z=t|\xi| we get a system of
the form:

(0. 7) I_{N}zD_{z}-zA(\xi’)-B(\xi’) , \xi’=\xi/|\xi| .

By a well known classical procedure (Cfr. [2], [24]), the hypothesis on
A(\xi’) allows to find two power series q( \xi’z)=\sum_{j\geq 0}q_{-j}(\xi’)z^{-j} (with q_{0}(\xi’)=

I_{N}) and \tilde{b}(\xi’. z)--\sum_{j\geq 0}b_{-j}(\xi’)z^{-j} (where the matrices b_{-j}(\xi’) are block
diagonal) such that the following equality holds at a formal power series
level :
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(0.8) (I_{N}zD_{z}-zA(\xi’)-B(\xi’))q(\xi’z)

=q(\xi’. z)(I_{N}zD_{z}-zA(\xi’)-\tilde{b}(\xi’z)) .

To pass from the formal level to a correct operator level we work within
a class of pdo’s whose symbols have a suitable behaviour in the t-variable.
These symbols and the corresponding operators are studied in Chapt. 2.
Precisely, we work with symbols a(t, x, \xi)\in S^{p,q} which satisfy (local)

estimates of the type:
(0. 9) |\partial_{t}^{j}\partial_{x}^{a}\partial_{\xi}^{\beta}a(t, x, \xi)|\leq const . (1+|\xi|)^{p-|\beta|}(|t|+1/|\xi|)^{q-j} .

Summing up, in Chapt. 3 we prove that there exist an invertible matrix Q\in

OPS^{0,0} and a matrix \tilde{B}\in OPS^{0,0} such that, putting \tilde{\mathscr{P}}=I_{N}tD_{t}-tA(t, x, D_{x})-

\tilde{B}(t, x, D_{x}) we have:
(0. 10) \mathscr{P}Q=Q\tilde{\mathscr{P}},

modulo operators which map regular distributions into smooth functions.
The matrix \tilde{B} has the property that its symbol is (block) diagonal for

t|\xi| large. In Chapt. 4 we construct parametrices for the system \tilde{\mathscr{P}}

following (in spirit, if not in detail) the work of Hanges referred to above.
Combining the left and right parametrices with known existence and

uniqueness results when the data in (0.1) are smooth functions, we get the
first part of the Theorem.

Chapt. 5 is devoted to the analysis of the singularities. We point out
that operators in the classes S^{p,q} are not (in general) microlocal with respect

to t at t=0\cdot, precisely, they do not preserve distributions whose wave front
set is disjoint from the conormal bundle N^{*}M. To get some control on the

behaviour of the solutions at t=0 we found it convenient to use the boundary

wave front set a WF(\cdot) , a set which is preserved by the action of OPSpq.
Properties i ) and ii ) in the Theorem are proved by a direct inspection

of the left parametrix. To prove properties iii ) and iv ) we rely heavily on
the arguments contained in B. L. P. [6]. A consequence of (iv) is that,

supposing f\in C^{\infty}- singularities of the Cauchy data g_{j} give rise to singularities

of u that propagate into t>0 or t<0 on some (hyperbolic) bicharacteristic,

a property which does not seem to be a priori obvious.
An important related question is to decide whether a branching of the

singularities phenomenon may occur for a solution of Cauchy problem
(0. 1), i . e . decide when a singularity of u on some (hyperbolic) bicharac-
teristic give rise to the appearence of a singularity of u on a different
bicharacteristic.

In Chapt. 5 (see Theorem 5. 5) we give sufficient conditions which
guarantee that such a phenomenon occur. A typical example is given by the
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Euler-Poisson-Darboux equation:
Pu=t(D_{t}^{2}- \sum_{j}D_{x}^{2},)u+\alpha(t, x)D_{t}u+\sum_{j}\beta_{j}(x, t)D_{x_{J}}u+\gamma(t, x)u=0 ,

with u|_{t=0}=g , u being a regular distribution. Under the condition:
(0. 11) 2 i \zeta-\alpha(0, x)\pm\sum_{j}\beta_{j}(0, x)\xi_{j}/|\xi|\neq 0 , \forall\zeta\in Z_{+} . \forall(x, \xi)\in WF(g) ,

we conclude that WF(u) contains both the bicharacteristics issued from the
points (0, x, \pm|\xi| \xi) , (x, \xi)\in WF(g) .

We do not know if (0.11) is also a necessary condition, but, as simple
examples show, if no condition is imposed on P it can happen that u has
singularities only along one of the two bicharacteristics.

To conclude this introduction we point out that for the notation used in
the paper we refer the reader to H\"ormander [13], with one exception: if S
denotes a class of symbols, by S(p\cross q) we denote the p\cross q matrices with
entries in S and by OPS(resp. OPS(p\cross q)) we denote the related classes of
pdo ’s.

1. Fuchsian operators.

We define a class of Fuchsian (hyperbolic) operators which is the main
object of study in the present paper: in the differential case this class is
contained in the general class of operators of Fuchsian type introduced by
Baouendi and Goulaouic [4].

DEFINITION 1. 1. Let M be an n-dimensional C^{\infty} manifold without
boundary. By F_{m-k}^{m}(R\cross M)(m, k\in Z_{+}. 1\leq k\leq m) we denote the class of all
operators P, defifined on the cylinder R\cross M, of the following type:

\int P=\sum_{j=0}^{k}t^{k-j}P_{m-j}(t, x, \partial_{t}. D_{x})

(1. 1) t\in R , x\in M
|P_{m-j}= \sum_{h=0}B_{m-j-h,j}(t, x, D_{x})\partial_{t}^{h}mj j=0, \cdots . k,

where B_{m-j-h,j}\in OPS_{Cl}^{m-j-h}(M) are classical pdo ’s of order m -j- h,
depending smoothly on t.

Furthermore, the following condtions are satisfified:
1) For j=0, h=m, B_{0,0}(t, x, D_{x})=1 .
2) For every t\in R , (x, \xi)\in T^{*}M|0 , the polynomial

C, \ni\tauarrow\sum_{h=0}^{m}\sigma_{m-h}(B_{m-h,0})(t, x, \xi)\tau^{h}

has m simple roots \tau=\sqrt{-1}\lambda_{j}(t, x, \xi) , j=1 , \ldots m, where the \lambda_{j}\in C^{\infty}(R_{t}

\cross T^{*}M\backslash 0) arc real functions, which will be called the hyperbolic roots of P.
To every P\in F m-km (R\cross M) we associate the (reduced) indicial

polynomial :



Cauchy Problem for Fuchsian Hyperbolic Operators 181

k

(1. 2) \{

I_{P}(x, \xi,\cdot\zeta)=\sum_{j=0}\sigma_{0}(B_{0,j})(0, x, \xi)\zeta(\zeta-1)\ldots(\zeta-(k-j-1)) ,

(x, \xi)\in S^{*}M, \zeta\in C.

We say that P\in F_{m-k}^{m}(R\cross M) satisfies the Fuchs condition (F. c. ) iff:

(1.3) \forall(x, \xi)\in S^{*}M, \forall\zeta\in Z_{+}: I_{P}(x, \xi;\zeta)\neq 0 .

When k=m it may be convenient to rewrite an operator P\in F_{0}^{m}(R\cross M) in
the following form:

(1. 4) \{

P=P(t, x, t \partial_{t} D_{x})--\sum_{j=0}^{m}Q_{m-j}(t, x, t\partial_{t-}D_{x})

Q_{m-j}= \sum_{h=0}^{m-j}t^{m-j-h}A_{m-j-h,j(t, x, D_{x})}(t\partial_{t})^{h} , j=0 , \ldots . m,

where A_{m-j-h,j}\in OPS_{cl}^{m-j-h}(M) (depending smoothly on t ). This is a trivial
consequence of the identity

(1. 5) t^{r}\partial_{t}^{r}=t\partial_{t}(t\partial_{t}-1)\ldots (t\partial_{t}-(r-1)) , r\in Z_{+}r\geq 1 .

Let us remark that both the hyperbolic roots and the indicial polynomial
are unchanged and observe that with the new notation (1. 4) we have:

(1. 6) I_{P}(x, \xi:\zeta)=\sum_{j=0}^{m}\sigma_{0}(A_{0,j})(0, x, \xi)\zeta^{m-j} .

We now list some general properties of the classes F_{m-k}^{m}(R\cross M) which are
related with the algebraic structure of these operators,

i) Let P\in F_{m-k}^{m}(R\cross M) with k<m,\cdot then
P(t\cdot)=\tilde{P}(\cdot) ,

for a \tilde{P}\in F_{m-(k+1)}^{m}(R\cross M) with the same hyperbolic roots of P. Moreover:

(1. 7) I_{\tilde{P}}(x, \xi;\zeta)=(\zeta-(k-m))I_{P}(x, \xi:\zeta) .

ii) Let P\in F_{0}^{m}(R\cross M) be written in the form (1.4): then:

(1.8) P(t, x, t\partial_{t} D_{x})(t\cdot)=t(P(t, x, t\partial_{t}+1, D_{x})\cdot) .

iii) Let P\in F_{0}^{m}(R\cross M)be a differential operator on R\cross M, satisfying F.c.
There exist differential operators on M, L_{h,j}^{P}(x, D_{x})of order h, j, h=0,1 , \ldots ,

j\geq h, such that for every u\in C^{\infty}(R_{t} ; \mathscr{D}’(M)) and for every j=0,1 , \ldots , the
following relations hold:

(1. 9) \partial_{t}^{j}u|t=0=\sum_{r=0}^{j}L_{j-r,j}^{P}(x, D_{X})(\partial_{t}^{r}(Pu)|t=0) .

Moreover L_{0,j}^{P}(x, D_{x})=1/I_{P}(x;j) .
The proof of the above facts are left to the reader, adding only as a

remark to iii ) that in the differential case the indicial polynomial of an
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operator P\in F_{m-k}^{m}(R\cross M) does not depend on \xi since the B_{0,j} in (1. 1) are
in fact C^{\infty} functions on M.

Properties i )-iii) will be used freely in the sequel without reference.
The main purpose of this paper is the study of the Cauchy problem:

(P. C.) \{
Pu=f in R_{t}\cross M

\partial_{t}^{j}u|_{t=0}=g_{j} in M, j=0,1 , \ldots . m-k-l,

for a differential operator P\in F_{m-k}^{m}(R\cross M) satisfying F. c . (not\overline{e} that for
k=m no Cauchy data is given at t=0). We will be concerned with the case
where f\in C^{\infty}(R_{t} ; \mathscr{D}’(M)) and the g_{j}\in \mathscr{D}’(M) and prove existence and
uniqueness results in the class u\in C^{\infty}(R_{t} ; \mathscr{D}’(M)) : moreover we will relate
C^{\infty} singularities of u to those of f and the g_{j} . For convenience the Cauchy
problem will be studied supposing M a compact manifold; however local
results in R_{t}\cross R_{x}^{n} will be proved and global results in R_{t}\cross R_{x}^{n} could be
obtained as well provided suitable assumptions on the behaviour of P at
infinity are made.

When f and the Cauchy data g_{j} are smooth functions we have the
following result.

THEOREM 1. 1. Let P\in F_{m-k}^{m}(R\cross M) (M compact) be a differential
operator satisfying F. c. Then for every f\in C^{\infty}(R\cross M) and for every g_{j}\in

C^{\infty}(M) , j=0 , \ldots m - k -1, there exists a unique solution u\in C^{\infty}(R\cross M) of
the Cauchy problem (P. C.).

The above result is essentially contained in Tahara [20]. We shall also
need local existence and uniqueness results in R_{t}\cross R^{n}.

THEOREM 1. 2. Let P\in F_{m-k}^{m}(R\cross R^{n}) be a differential operator satisfying
F. c. Let U\subset\subset R^{n} and denote by I\subset R an interval containing the origin.
Then:

a) For every f\in C_{0}^{\infty}(I\cross U) and for every g_{j}\in C_{0}^{\infty}( U) , j=0,1 , \ldots . m-
k-1 , there exists u\in C^{\infty}(I\cross U) such that Pu=f in I\cross U, \partial_{t}^{j}u|_{t=0}=g_{j}, in
U, j=0, \ldots m-k-1 .

b) Let us suppose that

(1. 10) sup |\lambda_{j}(t, x, \xi)|=\lambda<+\infty ,
(t.x)\in RxR^{n}j=1,,m|\xi|=1

where the \lambda_{j} are the hyperbolic roots of P. Defifine

(1. 11) C(t_{0}, x_{)})=\{
\{(t, x)\in R\cross R^{n}|t\geq 0 , |x-x)|\leq\lambda(t_{0}-t)) , t_{0}>0

\{(t, x)\in R\cross R^{n}|t\leq 0 , |x-x)|\leq\lambda(t-t_{0})_{1}^{(} , t_{0}<0 .

Then, if u\in C^{\infty}(I\cross U) and for somc cone C(t_{0}, x_{)})\subset I\cross U we have Pu=0
in C(t_{0}, x_{)}) , \partial_{t}^{j}u|_{t=0}=0 in C(t_{0}, x_{)})\cap J_{1}t=0^{1},,0\leq j\leq m-k-1 , it follows
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that u=0 in C(t_{0}, x_{)}) .
PROOF. a) Let C_{r}\subset R^{n} be an open cube of size r>0 containing \overline{U}.

Take \theta(x)\in C_{0}^{\infty}(R^{n}) with \theta\equiv 1 on \overline{C}_{r} and \theta(x)=0 on R^{n}|C_{2\Gamma} Defining
\hat{P}(t, x, \partial_{t}. D_{x})=P(t, \theta(x)x, \partial_{t} D_{x}) , x\in\overline{G}_{r} , we see that \hat{P}=P in R_{t}\cross

U and \hat{P} defines in a natural way a differential operator, still denoted by \hat{P},

on R\cross T^{n}, T–R/2rZ Obviously \hat{P}\in F_{m-k}^{m}(R\cross T^{n}) and the F. c . is
preserved. Since f and the g_{j} can be lifted to R\cross T^{n} and T^{n} respectively as
smooth functions, the conclusion follows from Th. 1. 1.

To prove b) we rely on a result of Roberts [18] saying that for every
neighborhood \theta of a point (0, x_{0})\in R\cross R^{n} there exists another neighborhood

\theta’\subset\theta of the same point such that if u\in C^{\infty}(\theta) , \partial_{t}^{j}u|_{t=0}=0 in \theta\cap

\{t=0\} , j–O, 1, ... m - k -1, and Pu=0 in \theta then u=0 in 9’.
Suppose t_{0}>0 : denote by C_{0}=C (t_{0} x_{)})\cap\{t=0\} and for small \epsilon>0

cover C_{0}|\{x\in C_{0}|d(x, \partial C_{0})<\epsilon\}=C_{0}^{\epsilon} with a finite number of neighborhoods

of type \theta’C_{0}^{\epsilon}\subset\bigcup_{j}\theta_{j}’ Take \delta\in ] 0, \epsilon [for which [0, ^{\delta}] \cross C_{0}^{\epsilon}\subset\bigcup_{j}\theta_{j}’ and u=

0 on [0, \delta]\cross C_{0}^{\epsilon} . Put \Gamma_{\epsilon}=C (t_{0}-\epsilon/\lambda ; xi))\cap\{t\geq\delta\} Since Pu=0 in \Gamma_{c} and
u vanishes with all derivatives at \Gamma_{\epsilon}\cap\{t=\delta\} , a classical argument (see e.g.
[9] ) yields u=0 on \Gamma_{C} Letting \epsilonarrow 0 , the assertion is proved.

In the following chapters we will study singular hyperbolic systems of
the form:

(1. 12) (I_{N} t\partial_{t}-tA(t, x, D_{x})-B(t, x, D_{x}))v=g ,

where A\in OPS Cl1(R_{x}^{n} ; N\cross N) and B\in OPS_{c\iota}^{0}(R_{x}^{n} ; N\cross N) , are N\cross N

matrices of classical pdo ’s defined on R^{n} (depending smoothly on t ) whose
structure will be specified later on.

We now show how any equation Pu=f, where P\in F_{0}^{m}(R\cross R^{n}) , can be
reduced to an\ll equivalent\gg system of the form (1.12). It is worth noting
that the reduction proposed here is quite different from the reduction used by
Tahara [20].

First a lemma is needed.
LEMMA 1. 1. Let P\in F_{0}^{m}(R\cross M) be written in the form (1.4). Let

Z(t, x, D_{x})\in OPS_{ct}^{1}(M) be a classical 1st order pdo on M(depending
smoothly on t). Then, for every \gamma\in C , we can rewrite P in the form:

(1. 13) P= \sum_{j=0}^{m}\sum_{h=0}^{m-j}t^{m-j-h}A_{m-j-h,j}^{(\gamma)}(t, x, D_{x})(t\partial_{t}-tZ(t, x, D_{x})-\gamma)^{h}

for some pdo ’s A_{m-j-h,j}^{(\gamma)}\in OPS_{cl}^{m-j-h}(M) (smoothly dependent on t ).

Moreover :
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i) For j=0, h=m, A_{0,0}^{(\gamma)}(t, x, D_{x})=1 .
ii) For every t\in R , (x, \xi)\in T^{*}M|0 , \tau\in C :

\sum_{h=0}^{m}\sigma_{m-h}(A_{m-h,0}^{(\gamma)})(t, x, \xi)(\tau-\sigma_{1}(Z) ^{(t}

= \sum_{h=0}^{m}\sigma_{m-h}(A_{m-h,0})(t, x, \xi)\tau^{h} .

iii) For every (x, \xi)\in S^{*}M, \zeta\in C :
\sum_{j=0}^{m}\sigma_{0}(A_{0,j}^{(\gamma)})(0, x, \xi)\zeta^{m-j}=I_{P}(x, \xi;\zeta+\gamma) .

PROOF. The proof is based on the following relations which can be
easily obtained by induction.

For every j\in Z_{+} , j\geq 1 , one can write:

(1. 14) (t \partial_{t})^{j}=\sum_{r=0}^{j}(jr)(tZ(t, x, D_{x})^{r}(t(\partial_{t}-Z(t, x, D_{x}))^{j-r}

+ \sum_{1\beta|+r<j} ^{t^{|\beta|}d_{\beta,j}(t, x, D_{x})(t(\partial_{t}-Z(t, x, D_{x}))^{r}}\beta,r,|\beta|>0,
’

where the d_{\beta,j}\in OPS_{cl}^{|\beta|}(M) are suitable pdo’s, depending smoothly on t.
For every j\in Z_{+} , j\geq 1 , one can write:

(1. 14)’ t( \partial_{t}-Z(t, x, D_{x}))^{j}=\sum_{r=0}^{j}(jr)\gamma^{j-r}(t(\partial_{t}-Z(t, x, D_{x}))-\gamma^{\gamma} .

Using (1. 14) and (1. 14)’ in (1. 4) it is a simple matter to verify that
properties i ) - iii ) are satisfied.

Let now P\in F_{0}^{m}(R\cross R^{n}) (be written in the form (1. 4)) and let
Z(t, x, D_{x}) be equal to \sqrt\overline{-1}\lambda_{j}(t, x, D_{x}) , where \lambda_{j} is one of the hyperbolic
roots of P (the choice of j is inessential in what follows). Taking \gamma\in CIZ

and defining:
(1. 15) L=t(\partial_{t}-Z(t, x, D_{x}))-\gamma,

by Lemma 1. 1. we can write

(1. 16) P= \sum_{j=0}^{m}mj\sum_{h=0}t^{m-j-h}A_{m-j-h,j}^{(\gamma)}(t, x, D_{x})L^{h},

for some A_{m-j-h}^{(\gamma)} . j\in OPS_{cl}^{m-j-h}(R^{n}) .
Denote by \Lambda\in OPS_{Cl}^{1}(R^{n}) the pdo with symbol (1+|\xi|^{2})^{1/2} .
If u\in C^{\infty}(R_{t} ; \mathscr{D}’(R^{n})) and Pu=f, let us define the vector v=(v_{1}^{(1)} , \ldots . v_{m}^{(1)} ,

v_{1}^{(2)} , \ldots
v_{m- 1}^{(2} ... v_{1}^{(m)}), where:
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(1. 17) \{

v_{1}^{(h)}=(t\Lambda)^{m-h}u

v_{2}^{(h)}=(t\Lambda)^{m-h-1}Lu

. .
v_{m-h}^{(h)}=t\Lambda L^{m-h-1}u

v_{m-h+1}^{(h)}=L^{m-h}u

, h=1 , \ldots m.

The vector v\in C^{\infty}(R_{t} ; \mathscr{D}’(R^{n}))^{N}. with N=m(m+1)/2 . The following
notation is convenient:

(1. 18) \{

\beta_{r}(t, x, D_{x})=[Z(t, x, D_{x}), \Lambda^{r}]\Lambda^{-r}

r=1 , \ldots m-1 .
\theta_{r}(t, x, D_{x})=r-\beta_{r}(t, x, D_{x})

For h=2 , \ldots\cdot
m we have the compatibility relations:

(1. 19) \{

Lv_{1}^{(h)}=v_{2}^{(h-1)}+(m-h-t\beta_{m-h})v_{1}^{(h)}

Lv_{2}^{(h)}=v_{3}^{(h-1)}+(m-h-1-t\beta_{m-h-1})v_{2}^{(h)}

Lv_{m-h}^{(h)}=v_{m-h+1}^{(h-1)}+(1-t\beta_{1})v_{m-h}^{(h)}

Lv_{m-h+1}^{(h)}=v(\begin{array}{l}h-1h\end{array})

For h=1 , from (1.17) and (1.16) we obtain the equations:

(1. 20) \{

Lv_{1}^{(1)}=t\Lambda v\mathfrak{b}^{1)}+(m-1-t\beta_{m-1})v_{1}^{(1)}

Lv_{2}^{(1)}=t\Lambda v_{3}^{(1)}+(m-2-t\beta_{m-2})v_{2}^{(1\rangle}

Lv_{m-1}^{(1)}=t\Lambda v_{m}^{(1)}+(1-t\beta_{1})v_{m-1}^{(1)}

Lv_{m}^{(1)}=L^{m}u=f- \sum_{h=0}^{m-1}C_{h+1}^{(0)}t\Lambda v_{h+1}^{(1)}-\sum_{j=1}^{m}mj\sum_{h=0}C_{h+1}^{(y)}v_{h+1}^{(J)}

where

(1.21) C_{h+1}^{(y)}(t, x, D_{x})=A_{m-j-h,j}^{(\gamma)}(t, x, D_{x})\Lambda^{-(m-j-h)}
j=0 , \ldots.m

.
h=0 , \ldots m-j.

Note that C_{h+1}^{(\gamma)}\in OPS_{ct}^{0}(R^{n}) (depending smoothly on t ). From (1. 20) and
(1. 19) it follows that the vector v satisfies a system of the form (1. 12)

where g=
(,0 \frac{0,\ldots,0,f }{m}, \ldots, 0)

and m

(1. 22) A(t, x, D_{x})=m\{\{\begin{array}{llll}\overline{A’(t,x,Dx)} \coprod_{m,N-} m ---- ------ \coprod_{N-m,m} I_{N-m}Z(t,x,D_{x}) ---\end{array}\} .

with:
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A’(t,x, D_{x})=(1.23)\{\begin{array}{llllll}Z \Lambda 0 \cdots 0 00 Z \Lambda \cdots 0 0\cdots \cdots \cdots \cdots \cdots \cdots 0 0 0 \cdots Z \Lambda-C_{1}^{(0)}\Lambda -C_{2}^{(0)}\Lambda -C_{3}^{(0\rangle}\Lambda -C_{m-1}^{(0)}\Lambda -C_{m}^{(0)}\Lambda+Z\end{array}\}

Moreover, B(t, x, D_{x})=B’(t, x, D_{x})+\gamma I_{N}, where B’ has the form:

B’ ( t, x,D_{x})=

(1.24)

m-1\{m\{

\}1\}2

with:

(1.25) \Phi^{(m)}(t, x, D_{x})=\{\begin{array}{l}\theta_{m- 1}\square -C_{1}^{(1)}\end{array}

-C_{2}^{(1)}\ldots;^{\backslash }C_{m-1}^{(1)}\theta_{m-2}\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \theta_{1}

-C_{m}^{(1)}\square 0]

and, for j=1 , \ldots . m-1 ,

(1.26) \Phi^{(m-\gamma)}(t, x, D_{x})=\{\begin{array}{l}\theta_{m-1- j}\square 0\end{array}

\theta_{m-2-j\backslash }o.o^{1}-\backslash .-.\backslash \backslash \backslash ---\backslash -\theta\square

00

]

For h=0, \ldots m-2,

(1.27) J^{(m-1-h)}--\{\begin{array}{ll}0 0 ]-I_{m-1-h} |0 |||I|\end{array}\}
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and finally:

(1. 28) \mathscr{B}’(t, x, D_{x})

\square _{m-1,N-m}

=[_{-C_{1}^{(2\rangle}-C_{2}^{(2)}\ldots-C_{m-1}^{(2)}}-C_{1}^{(3)}-C_{2}^{(3)}

. . \tau

-C_{m-2}^{(3)}\ldots-C_{1}^{(m-1)}-C_{2}^{m-1)}-C_{1}^{(m)}] .

From Lemma 1.1, ii ) it easily follows that:

(1. 29) \{

det(\zeta I_{m}-\sigma_{1}(A’)(t, x, \xi))

= \sum_{h=0}^{m}\sigma_{m-h}(A_{m-h,0}^{(\gamma)})(t, x, \xi)(\zeta-\sigma_{1})(Z)(t, x, \xi))^{h}

= \sum_{h=0}^{m}\sigma_{m-h}(A_{m-h,0})(t, x, \xi)\zeta^{h} .

for every t\in R,(x, \xi)\in T^{*}R^{n}|0 , \zeta\in C .

One can easily check that there exists a smooth invertible N\cross N matrix
U(t, x, \xi) , (t, x, \xi)\in R\cross T^{*}R^{n}|0 , positively homogeneous of degree zero
in \xi , such that :

(1.30) U^{-1}(t, x, \xi)\sigma_{1}(A’)(t, x, \xi)U(t, x, \xi)

= \sqrt{-1}m{?}\frac{---------------------------------_{1\mathcal{A}_{1}(t,x,\xi_{\backslash })\coprod_{t\square \mathcal{A}_{m}(,x,\xi)}\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash ----^{1}}{\coprod_{N-m,m}m|||}

\coprod_{\frac{1}{\sqrt{-1}}\sigma_{1}(Z)(t,x,\xi)I_{N-m}}m.N-m--]

An elementary (but tedious) computation shows that:

(1. 31) \{

det(\zeta I_{N}-\sigma_{0}(B)(0, x, \xi))

=I_{P}(x, \xi;\zeta)\prod_{j=1}^{m-1}(\zeta-\gamma-(m-j))^{j},

for every (x, \xi)\in S^{*}R^{n}, \zeta\in C.

It is important to observe that if P satisfies the Fuchs condition (1. 3)

and \gamma\not\in Z, then \sigma_{0}(B)(0, x, \xi) has no eigenvalue in Z_{+} (actually a choice
of \gamma such that \gamma+m-j\not\in Z_{+} , j=1 , \ldots.m-1 , would suffice for this purpose).

So far we have proved that if u\in C^{\infty}(R_{t} ; \mathscr{D}’(R^{n})) solves the equation
Pu=f in R_{t}\cross R_{x}^{n} , then the vector v defined by (1. 17) solves the system

0,\ldots,0)(1.12).w
ith A, B having the structure specified above, and

g= \frac{(0,\ldots,0,f}{m}
,
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Conversely, let us suppose that a vector v\in C^{\infty}(R_{t} ; \mathscr{D}’(R^{n}))^{N} satisfies
the system (1.12) in R_{t}\cross R_{x}^{n} (with A, B and g as above).

We want to show that putting u=v_{1}^{(m)} , we have Pu-f\in C^{\infty}(R_{t}\cross R_{x}^{n}) .
From (1. 19) and (1. 20) we obtain: v_{2}^{(m-1)}=Lv_{1}^{(m)}=Lu, v_{3}^{(m-2)}=Lv\{_{2\rangle}^{m-1)}=

L^{2}u, \ldots
v_{m-1}^{(2)}=Lv_{m-2}^{(3)}=L^{m-2}u, v_{m}^{(1)}=Lv_{m-1}^{(2)}=L^{m-1}u .

Now, from (1. 20) we have
Lv_{m-1}^{(1)}=t\Lambda v_{m}^{(1)}+(1-t\beta_{1})v_{m-1}^{(1)}=t\Lambda L^{m-1}u+(1-t\beta_{1})v_{m-1}^{(1\rangle}

=L(t\Lambda L^{m-2}u)+[t\Lambda, L]L^{m-2}u+(1-t\beta_{1})v_{m-1}^{(1)}

In conclusion, using (1.18) we obtain the equation:

(1. 32) [ t(\partial_{t}-Z(t, x, D_{x}))-(\gamma+1-t\beta_{1}(t, x, D_{x}))] .
(v_{m-1}^{(1)}-l\Lambda L^{m-2}u)=0 .

Since \gamma+1\not\in Z_{+} . taking into account that v_{m-1}^{(1)}-t\Lambda L^{m-2}u\in C^{\infty}(R_{t} :
\mathscr{D}’(R^{n})) , we can apply Proposition 4.4 of Hanges [12] and obtain that
v_{m-1}^{(1\rangle}-t\Lambda L^{m-2}u\in C^{\infty}(R_{t}\cross R^{n}) .

Arguing in the same way as above, we obtain:

(1. 33) [ t(\partial_{t}-Z(t, x, D_{x}))-(\gamma+2-t\beta_{2}(t, x, D_{x}))]\circ

(v_{m-2}^{(1)}-(t\Lambda)^{2}L^{m-3}u)\in C^{\infty}(R_{t}\cross R_{x}^{n}) .

Again, since \gamma+2\not\in Z_{+} and v_{m-2}^{(1)}-(t\Lambda)^{2}L^{m-3}u\in C^{\infty}(R_{t};\mathscr{D}’(R^{n})) , the result of
Hanges quoted above can be applied yielding v_{m-2}^{(1)}-(t\Lambda)^{2}L^{m-3}u\in C^{\infty}(R_{t}\cross

R^{n}) . Going on in this way we obtain that relations (1. 17) are satisfied mod .
C^{\infty}(R_{t}\cross R_{x}^{n}) . Thus, from the last equation in (1. 20) we get Pu-f\in
C^{\infty}(R_{t}\cross R_{x}^{n}) .

To conclude, we have proved that the equation Pu=f, f\in C^{\infty}(R_{t} ;
\mathscr{D}’(R^{n})) , and P\in F_{0}^{m}(R\cross R^{n}) , can be transformed into a system of the form
(1.12), with the above specified structure, and that this system is equivalent
mod . C^{\infty}(R_{t}\cross R_{x}^{n}) to the given scalar equation. Thus, in order to solve
Pu–f, it will be enough to solve a system of the form (1.12) mod . C^{\infty}-

2. Classes of symbols and related operators.

This chapter is devoted to the definition of most of the relevant classes
of symbols and related operators which will be used in the sequel. Since the
arguments needed in the proofs are only slight modifications of the classical
ones we will be rather sketchy.

DEFINITION 2. 1. Let m, k\in R . By S^{mk} we denote the space of all
functions a(t, x, \xi)\in C^{\infty}(R_{t}\cross R_{x}^{n}\cross R_{\xi}^{n}) such that for every \Omega\subset\subset R_{t}\cross R^{n} , j\in

Z_{+} multiindices \alpha , \beta\in Z_{+}^{n} \delta>0 , there exists a positive constant C for which
the inequality :
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(2. 1) |\partial_{t}^{j}\partial_{x}^{a}\partial_{\text{\’{e}}}^{\beta}a(t, x, \xi)|\leq C|\xi|^{m-|\beta|}(|t|+1/|\xi|)^{k-j},

holds for (t, x)\in\Omega , |\xi|\geq\delta.
We put

(2.2) S^{-\infty,k}= \bigcap_{m}S^{m,k} , S^{m,\infty}= \bigcap_{k}S^{m,k} .

The classes S^{m,k} are related to the classes introduced by Boutet de
Monvel in [5]. We list now some properties of the classes S^{m,k} which will be
of frequent use in the sequel.

First we fix a notation: unless otherwise stated, by a cut-Off function
\chi(x, z)\in C^{\infty}(R_{x}^{n}\cross R_{z}) we mean a function having the following properties:

(2. 3) \{

i) 0\leq\chi(x, z)\leq 1

ii) For every \omega\subset\subset R_{x}^{n} , \chi\in C_{0}^{\infty}(R_{z} ; C^{\infty}(\omega))

iii) For every x\in R^{n} . \chi(X^{ },\cdot)=1 in a neighborhood of z=0.

LEMMA 2. 1. We have :
1 S^{m,k}\subset S^{m’,k’} iff m\leq m’m-k\leq m’-k’ .
2. S^{-\infty,k}=S^{-\infty.k’}=S_{1,0}^{-\infty}((R_{t}\cross R_{x}^{n})\cross R_{\xi}^{n}) , \forall k, k’

3. S^{m,k}\subset S_{1,1}^{m+k}((R_{t}\cross R_{x}^{n})\cross R_{\text{\’{e}}}^{n}) , k_{-}=nm(0, - k) .
4. S_{1,0}^{m}((R_{t}\cross R_{x}^{n})\cross R_{\xi}^{n})\subset S^{m,0} .
5. If

a\in S^{m\infty} and \chi(x, z) is any cut off function, then \chi(x, t|\xi|)a(t, x, \xi)

\in S_{1,0}^{-\infty}((R_{t}\cross R_{x}^{n})\cross R_{\xi}^{n}) .
Futhermore, (1-\chi(x, t|\xi|))a(t, x, \xi) satisfifies, for every M\in Z_{+}

local estimates of the form
(2. 4) |\partial_{t}^{j}\partial_{x}^{a}\partial_{\xi}^{\beta}[(1-\chi(x, t|\xi|))a(t, x, \xi)]|\leq const. |t|M(1+|\xi|)^{m-|\beta|} .

6. Let a_{j}\in S^{m-j,k}(resp. b_{j}\in S^{mk+_{J}})forj=0,1 , \ldots ; then there exists a symbol
a\in S^{mk} (rcsp. b\in S^{mk}) such that

(2.5) \forall M\geq 1 , a- \sum_{j<M}a_{j}\in S^{n-1V,k}( resp. b- \sum_{j<M}b_{j}\in S^{n,k+M})

To express (2.5) we that write a- \sum_{j\geq 0}a_{j} (resp. b- \sum_{j\geq 0}b_{j}).

PROOF. To prove 1. we remark that (2. 1) is meaningful for |t|+1/|\xi|

small: moreover, for |t||\xi|\leq const . we have |\xi|-(|t|+1/|\xi|)^{-1} , while
for |t||\xi|\geq const . we have |t|-|t|+1/|\xi| . Using these remarks the proof
of 1. is easily obtained. The equality S^{-\infty,k}=S^{-\infty.k’} follows from 1. On the
other hand, since |\xi|^{-r}(|t|+1/|\xi|)^{k-j}\leq const . |\xi|^{-r+j+k} \forall j, r\in Z_{+} it
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follows that S^{-\infty,k}\subset S_{1,0}^{-\infty} . The converse inclusion is proved arguing in the
same way as in 1. ; point 2. is proved. Point 3. is a trivial consequence of the
above remark. To prove point 4. we observe that for any cut-0ff function
\chi one can write: \partial_{l}^{j}\partial_{x}^{a}\partial_{\xi}^{\beta}a--\chi(x, t|\xi|)\partial_{l}^{j}\partial_{x}^{a}\partial_{\xi}^{\beta}a+(1-\chi(x, t|\xi|))

\partial_{l}^{j}\partial_{x}^{a}\partial_{\xi}^{\beta}a=I_{1}+I_{2} a\in S_{1,0}^{m}((R\cross R^{n})\cross R^{n}) . To prove that I_{1} satisfies
inequality (2. 1) it is enough to note that locally in (t, x) and for |\xi|\geq

const, we have \chi(x, t|\xi|_{\supset}^{\backslash }\leq const . |\xi|^{j}\leq const . (|t|+1/|\xi|)^{-j}. On the
other hand, since |\partial_{t}^{j}\partial_{x}^{a}\partial_{\xi}^{\beta}a| const, (1+|\xi|)^{m-|\beta|}|t|^{-j} obviously holds
locally in (t, x) , we have only to use the fact that on the support of 1-
\chi(x, t|\xi|) , |t|-|t|+1/|\xi| . This concludes the proof of point 4. Point 5.
is a consequence of the preceding remarks. Point 6. can be proved using the
same arguments as in Proposition 1.11 ( i ) , ( ii) of [5].

DEFINITION 2. 2. Let a\in S^{mk} . Define:

(2.6) a(t, x, D_{x})f(t, x)= \int e^{ix\cdot\xi}a(t, x, \xi)\hat{f}(t, \xi)ff\xi,

for f\in C^{\infty}(R_{t} ; C_{0}^{\infty}(R^{n})) , where \hat{f}(t, \xi)=\int e^{-i\xi\cdot y}f(t, y)dy and d\xi

=(2\pi)^{-n}d\xi .
By OPS^{mk} we denote the space of all operators A which can be written in

the form A=a(t, x, D_{x})+R, for some a\in S^{mk} ; here R is a partially
regularizing operator, i.e. there exists a smooth kernel r(t, x, y)\in C^{\infty}(R_{t}\cross

R_{x}^{n}\cross R_{y}^{n}) such that :

(2. 7) Rf(t, x)– \int r(t, x, y)f(t, y)dy, f\in C^{\infty}(R_{t};^{C_{0}^{\infty}(R^{n}))} .

The function a will be called a symbol for A .
We shall say that an operator A\in OPS^{mk} is proper iff for every \Omega\subset\subset R^{n}

there exists \Omega’\subset\subset R^{n} such that :

\int f\in C^{\infty}(R ; C_{0}^{\infty}(\Omega))\Rightarrow Af\in C^{\infty}(R_{t} ; C_{0}^{\infty}(\Omega’))

(2.8)
( f\in C^{\infty}(R_{t} ; C_{0}^{\infty}(R^{n})) , f|_{R,\cross\Omega}=0\Rightarrow Af|_{R_{t}\cross\Omega}=0 .

We state as a Lemma some properties of the classes OPS^{mk} .
LEMMA 2. 2. We have:

1. Every operator A\in OPS^{mk} can be uniquely extended as a continuous
map:

A:C^{\infty}(R_{t} ; \mathscr{C}’(R^{n}))-C^{\infty}(R_{t} ; \mathscr{D}’(R^{n}))

2. For every A\in OPS^{mk} there exists a proper operator A’\in OPS^{mk} such
that A-A’ is partially regularizing.

3. For a proper operator A\in OPS^{mk} , the function



Cauchy Problem for Fuchsian Hyperbolic Operato \kappa 191

(2.9) \sigma(A)(t, x, \xi)=e^{-i\langle x\cdot\xi\rangle}A(e^{i\langle\cdot\xi\rangle}’)\in S^{m,k}

and A=\sigma(A)(t, x, D_{x});\sigma(A)(t, x, \xi) will be called the symbol of A .
4. Let A\in OPS m,k. B\in OPS m’,k’ one of them being a proper operator.

Then BA\subseteq OPS^{m+m’,k+k’} and for any symbol c(t, x, \xi) of BA the usual
asymptotic expansion holds :

(2. 10) c(t, x, \xi)-\sum_{a}\frac{1}{\alpha!}\partial_{\xi}^{a}b(t, x, \xi)D_{x}^{a}a(t, x, \xi) ,

where a(resp. b) is a symbol for A(resp. B):(2.10) should be understood in
the following sense:

(2. 10) ’
\forall M\geq 1 , c- \sum_{|a|<M}\frac{1}{\alpha!}\partial_{\xi}^{a}bD_{x}^{a}a\in S^{m+m’-M,k+k’}

5. Let A\in OPS^{mk} and denote by {}^{t}A the formal transpose of A defifined by

\iint Af(t, x)g(t, x)dtdx=\iint f(t, x){}^{t}Ag(t, x)dtdx,

f, g\in C_{0}^{\infty}(R_{t}\cross R_{x}^{n}) .
Then {}^{t}A\in OPS^{mk} and for any symbol b(t, x, \xi) for {}^{t}A the usual asymptotic
expansion holds:

(2. 11) b(t, x, \xi)-\sum_{a}\frac{1}{\alpha!}\partial_{\text{\’{e}}}^{a}D_{x}^{a}a(t, x, -\xi) ,

where a is a symbol of A .
6. Let A\in OPS^{mk} be a proper operator. Suppose that for every \Omega\subset\subset

R_{t}\cross R_{x}^{n} there exist two constants C, \delta>0 such that

(2. 12) |a(t, x, \xi)|\geq C|\xi|m(|t|+1/|\xi|)^{k} ,

for (t, x)\in\Omega , |\xi|\geq\delta, where a is the symbol of A .
Then there exists a proper operator B\in OPS^{-m-k} for which AB-id and

BA- id are partially regularizing.
PROOF.

1. We recall (see, e.g. Treves [23]) that a distribution u\in \mathscr{D}’(R_{t}\cross

R_{x}^{n}) belongs to C^{\infty}(R_{t} ; \mathscr{D}’(R_{x}^{n})) iff for every \psi(t, x)\in C_{0}^{\infty}(R_{t}\cross\overline{R}_{x}^{n}) , the
following relation holds:

(2. 13) \forall k\in Z_{+} . \exists\sigma_{k}\in R , such that \psi u\in H^{k}(R_{t} ; H^{\sigma_{k}}(R_{x}^{n})) .
Write A=g(t, x, D_{x})+R, a\in S^{mk}, R partially regularizing. It is straight-
forward to prove that R maps C^{\infty}(R_{t} ; \mathscr{C}’(R^{n})) into C^{\infty}(R_{t}\cross R_{x}^{n}) : therefore
we can suppose A=g(t, x, D_{x}) . Given f\in C^{\infty}(R_{t} ; C_{0}^{\infty}(R^{n})) and putting
g(t, x)=v(x)a(t, x, D_{x})f(t, x) , with v\in C_{0}^{\infty}(R^{n}) , we can prove by a
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standard argument that the following inequalities hold:

(2. 14) \sum_{j=0}^{r}||\partial_{t}^{j}g(t, x) ; L^{2}([-T, T] ^{:} ^{H^{s-(m+k+j)}(R^{n}))||}

\leq C\sum_{j=0}^{r}||\partial_{t}^{j}f(t, x) ; L^{2}([-T, T] ^{:} ^{H^{s}(R^{n}))||} ,

for every s\in R , T>0 , r\in Z_{+} with a constant C independent of f. The
proof is finished using (2.14) and the characterization (2.13). Point 2. is
proved as in the classical case.

To prove 3., arguing as in the classical case, we need only to show that
for every a\in S^{mk} and for every \varphi(x)\in C_{0}^{\infty}(R^{n}) , the function a_{\varphi}(t, x, \xi)=

e^{-i\langle x.\xi\rangle}a(t, x, D_{x}) [e^{-i\langle,\xi\rangle}\varphi(\cdot)]\in S^{mk} with asymptotic expansion a_{\varphi}-

\sum_{a}\frac{1}{\alpha!}\partial_{\xi}^{a}aD_{x}^{a}\varphi .

We prove that a_{\varphi}satisfifies the estimate (2.1) when j=0 , \alpha--\beta=0 (the

estimates for the derivatives can be obtained analogously).
For|\xi|\geq 1 , write

a_{\varphi}(t, x, \xi)

=( \int_{|\xi+\zeta|\leq 1}+\int_{|\text{\’{e}}+\zeta|\geq 1})(e^{ix\cdot\zeta}a(t, x, \xi+\zeta)\hat{\varphi}(\zeta))d\zeta=I_{1}+I_{2} .

For|\xi+\zeta|\leq 1 we have, locally, |a(t, x, \xi+\zeta)|\leq const . : therefore

|I_{1}| \leq const.\int_{|\text{\’{e}}+\zeta|\leq 1}(1+|\xi+\zeta|)^{m-|k|}|\hat{\varphi}(\zeta)|d\zeta

\leq const. (1+|\xi|)^{m-|k|}\leq const. |\xi|m(|t|+1/|\xi|)^{k} .
Write I_{2} in the form

I_{2}=(| \xi+\zeta|\geq 1\int_{|\zeta|\leq|\xi|/2}+\int_{|\zeta|\geq|\xi|/2}|\xi+\zeta|\geq 1)(e^{\iota x\cdot\zeta}a(t, x, \xi+\zeta)\hat{\varphi}(\zeta))d\zeta

=J_{1}+J_{2} .
Since locally |a(t, x, \zeta+\xi)|\leq const . (1+|\zeta+\xi|)^{m}(|t|+1/|\zeta+\xi|)^{k} , and
|\xi+\zeta|-|\xi|if|\xi+\zeta|\geq 1 , |\zeta|\leq|\xi|/2 , we easily obtain

|J_{1}|\leq const . (1+|\xi|)^{m}(|t|+1/|\xi|)^{k} .

To estimate J_{2} we remark that for |\xi+\zeta|\geq 1 , |\zeta|\geq|\xi|/2 , one has

(|t|+1/|\xi+\zeta|)^{k}(|t|+1/|\xi|)^{-k}\leq\{
const. |\xi|k\leq const . |\zeta|^{k} , if k\geq 0

const. |\xi+\zeta|^{-k}\leq const . |\zeta|^{-k} , if k<0 .

As a consequence
|J_{2}|\leq const . (1+|\xi|)^{m}(|t|+1/|\xi|)^{k} .

The proof that

a_{\varphi}
(t, x, \xi)-\sum_{|a|<M}\frac{1}{\alpha!}\partial_{\xi}^{a} a D_{x}^{a}\varphi\in S^{m-M,k} . \forall M\geq 1 ,
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can be obtained arguing as above.
Points 4. and 5. follow by combining standard arguments and integral

estimates of the above type.
To prove 6. we observe that (2.12) implies the existence of a symbol b

\in S^{-m-k} such that ba-1\in S^{-\infty,0} . Take any proper operator B\in OPS^{-m-k}

with symbol b, then BA- id=R\in OPS^{-1,0} . By taking S\in OPS^{0,0} , S-
\sum_{j\geq 0}(-1)^{j}R^{j}, we obtain SBA-id\in OPS^{-\infty,0} . The conclusion follows.

By Lemma 2.2, 1., every operator A\in OPS^{mk} maps continuously
C^{\infty}(R_{t} : \mathscr{C}^{r}(R^{n})) into C^{\infty}(R_{t} ; \mathscr{D}’(R^{n})) . The problem we want to analyze
here is the relation between WF(Af) and WF(f) for f\in C^{\infty}(R_{t} : \mathscr{C}^{r}(R^{n})) .

We recall (see [13]) that if f\in C^{\infty}(R_{t} ; \mathscr{C}’(R^{n})) and

(2. 15) WFy)\cap\{(t, x;\tau, 0)\in T^{*}R^{1+n}|\tau\neq 0\}=\phi ,

then for every symbol a(t, x, \xi)\in S_{\rho,\delta}^{m}((R_{t}\cross R_{x}^{n})\cross R_{\xi}^{n}) , 0\leq\delta<\rho\leq 1 , we
have:

(2. 16) WF(a(t, x, D_{x})f)\subset WF\varphi) .

In particular:

(2. 17) WF(a(t, x, D_{x})f)\cap\{(0, x;\tau, 0)|\tau\in R|0)_{/-}^{(-}\phi .

Unfortunately, due to Lemma 2.1, 3. our classes OPS^{mk} are only imbedded
into the classes OPS_{1,1}^{m+k} which are not microlocal !

As a consequence, we expect that even if we apply our operators to
distributions verifying (2.15), relation (2.17) may be violated, i.e. our
operators allow singularities to arise on the conormal bundle to t –0 .
Actually this happens as the following simple example shows.

Consider the operator \varphi(t|D_{x}|)\in OPS^{0,0} , where \varphi\in C_{0}^{\infty}(R) , \varphi\equiv 1 near
the origin. Define v(t, x)=\varphi(t|D_{x}|)(1_{t}\otimes\delta_{x}) , i.e.

(2. 18) v(t, x)= \int e^{\iota x\cdot\xi}\varphi (t|\xi|)d\xi.

It can be easily recognized that v is a distribution homogeneous of
degree-n, which is C^{\infty} for t\neq 0 . From Theorem 8.1.8 of H\"ormander [ 14],

we know that the points (t=0, x=0;\tau=\pm 1, \xi=0)\not\in WF(v) iffff (\pm 1,0)\oplus

support (\hat{v}(\tau, \xi)) . Since \hat{v}(\tau, \xi) is given by

(2. 19) \hat{v}(\tau, \xi)=\int e^{-it\tau}\varphi(t|\xi|)dt=|\xi|^{-1}\hat{\varphi}(\tau/|\xi|) , \xi\neq 0 ,

the points (\pm 1, O)\oplus support (\hat{v}) only if \hat{\varphi} has compact support, which is
false.
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In order to get some control of the action of our operators OPS^{mk} over
t=0 , we will use the notion of\ll boundary wave front set\gg introduced by
Chazarain [8] and Melrose-Sj\"ostrand [16]. The analysis of the singu-
larities will be carried over in a sub-class of C^{\infty}(R_{t} : \mathscr{D}’(R^{n})) , called here the
\ll regulardistributions\gg .

DEFINITION 2. 3. Let M be an n-dimensional C^{\infty} -manifold without
boundary. Let f\in C^{\infty}(]-T, T [; \mathscr{D}’(M)) , 0<T\leq+\infty .

We say that a point (x_{0} \xi_{0})\in T^{*}M|0 does not belong to the boundary
wave front set of f, (x_{0-}\xi_{0})\not\in\partial WFy) , iff there exists a proper pdoB(x, D_{\chi)}^{\backslash }

\in OPS^{0}(M) , elliptic near (x) . \xi_{0} ), such that Bf\in C^{\infty}(]-\epsilon, \epsilon[\cross M) for
some \epsilon\in ] 0, T [ .

By \mathscr{D}_{\acute{r}}(]-T, T[\cross M) we denote the space of all distributions f\in
C^{\infty}(]-T, T [; \mathscr{D}’(M)) for which:

(2. 20) WF\varphi)\cap\{(t, x, \tau, \xi)\in T^{*}(]-T, T[\cross M)|0|\xi=0, t\neq 0\}--\phi .

Such an f will be called a regular distribution on ] - T, T[\cross M.
For f\in \mathscr{D}_{\acute{r}}(]-T, T [\cross M) we defifine:

(2. 21) \tilde{W}Fy)=\partial WF(f)\cup WF(f|t\neq 0\cross M) .

W.epul\mathscr{C}_{\acute{r}}(]-T, T[\cross M)=\mathscr{D}_{\acute{r}}(]-T, T[\cross M)\cap C^{\infty}(]-T, T[;\mathscr{C}’(M)) .
We recall that when M is an open subset of R^{n} , the condition (x) . \xi_{0} ) \not\in

\partial WF(t^{}) is equivalent to the following property:
There exists a conical neighborhood U\cross\Gamma\subset M\cross R^{n}|0 of (x_{J}. \xi_{0}) such

that for some \epsilon\in ] 0, T [and for every \varphi\in C_{0}^{\infty}( U) , we have:

(2. 22) \sup_{|t|\leq\epsilon,\xi\in\Gamma},

|\langle\partial_{t}^{j}f(t, x), e^{-ix\cdot\xi}\varphi(x)\rangle|(1+|\xi|)^{N}<+\infty ,

for every j, N\in Z_{+}

The following result holds.
THEOREM 2. 1. Let A\in OPS^{mk} ; then:

i) A : \mathscr{C}_{\acute{r}}(R_{t}\cross R^{n})arrow \mathscr{D}_{\acute{r}}(R_{t}\cross R^{n})

ii) \tilde{W}F(Af)\subset\tilde{W}Fy) , \forall f\in \mathscr{C}_{\acute{r}}(R_{t}\cross R^{n}) .
PROOF. We can suppose that A=a(t, x, D_{x}) for some a\in S^{mk} (because

partially regularizing operators map C^{\infty}(R_{t} : \mathscr{C}’(R^{n})) into C^{\infty}(R_{t}\cross R^{n})) .
We note that Af|l\neq 0\cross R^{n}=a(t, x, D_{x})\sigma|t\neq 0\cross R^{n}) and that for t\neq 0 we
have a(t, x, \xi)\in S_{1,0}^{m}(((R_{t}|0)R_{x}^{n})\cross R_{\xi}^{n}) . Taking into account (2.20), from
classical results we obtain:

(2. 23) WF(Af|t\neq 0\cross R^{n})\subset WF(f|t\neq 0\cross R^{n}) .
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Relation (2.23) arld Lemma 2.2, 1., imply assertion i ). To prove ii ),

in view of (2.23) we have only to show that (\chi) \eta_{0})\not\in\partial WF(Af) when
(x) \eta_{0})\not\in\partial WFy) . Let B(x, D_{x})\in OPS^{0}(R^{n}) be a proper operator whose
symbol b(x, \eta) has the properties:

1) cone supp (b) is contained in a conical neighborhood U\cross\Gamma\subset

T^{*}R^{n}|0 of (x_{0} \eta_{0});2)b(x, \eta)=1 in a conical neighborhood U’\cross\Gamma’\subset U\cross

\Gamma of (x) \eta_{0}) ; 3) B(x, D_{x})f\in C^{\infty}(]-\epsilon, \epsilon[\cross R^{n}) , for some \epsilon>0 .
Write BA=AB+[B, A].\cdot from Lemma 2.2, 4., it follows that [B, A]\in

OPS^{m-1,k} with a symbol c(t, x, \xi) having the following asymptotic
expansion

c(t, x, \xi)-\sum_{|a|\geq 1}\frac{1}{\alpha!}(\partial_{\xi}^{a}b(x, \xi)D_{x}^{a}a(t, x, \xi)

-\partial_{\xi}^{a}a(t, x, \xi)D_{x}^{a}b(x, \xi)) .

Take B’(x, D_{x})\in OPS^{0}(R^{n}) (proper), elliptic near (x_{0} \eta_{0}) and with
symbol supported in a conical neighborhood U’\cross\Gamma^{rr}\subset\subset U’\cross\Gamma’ of (x) \eta_{0}) .

Then BrBAf B’ABf+B’[B, A]f. Now, B’ ABf \in C^{\infty}(]-\epsilon, \epsilon[\cross R^{n}) by

hypothesis, and B’[B, A]\in OPS^{-\infty,k} because all the terms in the asymptotic
expansion of its symbol vanish. Therefore B’[B, A]f\in C^{\infty}(R_{t}\cross R^{n}) . This

ends the proof.
We need to exploit some more structure for our symbols. This will be

done by selecting suitable sub-classes of S^{mk} .
DEFINITION 2. 4. By S^{k} , k\in R , we denote the space of all functions

\varphi(x, \xi’z)\in C^{\infty}(R_{x}^{n}\cross S_{\xi}^{n-1}\cross R_{z}) for which there is a sequence (\varphi_{-j})_{j\geq t)} ,

\varphi_{-j}(x, \xi’)\in C^{\infty}(R_{x}^{n}\cross S_{\xi}^{n-1}) , such that

(2.24) \varphi(x, \xi’. z)-\sum_{j\geq 0}\varphi-j(x, \xi’)z^{k-j} , zarrow\infty .

The above formula has the following meaning:
For every \Omega\subset\subset R^{n} , M, p\in z_{+} . \alpha\in Z_{+}^{n} and for every family \theta_{1} ... \theta_{q}

of smooth vector fifields on S^{n-1} , there is a positive constant C such that:

(2. 25) | \theta_{1}\ldots\theta_{q}\partial_{z}^{p}\partial_{x}^{a}[\varphi-\sum_{j<M}\varphi_{-j}z^{k-j}]|\leq C(1+|z|)^{k-M-p} .

for x\in\Omega , \xi’\in S^{n-1} , z\in R .
By \sum^{mk}. m, k\in R , we denote the space of all functions a(t, x, \xi)\in

C^{\infty}(R_{t}\cross R_{x}^{n}\cross R_{\xi}^{n}) such that there exists \^a(x, \xi’z ) \in S^{k} for which :

(2.26) a(t, x, \xi)=|\xi|^{m-k} \^a(x, \xi/|\xi| , t|\xi| ),

for all t, x and |\xi|\geq\delta>0 ( \delta depending on a).

By \Sigma\wedge mk, m, k\in R , we denote the space of all functions a(t, x, \xi)\in S^{mk}

for which there exists a sequence (a_{j})_{j\geq 0} , a_{j} \in\sum^{mk+j} , such that for every M\geq
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1 we have :

(2, 27) (a- \sum_{j<M}a_{j})\in S^{m,k+M}-

We shall write a- \sum a_{j}

j\geq 0

As usual we list in a lemma some properties of the above defined classes.
LEMMA 2. 3. We have:
1 \Sigma^{mk}\subset S^{mk} and \Sigma^{mk}\subset\Sigma^{m,k} if k’\geq k, m-k=m’-k’.
2 If a\in\Sigma^{mk} . then \partial_{t}a\in mk-1 , ta\in\Sigma^{mk+1} , \partial_{x_{J}}a\in\Sigma^{mk} , \partial_{\xi_{J}}a\in\Sigma^{m-1,k} , j=

1 ... . n .
3. Let b (t, x, \xi)\in S_{Cl}^{m}((R\cross R^{n})\cross R^{n}) with an symptotic expansion

b (t, x, \xi)-\sum_{j\geq 0}b_{m-j}(t, x, \xi) where the b_{m-j} are positively homogenous of
degree m-j in \xi.

Then b\in\hat{\Sigma}^{mo} with symptotic expansion :

(2. 28)
( b- \sum_{j\geq 0}b_{j}’

(b_{j}’(t,x, \xi)=\omega(|\xi|)|\xi|m-j\sum_{r=0}^{j}\frac{1}{(j-r)!}(\partial_{t}^{j-\Gamma}b_{m-1})(0,

x, \frac{\xi}{|\xi|})(t|\xi|)^{j-\gamma}. j\geq 0 ,

where \omega\in C^{\infty}(R_{+}) , \omega(z)=0 for 0\leq z\leq 1/2 , \omega(z)=1 , for z\geq 1 .
PROOF. Points 1. and 2. are left as an exercise. To prove 3. we note

that b\in S^{mo} as a consequence of Lemma 2.1, 4. For every M\geq 1 write
b- \sum_{j<M}b_{j}’=(b-\sum_{j<M}\omega(|\xi|)b_{m-j})

+ \sum_{j<M}\omega(|\xi|)(b_{m-j}(t, x, \xi)-\sum_{h=0}^{m-j-1}\frac{t^{h}}{h!}\partial_{t}^{h}b_{m-j}(0, x, \xi))=I_{1}+I_{2}

Now I_{1}\in S_{1,0}^{m-M}((R\cross R^{n})\cross R^{n})\subset S^{m-M,0}\subset S^{m,M}-

Furthermore, we can write:
(I_{2}= \sum_{j<M}t^{M-j}c_{j}(t, x, \xi) ,

(c_{j}(t, x, \xi)=\frac{\omega(|\xi|)}{(M-j-1)!}\int_{0}^{1}(1-\sigma)^{M-j-1}(\partial_{l}^{M-j}b_{m-j})(\sigma, x, \xi)d\sigma .

Now c_{j}\in S_{1,0}^{m-j}((R\cross R^{n})\cross R^{n})\subset S^{m-j,0} , so that t^{M-j}c_{j}\in S^{m-j,M-j}\subset S^{m.M}

and the assertion follows.
To the classes \sum^{mk} and \hat{\Sigma}^{mk} we associate the related classes of operators

according to the following definition.
DEFINITION 2. 5. By OP\Sigma^{mk} we denote the class of all operators of the

form :

(2. 29) A=a(t, x, D_{x})+R
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for some a \in\sum^{mk} (called a symbol for A) and with R partially regularizing.
By OP\hat{\Sigma}^{mk} we denote the class of all operators of the form:

(2.30) A=a(t, x, D_{x})+R+R’

for some a\in\hat{\Sigma}^{mk} (called a symbol for A) and with R’\in OPS^{m\infty} . R partially
regularizing.

Operators in the classes OP \sum mk can be composed as the following lemma
proves.

LEMMA 2. 4. Let A\in OP\hat{\Sigma}^{mk} , B\in OP\hat{\Sigma}^{m’,k’}- one of them being a proper
operator. Then BA\in OP\hat{\Sigma}^{m+m’,k+k’}

. Furthermore, if a- \sum_{j\geq 0}a_{j-}a_{j}\in\Sigma^{mk+j},

is a symbol for a and b- \sum_{j\geq 0}b_{j}
b_{j}\in\Sigma^{m’,k’+j}, is a symbol for B, then BA has

a symbol
c- \sum_{j\geq 0}c_{j}

where

(2.31) c_{j}= \sum_{|a|+j’+j’=j}\frac{1}{\alpha!}\partial_{\xi}^{a}b_{j}D_{x}^{a}a_{j’}\in\Sigma^{m+m’,k+k’+j} .

PROOF. By Lemma 2.3, 1., 2. we know that D_{x}^{a}a_{j’}\in\Sigma^{m.k+j’} and \partial_{\xi}^{a}b_{j’}\in

\Sigma^{m-|a|,k’+j’}\subset\Sigma^{m’,k’+j’+|a|} so the (2. 31) is correct. By Lemma 2.2, 4. we
know that c\in S^{m+m’,k+k’} with asymptotic expansion given by (2. 10). For
every M\geq 1 , write

c- \sum_{j<M}c_{j}=(c-\sum_{|a|<M}\frac{1}{\alpha!}\partial_{\text{\’{e}}}^{a}bD_{x}^{a}a)

+( \sum_{|a|<M}\frac{1}{\alpha!}\partial_{\xi}^{a}bD_{x}^{a}a-\sum_{j<M}c_{j})=I+J.

Now I\in s^{m+m’-M,k+k’}\subset s^{m+m’,k+k’+M} ; moreover:
J= \sum_{|a|<M}\frac{1}{\alpha!}\partial_{\xi}^{a}bD_{x}^{a}a-\sum_{j<M}c_{j}

= \sum_{|a|<M}\frac{1}{\alpha!}\partial_{\xi}^{a}(b-\sum_{l<M}b_{l})D_{x}^{a}(a-\sum_{s<M}a_{s})

+ \sum_{|a|<M}\frac{1}{\alpha!}\partial_{\xi}^{a}(b-\sum_{l<M}b_{l})\sum_{s<M}D_{x}^{a}a_{s}+\sum_{|a|<M}\sum_{l<M}\frac{1}{\alpha!}\partial_{\text{\’{e}}}^{a}b_{l}D_{x}^{a}(a-\sum_{s<M}a_{s})

+ \sum_{|a|+l+s\geq M} |a|<M,l<M,s<M,\frac{1}{\alpha!},\partial_{\text{\’{e}}}^{a}b_{l}D_{x}^{a}a_{s}=J_{1}+J_{2}+J_{3}+J_{4} .

It is easily verified that al the J ’s belong to S^{m+m’.k+k’+M} .

The Lemma is proved.
The classes OP\hat{\Sigma}^{mk} will be used in chapter 3 in order to\ll decouple\gg a

Fuchsian hyperbolic system. However, to construct parametrices for such
systems some extra classes of symbols and operators are needed. The heavy
definitions which follow are strongly motivated by the construction
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performed by Hanges in [12].

DEFINITION 2. 6. By HS^{mk} , m, k\in R , we denote the space of all

functions a(\rho, t, x, \xi)\in C^{\infty}(]0,1]\cross R_{t}\cross R_{x}^{n}\cross R_{\xi}^{n}) such that for every \Omega\subset\subset

R_{t}\cross R_{x}^{n} , j, p\in Z_{+} , \alpha, \beta\in Z_{+}^{n} , \epsilon , \delta>0 , there exists a constant C>0 for which:

(2.32) |\rho^{\epsilon}(\rho\partial_{\rho})^{p}\partial_{t}^{j}\partial_{x}^{a}\partial_{\xi}^{\beta}a(\rho, t, x, \xi)|\leq C|\xi|m-|\beta|(|t|+1/|\xi|)^{k-j},

for (t, x)\in\Omega , \rho\in]0 , 1], |\xi|\geq\delta .

We put

(2.33) HS^{-\infty,k}= \bigcap_{m}HS^{mk} , HS^{m\infty}= \bigcap_{k}HS^{mk} .

By HS^{k} , k\in R , we denote the space of all functions \varphi(\rho, x, \xi’-z)\in

C^{\infty}(]0, 1]\cross R_{x}^{n}\cross S_{\xi’}^{n-1}\cross R_{z}) such that for every \Omega\subset\subset R_{x}^{n} , p, l\in Z_{+} \alpha\in Z_{+}^{n}

\epsilon>0 and for every system \theta_{1} . \ldots
\wedge\theta_{q} of smooth vector fifields on S^{n-1} , there

exists a constant C>0 for which:
(2.33) |\theta_{1}\ldots \theta_{q}\rho^{\epsilon}(\rho\partial_{\rho})^{p}\partial_{z}^{l}\partial_{x}^{a}\varphi(\rho, x, \xi’. z)|\leq C(1+|z|)^{k-l} .
for x\in\Omega , \rho\in ] 0, 1], \xi’\in S^{n-1} , z\in R .

By H \sum^{mk} we denote the space of all functions a\in HS^{mk} for which there
exists \^a\in H S^{k} such that :

(2. 34) a(\rho, t, x, \xi)=|\xi|^{m-k}\hat{a}(\rho, x, \xi/|\xi|_{\tau}t|\xi|) ,

for all \rho , t, x, and for |\xi|\geq\delta>0 ( \delta depending on a).
Finally, by H\hat{\Sigma}^{mk} we denote the space of all functions a\in HS^{mk} for

which there is a sequence (a_{j})_{j\geq 0} , a_{j} \in H\sum^{mk+j}, such that for every M>1 , we
Bove:

(2.35) (a- \sum_{j<M}a_{j})\in HS^{m,k+M}-

we shall write a- \sum_{j\geq 0}a_{j}

To the above defined classes of symbols we relate the corresponding
operators.

DEFINITION 2. 7. An operator R:C^{\infty}(R_{t},\cdot C_{0}^{\infty}(R^{n}))-C^{\infty}(R_{t}\cross R^{n}) will be
called partially regularizing of Hardy type (H. p. r. in the sequel) iff

(2.36) Rf(t, x)= \int_{0}^{1}\int r(\rho, t, x, y)f(\rho t, y)d\rho dy, f\in C^{\infty}(R_{t};^{C_{0}^{\infty}(R^{n}))} ,

for some kernel r\in C^{\infty}(]0,1]\cross R_{t}\cross R_{(x,y)}^{2n}) such that for every \Omega\subset\subset R^{n} .
p, j\in Z_{+} \alpha , \beta\in Z_{+}^{n} \epsilon , \delta>0 there exists a constant C>0 for which:
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(2.37)
|t| \leq\delta,\rho\in J0,11\sup_{(x,y)\in\Omega\cross\Omega}|\rho^{\epsilon}(\rho\partial_{\rho})^{j}\partial_{t}^{p}\partial_{x}^{a}\partial_{y}^{\beta}r(\rho, t, x, y)|\leq C

.

By OPHS^{mk} (resp. OPH \sum^{mk}) we denote the class of all operators A of
the form :

(2.38) A=a(\rho, t, x, D_{x})+R,

where R is H. p. r. , a\in HS^{mk} (resp. a\in H\Sigma^{mk}) and a(\rho, t, x, D_{x}) is
defifined as follows :

(2.39) a(\rho, t, x, D_{x})f(t, x)

= \int_{0}^{1}\int e^{ix\cdot\text{\’{e}}}a(\rho, t, x, \xi)\hat{f}(\rho t, \xi)d\rho d\xi, f\in C^{\infty}(R_{t} ; C_{0}^{\infty}(R^{n})) .

By OPH\hat{\Sigma}^{mk} we denote the class of all operators A of the form:
(2.40) A=a(\rho, t, x, D_{x})+r’(p, t, x, D_{x})+R,

for some a\in H\hat{\Sigma}mk (called a symbol for A), r’\in HS^{m\infty} and R is H. p. r.
Some relevant properties of the above defined operators are listed in the

following lemma, whose proof is left to the reader.
LEMMA 2. 5. We have :

1. Every operator A\in OPHS^{mk} can be continuously extended as an
operator from C^{\infty}(R_{t} ; \mathscr{C}’(R^{n}) into C^{\infty}(R_{t} ; \mathscr{D}’(R^{n})) .

2. Let A\in OPS^{m,k}, B\in OPHS^{m’,k’} one of them being a proper operator’,
then both AB and BA belong to OPHS^{m+m’,k+k’} Furthermore, if a(resp. b)
is a symbol for A(resp. B) and c(resp. c’) is a symbol for BA ( resp. AB),
them:

(2 41) \{

c- \sum_{a}\frac{1}{\alpha!}\partial_{\xi}^{a}bD_{x}^{a}a

c’- \sum_{a}\frac{1}{\alpha!}\partial_{\xi}^{a}aD_{x}^{a}b .

Moreover, if A\in OP\hat{\Sigma}^{m,k}, with a- \sum_{j\geq 0}a_{j}
a_{j}\in\Sigma^{n,k+j}, and B\in OPH\Sigma^{m’,k’}\wedge

with b- \sum_{j\geq 0}b_{j}
b_{j}\in H\Sigma^{m’,k’+j}, then both AB and BA belong to OPH\hat{\Sigma}^{m+m’.k+k}

and (2. 41) becomes :

(2. 41)’ \{

c- \sum_{j\geq 0}(\sum_{|a|+j’+j’=j}\frac{1}{\alpha!}\partial_{\text{\’{e}}}^{a}b_{j’}D_{x}^{a}a_{j’})

c’- \sum_{j\geq 0}(\sum_{|a|+j’+j’=j}\frac{1}{\alpha!}\partial_{\xi}^{a}a_{j’}D_{x}^{a}b_{j’})

Concerning point 1. we should add that inequalities (2. 14) hold. We
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point out that the analysis of \tilde{WF}(Af) in terms of \tilde{W}F(f) for operators A
\in OPHS^{mk} is postponed to Chapter 5 where we shall have to deal with a more
general situation.

GENERAL REMARK. In order to symplify notation we have defined our
symbol classes S^{mk} , \sum^{mk},\hat{\Sigma}^{mk} , etc. (and the related operators) on the whole
R_{t}\cross R^{n} . However, with trivial modifications we can (and in fact, we shall)

consider the same classes as defined in a slab]-T, T[\cross R^{n}, T>0 . In this
case we shall add a subscript T to the name of the classes (e. g . S_{T}^{m,k} , \sum_{T}^{m,k} .
etc.). We emphasize that all the results stated in this Chapter carry over
(with obvious modifications) to this more general situation.

3. Decoupling of a Hyperbolic Fuchsian System.

In Chapter 1 we have shown how an equation Pu=f, with P\in F_{0}^{m}(R\cross

R^{n}) can be reduced to an equivalent (mod. C^{\infty}) singular system of the form:

(3. 1) {?} v=I_{N}t\partial_{t}v-tA ,x,D_{x})v-B(t, x, D_{x})v=g ,

where A\in OPS_{ct}^{1}(R^{n} ; N\cross N) , B\in OPS_{Cl}^{0}(R^{n} ; N\cross N) are suitable matrices
of classical pdo’s, depending smoothly on t\in R .

The main property of the matrix A consists in the fact that its principal
symbol has purely imaginary eigenvalues and can be smoothly diagonalized.

In the classical hyperbolic case, i . e . if we had I_{N}\partial_{t}-A in place of I_{N}t\partial_{t}-

tA, a general procedure to study such a system would be to decouple the
system, that is to put B (via some intertwining elliptic operator) in a block
diagonal form and then study the so obtained decoupled equations (see e . g .
Taylor [22], Chap. 9, \S 1).

In our situation the standard decoupling procedure cannot be applied due
to the presence of the /-degeneracy.

The main result of this Chapter is that the system (3. 1) can be
\ll decoupled\gg at least for large values of t|\xi| . The precise meaning of this
assertion is clarified in the statement of Theorem 3.1.

Let us fix our hypotheses.
h_{1}) A is in a block diagonal form:

(3. 2) A=(\begin{array}{lll}A_{1} \square \square A.2 \backslash \backslash A_{\nu}\end{array}) A_{j}\in OPS_{c\iota}^{1}(R^{n},\cdot N_{j}\cross N_{j}) , j–l. ... . \nu

N_{1}+\ldots+N_{\nu}=N, with:

(3.3) A_{j}(t, x, D_{x})=\sqrt{-1}\lambda_{j}(t, x, D_{x})I_{N_{J}}-
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the \lambda_{j} being real-valued smooth functions defined on R_{t}\cross R_{x}^{n}\cross R_{\xi}^{n}|0 ,

positively homogeneous of degree 1 in \xi and such that:

(3.4) i\neq j\Rightarrow\lambda_{i}(t, x, \xi)\neq\lambda_{j}(t, x, \xi) , for every t, x, \xi\neq 0 .

h_{2})B\in OPS0(ctR^{n} ; N\cross N) , with symbol b ( t, x, \xi) having an

asymptotic expansion b(t, x, \xi)-\sum_{r\geq 0}b_{-r}(t, x, \xi) .

It is convenient to write B in a block form B=(B_{ij})_{i,j=1} , ’
\nu

, B_{ij}\in

OPS_{cl}^{0}(R^{n} ; N_{i}\cross N_{j}) and denote by b_{ij}(t, x, \xi) the symbol of B_{ijr} whose

expansion will be written as b_{ij}- \sum_{r\geq 0}b_{ij,-r} .

According to Lemma 2.3, 3. and formula (2. 28), B\in OP\hat{\Sigma}^{0,0}(N\cross N)

with asymptotic expansion (in \hat{\Sigma}^{0,0} ) of the symbol b given by:

(3. 5) \{

b(t, x, \xi)-\sum_{r\geq 0}b_{\acute{r}}(t, x, \xi)

b_{\acute{r}}(t, x, \xi)=|\xi|^{-r}\hat{b}_{r}(x, \xi/|\xi| t|\xi|) , r\geq 0 .

\hat{b}_{r}(x, \xi’z)=\sum_{j=0}^{r}\frac{1}{(r-j)!}\partial_{t}^{r-j}b_{-j}(0, x, \xi’)z^{r-j}

In the block decomposition of B we write b_{ij.\gamma}’ and \hat{b}_{ij.\gamma} i, j=1 , \ldots . \nu .
We are ready to state the main theorem.

THEOREM 3. 1. Le \mathscr{P} be the system (3. 1) satisfying hypotheses h_{1} ) and
h_{2}) . For every \omega\subset\subset R^{n} there exist \delta, \delta’>0 , \delta<\delta’. depending on \omega and
there exist :

1. Q\in OP\hat{\Sigma}^{0,0}(N\cross N) , proper, with symbol :

q- \sum_{j\geq 0}q_{j}
q_{j}\in\Sigma^{0,j}(N\cross N) , q_{j}(t, x, \xi)=|\xi|^{-j}\hat{q}_{j}(x, \xi/|\xi|_{r}t|\xi|) ,

\hat{q}_{j}\in S^{j}(N\cross N) , j\geq 0 .

Denoting by \hat{q}_{j}-\sum_{k\geq 0}\hat{q}_{j,-k}(x, \xi’)z^{j-k} the asymptotic expansion of \hat{q}_{j} in S^{j},

we have:
i) \hat{q}_{0}(x, \xi’ z) is an invertible matrix for every (x, \xi’ z)\in R^{n}\cross S^{n-1}\cross

R. Furthermore, q_{0}(x, \xi, z)=I_{N} for (x, \xi’)\in\omega\cross S^{n-1} and |z|\leq\delta.
ii) For j\geq 1,\hat{q}_{j}(x, \xi’-z)=\Pi for (x, \xi’)\in\omega\cross S^{n-1} and |z|\leq\delta.
iii) For every j\geq 0 , k\geq 1,\hat{q}_{j,-k} is an extra-diagonal matrix, i.e. all the

diagonal blocks N_{l}\cross N_{t} l=1 , \ldots . \nu, vanish.
Moreover, \hat{q}_{j,0}=\coprod for every j\geq 1 .
2. \tilde{B}\in OP\hat{\Sigma}^{0,0}(N\cross N) , proper, with symbol :

\tilde{b}-\sum_{j\geq 0}\tilde{b}_{j},\tilde{b}_{j}\in\Sigma^{0,j}(N\cross N),\tilde{b}_{j}(t, x, \xi)=|\xi|^{-j}b_{j}^{-}(x, \xi/\wedge|\xi|Jt|\xi|) ,

b_{j}^{-}\in S^{j}(N\cross N)- , j\geq 0 .
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Denoting by \tilde{b_{j}}-\sum_{k\geq 0}\tilde{b_{j-k}}(x, \xi’)z^{j-k}\wedge\wedge, the asymptotic expansion of \tilde{b_{j}}\wedge in S^{j},

we have:
i) \tilde{b_{j}}(x, \xi’\wedge z)=\hat{b}_{j}(x, \xi’. z) (see (3. 5)), for every (x, \xi’)\in\omega\cross S^{n-1} , |z|

\leq\delta. and for every j\geq 0 .
ii) \tilde{b}(t, x, \xi) and \tilde{b}_{j}(t, x, \xi) , for all j\geq 0 , are in block diagonal form

for (x, \xi/|\xi|)\in\omega\cross S^{n-1} and |t||\xi|\geq-\delta’ .

iii) For every (x, \xi’)\in R^{n}\cross S^{n-1}.\tilde{b_{0,0}}(x, \xi’) is in diagonal block form
and precisely:

\tilde{b}_{0,0}^{j,y)}(x, \xi’)=\{

\square , i\neq j

\hat{b}_{jj,0}(x, \xi’) , i=j
, i, j=1 , ... . \nu .

(see (3. 5)),

Such that putting :

(3.6) \mathscr{P}\sim=I_{N}t\partial_{t}-tA(t, x, D_{x})-\tilde{B}(t, x, D_{x}) ,

we have:

(3. 7) \mathscr{P}Q-Q\tilde{\mathscr{P}} is a partially regularizing operator.

The proof of the Theorem is based on some preliminary lemmas.
LEMMA 3. 1. Suppose we are given two N\cross N smooth matrices a(x, \xi’) ,

b(x, \xi’) defifined on R_{x}^{n}\cross S_{\xi’}^{n-1} . with a having the following structure:

(3.8) a=\{

a_{1} \square

\square
\backslash a_{\nu}

a_{j}(x, \xi’)=\sqrt-1 \{\begin{array}{llll}\lambda_{j}(x, \xi’)\backslash \backslash \square \backslash \backslash \backslash \backslash \square \backslash \backslash \backslash \lambda_{j}(x\backslash \backslash \backslash , \xi’)\end{array}\}

is a N_{j}\cross N_{j} diagonal matrix, N_{1}+\ldots+N_{\nu}=N.
We suppose that the \lambda_{j} are real-valued and satisfy \lambda_{i}(x, \xi’)\neq\lambda_{j}(x, \xi’) for

every x, \xi’ provided i\neq j.
Then for every \omega\subset\subset R^{n} there exist \delta, \delta’>0 , \delta<\delta’, depending on \omega, and

there exist:

1. q(x, \xi’z)\in S^{0}(N\cross N) with q- \sum_{j\geq 0}q_{-j}(x, \xi’)z^{-j}, zarrow\infty , such that :

i) q(x, \xi’. z) is an invertible matrix for every x, \xi’ . z .
ii) q(x, \xi’z)=I_{N} for (x, \xi’)\in\omega\cross S^{n-1} and |z|\leq\delta.
iii) q_{0}(x, \xi’)\equiv I_{N} and, for j\geq 1 , all the blocks on the diagonal of q_{-j}

vanish.

2. b\sim(x, \xi’-z)\in S^{0}(N\cross N) with \tilde{b}-\sum_{j\geq 0}\tilde{b}_{-j}(x, \xi’)z^{-j}, zarrow\infty , such that :

i) \tilde{b}(x, \xi’z) is a block diagonal matrix for every (x, \xi’)\in\omega\cross S^{n-1}
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and |z|\geq\delta’

ii) \tilde{b}(x, \xi’z)=b(x, \xi’) for every (x, \xi’)\in\omega\cross S^{n-1} and |z|\leq\delta.
iii) If (b_{hk})_{h,k=1}

,
\nu( resp. (b_{0}\tilde{(}hk))_{h,k=1} , \nu

) is the block decomposition of
b (resp. \tilde{b}_{0} ), lhen:

b_{0}^{\tilde{(}hk)}\equiv\{

\square . h\neq k

b_{hk} h=k.
such that the following equation is satisfified:

(3. 9) z\partial_{z}q(x, \xi’ z)-z[a(x, \xi’), q(x, \xi’, z)]

-b(x, \xi’)q(x, \xi’. z)+q(x, \xi’. z)\tilde{b}(x, \xi^{r_{\wedge}}z)=\coprod ,

for all x, \xi’-z .
PROOF. Suppose we have already constructed two N\cross N matrices

\hat{q}(x, \xi’, z)\in C^{\infty}(R^{n}\cross S^{n-1}\cross R|0),\hat{b}\in S^{0}(N\cross N) such that:
a) \hat{b} satisfies condition 2. iii ) and is block diagonal for all x, \xi’-z .

b)
\hat{q}(x, \xi^{\prime }z) has an asymptotic expansion \sum_{j\geq 0}q_{-j}(x, \xi’)z^{-j}, zarrow\infty , and

satisfies condition 1. iii ).
Furthermore, suppose that the following equation is satisfied:

(3. 10) z\partial_{z}\hat{q}-z[a,\hat{q}]-b\hat{q}+\hat{q}\hat{b}=\coprod ,

for all (x, \xi’)\in R^{n}\cross S^{n-1} and for all z\neq 0 .
Let us show how this implies the Lemma.
Let \chi(x, z) be a cut-0ff function (see (2. 3)) and define:

\{

q(x, \xi’. z)=\chi(x, z)I_{N}+(1-\chi(x, z))\hat{q}(x, \xi’, z)

\hat{b}_{1}(x, \xi’z)=\chi(x, z)b(x, \xi’)+(1-\chi(x, z))\hat{b}(x, \xi’z)

Putting f=z\partial_{z}q-z[a, q]-bq+q\hat{b}_{1} , it is easily seen that f\in S^{0}(N\cross N)

and for every \omega\subset\subset R^{n}, f\in C_{0}^{\infty}(R_{z}|0;C^{\infty}(\omega\cross S^{n-1})) . On the other hand,
from b) it follows that we can choose the cut off \chi in such a way that for
every \omega\subset\subset R^{n} :

(3. 12)
x \in\omega,\text{\’{e}}’\in S^{n1}\sup_{z\in R}|q(x, \xi’. z)-I_{N}|<1/2

.

With this choice of \chi the matrix q\in S^{0}(N\cross N) satisfies conditions 1. i)
-iii) (for suitable \delta , \delta’ depending on \omega ) and has the same asymptotic
expansion of q for zarrow\infty . Since q^{-1}\in S^{0}(N\cross N) , by defining:

(3. 13) \tilde{b}=\hat{b}_{1}-q^{-1}f

one can check that \tilde{b} verifies conditions 2. i ) - iii ) and that eq. (3. 9) is
satisfied for all x, \xi’ z.
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To construct \hat{q}, \hat{b} satisfying conditions a) and b) we consider two

formal power series \sum_{j\geq 0}q- j(x, \xi’)z^{-j},\sum_{j\geq 0}\hat{b}_{-j}(x, \xi’)z^{-j}, where the \hat{q}_{-j}
\hat{b}_{-j} are

smooth N\cross N matrices defined on R^{n}\cross S^{n-1} , and try to solve eq. (3. 15) at
a formal level.

We obtain:

(3. 14)
\sum_{j\geq 1}(-j)\hat{q}_{-j}z^{-j}-\sum_{j\geq 0}(a\hat{q}_{-j}-\hat{q}_{-j}a)z^{-j+1}

- \sum_{j\geq 0}b\hat{q}_{-j}z^{-j}+\sum_{j,k\geq 0}\hat{q}_{-j}\hat{b}_{-k}z^{-(j+k)}=\coprod .

Imposing that the coefficient of z in (3. 14) vanishes we have the
equation \hat{q}_{0}a-a\hat{q}_{0}=\coprod , which is solved by taking \hat{q}_{0}\equiv I_{N}. Imposing that the
coefficient of z^{0} in (3. 14) vanishes we have the equation:

(3. 15) [\hat{q}_{-1} a]=b-\hat{b}_{0}

Write b=(b_{hk})_{h,k=1}
, , \nu in block form and define \hat{b}_{0} as the block diagonal

part of b. It follows that b-\hat{b}_{0} is a block extra-diagonal matrix. Write
\hat{q}_{-1}--(\hat{q}_{-1}^{(hk)})_{h.k=1}

\nu
in block form and define (taking into account (3. 8)):

(3. 16) \hat{q}_{-1}^{(hk\rangle}=\{

\square if h=k
-\sqrt{-1}(\lambda_{k}-\lambda_{h})^{-1}b_{hk} . if h\neq k .

With this choice eq. (3. 15) is satisfied.
By an induction procedure, suppose we have already constructed

\hat{b}_{0} \hat{b}_{-(l-1)} (in diagonal block form) and \hat{q}_{0} \hat{q}_{-1} ... \hat{q}_{-l} (with \hat{q}_{-j} , j\geq

1 , in extra-diagonal block form). Imposing that the coefficient of z^{-l} in (3.
14) vanishes we have the equation:

(3. 17)
[ \hat{q}_{-(l+1)} ^{a]-(lI_{N}+b)\hat{q}_{-l}+ _{-l}}j+r<l\sum_{r-},\hat{q}_{-j}\hat{b}_{-r}+\hat{b}_{-l}=\coprod .

Putting
\varphi=(lI_{N}+b)\hat{q}_{-l}-\sum_{r<l} j+r=l,\hat{q}_{-j}\hat{b}_{-r}

. we defifine \hat{b}_{-l} as the block diagonal

part of \varphi . Writing \hat{q}_{-(l+1)}--(q_{-(l+1)}^{<hk)})_{h.k=1}
, L’ in block form, we define:

(3. 18) \hat{q}_{-(l+1)}^{(hk)}=\{

\square if h=k
-\sqrt{-1}(\lambda_{k}-\lambda_{h})^{-1}\varphi^{(hk\rangle} , if h\neq k .

Having satisfied eq. (3. 10) at formal level, we construct \hat{b}\in S^{0}(N\cross N),\hat{b}

block diagonal, with \hat{b}-\sum_{j\geq 0}\hat{b}_{-j}z^{-j}, and q^{*}\in S^{0}(N\cross N) with q^{*}- \sum_{j\geq 0}\hat{q}_{-j}z^{-j} .

Conditions a) and b) are satisfied by q^{*},\hat{b}.
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Putting -g=z\partial_{z}q^{*}-z[a, q^{*}]-bq^{*}+q^{*}\hat{b}, it can be easily seen that
g(x, \xi’ z)\in S_{1,0}^{-\infty}((R^{n}\cross S^{n-1})\cross R_{z} ; N\cross N) .

Now we look for a N\cross N matrix \varphi(x, \xi’z)\in C^{\infty}(R^{n}\cross S^{n-1}\cross R_{z}|0) ,
rapidly decreasing for zarrow\infty , such that:

(3. 19) z\partial_{z}\varphi-z[a, \varphi]-b\varphi+\varphi\hat{b}=g ,

for all (x, \xi’)\in R^{n}\cross S^{n-1} and all z\neq 0 .
Once such a \varphi is obtained it is enough to put \hat{q}=q^{*}+\varphi . To construct \varphi

we consider for every M>0 the space \mathscr{F}_{M} of all N\cross N matrices v(x, \xi’-z)

\in C^{\infty}(R^{n}\cross S^{n-1}\cross\{z||z|\geq M^{(}, ; N\cross N) having the following property: for
every \omega\subset\subset R^{n} , p, q, \in Z_{+} \alpha\in Z_{+}^{n} . and for every family \theta_{1} ... , \theta_{l} of smooth
vector fields on S^{n-1} we have:

(3. 20)
x \in\omega\sup|’ z|\geq M\xi’\in S^{n1},|z^{p}\partial_{z}^{q}\partial_{x}^{a}\theta_{1}\ldots\theta_{l}v(x, \xi’. z)|<+\infty

.

Equipped with the seminorms defined by (3.20) J_{M}^{} becomes a Fr\’echet
space. Consider the following continuous operators acting on \mathscr{F}_{M} :

(3. 21) \{
Lv=bv-v\hat{b}, v\in J_{M}^{}

Rv=e^{za} ve^{-za}, v\in J_{M}^{} .

The continuity of L is trivial while the continuity of R is a consequence
of (3. 8). Putting H=R^{-1}LR and defining g’=R^{-1}g , eq. (3. 19) becomes:
(3.22) z\partial_{z}\psi-H\psi=g’, \psi--R\varphi .

We now argue for z\geq M (the case z\leq-M can be handled analogously).
Changing z=e^{s}, s\geq\ln M and calling \tilde{H}(s) the operator H in the new
variable s, consider the evolution operator U (s, s’ ; x, \xi’) defined by:

(3. 23) \{

\frac{d}{ds}U(s, s’)-\tilde{H}(s)U(s, s’)=\coprod

U(s, s’)|_{s-s}=I_{N}

s’\geq s\geq\ln M.

One can easily recognize that the matrix function

(3. 24) \psi(x, \xi’ _{Z)=-\int_{z}^{+\infty}U} (ln z, ln z’ : x, \xi’) g’(x, \xi’ _{Z^{r}})\frac{dz’}{z’},

solves eq. (3. 22) for z\geq M.
To prove that \psi is actually in J_{M}^{} (for z\geq M ) we use energy estimates.

Precisely, for every \omega\subset\subset R^{n} , we obtain from (3. 23)
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(3.25)
\xi’\in S^{n1}\sup_{x\in\omega}||U(s, s^{\prime }

;
^{x}||^{2}\leq e^{2C(s-s\gamma}s’\geq s\geq\ln M

,

for some constant C>0 depending on \omega . Thus, for every p\in z_{+} . p\geq 1 , we
get from (3. 24) :

(3.26) z^{p}||\psi(x, \xi^{\prime }z)||\leq \int_{z}^{+\infty}(\frac{z}{z’})C+pz^{\prime p}||g’(x, \xi’z’)||\frac{dz’}{z’}

\leq
(x, \xi’)\in\omega\cross’ S^{n1}\sup_{|z|\geq M}||z^{p}g’(x,\xi’,z)||\frac{1}{C+p} . x\in\omega , |\xi’|=1 , z\geq M^{r}.

Taking derivatives of eq. (3.22) and using estimates of the above type,
we conclude that \psi\in \mathscr{F}_{M} and therefore \varphi=R^{-1}\psi\in \mathscr{F}_{M} .

As M>0 can be arbitrarily chosen we obtain a smooth solution of (3.19)

defined for z\neq 0 and rapidly decreasing at infinity.
LEMMA 3. 2. Let a(x, \xi’) and b(x, \xi’) be as in Lemma 3. 1. Suppose

we arc given c\in S^{m}(N\cross N) , m\in Z_{+} . m\geq 1 , with expansion

(3. 27) c- \sum_{j=0}^{m}c_{m-j}z^{m-j}+\sum_{k>0}c_{-k}z^{-k} , zarrow\infty .

There cxist :
1. Q\in S^{m}(N\cross N) , with expansion

Q- \sum_{j=0}^{m}Q_{m-j}z^{m-j}+\sum_{k>0}Q_{-k}z^{-k} , zarrow\infty ,

such that :
i) Q(x, \xi’. z)=\coprod , for (x, \xi’)\in\omega\cross S^{n-1}and|z|\leq\delta, with the some \delta

(and \delta’) as in Lemma 3. 1.
ii)Q_{m}\equiv\coprod and all the coefficients in the expansion of Q are extra-diagonal

block matrices.
2. \tilde{B}\in S^{m}(N\cross N) , with expansion

\tilde{B}-\sum_{j=0}^{m}\tilde{B}_{m-j}z^{m-j}+\sum_{k>0}\tilde{B}_{-k}z^{-k} , zarrow\infty ,

such that :
i) \tilde{B}(x, \xi’z)=c(x, \xi’z) , for (x, \xi’)\in\omega\cross S^{n-1}and|z|\leq\delta.
ii)\tilde{B}(x, \xi’. z) is a block diagonal matrix, for (x, \xi’)\in\omega\cross S^{n-1}and|z|

\geq\delta’

Such that the following equation is satisfified for every x, \xi’ z.\cdot

(3. 28) z\partial_{z}Q-z [ a, Q]-bQ+Q\tilde{b}+q\tilde{B}=c,

where q and \tilde{b} are the matrices constructed in Lemma 3. 1.
PROOF. Suppose we have already constructed two N\cross N matrices
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\hat{Q}(x, \xi’. z)\in C^{\infty}(R^{n}\cross S^{n-1}\cross R_{z}\backslash 0),\hat{B}\in S^{m}(N\cross N) , such that:
a) \hat{B} is a block diagonal matrix for every x, \xi’ z.

b) Q \wedge-\sum_{j=0}^{m}\hat{Q}_{m-j}z^{m-j}+\sum_{k>0}\hat{Q}_{-k}z^{-k} , zarrow\infty , and satisfies 1. ii ).

Furthermore, suppose the following equation is satisfied:
(3. 29) z\partial_{z}\hat{Q}-z[a,\hat{Q}]-b\hat{Q}+\hat{Q}\tilde{b}+q\hat{B}=c,

for all, x, \xi’ and for z\neq 0 .
We now show that this implies the Lemma. With the same choice of the

cut-0ff function \chi(x, z) made in Lemma 3. 1, define:

(3.30) \{

Q(x, \xi’\wedge z)=(1-\chi(x, z))\hat{Q}(x, \xi’. z)

B^{*}(x, \xi’z)=\chi(x, z)c(x, \xi’z)+(1-\chi(x, z))\hat{B}(x, \xi’. z) .

Q satisfies conditions 1. i ), ii ). Moreover, putting f=z\partial_{z}Q-z [a, Q]-
bQ+Q\tilde{b}+qB^{*}-c, we can see that for very (x, \xi’)\in\omega\cross S^{n-1} . f(x, \xi’z)=
\square for|z|\leq\delta and for|z|\geq\delta’- Defining:

(3. 31) \tilde{B}=B^{*}-q^{-1}f,

one can see that \tilde{B} verifies 2. i ), ii ) and that eq. (3. 28) is satisfied.
To construct \hat{Q} and \hat{B} we proceed as in the proof of Lemma 3. 1 trying

to solve eq. (3. 28) at a formal power series level. We obtain:

(3.32) \sum_{j\geq 0}(m-j)\hat{Q}_{m-j}z^{m-j}-\sum_{j\geq 0}[a,\hat{Q}_{m-j}]z^{m-j+1}-\sum_{j\geq 0}b\hat{Q}_{m-j}z^{m-j}+

\sum_{j,r\geq 0}\hat{Q}_{m-j}\tilde{b}_{-r}z^{m-(j+r)}+\sum_{j,r\geq 0}q_{-j}\hat{B}_{m-r}z^{m-(j+r)}-\sum_{j\geq 0}c_{m-j}z^{m-j}=\coprod .

Imposing that the coefficient of z^{m+1} vanishes we have the equation [a,\hat{Q}_{m}]=

\square , which is solved by \hat{Q}_{m}\equiv\coprod . From now on the proof proceeds exactly as
in Lemma 3. 1. We leave the details to the reader.

REMARK 3. 1. It will be crucial to keep in mind that, due to property 1.
ii) , the matrix Q constructed in the above Lemma actually belongs to
S^{m-1}(N\cross N) .

PROOF of THEOREM 3. 1.
By Lemma 2. 3, the operator tA (t, x, D_{x}) belongs to OP\hat{\Sigma}^{1,1}(N\cross N)

and its symbol tA (t, x, \xi) has the asymptotic expansion:

(3. 33) \{

tA (t, x, \xi)-\sum_{j\geq 0}a_{1+j}(t, x, \xi)

a_{1+j}(t, x, \xi)=|\xi|-j\hat{a}_{1+j}(x, \xi/|\xi|, t|\delta|)

\hat{a}_{1+j}(x, \xi’. z)=\frac{1}{j!}(\partial_{t}^{j}A)(0, x, \xi’)z^{1+j}

,j\geq 0 .
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For sake of convenience we will write:

(3.34) a(x, \xi’)=\hat{a}_{1}(x, \xi’)=A(0, x, \xi’) .

Let q_{0}(t, x, D_{x})\in OP\Sigma^{0,0}(N\cross N) be a proper operator such that in the

asymptotic expansion \sum_{k\geq 0}q_{0,-k}(x, \xi’)z^{-k} of \hat{q}_{0} we have q_{0,0}\equiv I_{N} With this

choice, it is easy to verify that the commutator [ tA, q_{0} ] \in OP\hat{\Sigma}^{0,0}(N\cross N) .
If \tilde{b}_{0}(t, x, D_{x})\in OP\Sigma^{0,0}(N\cross N) is a proper operator, define:

(3.35) \mathscr{P}\sim 0^{=I_{N}t\partial_{t}-tA(t, x, D_{X})-\tilde{b}_{0}(t, x, D_{x})} .

Then the term in \Sigma^{0,0}(N\cross N) of the symbol of \mathscr{P}q_{0}-q_{0}\mathscr{P}_{0} is given by:

(3. 36) (l\partial_{t}q_{0})(t, x, \xi)-t[a(x, \xi), q_{0}(t, x, \xi)]-b_{0}(t, x, \xi)q_{0}(t, x, \xi)

+q_{0}(t, x, \xi)\tilde{b}_{0}(t, x, \xi) .

We apply Lemma 3. 1 (with a defined by (3. 34) and b=\hat{b}_{0}(x, \xi’) as
given by (3. 5) ) and obtain two symbols q_{0},\tilde{b}_{0}\in\Sigma^{0,0}(N\cross N) such that

(3. 37) \mathscr{P}q_{0}-q_{0}\tilde{\mathscr{P}}_{0}\in OP\hat{\Sigma}^{0,1}(N\cross N) .

We now proceed by induction. Suppose we have constructed \hat{q}_{j}
b_{j}^{-}-\in

S^{j}(N\cross N) , j=0 , \ldots M with the following properties:
For every \omega\subset\subset R^{n} there exist \delta , \delta’>0 , \delta<\delta’. such that:

\alpha) i) \hat{q}_{0}(x, \xi’z) is an invertible matrix for every x, \xi’ z .
ii)\hat{q}_{0}(x, \xi’z)=I_{N} and, for j–l, ... ’

M,\hat{q}_{j}(x, \xi’-z)=\square , for every (x, \xi’)

\in\omega\cross S^{n-1}and|z|\leq\delta.

iii) If \sum_{k\geq 0}q_{j,-k}(x, \xi’)z^{j-k} is the asymptotic expansion of \hat{q_{j}} , then:

\int_{q_{j,0}(x,\xi’)\equiv\coprod_{is\equiv}j\geq 1}(_{q_{j,-k}(x,\xi’)ab10}q_{0,0}(x,\xi’)\equiv I_{N\prime}"

ck extra-diagonal matrix, j\geq 0 , k\geq 1 .
\beta) i)

\tilde{b_{j}}(x, \xi’--z)=(ab1ock(\hat{b}_{j}(x,\xi’diagona1matrixz),for|z|\leq\delta,

for|z|\geq\delta

M,j=0 , \ldots

for every (x, \xi’)\in\omega\cross S^{n-1} , with \hat{b}_{j} given by (3. 5).

ii) If \sum_{k\geq 0}\tilde{b}_{j,- k}(x, \xi’)z^{j-k} is the asympotic expansion of b_{j}^{-}\wedge , then

b_{0,0}^{\tilde{(}hk)}(x, \xi’)\equiv\{

\hat{b}_{hh,0}(x, \xi’) , for h–k

\square for h\neq k

h, k–1 , \ldots v .

Futhermore, if q_{j}(t, x, D_{x})\in OP\Sigma^{0,j}(N\cross N) (resp. b_{j}(t, x, D_{x})\in
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OP\Sigma^{0,j}(N\cross N)) denotes a proper operator with symbol q_{j} (t, x, \xi)=

|\xi|^{-j} \hat{q}_{j} (x, \xi/|\xi| t|\xi|) (resp. b_{j}^{-} ( t, x, \xi)=|\xi|^{-j} b_{j}^{-}\wedge(x, \xi/|\xi| . t|\xi|) )

putting:

(3. 38) \tilde{\mathscr{P}}_{j}=I_{N}t\partial_{t}-tA(t, x, D_{x})-\sum_{k=0}^{j}\tilde{b}_{k}(t, x, D_{x}) , j=0,1 , \ldots

we have:

\gamma) i) \mathscr{P}(\sum_{0}^{M}kq_{k}(t, x, D_{x}))-(\sum_{k}^{M}q_{k}(t, x, D_{x})0)\tilde{\mathscr{P}}_{M}\in OP\Sigma^{0,M+1}(N\cross N)\wedge .

ii) Denoting by \psi_{M+1}(t, x, \xi) the term bolonging to \Sigma^{0,M+1}(N\cross N) in

the symbol of the above operator, we have:

(3.39) \hat{\psi}_{M+1}(x, \xi’z)=-\hat{b}_{M+1}(x, \xi’. z) , for every (x, \xi’)\in\omega\cross S^{n-1} ,

|z|\leq\delta.

We look for two proper operators q_{M+1}(t, x, D_{x}) , \tilde{b}_{M+1}(t, x, D_{x})\in

OP\Sigma^{0,M+1}(N\cross N) , such that
\mathscr{P}(\sum_{0^{k}}^{M+1}q_{k})-(\sum_{0^{k}}^{M+1}q_{k})\tilde{\mathscr{P}}_{M+1}\in Op_{\Sigma^{0,M+2}}^{\wedge}(N\cross N) .

We use the notation:

(3.40) J_{l}-- \mathscr{P}(\sum_{0}^{l}kq_{k})-(\sum_{0}^{l}kq_{k})\tilde{\mathscr{P}}_{l} l=0,1 , \ldots

Choosing the principal term in the asymptotic expansion of \hat{q}_{M+1}(x, \xi’z)

identically equal to the zero matrix, we obtain that J_{M+1}\in OP\Sigma^{0,M+1}(N\cross N)\wedge

and the term in \Sigma^{0,M+1} of its symbol is given by:

(3. 41) t\partial_{t}q_{M+1}-t[a, q_{M+1}]-b_{0}q_{M+1}+q_{M+1}\tilde{b}_{0}+q_{0}\tilde{b}_{M+1}+\psi_{M+1} .

where \psi_{M+1} is the term in \Sigma^{0,M+1} of the symbol of J_{M}

We apply Lemma 3. 2 (with m=M+1 , a given by (3. 34), b=\hat{b}_{0} defined

by (3. 5), \tilde{b}=\tilde{b_{0}}\wedge , q=\hat{q}_{0} , and c=-\hat{\psi}_{M+1}(x, \xi’. z)) .

From the Lemma we obtain two symbols \hat{q}_{M+1} b_{M+1}^{-}\wedge\in S^{M+1}(N\cross N)

such that conditions \alpha ) and \beta ) are satisfied by \hat{q}_{0} ... \hat{q}_{M+1} and \tilde{b_{0}}- , \ldots

\tilde{b}_{M+1}- By the same Lemma, condition \gamma ) i ) is satisfied with M replaced

by M+1 . We have to verify that condition \gamma ) ii ) is satisfied, when M+1

is replaced by M+2 .
A simple calculation yields:

(3. 42) \psi_{M+2}=g+h+u+v,
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where h (resp. u [resp. v] ) is the term in \sum^{0,M+2} in the symbol of J_{M} (resp.
q_{1}\tilde{b}_{M+1} [resp. q_{M+1}\tilde{b}] ) , and g is the term in \sum^{0,M+2} in the symbol of \mathscr{P}q_{M+1}

-q_{M+1}\tilde{\mathscr{P}}_{0}

The structure of the \hat{q} ’s implies immediately that \^u(x, \xi’z) =\hat{v}(x, \xi’. z)

=\hat{g}(x, \xi’ z)=\Pi for every (x, \xi’)\in\omega\cross S^{n-1}and|z|\leq\delta.
We can write

h= \sum_{0}^{M}l(h_{\acute{\iota}}+\sum_{1}^{M}jh_{\acute{l},j}’)

where h_{\acute{l}} (resp. h_{\acute{l},j}’) is the term in \Sigma^{0,M+2} in the symbol of \mathscr{P}q_{l}-q_{l}\tilde{\mathscr{P}}_{0} (resp.
q_{t}\tilde{b}_{j}) .

As a consequence of Lemma 3. 2 and by the inductive hypotheses, we
have \hat{h}_{\acute{\zeta}j}(x, \xi’. z)=\Pi for every (x, \xi’)\in\cross S^{n-1}and|z|\leq\delta.

On the other hand, we have
h_{l}’=- \sum_{|a|+j=M+2-l}\frac{1}{\alpha}!(\partial_{\xi}^{a}a_{1\vdash j}D_{x}^{a}q_{l}-\partial_{\xi}^{a}q_{l}D_{x}^{a}a_{1+j}

+\partial_{\xi}^{a}b_{j}D_{x}^{a}q_{l}-\partial_{\xi}^{a}q_{l}D_{x}^{a}\tilde{b}_{0}) .
The structure of the \hat{q} ’s implies that:

\hat{h}_{l}’(x, \xi’-z)--\{

\square , if l>0
-\hat{b}_{M+2}(x, \xi’z) , if l=0,

for every (x, \xi’)\in\omega\cross S^{n-1}and|z|\leq\delta.
This proves our claim.
Having constructed the two sequences (q_{j})_{j\geq 0} , (\tilde{b}_{j})_{j\geq 0} , let q(t, x, D_{x})

and \tilde{b}(t, x, D_{x}) be two proper operators in oP\hat{\Sigma}^{0,0}(N\cross N) with symbols q

- \sum_{j\geq 0}q_{j} \tilde{b}\sim\sum_{j\geq 0}\tilde{b}_{j}

Defining

(3. 43) \mathscr{P}^{ff}--I_{N}t\partial_{t}-tA(t, x, D_{x})-\tilde{b}(t, x, D_{x}) ,

it is a simple matter to recognize that:

(3. 44) \mathscr{P}q(t, x, D_{x})-q(t, x, D_{x})\mathscr{P}^{\#}=r(t, x, D_{x})\in OPS^{0,\infty}(N\cross N) .

We have now to exorcise the term r(t, x, D_{x}) (which is not a partially
regularizing operator!).

To start with, let us point out that the above construction implies that:
(3. 45) q(t, x, \xi)=q_{0}(t, x, \xi)+q’(t, x, \xi) ,

where q’\in\hat{\Sigma}^{-1,0}(N\cross N) and q_{0}\in\Sigma^{0,0}(N\cross N) is a nonsingular matrix.
It will be convenient to consider two more classes of symbols which are

either flat or have polar singularities at t=0 .
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(3.46) S_{f}^{m}=\backslash \varphi/(t, x, \xi)\in S_{1,0}^{m}((R\cross R^{n})\cross R^{n})|\forall\Omega\subset\subset R_{t}\cross R_{x}^{n} ,
M, j\in Z_{+} , \alpha , \beta\in Z_{+}^{n} , \exists c>0 :
|\partial_{t}^{j}\partial_{x}^{a}\partial_{\xi}^{\beta}\varphi(t, x, \xi)|\leq c|t|M(1+|\xi|)^{m-|\beta|}

(t, x)\in\Omega , \xi\in R^{n\iota}, .
(3.47) S_{P}^{m}=^{1}\backslash \varphi(t, x, \xi)|\forall k\in Z_{+} , \alpha , \beta\in Z_{+}^{n} . (t\partial_{t})^{k}\partial_{x}^{a}\partial_{\xi}^{\beta}q\in

C^{(0)}(R_{t}\cross R_{x}^{n}\cross R_{\xi}^{n}) , and \forall\Omega\subset\subset R_{t}\cross R_{x}^{n} , \exists c>0 :
|(t\partial_{t})^{k}\partial_{x}^{a}\partial_{\xi}^{\beta}\varphi(t, x, \xi)|\leq c(1+|\xi|)^{m-|\beta|} (t, x)\in\Omega , \xi\in R_{)}^{n\backslash } .

Since r_{\backslash }^{\subset}t, x, \xi ) \in S^{0,\infty}(N\cross N) , property 5. in Lemma 2.1 can be restated
as.

(3.48) \{

\chi(x, t|\xi|)r(t, x, \xi)\in S_{1,0}^{-\infty}((R\cross R^{n})\cross R^{n})

(1-\chi(x, t|\xi|))r(t, x, \xi)\in S_{f}^{0} ,

for every cut-0ff \chi . Furthermore, it is easy to verify that:

(3.49) a(t, x, \xi)\in S^{mo}\Rightarrow(1-\chi(x, t|\xi|))a(t, x, \xi)\in S_{p}^{m},

for every cut-0f \chi .
We leave to the reader to verify that the following composition

properties hold:

(3.50) OPS_{1,0^{\circ}}^{m}OPS_{f}^{m\prime}\subset OPS_{f}^{m+m\prime}, OPS_{1,0^{\circ}}^{m}OPS_{p}^{m^{\gamma}}\subset OPS_{p}^{m+m^{\gamma}} .

OPS_{p}^{m_{\circ}}OPSf’ cOPS_{f}^{m+m\prime} .

with the usual asymptotic expansions for product symbol.
We shall now prove the existence of two matrices s(t, x, \xi)\in S_{f}^{-1}(N\cross N)

and v(t, x, \xi)\in S_{f}^{0}(N\cross N) (in a block diagonal form) such that, for some
cut-0ff \chi , we have:

(3.51) \mathscr{P}s(t, x, D_{x})-s(t, x, D_{x})(\mathscr{P}^{f1}-v(t, x, D_{x}))

+q(t, x, D_{x})v(t, x, D_{x})+(1-\chi(x, t|D_{x}|))r(t, x, D_{x})

\in OPS_{f}^{-\infty}(N\cross N) .

Then, defining :

(3. 52) \{

Q(t, x, D_{X})=q(t, x, D_{x})+(1-\chi(x, t|D_{x}|))s(t, x, D_{x})

\tilde{B}(t, x, D_{X})=\tilde{b}(t, x, D_{x})+(1-\chi(x, t|D_{x}|))v(t, x, D_{x})

\tilde{\mathscr{P}}--I_{N}t\partial_{t}-tA(l, x, D_{X})-\tilde{B}(t, x, D_{X}) ,

it can be verified that both Q and \tilde{B} have all properties listed in Theorem 3.\perp

and that the conclusion (3. 7) holds.
To construct s and v we observe that as a consequence of the structure of

q_{0} , there exists a cut-0ff function \chi(x, z) such that (1-\chi(x, t|\xi|))q_{0}^{(hh)}
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(t, x, \xi) is a non singular matrix on the support of 1-\chi , for every h=1 , \ldots .
\nu .

Let us define:

v_{0}(t,x(3.53)

, \xi)=(\chi(x, t|\xi|)-1)
(\begin{array}{lllllllll}q_{0}^{(} )(t, x, \xi) 1(11)r(t, x, \xi) \square \square q_{0}^{(\nu\nu)}(l x \xi)^{-1}r^{(\nu\nu)}(t x \xi)\end{array})

-

, , , ,

q_{0}^{(22\rangle}(t, x, \xi)^{-1}r^{(22)}(t, x, \xi)

def=(\chi(x, t|\xi|)-1)\Delta_{0}(t, x, \xi) .

We obviously have v_{0}\in S_{f}^{0}(N\cross N) , in a block diagonal form.
Moreover, qv_{0}+(1-\chi(x, t|\xi|))r=\theta_{0}+q’v_{0} , where q’ is given by (3.45),

so that q’v_{0}\in S_{f}^{-1}(N\cross N) , and \theta_{0}\in S_{f}^{0}(N\cross N) is a block extra-diagonal
matrix. It is easy to see that there exists a unique matrix s_{-1}\in S_{f}^{-1}(N\cross N)

such that t[A (t, x, \xi), s_{-1} (t, x, \xi)]=\theta_{0}(t, x, \xi) . With the above
definition of v_{0} and s_{-1} we have:

(3. 54) \mathscr{P}s_{-1}(t, x, D_{x})-s_{-1}(t, x, D_{x})[\mathscr{P}^{fl}-v_{0}(t, x, D_{x})]

+q(t, x, D_{x})v_{0}(t, x, D_{x})+(1-\chi(x, t|D_{x}|))r (t, x, D_{x})

\in OPS_{f}^{-1}(N\cross N) .

Going on in this way we can construct two sequences of matrices s_{-1-j}\in

S_{f}^{-1-j}(N\cross N) and v_{-j}\in S_{f}^{-j}(N\cross N) (in a block diagonal form), j\geq 0 , such
that for every M\geq 1 we have:

(3. 55) \mathscr{P}(\sum_{0}^{M} js-l-j (t, x, D_{x}))-( \sum_{0}^{M} js-l-j (t, x, D_{x}))[ \mathscr{P}^{\#}-\sum_{0}^{M}jv-j(t, x, D_{x})]

+q(t, x, D_{x})( \sum_{0}^{M} jv-j(t, x, D_{x} )
+(1-\chi(x, l|D_{x}|))r (t, x, D_{x})\in OPS_{f}^{M-1}(N\cross N) .

Choosing s\in S_{f}^{-1}(N\cross N) , s- \sum_{j\geq 0}s_{-1-j} . and v\in S_{f}^{0}(N\cross N) (in a block

diagonal form), v- \sum_{j\geq 0}v_{-j} , we obtain (3.51).

This ends the proof of the Theorem.
REMARK 3. 2. By (3. 45), (3. 52), using Lemma 2.2, 6. it follows that

the operator Q(t, x, D_{x}) has a two sided parametrix in OP\hat{\Sigma}^{0,0}(N\cross N) , i . e .
there exists Q^{-1}(t, x, D_{x})\in OP\hat{\Sigma}^{0,0}(N\cross N) such that both Q^{-1}Q- id and
QQ^{-1}- id are partially regularizing operators.
4. Parametrices.

In this Chapter we consider a singular hyperbolic system of the type \tilde{\mathscr{P}}

constructed in Theorem 3.1 and we will construct, under suitable conditions,
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a right and a left parametrix for \tilde{\mathscr{P}} .
To simplify the notation we drop the -. Let us fix precisely the

hypotheses we shall assume in this Chapter. We consider a system:

(4. 1) \mathscr{P}=I_{N}t\partial_{t}-tA(t, x, D_{x})-B(t, x, D_{x}) ,

where the matrix A is given by (3.2) and satisfies hypothesis h_{1} ) of Chapter
3.

Moreover, we assume that the functions \lambda_{j} are independent of (/, x) for
x outside of a compact subset of R^{n}.

We suppose that the matrix B\in OP\hat{\Sigma}^{0,0}(N\cross N) and that for every
\omega\subset\subset R_{x}^{n} there exists \delta’>0 ( \delta’ depending on \omega ) such that if b(t, x, \xi)-

\sum_{j\geq 0}b_{j}(t, x, \xi) , b_{j}\in\Sigma^{0,j}(N\cross N) , is a symbol for B, we have:

(4.2) \{

b(t, x, \xi) and b_{j}(t, x, \xi) , for all j\geq 0 , are in block
diagonal form
for every (x, \xi/|\xi|)\in\omega\cross S^{n-1} and for|t||\xi|\geq\delta’

Re b_{0}(t, x, \xi)\leq-I_{N} \forall t, x, \xi\neq 0 .

We now define the \ll phases\gg involved in the parametrices we shall
construct.

Due to the hypotheses on the \lambda_{j} ’s, we know (cfr. e. g. [10]) that there
exists a T>0 such that for every j=1 , \ldots . \nu there is a unique real function
\varphi_{j}(t, s, x, \xi)\in C^{\infty}([-T, T]\cross[-T_{J}T]\cross R^{n}\cross R^{n}|0) , positively homoge-
neous of degree one in \xi , which solves the Cauchy problem:

(4. 3) \{

\partial_{t}\varphi_{j}(t, s, x, \xi)=\lambda_{j}(t, x, d_{X}\varphi j(t, s, x, \xi))

j=1 , \ldots

\varphi_{j}|t=S=x\cdot\xi

\nu .

For any \rho\in[0,1] we put:

(4.3)’ \psi_{j}(\rho, t, x, \xi)=\varphi_{j}(t, \rho t, x, \xi) , j=1 , \ldots
\nu .

The following Lemmas will be of a crucial importance in the sequel.
LEMMA 4. 1. Let \psi(\rho, t, x, \xi) denote any of the \psi_{j} ’s defifined in (4.3 )’-

Then.\cdot

1. \psi\in H\hat{\Sigma}_{T}^{1,0} , with asymptotic expansion \sum_{k\geq 0}\psi^{(k)}(\rho, t, x, \xi) , where :

\psi^{(0)}=x\cdot\xi, \psi^{(1\rangle}=(1-\rho)\lambda(0, x, \xi/|\xi|)(t|\xi|) ,

\psi^{(k)}=\frac{1}{k!}(\partial_{t}^{k}\psi)(\rho, 0, x, \xi/|\xi|)|\xi|1-k(t|\xi|)^{k} , k\geq 1 .

2. For any cut-Off function \chi .
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e^{-\iota x\cdot\xi}\chi(x, t|\xi|)e\in\psi(\rho, t, x, \xi)^{\wedge}Hi\Sigma_{T}^{0,0} .

PROOF. Point 1. is straightforward. To prove 2., let \chi’(x, z) be a
cut-0ff function with \chi\acute{\chi}=\chi and write

e^{-\iota x\xi}\chi(x, t|\xi|)e^{i\psi(\rho.t,x,\xi)}=\chi(x, t|\xi|)e^{i\psi^{(1\rangle}(\rho,t,x,\xi)} .

\chi’(x, t|\xi|)e^{i[\psi(\rho,t,x,\xi)-x\cdot\xi-\psi^{(l)}(\rho,t,x,\xi)]} .

A simple computation shows that \chi e^{i\psi^{(1)}}\in H\sum^{0,0} . On the other hand,

putting \theta=\psi-x\cdot\xi-\psi^{(1)} , we have \frac{(i\theta)^{k}}{k!}\in H\Sigma_{T}^{k,2k}\wedge k\geq 0 , with an expansion

\frac{(i\theta)^{k}}{k!}

- \sum_{j\geq 0}\theta_{j}^{(k)} , \theta_{j}^{(k)}\in H\Sigma k2k+j\acute{T} Since actually \chi’\theta_{j}^{(k)}\in H\Sigma-k-j,0T we can

construct an f(\rho, t, x, \xi)\in H\Sigma_{T}^{0,0}\wedge such that

(4. 4) f \sim\sum_{r\geq 0}(\sum_{k+j=r}\chi’(x, t|\xi|)\theta_{j}^{(k)}(\rho, t, x, \xi))

Since \chi’e^{i\theta}-f\in HS_{T}^{-\infty.0} the conclusion follows and we have the asym-
ptotic expansion:

(4. 5) e^{-\alpha\cdot\xi}\chi(x, t|\xi|)e^{i\psi(\rho,t,x,\xi)}

- \sum_{r\geq 0}(\sum_{k+j=r}\chi(x, t|\xi|)e^{i\psi^{(1)}(\rho,t,x,\xi)}\theta_{j}^{(k)}(\rho, t, x, \xi))

LEMMA4. 2. Let \psi(\rho, t, x, \xi) denote any of the \psi_{j} ’s defifined in (4. 3)’

Let h(\rho, t, x, \xi)\in HS_{T}^{m.k} and let q(t, x, D_{x})\in OPS_{T}^{m’k’} be a proper operator
with symbol q(t, x, \xi) . Put:

(4.6) c(\rho, t, x, \xi)=e^{-i\psi(\rho,t,x,\xi)}q(t, x, D_{x})[e^{i\psi(\rho,t,\cdot \xi)}h(\rho, t, \cdot, \xi)] .

Then we have:
1 c\in HS_{T}^{m+m’.k+k’} with the following asymptotic expansion:

(4. 7) c-\sum_{a}\frac{1}{\alpha!}(\partial_{\xi}^{a}q)(t, x, d_{x}\psi(\rho, t, x, \xi))D_{y}^{a}[h(\rho, t, y, \xi)e^{\iota\Psi(\rho,t,x,y,\xi)}]_{x=y} ,

where:
\Psi(\rho, t, x, y, \xi)=\psi(\rho, t, y, \xi)-\psi(\rho, t, x, \xi)

-\langle y-x, d_{x}\psi(\rho, t, x, \xi)\rangle .
The expansion (4. 7) means that there is a sequence \sigma_{M}\uparrow+\infty as Marrow+\infty

such that c- \sum_{|a|<M}\frac{1}{\alpha}!(\partial_{\xi}^{a}q)(t, x, d_{x}\psi)D_{y}^{a} [ he^{i\Psi}]_{y=x}\in HS_{T}^{m+m’-\sigma_{M},k+k’} for
every M\geq 1 .

2. If h\in H\hat{\Sigma}Tm,k
h- \sum_{j\geq 0}h_{j} , and q\in\hat{\Sigma}m’k’T

q- \sum_{j\geq 0}q_{j} , then the symbol c
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defined in (4. 6) belongs to H\hat{\Sigma}m+m’Tk+k’ with an asymptotic expansion c

- \sum_{\mu\geq 0}c_{\mu} , c_{\mu}\in H\Sigma_{T}^{m+m’,k+k’+\mu} , where

(4.8)
c_{\mu}= \sum_{v\geq 0}|a|+v=\mu j+j’+|\beta|+l ^{(\partial_{\xi}^{a+\beta}q_{j})}\sum_{l,s\geq 0}+s=v,(t, x, \xi)

.
\mathscr{M}_{\beta,l,s}^{(\psi),a}(\rho,t, x, \xi;D_{x})h_{j},(\rho, t, x, \xi) ,

for some differential operators \mathscr{M}_{\beta,l,\acute{s}}^{(\psi)a} depending only on \psi which have the
form.\cdot

(4. 9)
\{

\mathscr{M}_{\beta,l,\acute{s}}^{(\psi)a}

(\rho, t, x, \xi ^{;} ^{D_{x})=} | \beta’|\geq’ 2\sum_{\beta’\leq a}d_{\beta,l,s,\beta’}^{(\psi),a}(\rho, t, x, \xi)D_{x}^{a-\beta’}

.

with
d_{\beta,l,s,\beta}^{(\psi)a}, \in H\Sigma_{T}^{[|\alpha|/2]+|\beta|} , [|\alpha|/2]+|\beta|+l+s , ( [|\alpha|/2]=integral
part of |\alpha|/2).

3. Under the same conditions of 2., the symbol c can be rewritten as.\cdot

(4. 10) c(\rho, t, x, \xi)=q(t, x, d_{x}\psi(\rho, t, x, \xi))h(\rho, t, x, \xi)

+c’(\rho, t, x, \xi) ,

with
i) q(t, x, d_{x}\psi)h(\rho, t, x, \xi)\in H\hat{\Sigma}_{T}^{m+m’,k+k’} ,

ii)c’\in H\hat{\Sigma}_{T}^{m+m’-1,k+k’} with an expansion
\sum_{\mu\geq 1}c\acute{\mu}

, where the c\acute{\mu} , are given by
(4.8) (|\alpha|\geq 1) .

The proof of Lemma 4.2 is quite technical and will be omitted here. To
give some comments concerning the proof we note that the proof of point 1.
can be performed as in the classical case with only minor modifications.
As far as points 2. and 3. are concerned one has to insert in each term
(\partial_{\xi}^{a}q)(t, x, d_{x}\psi)D_{y}^{a} [ h(\rho, t, y, \xi)e^{i\psi(\rho,t,x,y,\xi)}]_{y=x} the asymptotic expansion
of d_{x}\psi as given by Lemma 4. 1.

REMARK 4. 1. With the notation of Lemma 4.2, 2. suppose that for every
\omega\subset\subset R^{n} there exists a \delta’>0 such that q(t, x, \xi)=q_{j}(t, x, \xi)=0 , for every
x\in\omega and |t||\xi|\geq\delta’(for every j\geq 0).

As a consequence, the symbols c_{\mu} given by (4. 8) have the same support
property so that they actually belong to H\Sigma_{T}^{m+m’-\mu,k+k’} We can thus
construct a symbol \tilde{c}\in H\hat{\Sigma}_{T}^{m+m’,k+k’} with the same support property of the
c_{\mu} ’s such that c-\tilde{c}\in HS_{T}^{-\infty,k+k’}

We are now in a position to state the first result concerning the existence



216 A. Bove J. E. Lewis C. Parenti

of a right parametrix for the system \mathscr{P} .
THEOREM 4. 1. Let \mathscr{P} be the system (4. 1) (satisfying condition (4. 2)).

Put :

(4. 11) e^{i\psi(\rho,t,x,\xi)}= (\begin{array}{lllll} c^{i\psi_{1}}I_{N_{1}} I \square --- ----I.----|c^{i\psi_{2}}I_{N_{2}} .|| \square ||-------- e^{i\psi_{\mathcal{V}}}I_{N\nu}\end{array})

where the \psi_{j}’ s are given by (4. 3) ’

Then there exists a matrix h(\rho, t, x, \xi)\in H\Sigma_{T}^{0,0}(N\wedge\cross N) such that if we
defifine the operator:

(4. 12) E(h;f)– \int_{0}^{1}\int e^{i\psi(\rho,t.x,\xi)}h(\rho, t, x, \xi)\hat{f}(\rho t, \xi)d\rho\overline{d}\xi,

f\in C^{\infty}(]-T, T[;C_{0}^{\infty}(R^{n}))^{N}

then:

(4. 13) \mathscr{P}E(h, \cdot)-id : C^{\infty}(]-T, T [ : \mathscr{C}’(R^{n}))^{N}arrow C^{\infty}(]-T, T[\cross R^{n})^{N}

PROOF. Let h be any matrix in H\Sigma_{T}^{0,0}(N\wedge\cross N) which satisfies the initial
condition

(4. 14) h(1, t, x, \xi)=I_{N}

Letting t\partial_{t} act on E(h, \cdot) we obtain:

(4. 15) t\partial_{t}E(h,\cdot f)=f+E(\sqrt{-1}((t\partial_{t}-\rho\partial_{\rho})\psi)h; f)

+E((t\partial_{t}-\rho\partial_{\rho}-1)h;f) ,

where we used the notation:

(4. 16) (t\partial_{t}-\rho\partial_{\rho})\psi= \backslash \cdot

(t\partial_{t}- \square \rho\partial_{\rho})\psi_{1}I_{N_{1}},,\coprod_{\backslash }(t\partial_{t}-\rho\partial_{\rho})\psi_{2}I_{N_{2},\backslash \backslash }\backslash \backslash \backslash (t\partial_{t}--\rho\partial_{\rho})\psi_{\nu}I_{N\nu}]

Lemma 4.2 yields tA (t, x, D_{x}) E(h ; f)=E(q ; f) for a matrix q\in

H\Sigma_{T}^{1,1}\wedge(N\cross N) . Writing h and q in a block form, we have:

(4. 17) q^{(\sigma.\sigma)}(\rho, t, x, \xi)=\sqrt{-1}t\lambda_{\sigma}(t, x, d_{x}\psi_{\sigma}(\rho, t, x, \xi))h^{(\sigma.\sigma’)}(\rho, t, x, \xi)

+q^{r(\sigma.\sigma)}(\rho, t, x, \xi) , 1\leq\sigma , \sigma’\leq\nu ,
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where q^{\prime(\sigma,\sigma’)}\in H\Sigma_{T}^{0,1}(N_{\sigma}\wedge\cross N_{\sigma},) .
Form (4. 3), (4. 3)’ we get

(4. 18) t\partial_{t}\psi_{\sigma}-\rho\partial_{\rho}\psi_{\sigma}=t\lambda_{\sigma}(t, x, d_{x}\psi_{\sigma}) , \sigma=1 , \ldots
\nu .

As a partial conclusion, from (4. 15) and (4. 17), taking into account
(4. 18), we obtain:

(4. 19) (t\partial_{t}-tA(t, x, D_{x}))E(h;f)=f+E((t\partial_{t}-\rho\partial_{\rho}-1)h;f)-

E(q’ ; f) .

Using Lemma 4.2 once more, we have B(t, x, D_{X})E(h;f)=E(p;f) for a
matrix p\in H\Sigma_{T}^{0,0}\wedge(N\cross N) whose blocks are given by:

(4. 20) p^{(\sigma,\sigma^{r})}=e^{-i\psi_{\sigma}}B^{(\sigma,\sigma)}(t,x, D_{x})[e^{i\psi_{\sigma}}h^{(\sigma,\sigma^{r})}]

+ \sum\nu e^{i(\psi_{\sigma’}-\psi_{\sigma})}\{e^{-i\psi_{\sigma^{rr}}}B^{(\sigma,\sigma\prime\prime)}(t,x, D_{x})[e^{i\psi_{\sigma’}}h^{(\sigma’,\sigma^{r})}]\} ,
\sigma^{rr}=1

\sigma^{r}\neq\sigma

1\leqq\sigma, \sigma’\leqq\nu

We now use an argument which exploits in an essential way the first
hypothesis in (4. 2). Let \chi(x, z) be a cut-0ff function such that the
matrices (1-\chi(x, l|\xi|))b(t, x, \xi) and (1-\chi(x, t|\xi|))b_{j}(t, x, \xi) , j\geq 0 ,

are in block diagonal form for every t, x, \xi. Writing B_{\chi} (resp. B_{1-\chi} ) as
the operator with symbol \chi b (resp. (1-\chi)b), we obtain that B_{1-\chi}\in

OP\Sigma_{T}^{0,0}(N\wedge\cross N) is block diagonal. From (4. 20) it follows that
(4. 21) p^{(\sigma,\sigma’)}=e^{-i\psi_{\sigma}}B^{(\sigma,\sigma)}(t, x, D_{x})[e^{i\psi_{\sigma}}h^{(\sigma,\sigma^{\gamma})}]

+\Sigma vve^{i(\psi\prime\prime-\psi)}\sigma\sigma\{e^{-i\psi_{\sigma}\prime\prime}B_{\chi}^{(\sigma,\sigma’)}(t, x, D_{x})[e^{i\psi_{\sigma’}}h^{(\sigma’\sigma\prime}’)]\} .
\sigma’=1

\sigma’\neq\sigma

From the Remark 4.1. it follows that, putting:

(4. 22) g_{\sigma,\sigma^{r}\sigma^{\prime=e^{-i\psi_{\sigma}\prime\prime}B_{\chi}^{(\sigma,\sigma’}(t,x,D_{x})(e^{i\psi_{\sigma}\prime\prime}h^{(\sigma’\sigma’)})}},
”

we have g_{\sigma,\sigma’\sigma’}.,\in H\Sigma_{T}^{0,0}(N_{\sigma}\wedge\cross N_{\sigma’}) (modulo a symbol in HS_{T}^{-\infty,0}(N_{\sigma}\cross N_{\sigma’}) )

and moreover,
for every \omega\subset\subset R^{n} we have g_{\sigma,\sigma}’(\rho, t, x, \xi)=\Pi for x\in\omega , |t||\xi|

\geq\delta’\rho\in]0,1] .
Using Lemma 4.1 we can conclude that e^{i(\psi_{\sigma}^{rr}-\psi_{\sigma}’)}g_{\sigma,\sigma’,\sigma’}\in H\Sigma_{T}^{0,0}(N_{\sigma}\wedge\cross N_{\sigma’}) ,

with asymptotic expansion:

(4. 23) \sum_{\mu\geq 0}[\sum_{\mu’+\mu’=\mu}(k+j=\mu\sum_{\prime}\chi’(x, t|\xi|)e^{it|\xi|(1-\beta)(\lambda_{\sigma’}<0,X,\xi/|\xi|-\lambda_{\sigma}(0,X,\xi/|\xi|))}

. \theta_{j\prime\sigma’\prime\sigma}^{(k)}(\rho, t, x, \xi)g\sigma,\sigma\prime\prime,\prime\prime\prime(\sigma’\mu\rho, t, x, \xi))] .

where : g_{\sigma,\sigma’\sigma’}"- \sum_{\mu’\geq 0}g_{\sigma,\sigma’,\sigma’,\mu’} . \chi’\chi=\chi and \sum_{j\geq 0}\theta_{j,\sigma’,\sigma}^{(k)}-\frac{1}{k!}(i(\psi_{\sigma’}-\psi_{\sigma}-\psi_{\sigma’}^{(1)}+
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\psi_{\sigma}^{(1)}))^{k} .
To work with more compact notation, we put:

(4.24)
\{

k^{(\sigma,\sigma^{r})}=c^{-i\psi_{\sigma}}B^{(\sigma,\sigma)}[e^{i\psi_{\sigma}}h^{(\sigma,\sigma’)}] , k=(k^{(\sigma,\sigma\gamma})_{1\leqq\sigma,\sigma^{r}\leqq\nu}

g_{\sigma’}^{(\sigma\sigma’)}’=e^{i(\psi_{\sigma}\prime\prime-\psi_{\sigma})}g_{\sigma}

, \sigma\prime\prime, \sigma’ , 1\leqq\sigma, \sigma’, \sigma’\leqq\nu

Therefore, (4. 21) can be rewritten as:

(4. 24) p^{(\sigma,\sigma’)}=k^{(\sigma,\sigma’)}+
\sigma’\neq\sigma\sum_{\sigma’=1}^{\nu},g_{\sigma’}(\sigma,\sigma’) . p=(p^{(\sigma,\sigma’)})_{1\leq\sigma,\sigma’\leq\nu} .

In conclusion, for any h\in H\Sigma_{T}^{0,0}(N\wedge\cross N) which satisfies (4. 14), we
obtain:

(4. 25) \mathscr{P}E(h;f)-f=E((t\partial_{t}-\rho\partial_{\rho}-1)h-q’-p; f)+Rf,

where q’=(q^{r(\sigma,\sigma^{r})})_{1\leq\sigma,\sigma’\leq\nu} is defined in (4. 17), p is given by (4. 24) and R is
a partially regularizing operator of Hardy type.

From the preceding remarks and from Lemma 4.2 we have:

(4.26) v(\rho, t, x, \xi)^{def}=(t\partial_{t}-\rho\partial_{\rho}-1)h-q’-p\in H\Sigma_{T}^{0,0}(N\cross N)\wedge ,

with asymptotic expansion \sum_{j\geq 0}v_{j}(\rho, t, x, \xi) , where:

(4. 27) \{

v_{0}(\rho, t, x, \xi)=\hat{v}_{0}(\rho, x, \frac{\xi}{|\xi|} , t|\xi|) \hat{v}_{0}\in HS^{0}(N\cross N) ,

\hat{v}_{0}(\rho, x, \xi’-z)=(z\partial_{z}-\rho\partial_{\rho}-1)\hat{h}(\rho, x, \xi’z)

-\hat{b}_{\acute{0}}(x, \xi’. z)\hat{h}_{0}(\rho, x, \xi’. z)

-\Lambda^{-}(\rho, x, \xi’z)\chi(x, z)\hat{b}_{\acute{\acute{0}}}(x, \xi’z)\Lambda^{+}(\rho, x, \xi’z)\hat{h}(\rho, x, \xi’z) ,

where we used the notation:

(4. 28) \{\wedge

\wedge \wedge

b_{0}=b_{\acute{0}}+b_{0}

\hat{b}_{\acute{0}}^{(hk)}=\int\hat{b}_{0}^{(hh)}

, if h=k,
\hat{b}_{\acute{0}}^{(hk)}=\{\begin{array}{l}\square ifh=k\hat{b}_{0}^{(hk)},ifh\neq k\end{array} h, k=1 , \cdots . \nu

(\coprod , if h\neq k,

\Lambda^{\pm}(\rho, x, \xi’. z)=( \square \backslash e^{\pm iz(1-\rho)\lambda_{y}(0,\chi\xi)}e^{\pm iz(1-\rho)\lambda_{1}(0,x,\xi’)}I_{N_{1}}\coprod_{I_{N\nu}}e^{\pm iz(1-\rho)\lambda_{2}(0,x,\xi’)}I_{N_{2}}\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash )

A natural way to obtain (4. 13) is to impose the conditions:
v_{0}=\Pi, \hat{h}_{0}|_{\rho=1}=I_{N} and, for j\geq 1 , v_{j}=\Pi , \hat{h}_{j}|_{\rho=1}=\Pi .
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These conditions lead to the following transport equations:

(z\partial_{z}-\rho\partial_{\rho}-1)\hat{h}_{j}(\rho, x, \xi’, z)-\hat{b}_{\acute{0}}(x, \xi’z)\hat{h}_{j}(\rho, x, \xi’, z)

(4. 29)_{j}\{

-\Lambda^{-}(\rho, x, \xi’-z)\chi(x, z)\hat{b}_{0}(x, \xi’z)\Lambda^{+}(\rho, x, \xi’. z)\hat{h}_{j}(\rho, x, \xi’z)

=f_{j}(\rho, x, \xi’. z) , \hat{h}_{j}(\rho, x, \xi’z)|_{\rho=1}=\{\begin{array}{l}I_{N},ifj=0\square ,ifj\geq 1,\end{array}

where f_{j} is a suitable symbol in HSj(N\cross N) depending on \hat{h}_{0} ... \hat{h}_{j-1} .
\hat{b}_{0} , \ldots , \hat{b}_{j-1} and f_{0}\equiv\Pi .

To solve transport equations (4. 29)_{j} we use the following Lemma.
LEMMA 4. 3. Suppose we are given two smooth N\cross N matrices (written

in block form) C(x, \xi’. z)=(C^{(hk)}(x, \xi’z))_{h,k=1} , , \nu
C’(\rho, x, \xi’. z)=

(C^{\prime(hk)}(\rho, x, \xi’. z))_{h,k=1}
, , \nu

. x\in R^{n}, \xi’\in S^{n-1} . z\in R , \rho\in[0,1] , such that : 1.
C^{(hk)}=\coprod for h\neq k, and C^{(hh)}(x, \xi’. z)\in S^{0}(N_{h}\cross N_{h}) , h=1 , \ldots \Gamma, \nu .
2. For every \omega\subset\subset R^{n} there exists a \delta’>0 such that C’(\rho, x, \xi’ z)=\Pi for
every (\rho, x, \xi’)\in[0,1]\cross\omega\cross S^{n-1} and |z|\geq\delta’.
3. There exists \gamma\geq 0 such that

(4.30) Re [ C(x, \xi’. z)+C’(\rho, x, \xi’z)]\leq-\gamma I_{N},

for every \rho, x, \xi’ . z .

Furthermore, let \psi(x, \xi’z)\in S^{k}(N\cross N) and g(\rho, x, \xi’z)\in HS^{k}(N\cross N) ,
k\in R . Then there exists a unique matrix f(\rho, x, \xi’z)\in HS^{k}(N\cross N) such
that

(4.31) \{

(z\partial_{z}-\rho\partial_{\rho})f-[C+C’]f=g

f|_{\rho=1}=\psi .

PROOF. Put \rho=e^{-s}, z=z_{0}e^{s} . s\geq 0 , z_{0}\in R , and let F (s, z_{0} ; x, \xi’) be the
unique smooth matrix solution of the Cauchy problem:

\{

\partial_{s}F-[C(x, \xi’z_{0}e^{s})+C’(e^{-s}, x, \xi’. z_{0}e^{s})]F=g(e^{-s}, x, \xi’. z_{0}e^{s})

F|_{s=0}=\psi(x, \xi’ z_{0})

Defining f(\rho, x, \xi’. z)=F(-\ln\rho, z\rho ; x, \xi\gamma and using standard energy
estimates we obtain that the following inequality holds for every \epsilon>0 :
(4. 32) ||f(\rho, x, \xi’ z||^{2}\leq||\psi(x, \xi’. \rho z)||^{2}

+ \frac{1}{\epsilon}\int_{\rho}^{1}\sigma^{2\gamma-\epsilon}||g ( \frac{\rho}{\sigma} , x, \xi’ . \sigma z ) ||^{2} \frac{d\sigma}{\sigma} .

As a consequence, for every \omega\subset\subset R^{n}, M, \epsilon’>0 , we have
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(4.33)
\rho\in J\acute{0},1J,|z|\leq M\sup_{(x.\text{\’{e}})\in\omega\cross S^{nt}}\rho^{\epsilon’}||f(\rho, x, \xi’. z)||<+\infty

.

By taking derivatives of eq. (4. 31) one can verify in the same way that
on every compact interval |z|\leq M we have the estimates:

(4. 34) sup \rho^{\epsilon’}||(\rho\partial_{\rho})^{j}\partial_{z}^{k}\partial_{x}^{a}\theta_{1}\cdots\theta_{q}f||<+\infty ,
\rho\in f(x,)\in\omega\cross S^{n1}\acute{0},1J,|z|\leq M

for every j, k\in Z_{+} \alpha\in Z_{+}^{n} . \epsilon’>0 , \omega\subset\subset R^{n} and for every family \theta_{1} ... . \theta_{q} of
smooth vector fields on S^{n-1} .

To estimate f for zarrow\infty we fix \omega\subset\subset R^{n} and take |z|\underline{>}\delta’ so that
C’(\rho, x, \xi’z)\equiv\Pi for x\in\omega , |\xi’|=1 , |z|\geq\delta’

Let us consider z\geq\delta’ (the case z\leqq-\delta’ can be handled analogously).
Put J_{\pm}=\{(\rho, x, \xi’. z)|z\geq\delta’ \pm(\rho z-\delta’)\geq 0\} , J=J_{+}\cup J- On J, f

satisfies the boundary problem:

(4. 35) \{

(z\partial_{z}-\rho\partial_{\rho})f-Cf=g , in J
f|_{\rho=1}=\psi ,
f|_{z=\delta’}=\varphi

for some smooth matrix \varphi(\rho, x, \xi’) satisfying estimates of the form (4. 34).
In the region J_{+} we put \rho=e^{-s}, z=z_{0}e^{s}, s\geq 0 , z_{0}\geq\delta_{J}’ and arguing as

above we obtain the estimates:

(4. 36)
\sup_{\int_{+}}(1+z)^{-k+l}\rho^{\epsilon}||(\rho\partial_{\rho})^{j}\partial_{z}^{l}\partial_{x}^{a}\theta_{1}\ldots\theta_{q}f\underline{||}<+\infty .

In the region I- we put \rho=\rho_{0}e^{-s}, z=\delta’e^{s}, s\geq 0 , \beta 0\in ] 0 , 1], and arguing
as above we obtain, for every \epsilon>0 , the estimate:
(4. 37) ||f(\rho, x, \xi’ z)||^{2}\leq||\varphi(\rho z/\delta’. x, \xi’)||^{2}

+ \frac{1}{\epsilon}\int_{\delta’}^{z}(z/z’)^{-2\gamma+\epsilon}||g(\rho z/z’. x, \xi’. z’)||^{2}dz’/z’

As a consequence, since \rho z\leq\delta’\leq z’ for every \epsilon’>0 we obtain:
(4. 38) \sup_{J}(1+z)^{-k}\rho^{\epsilon’}||f(\rho, x, \xi’. z)||<+\infty .

Higher order estimates on J-, analogous to (4. 36), follow by taking deriva-
tives of (4. 36),

Lemma 4.3 allows to solve the transport equations (4.29)_{j} , j\geq 0 , by
identifying C(x, \xi’. z)=I_{N}+\hat{b}_{\acute{0}}(x, \xi’z) and C’(\rho, x, \xi’. z)=\Lambda^{-}(\rho, x, \xi’z)

\chi(x, z)\hat{b}_{\acute{0}}(x, \xi’z)\Lambda^{+}(\rho, x, \xi’-z) and noting that hypothesis 3. in the
Lemma is a consequence of the second basic assumption in (4. 2).

Once the symbols \hat{h}_{j} , j\geq 0 , are constructed we take a symbol h\in
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H\Sigma_{T}^{0,0}(N\wedge\cross N) such that:

(4.39) \{
h( \rho, t, x, \xi)-\sum_{j\geq 0}|\xi|-jh_{j}(\rho, x, \xi/|\xi| ^{t|\xi|)}

h|_{\rho=1}\equiv I_{N}

With the above definition of h we have, for every f\in C^{\infty}( ] - T, T [:
C_{0}^{\infty}(R^{n}))^{N} :

(4.40) \mathscr{P}E(h;f)--f+Rf+E(q;f) ,

where R is H. p . r . (Cfr. Def. 2.7) and q is a suitable matrix belonging to
HS_{T}^{0,\infty}(N\cross N) .

To get rid of the term E(q;.) we observe that for every cut-0ff function
\chi the operator farrow E(\chi(x, t|\xi|)q;f) is H. p . r . and therefore we are left
with the term E(p;\cdot) with p(\rho, t, x, \xi)=(1-\chi(x, t|\xi|))q(\rho, t, x, \xi) . It
is obvious that p\in HS_{T,f}^{0}(N\cross N) (the definition of HS_{f}^{m} and HS_{p}^{m} is
analogous to the definitions (3. 46) and (3. 47) of S_{f}^{m} and S_{p}^{m} respectively,
the only modification being the usual \rho -behaviour of the symbols).

We shall try to construct a matrix r\in HS_{T,f}^{0}(N\cross N) for which

(4. 41) \mathscr{P}E(r;\cdot)=-E(p;\cdot) ,

modulo some H. p . r . operator. Since HS_{Tj}^{0}\subset HS_{\tau^{\infty}}^{J}, . adding r to the matrix
h we will obtain that \mathscr{P}E(h+r;\cdot)- identity is a H. p . r . operator and the
conclusion of the theorem follows.

To start with, we look for a matrix r_{0}\in HS_{T,f}^{0}(N\cross N) such that

(4. 42) \mathscr{P}E(r_{0\prime}..)=-E(p;\cdot)+E(p_{-1};\cdot) ,

for some symbol p_{-1}\in HS_{Tf}^{-1},(N\cross N) .
Supposing that r_{0}|_{\rho=1}\equiv\coprod , and arguing as in the first part of the proof

one can show that:

(4. 43) \mathscr{P}E(r_{0};\cdot)=E(c_{0};\cdot)+E(p_{-1} ; \cdot ) .

for some symbols p_{-1}\in HS_{T,f}^{-1}(N\cross N) , c_{0}\in HS_{T.f}^{0}(N\cross N) with

(4.44) \{

c_{0}=(c_{0}^{(\sigma,\sigma’)})_{1\leq\sigma,\sigma’\leq\nu}

c_{0}^{(\sigma,\sigma’)}(\rho, t, x, \xi)=(t\partial_{t}-\rho\partial_{\rho})r_{0}^{(\sigma,\sigma’)}(\rho, t, x, \xi)

-tL_{\sigma}(\rho, t, x, \xi:\partial_{x})r_{0}^{(\sigma,\sigma’)}(\rho, t, x, \xi)

-(I_{N_{\sigma}}+b^{(\sigma.\sigma)}(t, x, \xi))r_{0}^{(\sigma,\sigma’)}(\rho, t, x, \xi) ,

where:

(4.45) L_{\sigma}(\rho, t, x, \xi ; \partial_{x})=\langle(d_{\xi}\lambda_{\sigma}) (t, x, d_{x}\psi_{\sigma}(\rho, t, x, \xi)), \partial_{x}\rangle
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+ \sum_{|a|=2}\frac{1}{\alpha!}(\partial_{\xi}^{a}\lambda_{\sigma})(t, x, d_{x}\psi_{\sigma}(\rho, t, x, \xi))\partial_{x}^{a}\psi_{\sigma}(\rho, t, x, \xi) .

We now recall that if (x^{(\sigma)}(t;s, y, \eta), \xi^{(\sigma)}(t;s, y, \eta)) is the integral
curve of the Hamiiltonian vector field H_{-\lambda_{\sigma}} satisfying x^{(\sigma)}|_{t=s}=y, \xi^{(\sigma)}|_{t=s}--\eta ,

then for all \sigma=1 , \ldots
\nu the map R^{n}\ni yarrow x^{(\sigma)}(t:s, y, \eta) is smoothly

invertible for every (t, s)\in[-T, T]\cross[-T, T] and for every \eta\neq 0 (the

existence of a T>0 for which the above property holds is guaranteed by the
hypothesis that the \lambda_{\sigma}(t, x, \xi) are independent of t and x for large x).

Putting

(4. 46) \tilde{r}_{0}^{(\sigma,\sigma)}(\rho, t, y, \eta)=r_{0}^{(\sigma,\sigma’)}(\rho, t, x^{(\sigma)}(t ; \rho t, y, \eta), \eta) , 1\leq\sigma , \sigma’\leq\nu ,

and imposing that c_{0} in (4. 44) is equal to - p, yields the equations:

\int_{+b^{(\sigma,\sigma)}(t,x^{(\sigma)}(t,\rho t,y,\eta),\eta)]\tilde{r}_{0}^{(\sigma,\sigma’)}(\rho}(t\partial_{t}-\rho\partial_{\rho})\tilde{r}_{0}^{(\sigma.\sigma)}(\rho.’ t,y, \eta)-[(d_{\sigma}(\rho,t,y,’ t,y,\eta)\eta)+1)I

(4. 47)
(\begin{array}{l}=-p^{(\sigma,\sigma)}(\rho,t,x^{(\sigma)}(t\cdot.\rho t,y_{\prime}\eta)_{\prime}\eta)\tilde{r}_{0}^{(\sigma.\sigma’)}|_{\rho=1}=\coprod 1\leq\sigma,\sigma’\leq\nu,\end{array}

where:

(4.48) d_{\sigma}(\rho, t, y, \eta)

=t \sum_{|a|=2}\frac{1}{\alpha!}(\partial_{\xi}^{a}\lambda_{\sigma})(t, x^{(\sigma)}(t;\rho t, y, \eta), \xi^{(\sigma)}(t;\rho t, y, \eta))

. (\partial_{x}^{a}\psi_{\sigma})(\rho, t, x^{(\sigma)}(t ; \rho t, y, \eta), \eta) .
To solve (4. 47) we apply the following lemma.

LEMMA 4. 4. Let \Phi(\rho, t, y, \eta)\in HS_{T}^{0,0}(N\cross N) . For every g\in HS_{T,f}^{-k}(N\cross N) ,
k\geq 0 , th e exisls a unique \varphi\in HS_{T,f}^{-k}(N\cross N) such that:

\int(t\partial_{t}-\rho\partial_{\rho})\varphi-\Phi\varphi=g

(4. 49)
(\varphi|_{\rho=1}--\square .

PROOF. Putting \rho=e^{-s} , t=t_{0}e^{s} , s\geq 0 , |t_{0}|<T, and using standard
energy estimates we obtain that the following inequality holds for every \Omega\subset

\subset]-T, T[\cross R^{n} and \epsilon>0 :

(4.50) || \varphi(\rho, t, y, \eta)||^{2}\leq\frac{1}{\epsilon}\int_{\rho}^{1}(\rho/\mu)^{-C-\epsilon}||g(\mu, \rho t/\mu, y, \eta)||^{2}d\mu/\mu ,

for all (\rho, t, y, \eta)\in]0,1]\cross\Omega\cross R^{n}, with a suitable positive constant C. As a
consequence of (4. 50), if M>0 is large enough we get:

\rho\in l0,1J,(tx)\in\Omega\sup_{\eta\in\dot{R}^{n}}

(4. 51) |t|-M(1+|\eta|)^{k’}\rho^{\epsilon}||\varphi(\rho, t, y, \eta)||<+\infty ,
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for every \epsilon’>0 . Estimates of the above form for higher derivative of \varphi can
be obtained by taking derivatives of eq. (4. 49). This proves the Lemma.

Iterating the procedure, we construct a matrix r_{-1}\in HS_{T,f}^{-1}(N\cross N) ,

with r_{-1}|_{\rho=1}=\Pi , such that \mathscr{P}E(r_{-1};\cdot)=-E(p_{-1};\cdot)+E(p_{-2};\cdot) for a
suitable symbol p_{-2}\in HS_{T,i}^{-2}(N\cross N) . Going on in this way, claim (4. 41) is
proved. This completes the proof of the Theorem.

In Theorem 4. 1 we have constructed a right parametrix for the system
\mathscr{P} . The existence of a left parametrix for \mathscr{P} will be proved following more
or less the same procedure as in Theorem 4. 1. There are, however, some
important differences which we think it is convenient to put in evidence.

First of all we define our phases. In the rest of this Chapter the
function -\varphi_{j}(t, 0, y, \eta) , where \varphi_{j} is defined in (4. 3), will be denoted by
\varphi_{j}(t, y, \eta) , j=1 , \cdots\nu , and we will put:

(4. 52) \psi_{j}(\rho, t, y, \eta)=\varphi_{j}(\rho t, y, \eta) , j=1 , \ldots
\nu .

As in Lemma 4.1. one can prove that \psi_{j}\in H\Sigma_{T}^{1,0}\wedge and that for every
cut-0ff function \chi , e^{iy\cdot\eta}\chi(y, \rho t|\eta|)e^{i\psi_{J}}\in H\Sigma_{T}^{0,0}\wedge , j=1 , \ldots

\nu .
We have a modified version of Lemma 4.2 if in (4.6) we consider

q(\rho t, x, D_{x}) in place of q(t, x, D_{x}) and \psi is now one of the phases
defined in (4. 52). As a consequence, in formulas (4. 8) the coefficients
(\partial_{\xi}^{a+\beta}q_{j})(t, x, \xi) must be replaced by (\partial_{\xi}^{a+\beta}q_{j})(\rho t, x, \xi) ; moreover, the
operators \mathscr{M}_{\beta,l,s}^{(\psi),a} defined in (4. 9) depend only on the argument pt.

We now define the operators involved in the construction of the left
parametrinx. Put

(4. 53) e^{i[\psi(\rho,t,y,\eta)+x\cdot\eta]}=(\begin{array}{llll} e^{i(\psi_{l}(\rho,t,y_{\prime}\eta)+x\cdot\eta)}I_{N_{1}}\backslash \backslash \backslash \backslash \backslash \square \backslash - \square \backslash \backslash \backslash \backslash \backslash \backslash e^{i(\psi_{\nu}(\rho,t,y.\eta)+x\cdot\eta)}I_{N_{\nu}}\end{array})

For a given matrix h(\rho, t, y, \eta)\in H\Sigma_{T}^{0,0}(N\wedge\cross N) , we define the operator:

(4.54) F(h;f)= \int_{0}^{1}\int\int h(\rho, t, y, \eta)e^{i[\psi(\rho,t,y,\eta)+x\cdot\eta]}f(\rho t, y)d\rho dyff\eta ,

f\in C^{\infty}(]-T, T[;C_{0}^{\infty}(R^{n}))^{N}-

The integral in (4. 54) should be interpreted as an oscillatory integral
which makes sense integrating by parts with respet to y since for some
positive constant C we have:

(4. 55) |d_{y}\psi_{j}(\rho, t, y, \eta)|\geq C|\eta| ,

for all (\rho, t, y, \eta)\in[0,1]\cross[-T, T]\cross R^{n}\cross(R^{n}|0) , j=1 , \ldots
\nu .
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We can now state the second main result of this Chapter.
THEOREM 4. 2. Let \mathscr{P} be the system (4. 1) {satisfying condition (4. 2) ) .

Then there exists a matrix h(\rho, t, y, \eta)\in H\Sigma_{T}^{0,0}(N\wedge\cross N) such that for every
f\in C^{\infty}(]-T, T [ ; C_{0}^{\infty}(R^{n}))^{N} we have:

(4.56) F(h;\mathscr{P}f)=I\varphi)+Rf,

where R is a H. p. r. operator (cfr. Def 2. 7) and I(\cdot) is the Fourier
integral operator:

(4.57) I \sigma ) (t, x)= \iint e^{i[\psi(1,t,y,\eta)+x\cdot\eta]}f(t, y)dy\overline{d}\eta .

PROOF. Let h\in H\Sigma_{T}^{0,0}(N\wedge\cross N) be a matrix satisfying the initial condi-
tion (4. 14). We have:

(4.58) F(h;t\partial f)=Iy)+F(-\sqrt{-1}h(\rho\partial_{\rho}\psi) ; f)+

F((-\rho\partial_{\rho}-1)h;f) ,

where we used the notation:

(4. 59) \rho\partial_{\rho}\psi=(\begin{array}{ll}\rho\partial_{\rho}\psi_{1}I_{N_{1}} \square \square \dot{\rho}\partial_{\rho}\psi_{\nu}I_{N\nu}\end{array}) .

Using Lemma 4.2 (or rather its modified version) we obtain:

(4.60) F ( h ; tA ( t, y, D_{y} )f) =F(q; f) ,

for some matrix q\in H\Sigma_{T}^{1,1}\wedge(N\cross N) , q=(q^{(\sigma.\sigma’)})_{1\leq\sigma,\sigma’\leq\nu} . with:

(4. 61) q^{(\sigma.\sigma)}(\rho, t, y, \eta)

=\sqrt{-1}e^{-i\psi_{\sigma’}(\rho,t,y,\eta)}t\rho{}^{t}\lambda_{\sigma}(t\rho,y, D_{y})[e^{i\psi_{\sigma}(\rho,t,\cdot,\eta)}h^{(\sigma,\sigma’)}(\rho, t, ; \eta)] ,

where {}^{t}\lambda_{\sigma} (t, y, D_{y})\in OP\Sigma_{T}^{1,0}\wedge denotes the transpose of the operator \lambda_{\sigma}(t, y, D_{y})

(which we suppose to be proper). We can write:

(4.62) q^{(\sigma.\sigma)}(\rho, t, y, \eta)=\sqrt{-1}t\rho\lambda_{\sigma}(\rho t, y, -d_{y}\psi_{\sigma’}(\rho, t, y, \eta))

h^{(\sigma,\sigma)}(\rho, t, y, \eta)+q^{r(\sigma.\sigma)}(\rho, t, y, \eta) ,

for a suitable symbol q^{r(\sigma,\sigma)}\in H\Sigma_{T}^{0,1}(N_{\sigma}\wedge\cross N_{\sigma}) .
As a consequence of (4. 3) we have (\rho\partial_{\rho}\psi_{\sigma})(\rho t, y, \eta)=t\rho\lambda_{\sigma}(t\rho, y, - d_{y}\psi_{\sigma}) ,

\sigma=1 , \cdots \nu . As a partial conclusion, from (4. 62), (4. 58), we get:

(4.63) F(h:(t\partial_{t}-tA(t, y, D_{y}))f)=Iy)+F((-\rho\partial_{\rho}-1)h;f)

-F(q’ ; f) , q’=(q^{\prime(\sigma.\sigma’)})_{1\leq\sigma,\sigma\leq\nu}

Using again (the modified version of) Lemma 4. 2, we obtain
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(4.64) F(h;B(t, y, D_{y})f)=F(p;f) , with:

(4.65) p_{j,\acute{k}}^{(\sigma\sigma’)}(t, \rho, y, \eta)--e^{-i\psi_{\sigma^{r(\rho,t,y,\eta)_{\Sigma}}}}vN\prime\prime\Sigma^{\sigma}{}^{t}B_{l,k}^{(\sigma’.\sigma’)}(\rho t, y, D_{y})

\sigma^{r}=1l=1

. [ h_{j}^{(\sigma\sigma’)},i(\rho, t, \cdot, \eta)e^{i\psi_{\sigma}\prime\prime(\rho,t,\cdot,\eta}] , 1\leq\sigma , \sigma’\leq\nu ,

where p_{j,\acute{k}}^{(\sigma\sigma’)} is the (j, k) -entry in the block p^{(\sigma,\sigma’)} , j=1 , \ldots , N_{\sigma} , k=1 , \ldots , N_{\sigma} ,

and {}^{t}B_{l,k}(\sigma’’\sigma’)\in OPH\Sigma_{T}^{0,0}\wedge denotes the transpose of the operator B_{l,k}^{(\sigma’.\sigma)} .
Using Remark 4. 1 and proceeding as in the proof of Theorem 4. 1, we

obtain

(4.66) F(h;\mathscr{P}f)--I \propto)-((\rho\partial_{\rho}+1)h-q’+p;f) ,

modulo a H. p . r . operator.
Moreover, putting:

(4. 67) w(\rho, t, y, \eta)=(\rho\partial_{\rho}+1)h(\rho, t, y, \eta)

+q’(\rho, t, y, \eta)+p(\rho, t, y, \eta) ,

we have w\in H\Sigma_{T}^{0,0}(N\wedge\cross N) , w- \sum_{j\geq 0}w_{j} . and

(4.68) \{

w_{0}(\rho, t, y, \eta)=\hat{w}_{0}(\rho, y, \eta/|\eta|;t|\eta|),\hat{w}_{0}\in HS^{0}(N\cross N) ,
\hat{w}_{0}(\rho, y, \eta’z)=(\rho\partial_{\rho}+1)\hat{h}_{0}(\rho, y, \eta’. z)+\hat{h}_{0}(\rho, y, \eta’. z)\hat{b}_{\acute{0}}(y, \eta’\rho z)

+\hat{h}_{o}(\rho, y, \eta’z)\Gamma^{+}(y, \eta’\rho z)\chi(y, \rho z)\hat{b}_{\acute{0}}(y, \eta’\rho z)\Gamma^{-}(y, \eta’\rho z) ,

where \hat{b}_{\acute{0}} , \hat{b}_{\acute{0}} have been defined in (4. 28), \chi is the same cut-0ff as in (4. 27)

and \Gamma^{\pm} (y, \eta’ z) are as follows:

(4.69) \Gamma^{\pm}(y, \eta’z)=(e\square I_{N]^{-}-}--- - ------- -- - e^{\pm iz\lambda_{v}(0,y}\square . \eta)I)

Nv

A natural way to obtain (4. 56) is to impose the conditions : w_{0}=\coprod ,
\hat{h}_{0}|_{\rho=1}=I_{N} and, for j\geq 1 , w_{j}=\coprod , \hat{h}_{j}|_{\rho=1}=\Pi . These conditions lead to the
following transport equations:

(4.
_{70})_{j} \{

(\rho\partial_{\rho}+1)\hat{h}_{j}(\rho,y,\eta’z)+\hat{h}_{j}(\rho,y,\eta’,z)\hat{b}_{\acute{0}}(y,\eta’\rho z)

+\hat{h}_{j}(\rho,y,\eta’,z)\Gamma^{+}(y,\eta’, \rho z)\chi(y, \rho z)\hat{b}_{0}(y,\eta’\neg\rho z)\Gamma^{-}(y, \eta_{f}’\rho z)

=f_{j}(\rho, y, \eta’z) ,

(\hat{h}_{j}(\rho,y,\eta’,z)|_{\rho=1}--\{\begin{array}{l}I_{N} ifj=0\square , ifj\geq 1\end{array}

where f_{j}(\rho,y,\eta’,z) is a suitable symbol in HS^{j}(N\cross N) depending on \hat{h}_{0} , \ldots .
\hat{h}_{j-1} \hat{b}_{0} ... \hat{b}_{j-1} and f_{0}\equiv\Pi .

To solve equations (4. 70)_{j} we use the following Lemma.
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LEMMA 4. 5 Let C(y, \eta’z)\in S^{0}(N\cross N) be a N\cross N matrix with the
following properties.\cdot

i) ReC(y, \eta’z)\leq\coprod , for every y, \eta’z .
ii) Writing C=(C^{(\sigma,\sigma)})_{1\leq\sigma,\sigma’\leq\nu} in block form, for every \omega\subset\subset R^{n} there

exists \delta’>0 such that C^{(\sigma,\sigma’)}(y, \eta’-z)=\Pi for all (y, \eta’)\in\omega\cross S^{n-1}and|z|\geq

\delta’

Then for every f\in HS^{k}(N\cross N) , \varphi\in S^{k}(N\cross N) , k\in R , there exists a
unique h\in HS^{k}(N\cross N) satisfying.\cdot

\acute{)}\rho\partial_{\rho}h+hC=f

(4. 71)
(h|_{\rho=1}=\varphi .

Moreover, if f(\rho, y, \eta’ z) and \varphi(y, \eta’-z) are in block diagonal form
for every (y, \eta’)\in\omega\cross S^{n-1} , \rho|z|\geq\delta’ then the same property holds for h.

PROOF. As far as existence and uniqueness of h (satisfying (4. 71)) is
concerned the proof proceeds as in Lemma 4. 3. By the uniqueness, in any
region y\in\omega , |\eta’|=1 , \rho|z|\geq\delta’ . the extra diagonal blocks in h solve
equations like (4. 71) with zero data, hence they vanish.

To apply Lemma 4. 5 in solving (4. 70)_{j} we make the identification:
C(y, \eta’. z)=I_{N}+\hat{b}_{\acute{0}}(y, \eta’z)+\Gamma^{+}(y, \eta’z)\chi(y, z)\hat{b}_{\acute{\acute{0}}}(y, \eta’z)

.\Gamma^{-}(y, \eta’. z)

(properties i ), ii) are satisfied as a consequence of (4. 2) ) .
Once the symbols \hat{h}_{j} . j\geq 0 , are constructed we take a symbol h\in

H\Sigma_{T}^{0,0}(N\wedge\cross N) such that:

(4. 72) \int h(\rho, t, y, \eta)\sim\sum_{j\geq 0}|\eta|^{-j}\hat{h}_{j}(\rho, y, \eta/|\eta| ^{t|\eta|)}

(h|_{\rho=1}\equiv I_{N}

REMARK 4. 2 By Lemma 4.5, all the symbols h_{j} , j\geq 0 , and h can be
chosen to be in a block diagonal form for every y\in\omega, \eta\in R^{n} , \rho|t||\eta|\geq\delta’

With the above definition of h we have, for every f\in C^{\infty}( ] - T, T [;
C_{0}^{\infty}(R^{n}))^{N} :

(4. 73) F(h ; \mathscr{P}f)=Iy)+F(q ; f)+Rf,

where R is H.p.r. (cfr . Def. 2. 7), I \sigma) is defined as in (4. 57), and q is a
suitable symbol belonging to HS_{T}^{J,\infty}(N\cross N) .

To get rid of the term F (q:\circ) one proceed as in the proof of Theorem
4. 1, determining a matrix r\in HS_{T,f}^{0}(N\cross N)\subset HS_{T}^{0,\infty}(N\cross N) , which is
block diagonal, satisfying F(r;\mathscr{P}f)=-F((1-\chi(y, \rho t|\eta|)q;f) , modulo
a H.p.r. operator.

This completes the proof of Theorem 4.2.



Cauchy Problem for Fuchsian Hyperbolic Operaton 227

We explicitly remark that the F.i.o. defined by (4. 57) can be supposed
to be invertible, i.e. there exists a continuous operator

I^{-1} : C^{\infty}(]-T, T [; C_{0}^{\infty}(R^{n}))^{N}arrow C^{\infty}(]-T, T[\cross R^{n})^{N}

such that II^{-1}- id and I^{-1}I- id map C^{\infty}(]-T, T[;\mathscr{C}’(R^{n}))^{N} into
C^{\infty}(]-T, T[\cross R^{n})^{N}

As a consequence of (4. 56) we have:

(4. 74) I^{-1}F(h : \mathscr{P}f)=f+\mathscr{B}f, \forall f\in C^{\infty} ( ] - T, T [; C_{0}^{\infty}(R^{n})^{N} .

where \mathscr{B} maps C^{\infty}(]-T, T [; \mathscr{C}’(R^{n}))^{N}arrow C^{\infty}(]-T, T [\cross R^{n})^{N} .

5. Existence and Uniqueness. Propagation of Singularities.

In this Chapter we shall prove the existence and uniqueness result stated
in the Introduction, as well as some propagation results for the \overline{WF} of a
(regular distribution) solution of a Fuchsian hyperbolic Cauchy problem.

As a preliminary step we analyze how the parametrices constructed in
Chapter 4 propagate the \tilde{WF}.

Let us consider a system \mathscr{P} of the form (4. 1) (satisfying hypotheses
(4. 2) ) .

By \mathscr{C} we denote either the right parametrix E, constructed in Theorem
4. 1, or the operator I^{-1}\circ F, constructed in Theorem 4. 2 (cfr. (4.74)) .

By \Phi_{j}^{t} : T^{*}R^{n}|0-T^{*}R^{n}|0 we denote the flow out of the Hamiltonian
vector field H_{\gamma_{J}}=\partial_{\xi}\lambda_{j}\cdot\partial_{x}-\partial_{x}\lambda_{j}\cdot\partial_{\xi}, j=1 , ... . \nu . We have the following
result.

THEOREM 5. 1 The operator \mathscr{C} has the following properties:
1. \mathscr{C} can be extended as a continuous operator from C^{\infty} ( ] - T, T [;

\mathscr{C}^{r}(R^{n}))^{N} into C^{\infty}(]-T, T [; \mathscr{D}’(R^{n}))^{N}.

2. \mathscr{C} : \mathscr{C}_{\acute{r}}(]-T, T[\cross R^{n})^{N}arrow \mathscr{D}_{\acute{r}}(]-T, T[\cross R^{n})^{N}(Cfr. Def 2. 3) .

3. For every f\in \mathscr{C}_{\acute{r}}(]-T, T[\cross R^{n})^{N} we have:
a) \partial WF(\mathscr{C}f)\subset\partial WF\propto) ( Cfr. Def. 2. 3).

b) WF(\mathscr{C}f)|t\neq 0

\subset\{(t, x, \tau, \xi)|t\neq 0, (t, x, \tau, \xi)\in WF(f)\}\cup

\bigcup_{j=1}^{\nu}\backslash ^{(}(t, x, \lambda_{j}(t, x, \xi), \xi)|\exists s, \frac{s}{t}\in]0,1 [, \exists(y, \eta)

\in T^{*}R^{n}|0 , (s, y, \lambda_{j}(s, y, \eta), \eta)\in WF\varphi) , (x, \xi)

= \Phi_{j}^{t-s}(y, \eta)/\cup(\bigcup_{j=1}^{\nu}\{(t, x, \lambda_{j}(t, x, \xi), \xi)|t\neq 0, \exists(y, \eta)

\in T^{*}R^{n}|0 , (y, \eta)\in\partial WF\varphi) , (x, \xi)=\Phi_{j}^{t}(y, \eta),( .
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For a vector-valued distribution g= (g_{1} g_{N}) we have put

\partial WF(g)=\bigcup_{r=1}^{N}\partial WF(g_{r}) , WF(g)= \bigcup_{r=1}^{N}WF(g_{r}) .

PROOF. We will prove the Theorem in the case \mathscr{C}=I^{-1}\circ F and we leave
to the reader to supply the modifications required in the other case.

We begin by considering scalar operators of the form:
\int Kf(t, x)--\int_{0}^{1}\iint e^{i\lfloor x\cdot\eta-\varphi(\rho t,y,\eta J}k(\rho, t, y, \eta)f(\rho t, y)d\rho dy\overline{d}\eta ,

(5. 1)
(If(t, x)= \int\int e^{ilx\cdot\eta-\varphi(t,y}’\eta)Ja(t, y, \eta)f(t, y)dy\overline{d}\eta,

where \varphi (t, y, \eta)=\varphi(t, 0, y, \eta) is any of the phases defined in (4.3) and
entering in the expression of the operator F (Cfr. 4.54) ) , k\in HS_{T}^{m,1} and a\in

S_{1.0}^{m}((R\cross R^{n})\cross R^{n}) .
Property 1. for the operators (5.1) is straightforward.

Denoting by \Phi^{t} the flow out associated with the phase \varphi we claim that:
i) K : \mathscr{C}_{\acute{r}}(]-T, T[\cross R^{n})arrow \mathscr{D}_{\acute{r}}(]-T, T[\cross R^{n})

ii) \partial WF(Kf)\subset\partial WF(f) , \forall f\in \mathscr{C}_{\acute{r}}

iii) WF(Kf)|t\neq 0

\subset_{1}((t, x, 0, \xi)|\exists s, \frac{s}{t}\in]0,1] , \exists(y, \eta)\in T^{*}R^{n}|0 ,

(s, y, \lambda(s, y, \eta), \eta)\in WFy) , (y, \eta)=\Phi^{s}(x, \xi)_{l}\cup

|((t, x, \tau, \xi)|t\neq 0, \tau\in R , \exists(y, \eta)\in T^{*}R^{n}|0 ,
(t, y, \tau+\lambda(t, y, \eta), \eta)\in WF(t^{}) , (y, \eta)=\Phi^{t}(x, \xi)\}\cup

1((t, y, 0, \xi)|t\neq 0, (x, \xi)\in\partial WF\varphi) – A_{1}\cup A_{2}\cup A_{3} ,

for every f\in \mathscr{C}_{\acute{r}} .
iv) I : \mathscr{C}_{\acute{r}}(]-T, T\overline{\lfloor}\cross R^{n})-\mathscr{D}_{\acute{r}}(]-T, T[\cross R^{n})

v) \partial WF (If)\subset \partial WFy), \forall f\in \mathscr{C}_{\acute{r}}

vi) WF (If) |l\neq 0\subset A_{2\prime}\forall f\in \mathscr{C}\acute{r} .
Let us show that the claims i) -vi ) imply the Theorem (for \mathscr{C}=I^{-1}\circ F ).

Property 2. is a consequence of i) and iv).
Property 3. a) follows from ii ) and v). To prove b) we recall that the

F.i.o. I and hence I^{-1} have diagonal form. Writing f\in \mathscr{C}_{r}’(]-T, T[\cross R^{n})^{N}

in block form f=\varphi_{\sigma})_{\sigma=1}
, ,

\nu’ f_{\sigma}\in \mathscr{C}_{\acute{r}}(]-T, T[\cross R^{n})^{N_{\sigma}}, and taking into
account (4.54) we have, for \sigma--1 , \ldots

\nu :

(5. 2) (I^{-1}F (h : f))_{\sigma}

= \sum_{\sigma=1}^{\nu}I_{\sigma}^{-1}\int_{0}^{1}\int\int h^{(\sigma\sigma)}(\rho, t, y, \eta)e^{i[x\cdot\eta^{-}\varphi_{\sigma}(\rho t,y,\eta)]}f_{\sigma}(\rho t, y)d\rho dy\overline{d}\eta

=I_{\sigma}^{-1} \int_{0}^{1}\int\int e^{i\lfloor x\cdot\eta-\varphi_{\sigma^{(\rho l.y.\eta)l}}}h^{(\sigma.\sigma)}(\rho, t, y, \eta)f_{\sigma}(\rho t, y)d\rho dy\overline{d}\eta
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+
\sigma’\neq\sigma\sum_{\sigma’=1}^{\nu},I_{\sigma}^{-1}\int_{0}^{1}\int\int e^{i[x\cdot\eta-\varphi_{\sigma}(\rho t,y,\eta)]}e^{i(\varphi_{\sigma}(\rho t,y,\eta)-\varphi_{\sigma’}(\rho t,y,\eta))}h^{(\sigma,\sigma’)}(\rho, t, y, \eta)

. f_{\sigma}(\rho t, y)d\rho dy\overline{d}\eta .

By Remark 4.2, the matrix h has been choosen to be in a block diagonal
form for any y\in\omega\subset\subset R^{n}, \eta\in R^{n} and \rho|t||\eta|\geq\delta’ ( \delta’>0 , depending on \omega ).

Therefore there exists a cut-0ff function \chi(y, z) for which h^{(\sigma.\sigma’)}(\rho, t, y, \eta)

–\chi(y, \rho t|\eta|)h^{(\sigma,\sigma’)}(\rho, t, y, \eta) for every \rho , t, y, \eta and \sigma\neq\sigma’

By Lemma 4.1 we conclude that e^{iI\varphi_{\sigma^{-\varphi}\sigma^{\prime J}}}h^{(\sigma,\sigma’)}\in H\Sigma_{T}^{0,0}(N_{\sigma}\wedge\cross N_{\sigma},) , for \sigma\neq

\sigma’. As a consequence, it will be enough to study the WF for a scalar
composition I^{-1}\circ K with the notation (5. 1). From vi ) we get

(5. 3) WF(I^{-1}f)|t\neq 0\subset\{(t, y, \tau+\lambda(t, y, \eta), \eta)|t\neq 0 , \tau\in R ,
\exists(x, \xi)\in T^{*}R^{n}|0 , (t, x, \tau, \xi)\in WF\varphi) ,
(y, \eta)=\Phi^{t}(x, \xi)_{J}^{(}

From (5.3) and iii ) the conclusion follows.
We now prove claims i) - vi ). With no loss of generality we can

suppose that the amplitudes k and a vanish for|\eta|\leq 1 .
It is obvious that the distribution kernel of K, still denoted by K, has

support in the set \{(t, x), (s, y)|\frac{s}{t}\in[0,1], x, y, \in R^{n}\} and we remark that

in the interior of this set the function x\cdot\eta-\varphi(s, y, \eta) is a non-degenerate
phase function. Application of Theorem 2.5.14 of H\"ormander [11] yields:

(5. 4) WF’(K)n\backslash ’((t, x, \tau, \xi), (s, y, \tau’ _{\eta’))}

\in(T^{*}R^{1+n}\cross T^{*}R^{1+n})|0|\frac{s}{t}\in]0,1[^{\mathfrak{l}},
\subset\{((t, x, 0, \eta), (s, y, \varphi_{s}’(s, y, \eta), d_{y}\varphi(s, y, \eta)))|\eta\neq 0 ,

\frac{s}{t}\in]0,1[ , x=d_{\eta}\varphi(s, y, \eta)/(=J.

Putting \Phi^{s}(y, \eta)=(x(s;y, \eta) , \xi(s:y, \eta)) , we recall that \varphi(s, x(s :
y, \eta) , \eta)=y\cdot

\eta, (d_{y}\varphi)(s, x(s:y, \eta), \eta)=\xi(s,\cdot y, \eta) and d_{\eta}\varphi(s, x, \eta)=

y(s;x, \eta) , where y(s;x, \eta) denotes the inverse of the mapping yarrow x(s ; y,
\eta) (see, e . g . Chazarain-Piriou [10]). Using these remarks we obtain:

(5. 5) J= \{((t, x, 0, \xi), (s, y, \lambda(s, y, \eta), \eta))|\frac{s}{t}\in]0,1[ , (y, \eta)

=\Phi^{s}(x, \xi)/(

Now we claim that:

(5. 6) ((t, x, \tau, 0), (t, y, \tau’. O))\in WF’(K) , t\neq 0\Rightarrow\tau=\tau’

Consider a point P_{0}= ((t_{0}, x) , \tau_{0},0) , (t_{0}, y_{0}, \tau_{\acute{0}}, 0)) with t_{0}\neq 0 and \tau_{0}\neq
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\tau_{\acute{0}} ; we want to prove that P_{0}\not\in WF’(K) . Choose f, g\in C_{0}^{\infty}(]-T, T[\cross R^{n})

with support close to (t_{0}, x_{)}) and (t_{0}, y_{0}) respectively (and disjoint from
t=0) . Then

\langle K(f(s, y)e^{i(s\tau+y\cdot\xi)}), g(t, x)e^{-i(t\tau+x\cdot\xi)}\rangle

(5. 7) = \int_{0}^{1}\int e^{i\psi}f(\rho t, y)g(t, x)k(\rho, t, y, \eta)d\rho dtdxdy\overline{d}\eta

=H (\tau, \tau’ \xi, \xi’) ,

where
\psi=x\cdot(\eta-\xi)-\varphi(\rho t, y, \eta)+y\cdot\xi’+t(\rho\tau’-\tau) .

Since|d_{y}\varphi(s, y, \eta)|\geq c|\eta|for all (s, y, \eta)\in[-T, T]\cross R^{n}\cross R^{n}|0 ,
taking into account that \tau_{0}\neq\tau_{\acute{0}} , we can find a conic neighborhood \Gamma of
((\tau_{0},0) , (\tau_{\acute{0}}, 0)) in R^{2+2n} and choose the support of g(t, x)f(s, y) so close
to (t_{0}, x) , t_{0} , y_{0}) in such a way that the following relations hold:

inf (|\eta-\xi|+|\xi’-d_{y}\varphi(s, y, \eta)|)\geq const.|\eta|

\int y\in R^{n}|6|\geq T

(5. 8)
( s

|_{\overline{t}}\tau’-\tau|\geq const . (|\tau|+|\tau’|+|\xi|+|\xi’|) ,

for ((\tau, \xi) , (\tau’. \xi’))\in\Gamma and (t, x, s, y)\in supp(gf) .
We first integrate by parts in (5.7) using the operator

L= \underline{1}\sum_{j}n[|\xi-\eta|^{2}+|\xi’-d_{y}\varphi(\rho t, y, \eta)|2]^{-1}

\sqrt{-1} 1. ((\eta_{j}-\xi_{j})\partial_{x_{J}}+(\xi_{i}’-\partial_{y_{j}}\varphi)\partial_{y_{J}}) ,

and then integrate by parts with respect to t using the operator
(\sqrt{-1}(\rho\tau’-\tau))^{-1}\partial_{t} . As a consequence, we obtain that H(\tau, \tau’. \xi, \xi’)=

0((|\tau|+|\tau’|)^{-N}) , on \Gamma . for every N\geq 0 , and this proves that P_{0}\not\in

WF’(K) .
The next claim is:

(5. 9) ((t, x, \tau, \xi), (t, y, \tau’, \xi’))\in WF’(K) , t\neq 0 , |\xi|+|\xi’|>0\Rightarrow

x=d_{\eta}\varphi(t, y, \eta) , \xi=\eta, \xi’=d_{y}\varphi(t, y, \eta) , \tau’=\tau+\varphi_{t}’(t, y, \eta) .
Consider a point P_{0}= ((t_{0}, xi) , \tau_{0} , \xi_{0}) , (t_{0}, y_{0}, \tau_{\acute{0}}, \xi_{\acute{0}})) with t_{0}\neq 0and|\xi_{0}|

+|\xi_{\acute{0}}|>0 . We can find: an open covering \Omega_{1}\cup\Omega_{2} of S_{\eta}^{n-1} , a neighborhood
U\cross V of (xo, y_{0}) , a positive small \epsilon and a conic neighborhood \Gamma of
((\tau_{0}, \xi_{0}) , (\tau_{\acute{0}}, \xi_{\acute{0}})) in R^{2+2n}, such that:

(5. 10) \{

x-d_{\eta}\varphi(s, y, \eta)\neq 0 , (x, y)\in U\cross V|s-t_{0}|<\epsilon, \eta/|\eta|\in\Omega_{1}

|\xi|+|\xi’|\geq const . (|\xi|+|\xi’|+|\tau|+|\tau’|) , in \Gamma

( \xi , \xi’. \tau-\frac{s}{t}\tau’)\neq(\eta, d_{y}\varphi(s, y, \eta) , \frac{s}{t}\varphi_{\acute{s}}(s, y, \eta)) .

(x, y)\in U\cross V, |t-t_{0}|<\epsilon , |s-k|<\epsilon , \eta/|\eta|\in\Omega_{2},((\tau, \xi),(\mathcal{T}’-\xi’))\in\Gamma\wedge
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Consider (5.7) with supp (f)\subset\{(s, y)||s-t_{0}|<\epsilon , y\in V_{/J}^{\mathfrak{l}} supp (g)\subset

\backslash /(t, x)||t-t_{0}|<\epsilon , x\in U\} and ((\tau, \xi), (\tau’, \xi’))\in\Gamma and write H(\tau, \tau’\xi, \xi’))

=H_{1}+H_{2} , with

(5. 11) H_{j}(\tau, \tau’\xi, \xi’)

= \int_{0}^{1}\int e^{i\psi}\chi_{j}(\frac{\eta}{|\eta|})f(\rho t, y)g(t, x)k(\rho, t, y, \eta)

. d\rho do dxdy\overline{d}\eta .
where \chi_{1} , \chi_{2} is a smooth partition of the unity related to the covering
\Omega_{1}\cup\Omega_{2} .

Now, in H_{1} we first integrate by parts using the operator

\frac{1}{\sqrt{-1}}\sum_{1}^{n}j|x-d_{\eta}\varphi(\rho t, y, \eta)|-2(x_{j}-\partial_{\eta j}\varphi(\rho t, y, \eta))\partial_{\eta_{J}}

and then integrate by parts using the operator -(|\xi^{2}+|\xi’|^{2})^{-1}(\Delta_{x}+\Delta_{y}) . It
is easily seen that H_{1}(\tau, \tau’. \xi, \xi’)=0((|\xi|+|\xi’|)^{-N}) , on \Gamma . for every
N\geq 0 .

In H_{2} we integrate by parts using the operator

\frac{1}{\sqrt{-1}}[\sum_{1}^{n}j\gamma((\eta_{j}-\xi_{j})\partial_{x_{J}}+(\xi_{j}’-\partial_{yj}\varphi(\rho t, y, \eta))\partial_{y_{J}})

+\gamma(\rho(\tau’-\varphi_{\acute{s}}(\rho t, y, \eta))-\tau)\partial_{t}]-

where \gamma^{-1}=|\eta-\xi|^{2}+|\xi’-d_{y}\varphi(\rho t, y, \eta|^{2}+|\rho(\tau’-\varphi_{\acute{s}}(\rho t, y, \eta))-\tau|^{2} .
As a consequence, we get H_{2}(\tau, \tau’, \xi, \xi’)=0((|\xi|+|\xi’|)^{-N}) , on \Gamma .

for every N\geq 0 and claim (5.9) follows.
As a partial conclusion, from (5.9), (5.6), (5.5) and (5.4) we get:

WF’(K) \cap\{((t, x, \tau, \xi), (s, y, \tau’\xi’))\in(T^{*}R^{1+n}\cross T^{*}R^{1+n})|0|\frac{s}{t}

\in]0,1]_{/}^{(}\subset\{((t, x, 0, \xi) , (s, x’. \lambda(s, x’\xi’))|\frac{s}{t}\in]0,1 [, (x’. \xi’)

(5.11)
=\Phi^{s}(x, \xi)^{(},\cup\{((t, x, \tau, \xi), (t, x_{J}’\tau+\lambda(t, x’\xi’), \xi\gamma)|t\neq 0 ,
\tau\in R , (x’. \xi’)=\Phi^{t}(x, \xi)_{/}^{(}\cup\{((t, x, \tau, 0), (t, x’\tau, 0))|t\neq 0 ,
\tau\neq 0^{\mathfrak{l}}, .

We now prove the claim ii). Precisely, let f\in \mathscr{C}_{\acute{r}}(]-T, T[\cross R^{n}) and
suppose that (\eta, \xi_{0})\in T^{*}R^{n}|\partial WF\varphi) : we have to show that (x), \xi_{0})\not\in

\partial WF(Kf) . By the hypothesis we can find a proper pdo B(x, D_{x})\in

OPS^{0}(R^{n}) with symbol b(x, \xi) supported in a conic neighborhood U\cross\Gamma of
(r’, \xi_{0}) , b\equiv 1 on some U’\cross\Gamma’\subset\subset U\cross\Gamma such that B(x, D_{x})f\in C^{\infty}([-\epsilon,\epsilon],\cdot

C_{0}^{\infty}( R^{n})) , for some \epsilon\in ] 0, T [ .
Possibly, by multiplying f by a cut-0ff function \chi(t) supported in]-\mbox{\boldmath $\epsilon$},

\epsilon [, we can suppose that B (x, D_{x}) \chi f\in C^{\infty}(]- T, T [; C_{0}^{\infty}(R^{n})) .



232 A. Bove J. E. Lewis C. Parenti

We have BKxf K]xf ’ [B, K]\parallel, with KB\chi F\in C^{\infty}(]-T, T[\cross R^{n}) .
By Lemma 4.2 we can write BK\chi=K’- with K’ defined as K with an

amplitude k’(\rho, t, x, y, \eta)=b(x, \eta)\chi(\rho t)k(\rho, t, y, \eta) , modulo a H. p . r .

operator. On the other hand, by the same Lemma, we can write KB\chi=K’

with K’ defined as K with an amplitude
k’(\rho, t, y, \eta)=e^{\varphi(\rho t.y.\eta)}{}^{t}B(y, D_{y})[e^{-\iota\varphi(\rho t,\cdot,\eta)}\chi(\rho t)k(\rho, t^{ },\cdot,\eta)]\in HS_{T}^{m\acute{r}} ,

where {}^{t}B is the transpose of the operator B .
We now observe that is possible to find a conic neighborhood U_{1}\cross\Gamma_{1}

\subset\subset U’\cross\Gamma’ of (xo, \xi_{0}) such that for some \delta\in ] 0 , \epsilon [we have (y, d_{y}\varphi(s, y,

\eta))\in U’\cross\Gamma’ for all (y, \eta)\in U_{1}\cross\Gamma_{1}and|s|\leq\delta. As a consequence, the
amplitude of [B, K]\chi has zero asymptotic expansion for all (x, y, \eta)\in

U’\cross U_{1}\cross\Gamma_{1} , and for all \rho , t. Take now \tilde{B}(x, D_{x})\in OPS^{0}(R^{n}) with symbol
supported in U_{2}\cross\Gamma_{2}\subset\subset U_{1}X\Gamma_{1} , \tilde{b}\equiv 1 in a conical neighborhood of (x), \xi_{0})

contained in U_{2}\cross\Gamma_{2} . Using Lemma 4.2 once more, the operator \tilde{B} [B, K]
\chi has an amplitude with zero asymptotic expansion for (x, y, \eta)\in R^{n}\cross U_{1}\cross

(R^{n}|0) , and for all \rho , t. Choose \zeta\in C_{0}^{\infty}( U_{1}) , \zeta\equiv 1 in U_{2} and write
\tilde{B}[B, K]ff=\tilde{B}[B, K]\chi(\sigma)+\tilde{B}[B, K]\chi((1-\zeta)f) .

Since the amplitude of \tilde{B}[B, K]\chi\zeta has zero asymptotic expansion for
(x, y, \eta)\in R^{n}\cross R^{n}\cross(R^{n}|0) (and for all \rho , t ), we get \tilde{B}[B, K]\chi(\sigma)\in C^{\infty}

(]-T, T[\cross R^{n}) . On the other hand, if \epsilon is small enough, we can suppose
that|x-d_{\eta}\varphi(\rho t, y, \eta)|\geq C>0 on the support of the amplitude of the
operator \tilde{B}[B, K]\chi(1-\zeta) . Integrating by parts using the operator

\underline{1}\sum_{j}|x-d_{\eta}\varphi(\rho t, y, \eta)|-2(x_{j}-\partial_{\eta_{J}}\varphi(\rho t, y, \eta))\partial_{\eta_{J}}n ,
\sqrt{-1} 1

we can easily conclude that \tilde{B}[B, K]\chi((1-\zeta)f)\in C^{\infty}(]-T, T[\cross R^{n}) .
This proves claim ii ).

Claim v) is proved arguing as above and we omit the details.
Claim iv ) and vi ) follow from Theorem 2. 5. 14 of H\"ormander [13] by

remarking that I f|l\neq 0=I (f| t\neq 0 ) .

Therefore we are left with the proof of i) and iii ).
Let us prove that for every f\in \mathscr{C}_{\acute{r}}(]-T, T[\cross R^{n}) and for every \chi\in

C_{0}^{\infty}(]-T, T [) , \chi(t)=1 near t=0 , we have:

(5. 12) WF(Kff| t\neq 0)\subset\{(t, x, \tau, \xi)|\tau=0_{)}^{(} .

Fix a point (t_{0}, x) , \tau_{0} , \xi_{0}) , t_{0}\neq 0 , \tau_{0}\neq 0 and take \zeta(t) , \zeta_{1}(t)\in C_{0}^{\infty}(R) ,
\zeta_{1}\zeta=\zeta , supported near t=t_{0} with support disjoint from t=0 and such that
\zeta_{1}\chi\equiv 0 . Let \omega(x) , \omega_{1}(x)\in C_{0}\infty(R^{n}) , \omega_{1}\omega=\omega , supported near x_{0} , and
consider:

(5. 13) \langle K\beta, e^{-i(t\tau+x\cdot\xi)}\zeta(t)\omega(x)\rangle=I(\tau,\xi) ,
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with (\tau, \xi) in a cone|\tau|\geq const.|\xi| .
We can write:

(5. 14) I( \tau, \xi)=\int_{-\infty}^{+\infty}e^{-it\tau}\zeta(l)\int_{0}^{t}\langle g(t, s, x), \omega(x)e^{-ix\cdot\xi}\rangle dsdt,

where:

(5. 15) g(t, s, x)= \int e^{i[x\cdot\eta-\varphi(\sigma,y,\eta)]_{\frac{\zeta_{1}(t)}{t}\chi(s)\omega_{1}(X)k}}(\frac{s}{t}, t, y, \eta)\circ

f(s, y)dy\overline{d}\eta .
Note that for every \epsilon>0 the amplitude in (5. 15) satisfies uniform

estimates of the type

(5. 16) |s^{\epsilon} \partial_{t}^{j}\partial_{x}^{a}\partial_{y}^{\beta}\partial_{\eta}^{\gamma}[(\zeta_{1}(t)/t)\chi(s)\omega_{1}(x)k(\frac{s}{t}, t, y, \eta)]|

\leq Const . (1+|\eta|)^{m-|\gamma|} .

Since f\in C^{\infty}(]-T, T [; \mathscr{C}’(R^{n})) , for some \sigma\in R we have f\in C^{(0)}(]-T,

T [; H^{\sigma}(R^{n})) . Hence, from the continuity properties of F. i . 0 ’s and from
(5. 16), the following inequalities follow:

(5. 17) \sup_{1t|\leq T_{1}}\int(1+|\eta|^{2})^{\sigma-m}|\partial_{t}^{j}\hat{g}(t, s, \eta)|^{2}d\eta

\leq const . |s|- \epsilon\sup_{|t|\leq T_{1}}\int(1+|\eta|^{2})^{\sigma}|\hat{f}(t, \eta)|^{2}d\eta,

for every s\in]- T, T [ , 0<T_{1}<T, \epsilon>0 , j\geq 0 .
As

a consequence of the choice of \zeta_{1} and \chi , for every N\in Z_{+},(-i\gamma)^{N}I(\tau,\xi)

is a linear combination of integrals of the form:

(5. 18) I_{k,j}( \tau, \xi)=\int_{-\infty}^{+\infty}e^{-it\tau}\zeta^{(k)}(t)\int_{0}^{t}\langle\partial_{t}^{j}g(t, s, x), \omega(x)e^{-\iota x\cdot\text{\’{e}}}\rangle

dsdt, k+j=N.

From (5. 17) we obtain, by Parseval identity:

|I_{k.j}( \tau, \xi)|\leq\int_{-\infty}^{\mapsto}|\zeta^{(k)}(t)||\int_{0}^{t} \langle\partial_{t}^{j}\hat{g}(t, s, \eta),\hat{\omega}(\xi+\eta)\rangle

ds| dt\leq const . (1+|\eta|^{2})^{|m-\sigma|}\leq const . (1+\tau^{2})^{|m-\sigma|} .
As a consequence, for every N\in Z_{+} we obtain I(\tau, \xi)=0(|\tau||m-\sigma|-N)

on the cones |\tau|\geq const . |\xi| . This proves (5. 12).

Since the operator K(1-\chi) maps \mathscr{D}_{r}’ into \mathscr{D}_{r}’ as a consequence of (5.
11) and the above quoted result of H\"ormander, claim i ) is proved.

To prove claim iii ) let (t, x, 0, \xi) be a point T^{*}(]-T, T[\cross R^{n}) with
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t\neq 0 , \xi\neq 0 . Suppose that (x, \xi)\not\in\partial WFy) and, for every s\neq 0 , \frac{s}{t}\in ] 0, 1 [ ,

we have (s, y, \lambda(s, y, \eta), \eta)\not\in WFy) , (y, \eta)=\Phi^{s}(x, \xi) . We can find a
cut-0ff function \chi (t)\in C_{0}^{\infty}(]-T, T[) and a proper operator B(y, D_{x})\in

OPS^{0}(R^{n}) whose symbol b(y, \eta) is supported in a conic neighborhood
U\cross\Gamma of (x, \xi) and b(y, \eta)\equiv 1 on some U\cross\Gamma\supset\supset U_{1}\cross\Gamma_{1}\ni(x, \xi) , such
that B\chi f\in C^{\infty}(]-T, T[\cross R^{n}) .

Therefore KB\chi f\in C^{\infty}(]-T, T[\cross R^{n}) : moreover, K(I-B)\parallel\in C^{\infty}

(]-T, T[\cross V) for some neighborhood V of x(this is proved as in the last
part of the proof of claim ii )). As a consequence, we get that (t, x, 0, \xi)\not\in

WF(K\chi f) .
From the hypotheses on f and from (5. 11), application of H\"ormander’s

Theorem yields (t, x, 0, \xi)\not\in WF(K(1-\chi)f) and hence (t, x, 0, \xi)\not\in

WF(KfX . To conclude, let (tfx,\tau,\xi) be a point with t\neq 0 , \tau\neq 0 , \xi\neq 0 ,
and suppose that (t, y, \tau+\lambda(t, y, \eta) , \eta)\not\in WF\varphi) , (y, \eta)=\Phi^{t}(x, \xi) .
From (5. 12) we get (t, x, \tau, \xi)\not\in WF(K\beta) .

A further application of H\"ormander’s Theorem and (5. 11) yields (t, x,
\tau, \xi)\not\in WF(K(1-\chi)f) . This concludes the proof of claim iii ) and hence
of the Theorem.

We can now prove the following result.
THEOREM 5. 2. Let M be a n-dimensional C^{\infty} compact manifold without

boundary and let P\in F_{m-k}^{m}(R\cross M) be a differential operator satisfying the
Fuchs condition (1. 3). Then for every f\in \mathscr{D}_{r}’(R\cross M) and for every g_{j}\in \mathscr{D}’

(M) , j=0,1 , \ldots . m - k -1 there exists a unique distribution u\in \mathscr{D}_{\acute{r}}(R\cross M)

satisfying the Cauchy problem.\cdot

(5. 19) \{
Pu=f, in R\cross M

\partial_{t}^{i}u|_{t=0}=g_{j} in M, j=0,1 , \ldots m-k-l.

Moreover, denoting by \lambda_{j}(t, x, \xi) , j=1 , \ldots m, the hyperbolic roots of P and
by \Phi_{j}^{t} the Hamiltonian flow in T^{*}M|0 associated to \lambda_{j} j=1 , \ldots m, the
following inclusions hold.\cdot

a) \partial WF(u)\subset\partial WF\varphi)\cup\bigcup_{j=0}^{m-k-1}WF(g_{j}) .

b) WF(u)|t\neq 0\subset_{1}^{j}t, x, \tau, \xi)|t\neq 0 , (t, x, \tau, \xi)\in WF\sigma)\}\cup

\bigcup_{j=1}^{m}\{t, x, \lambda_{j}(t, x, \xi) , \xi)|\exists s, \frac{s}{t}\in]0,1[ , \exists(y, \eta)\in T^{*}M|0 ,

(s, y, \lambda_{j}(s, y, \eta), \eta)\in WF(f) , (x, \xi)=\Phi_{j}^{t-s}(y, \eta’\cup(

\bigcup_{j=1}^{m}\{(t, x, \lambda_{j}(t, x, \xi), \xi)|t\neq 0 , \exists(y, \eta)\in T^{*}M|0 ,

(y, \eta)\in\partial WF\varphi)\cup\bigcup_{l=0}^{m-k-1}WF(g_{l}) , (x, \xi)=\Phi_{j}^{t}(y, \eta) , .



Cauchy Problem for Fuchsian Hyperbolic Operators 235

PROOF. Suppose that the Theorem holds in the case k=m and let us
prove it in the case k<m . We observe that there exists an operator R :
\mathscr{D}’(M)arrow \mathscr{D}_{\acute{r}}(R\cross M) such that Rv|_{t=0}=v and \tilde{W}F(Rv)=\partial WF(Rv)=WF

(v) , for every v\in \mathscr{D}’(M) . Since the property of being a regular distribution
is invariant under change of coordinates involving only the \ll spatial

variables\gg , we can reduce ourselves to the case M=an open subset of R^{n} .
Let \chi\in C_{0}^{\infty}(R) , \chi=1 near t=0 , and for every v\in \mathscr{C}’(R^{n}) put:

(5. 20) Rv(t, x)= \int e^{ix\cdot\text{\’{e}}}\chi(t(1+|\xi|^{2})^{1/2})\hat{v}(\xi)d\xi.

Since \chi(t(1+|\xi|^{2})^{1/2})\in S^{0,0} . application of Theorem 2.1 implies that R
maps \mathscr{C}’(R^{n}) into \mathscr{D}_{\acute{r}}(R\cross R^{n}) and \tilde{W}F(Rv)=\partial WF(Rv)\subset WF(v) .

Furthermore, \partial_{t}^{j}Rv|_{t=0}=\{
v, j=0 so that WF(v)\subset\tilde{W}F(Rv) .0, j>0 ’

By glueing together operators of the form (5. 20) we can construct the
\ll extension\gg operatorR with the properties listed above.

m-k-1t^{j}
Now put v(t, x)= \sum_{j=0} \overline{j!}(Rg_{j})(t, x) . Since \partial_{t}^{j}v|_{t=0}=g_{j} , we can write

u=v+t^{m-k}w for a uniquely defined w\in \mathscr{D}_{\acute{r}}(R\cross M) .
Using property i) of the class F_{m-k}^{m} we get P(t^{m-k}w)=\tilde{P}w=f-Pv for

a well defined differential operator \tilde{P}\in F_{0}^{m}(R\cross M) satisfying F. c . Let w\in
\mathscr{D}_{\acute{r}}(R\cross M) be the unique solution of the equation \tilde{P}w=f-Pv ; then u=v+
t^{m-k}w is the unique solution of the Cauchy problem (5. 19). Moreover, since
\overline{WF}(Pv)\subset\partial WF(Pv)\cup\bigcup_{j=0}^{m-k-1}WF(g_{j}) , properties a) and b) hold in case k<
m provided they are satisfied when k=m.

From now on we shall consider the case k=m (no Cauchy data is given
at t=0 !).

Let us prove that for every x_{1}\in M there exists a distribution u\in \mathscr{D}_{\acute{r}}

(]-\delta, \delta[\cross U’) defined on some open cylinder]-\mbox{\boldmath $\delta$}, \delta[\cross U’\ni(0, x_{)}) such
that Pu=f in this cylinder. Let ( U, \varphi) be a chart of M, \varphi : Uarrow\sim V=\{y\in

R^{n}||y|<1\} , \varphi(x_{)})=0 and denote by P_{V}\in F_{0}^{m}(R\cross V) the transformed
operator. We observe that I_{P_{v}} (\varphi(x) ; \zeta)=I_{P}(x:\zeta) , for every x\in U and \sigma\in

notationCLet\theta\in C_{0}^{\infty}(R)of(1.4)

,
putP_{V\theta},(t,y,t\partial_{t}D_{y})=\sum_{j=0}^{m}\sum_{h=0}^{m-j}t^{m-j-h}A_{m-j-h,j}(\theta(t^{2}+|y|^{2})with\theta(s)=1,|s|\leq 1/4,\theta(s)=0for|s|\geq 1/2andwiththe

t, \theta(t^{2}+|y|^{2})y, D_{y})(t\partial_{t})^{h} . Then P_{V.\theta}\in F_{0}^{m}(R\cross R^{n}) with P_{V\theta},=P_{V} on some
open cylinder]-\mbox{\boldmath $\delta$}, \delta[\cross V’\ni(0,0) . We observe that the coefficients of P_{V,\theta}

do not depend on t and y for |y|\geq 1/2 : moreover, P_{V\theta}
, satisfies F. c . and the

roots \zeta_{1}(y) , \ldots
\zeta_{m}(y) of the indicial equation I_{P_{v,\theta}}(y;\zeta)=0 are independent
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of y for |y|\geq 1/2 .
Given f\in \mathscr{D}_{\acute{r}}(R\cross M) , denote by f_{V}\in \mathscr{D}_{\acute{r}}(R\cross V) the push-forward of f

via \varphi . Take \omega\in C_{0}^{\infty}(V) , \omega\equiv 1 on V’ and put gV(t, y)=\omega(y)f_{V}(t, y) .
We try to solve the equation P_{V\theta},u_{V}=g_{V}.

For sake of simplicity in the following we write P_{V\theta}=P, g_{V}=g ,

u_{V}=u . Let p\in Z_{+} be a positive integer to be specified later on. From the
property iii ) of the classes F_{0}^{m} we know that for every j\geq 0 , \partial_{t}^{j}u|_{t=0}=

\sum_{r=0}^{j}L_{j-r.j}^{P}(rj, D_{y})(\partial_{t}^{r}g|_{t=0}) , for some differential operators L_{j-r,j}^{P} of order

j-r (L_{0,j}^{P}=1/I_{P}(y : j)) . Put:

(5. 21) v_{P}(t, y)= \sum_{j=0}^{p-1}\sum_{r=0}^{j}\frac{t^{j}}{j!}RL_{j-r,j}^{P}(\partial_{t}^{r}g|t=0) .

It is easy to check that u-v_{p}=t^{p}w and g-P(v_{p})=l^{p}h , for well
determined distributions w, h\in \mathscr{D}_{r}’(R\cross R^{n}) . By property ii ) of the classes
F_{0}^{m} we know that P(t^{p}w)=tpP(t, y, t\partial_{t}+p, D_{y})w, so that we are left with
the equation P(t, y, t\partial_{t}+p, D_{y})w=h\in \mathscr{C}_{\acute{r}}(R\cross R^{n}) .

We now apply the reduction to a singular system performed in Chapter

1, taking as L in (1. 15) the operator t\partial_{t}+p-tZ(t, y, D_{y})-\gamma, where \sqrt{-1}\underline{1}

Z(t, y, \eta) is any of the hyperbolic roots of P and \gamma\in C\backslash Z.
The equation P(t, y, t\partial_{t}+p, D_{y})w=h is transformed into a N\cross N

system \mathscr{P}w=h , where \mathscr{P} has the form (1. 1 ), N= \frac{m(m+1)}{2} , h= \frac{(0,\ldots,0,h}{m},

0, \ldots , 0) and the principal symbol of B(0, y, D_{y}) has the eigenvalues \zeta_{j}(y)

-p, \gamma+(m-j)-p, j=1 , \ldots-m . We now choose p\in Z_{+} such that

(5.22) Re \sigma_{0}(B)(t, y, \eta)\leq-I_{N}

for all it,y,\eta ) \in R\cross R^{n}\cross(R^{n}\backslash 0) (since the coefficients of P are
independent of (/, y) for |y|\geq 1/2 , the same property is verified by the
matrices A(t, y, D_{y}) and B(t, y, D_{y})) .

Let now U(t, y, D_{y}) , U^{-1}(t, y, D_{y}) be proper operators of order zero
such that UU^{-1}-id , U^{-1}U- id are partially regularizing and

(5. 23) U^{-1}(t, y, D_{y})A(t, y, D_{y})U(t, y, D_{y})=

=\sqrt{-1}\{ \lambda_{1}(t,y\coprod^{\backslash }’ D_{y})\backslash \backslash \backslash \lambda_{m}(t, y, D_{y})\frac{1}{\prime}-1Z(t,)\coprod_{y, D_{y}}I_{N-m}]

=\mathscr{A}(t, y, D_{y}) .
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Then U^{-1}(t, y, D_{y})w satisfies the system:

(5.24) (t\partial_{t}I_{N}-t\mathscr{A}(t, y, D_{y})-\mathscr{B}(t, y, D_{y}))U^{-1}w=U^{-1}h+h’,

with h’\in C^{\infty}(R_{t}\cross R_{y}^{n})^{N} and \mathscr{B}=U^{-1}BU.
We shall continue to denote the system (5. 24) by \mathscr{P}U^{-1}w .
Let now Q(t, y, D_{y})\in OP\hat{\Sigma}^{0,0} be the decoupling operator constructed in

Chapter 3 and denote by Q^{-1}(t, y, D_{y})\in OP\hat{\Sigma}^{0,0} a parametrix of Q(Q and Q^{-1}

are supposed to be proper operators).
As follows from Theorem 3.1, the vector Q^{-1}U^{-1}w satisfies the system

(5.25) \mathscr{P}\sim Q^{-1}U^{-1}w=(I_{N}t\partial_{t}-t\mathscr{A}(t, y, D_{y})-\tilde{\mathscr{B}}(t, y, D_{y}))Q^{-1}U^{-1}w

– Q^{-1}U^{-1}h+h’

for some h’\in C^{\infty}(R_{t}\cross R^{n})^{N}

Since by (5. 22) the matrix \tilde{\mathscr{B}} satisfies the hypotheses (4. 2), using the
right parametrix E constructed in Theorem 4.1 we obtain that the vector
EQ^{-1}U^{-1}h satisfies the system (5. 25) modulo C^{\infty}

Taking the last component of the vector UQEQ^{-1}U^{-1}h we obtain a
function ui_{v}(t, y)\in \mathscr{D}_{\acute{r}}(R\cross R^{n}) which satisfies:

(5.26) P_{V\theta},(t, y, t\partial_{t} D_{y}) [ v_{p}+t^{p}u_{\acute{v}}]=g_{v}+g_{\acute{v}}

for some g_{\acute{v}}\in C^{\infty}(R\cross R^{n}) . Using the results of Tahara ([20], Theorem 3.
1) we finally get a distribution u_{v}\in \mathscr{D}_{\acute{r}}(R\cross R^{n}) such that P_{V.\theta}u_{v}=g_{v} in
R_{t}\cross R^{n}. Pulling-back u_{v} to the manifold M we obtain a distribution u\in

\mathscr{D}_{r}’(]-\delta, \delta[\cross U’) which satisfies the original equation Pu=f on some open
cynder]-\mbox{\boldmath $\delta$}, \delta[\cross U’\subset R\cross M, containing the point (0, x_{)}) .

The next step consists in showing that if u\in \mathscr{D}_{\acute{r}}(]-\delta, \delta[\cross U’) and v\in

\mathscr{D}_{r}’(]-\delta, \delta[\cross U’) are two local solutions constructed as above, and if U’\cap

U\prime\prime\neq\phi , there is a neighborhood \mathscr{O} of { 0_{/}^{\backslash }\cross(U’\cap U^{rr}) in R_{t}\cross(U’\cap U\prime\prime)

such that u|, =v|_{\rho}

To prove this claim, let \overline{x}\in U’\cap U’ and use a chart (\Omega, \varphi) of M with
\Omega\subset U’\cap U

\prime\prime

\varphi : \Omegaarrow\sim V=\{y\in R^{n}||y|<1^{(}, , \varphi(\overline{x})=0 .
We push-forward P, u and v onto R\cross V. We deform P and cut-0ff the

image of u-v as above, obtaining a distribution w\in \mathscr{C}_{\acute{r}}(R\cross R^{n}) satisfying
P_{V,\theta}(t, y, t\partial_{t} D_{y})w=0 on some open cylinder ]- T, T[\cross V’\subset R\cross V,

containing the point (0, 0) . Using the same procedure described above we
find w\in \mathscr{D}_{\acute{r}}(R\cross R^{n})^{N} which has the property that \tilde{\mathscr{P}}w\in C^{\infty}(]-T’ T’[\cross

V’)^{N} for some open cylinder ]- T’ T’[\cross V’\subset]-T, T[\cross V’ We now use
the left parametrix constructed in Theorem 4.2 and the propagation results of
Theorem 5.1 to conclude that w\in C^{\infty}(]-T’ T’[\cross V’) for some smaller
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cylinder.
Hence we can conclude that w\overline{\subset}C^{\infty}(]-T’ T’[\cross V\prime\prime\prime) and P_{V\theta}w=0 on

this cylinder. By the local uniqueness Theorem 1. 3. b) we obtain that u=v
on some open cylinder ] -\delta(\overline{x}\grave{)}, \delta(\overline{x}) [\cross\Omega’\subset]-\delta, \delta[\cross\Omega , containing (O,\overline{x}) .

It follows that we can find a finite open covering \bigcup_{j=1}^{7}U_{j}=M of M and

distribution u_{j}\in \mathscr{D}_{\acute{r}}(]-\delta, \delta[\cross U_{j}) , for some \delta>0 , such that:
i) Pu_{j}--f, in ] -\delta , \delta[\cross U_{j} j=1 , \ldots r:ii ) whenever U_{i}\cap U_{j}\neq\phi ,

there is a neighborhood \mathscr{O}_{ij} of /o\backslash \cross(U_{i}\cap U_{j}) in R\cross(U_{2}\cdot\cap U_{j}) for which
u_{i}|\angle^{\mathcal{J}},=u_{j}|J6^{7},\lrcorner

Let /|\zeta_{j}\in C_{0}^{\infty}( U_{j})|j=1 , \ldots-r_{/} be a partition of unity and put u(t, x)=

\sum_{1}^{r}j\zeta_{j}(x)u_{j}(t, x) , (t, x)\in]-\delta, \delta [ \cross M. Then u\in \mathscr{D}_{\acute{r}}( ] -\delta, \delta[\cross M ) and

Pu=f on some cylinder ] -\delta’ . \delta’[\cross M(0<\delta’\leq\delta) .
To get a solution defined on R\cross M it is enough to solve the classdcal

Cauchy problem Pu_{\pm}=f, in [ \delta’/2 , +\infty[\cross M (resp.]-\infty , -\delta’/2 ] \cross M) with
\partial_{f}^{j}u_{\pm}|t=\pm\delta/2=\partial_{t}^{j}u|t=\pm\delta’/2 j=0,1 , \ldots , m-1 .

This proves the existence result.
Now if u\in \mathscr{D}_{\acute{r}}(R\cross M) satisfies Pu=0 in R\cross M, using the same

arguments as above we conclude that for every x_{0}\in M there is an open
cylinder ] -\delta(\chi_{)}) , \delta(x_{)})[\cross U\ni(0, *) on which u=0 . As a consequence,
u –0 on some cylinder ] -\delta , \delta[\cross M. By standard uniqueness results for
strictly hyperbolic operators, we conclude that u–O in R\cross M The
propagation results a) and b) follow from Theorem 5.1 taking into account
that for the truncated Taylor expansions v_{p} of (5. 21) we have \tilde{W}F(v_{p})=

\partial WF(v_{p})\subset\partial WF(g) . Details are left to the reader.
Local existence and uniqueness results can be proved using the same

tecnique as in the proof of Theorem 5.2.
In the remainder of this Chpater we shall analyze how the propagation

relations of Theorem 5.1 can be improved.
We recall that one of the major shortcomings of our calculus in the

classes OPS^{mk} is that operators in these classes do not preserve distributions
whose wave front set is disjoint from the conormal bundle of the initial
hypersurface t=0 . This is the main reason which forced us to work in the
classes of regular distributions \mathscr{D}_{r}’(R\cross M) . From our discussion we cannot
deduce that if the r . h . s . f in (5. 19) has the property WF\varphi) \cap N^{*}M--\phi(N^{*}

M being the conormal bundle of (O|xM) then the same property holds for
the solution u\in \mathscr{D}_{\acute{r}}(R\cross M) . However, this property should be true as
suggested by the results of Tahara ([19], Theorem 2. 1. 3) in the analytic-
hyperfunction framework.
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Now we shall prove that in fact it holds true even in the C^{\infty}-category as
a consequence of the following general result.

THEOREM 5. 3. LelP= \sum_{0}^{m}jt^{k-j}P_{m-j}(t, x, D_{t}. D_{x}) be a differential operator

of order m (the P_{m-J} being of order m-j and 1\leq k\leq m ) defifined in R_{t}\cross R_{x}^{n}

with smooth coefficients.
Put :

|\hat{|}N^{*}=N_{+}^{*}\cup N_{-}^{*}N_{\underline{\tau}}^{*}=^{r}(t,x, \tau,. \xi)\in T^{*}(R\cross R^{n})|0|t=0
, \xi=0 , \pm\tau>0

Suppose that :

(5. 27) \sigma_{m}(P_{m})|N^{*}\neq 0 .

Then, for every u\in C^{\infty}(R_{t} ; \mathscr{D}’(R^{n})) we have:

(5.28) WF(u)\cap N^{*}=WF (Pu)\cap N * .

PROOF. We shall prove that if \beta 0\in N^{*}|_{1}WF (Pu) then \rho_{0}\oplus WF(u) .
To be definite, suppose \rho_{0}= (0, x_{0}.1, 0)\in N_{+}^{*} (the case \rho_{0}\in N -* can be

handled analogously). Let \Gamma be a closed conic neighborhood of \beta 0 for which
\Gamma\cap N_{-}^{*}=\phi and WF (Pu)\cap \Gamma =\mbox{\boldmath $\phi$}. Take \chi(t, x, D_{t}, D_{x})\in OPS_{1,0}^{0} to be a
proper operator whose symbol is supported in \Gamma and is identically 1 in some
open conic neighborhood \Gamma’ of \beta 0 , \Gamma’\subset\subset\Gamma By Lemma 5.1 (whose proof is
postponed) we have \chi u\in C^{\infty}(R_{t} ; \mathscr{D}’(R^{n})) . We claim that WF(P\chi u)\cap

N^{*}--\phi . Obviously WF(P\chi u)\cap N_{-}^{*}\subset WF(\chi)\cap N
-

=\phi : moreover, P\chi u=

\chi Pu+[P, \chi]u and WF(\chi)\subset\Gamma . while WF([P, \chi])\subset\Gamma|\Gamma’ Since WF (Pu)
\cap\Gamma=\phi we easily obtain that WF(\chi Pu)\cap N_{+}^{*}=\phi and WF([P, \chi]u)\cap N_{+}^{*}=

\phi .
In conclusion, putting v=\chi u, we can suppose from the beginning that

we have a distribution v with the following properties:

(5. 29) v\in C^{\infty}(R_{t} ; \mathscr{D}’(R^{n})) , WF(v)\cap N^{*}\subset N_{+}^{*} WF(Pv)\cap N^{*}=\phi ,

and we want to show that WF(v)\cap N_{+}^{*}=\phi .
To prove this claim we shall deeply rely on some constructions

performed in B. L. P. [6]. Using Lemma 3.3 [6] we can write f=Pv=
Q_{m}t^{k}v+Q_{m-1}t^{k-1}v+\cdots+Q_{m-k}v for some differential operators Q_{m-j} of order
m-j, j=0 , \cdots . k. Since \sigma_{m}(Q_{m})=\sigma_{m}(P_{m}) , (5. 27) implies the existence of a
classical proper pdo Q_{m}^{-1} such that Q_{m}^{-1}Q_{m}- id is regularizing in a conical
neighborhood of N^{*} . As a consequence v satisfies the equation:

(5.30) t^{k}v+Q_{m}^{-1}Q_{m-1}t^{k-1}v+\ldots+Q_{\overline{m}}^{1}Q_{m-k}v=g ,

for some g with WF(g)\cap N^{*}=\phi , which we write g\in \mathscr{D}_{\acute{C}N^{*}}
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We now reduce eq. (5. 30) to a system putting (cfr . formula (3. 68) of
[6] ) :

(5.31) v_{j}=\Lambda^{-(k-\gamma)}t j-lv, j=1 , \cdots k,

where \Lambda\in OPS_{Cl}^{1} is an invertible pdo whose (full) symbol is equal to \tau in a
conic neighborhood of N^{*} . Denoting by v the vector (v_{1} ... v_{k}) we obtain
a system

(5.32) (l\partial_{t}I_{k}-A(t, x, D_{t-}D_{x}))v=g\in(\mathscr{D}_{CN^{*}})^{k} ,

for some A\in OPS_{cl}^{0}(k\cross k) . By Lemma 5.1 the vector v\in C^{\infty}(R_{t} ; \mathscr{D}’(R^{n}))^{k}

and we have WF(v)\cap N^{*}\subset N_{+}^{*}

Using Lemmas 2.6-2.8 and Propositions 2.3, 2.4 of [6] we get that there
exist:

i) Two matrices E, E’\in OPS_{1,0}^{0}(k\cross k) which are elliptic on some
neighborhood ] -\delta , \delta[\cross U\cross\Gamma_{C}(=\iota^{r}(\tau, \xi)|\tau>C|\xi|_{/}() of \rho_{0}=(0, x_{0-}1, 0) .

ii) A k\cross k matrix C(x, D_{t}. D_{x})\in OPS_{1,0}^{0}(k\cross k) which is independent of
t and in block triangular form C=(C_{ij})_{i,j=1} . .\nu Moreover:

\alpha) C_{l}\cdot j\equiv\Pi for i>j.
\beta) C_{ij}(x, D_{t}. D_{x})=C_{jj}(x) for a smooth matrix C_{jj}(x) satisfying

sup ||C_{jj}(x)||=M<+\infty ,
x\in R’

such that (tdtIk-A(t, x, D_{t}. D_{x}))E-E’(t\partial_{t}I_{k}-C(x, D_{t-}D_{x})) is a pdo of
order -\infty on a smaller neighborhood ] -\delta’, \delta’[\cross U’\cross\Gamma_{C} of \beta 0

Denote by E^{-1} (resp. E^{\prime-1} ) a parametrix of E(resp. E’) such that
EE^{-1}-id , E^{-1}E- id (resp. E’E^{\prime-1}-id , E^{r-1}E’-id) are of order -\infty on a
possibly smaller neighborhood ] -\delta^{rr}\delta’[\cross U\prime\prime\cross\Gamma_{C} of \beta 0

Take a proper pdo \chi\in OPS_{1,0}^{0} elliptic near \rho_{0} and with symbol
supported in ] -\delta’\delta’[\cross U\prime\prime\cross\Gamma_{C} Putting w–E^{-1}\chi v, we have:

(5.33) (t\partial_{t}I_{k}-C (x, D_{t} D_{x}))w=h\in(\mathscr{D}_{C\acute{N}^{*}})^{k} .

By Lemma 5.1 we have w\in C^{\infty}(R_{t} ; \mathscr{D}’(R^{n}))^{k} and WF(w)\cap N^{*}\subset N_{+}^{*}

Writing w and h in block form we obtain the equations:

(5. 34) \{

(l\partial_{t}-C_{\nu\nu}(x))w_{\nu}--h_{\nu}

(t\partial_{t}-C_{\nu-1,\nu-1}(x))w_{\nu-1}-C_{\nu-1,\nu}(x, D_{t} D_{x})w_{\nu}=h_{\nu-1}

(t \partial_{t}-C_{11}(x))w_{1}-\sum_{2}^{\nu}jC_{1,j}(x, D_{t}. D_{x})w_{j}=h_{1}

Let us consider the first equation in (5.34) and put for simplicity
C_{\nu\nu}(x)=C(x) . By Proposition 2.5 of [6] there exists two matrices A_{c}\in
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OPS_{1,\delta}^{M}(k\cross k) , B_{C}\in OPS_{1,\delta}^{M+1}(k\cross k) , for every \delta>0 , such that : 1) There

exist operators A_{C}^{1}\in OPS_{1,\delta}^{M}-B_{C}^{1}\in OPS_{l,\delta}^{M+1} with A_{C}A_{C}^{-1}-id , B_{C}B_{C}^{1} -id
smoothing near N_{+}^{*}; furthermore, A_{C} and B_{C} are of order -\infty near N_{-}^{*}; 2)

A_{C}(t\partial_{t}-C(x))B_{C}-tI is of order -\infty near N_{+}^{*}

As a consequence, by putting \psi_{\nu}=B_{C}^{1}w_{\nu} we obtain the equation

(5. 35) t\psi_{\nu}(t, x)=\varphi_{\nu}(t, x)\in(\mathscr{D}_{\acute{C}N^{*}})^{k\nu} .

Lemma 5.1 can be applied yielding \psi_{\nu}\in C^{\infty}(R_{t} ; \mathscr{D}’(R^{n}))^{k_{\mathcal{V}}} and
WF(\psi_{\nu})\cap N^{*}\subset N_{+}^{*}

Since \varphi_{\nu}and\psi_{\nu} have traces of all order at t=0 , from (5. 35) we obtain
\varphi_{\nu}(0, x)=0 , hence we can write \varphi_{\nu}(t, x)=t\omega_{\nu}(t, x) for a well defined
distribution \omega_{\nu}\in(\mathscr{D}_{CN^{*}})^{k\nu} (cfr . Hanges [12]).

It follows that all distribution solutions of eq. (5. 35) are of the form
\psi_{\nu}(t, x)--\omega_{\nu}(t, x)+\gamma_{\nu}(x)\otimes\delta_{t} for some \gamma_{\nu}\in \mathscr{D}’(R^{n})^{k\nu} . Since \psi_{\nu} and \omega_{\nu} are
C^{\infty} in t , we conclude that \gamma_{\nu}=0 .

Thus \psi_{\nu}=\omega_{\nu}\in(\mathscr{D}_{CN^{*}})^{k\nu} and the same is true for w_{\nu}

The second eq. is (5. 34) is now of the form (t\partial_{t}-C_{\nu-1,\nu-1}(x))w_{\nu-1}=

(h_{\nu-1}+C_{\nu-1,\nu}(x, D_{t} D_{x})w_{\nu})\in(\mathscr{D}_{\acute{C}N^{*}})^{k\nu- 1} . We can argue as above and
conclude that WF(w_{\nu-1})\cap N^{*}=\phi . Proceeding in this way we finally obtain
that WF(w)\cap N^{*}=\phi . Since w=E^{-1}\chi v and \chi is elliptic near \rho_{0} we
conclude that \rho_{0}\not\in WF(v) and hence \rho_{0}\not\in WF(v) because v_{1}=\Lambda^{-(k-1)}v and \Lambda

is elliptic near N^{*} .
To complete the proof of the above Theorem we need the following

lemma.
LEMMA 5. 1 Let a(t, x, \tau, \xi) be a smooth function such that for some m

\in R and for every j, k\in Z_{+} , \alpha, \beta\in Z_{+}^{n} . K\subset\subset R_{t}\cross R_{x}^{n} , \epsilon>0 , there exists a

constant C>0 for which:

(5.36) |\partial_{t}^{j}\partial_{\tau}^{k}\partial_{x}^{a}\partial_{\text{\’{e}}}^{\beta}a(t, x, \tau, \xi)|\leq C(1+|\tau|+|\xi|)^{m+\epsilon-k-|\beta|} ,

for every (t, x)\in K, (\tau, \xi)\in R\cross R^{n} .
Denote by A=a(t, x, D_{t}, D_{x}) the pdo associated to the symbol a . Then A

maps C^{\infty}(R_{t} ; \mathscr{C}’(R^{n})) into C^{\infty}(R_{t} ; \mathscr{D}’(R^{n})) .
PROOF. Without loss of generality we can suppose that a satisfies

estimates (5. 36) uniformly in (f, x)\in R^{1+n}. Denote by \mathscr{L}^{m+} this class and
by OP \mathscr{L}^{m+} the class of the corresponding operators.

We can suppose that u\in C^{\infty}(R_{t} ; \mathscr{C}’(R^{n}))\cap \mathscr{C}^{r}(R_{t}\cross R_{x}^{n}) so that by a well
known characterization (see e . g . Treves [23]), we know that for every k

\in Z_{+} there is a \sigma_{k}\in R such that u\in H^{k}(R_{t} , H^{\sigma_{k}}(R^{n})) .
Let \mathscr{L}^{t+,q+} , p, q\in R , denote the class of all smooth functions b(t, \tau, x, \xi)

which, for every \epsilon>0 , satisfy estimates of the form:
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\sup|\partial_{t}^{j} a \tau x\xi k\partial^{a}\partial^{\beta}b(t, \tau;x, \xi)|\leq C(1+|\tau|)^{p+\epsilon-k}(1+|\xi|)^{q+\epsilon-|\beta|} .
(l, x)

By OP\mathscr{L}^{\rho+,q+} we denote the class of the corresponding pdo ’s.
Obviously (1+|D_{t}|^{2})^{p/2}\in OP\mathscr{L}^{p+,0+} , (1+|D_{x}|^{2})^{q/2}\in OP\mathscr{L}^{0+,q+}; moreover,

we have the inclusions \mathscr{L}^{m+}\subset \mathscr{L}^{m+,m+}(m\geq 0) , \mathscr{L}^{m+}\subset \mathscr{L}^{0+,0+}(m<0) .
Let us suppose a(t, x, \tau, \xi)\in \mathscr{L}^{m+} with m\geq 0 . We claim that A maps

continuously H^{k}(R_{t} ; H^{\sigma_{k}}(R^{n})\backslash ) into H_{4}^{k-(m+1)\subset}R_{t} ; H^{\sigma_{k}-\backslash ^{m+1)}}(R^{n})) , so that the
Lemma follows.

To prove this claim it is enough to show that the operator
B=(1+|D_{t}|2)^{(-(m+1)*k)2}(1+|D_{x}|2)-<^{m+1)+\sigma_{h})/2}

. A(1+|D_{t}|2)^{-k/2}(1+|D_{x}|2)^{-\sigma_{k}^{2}}

maps continuously L^{2}(R_{t}\cross R^{n}) into itself.
It can be verified that B\in OP\mathscr{L}^{-1+,-1+} . Denoting by b(t, \tau;x, \xi) a

symbol of B , from well known results we have:

(5. 37) ||\partial_{l}^{j}\partial_{\tau}^{k}b(t, \tau, x, D_{x})||_{L^{2}(R_{x}^{n})arrow L^{2}(R_{X}^{n})}\leq const . (1+|\tau|)^{-k} ,

for every j, k\in Z_{+} From (5. 37) the conclusion follows.
REMARKS 5. 1. 1) The result of the Lemma applies obviously to the

vector valued situation.
2) The operators A_{C} , B_{C} (as well as their parametrices A_{\overline{c}}1 . B_{\overline{c}}1 )

considered in Theorem 5. 3 actually belong OP\mathscr{L}^{M+}and OP\mathscr{L}^{(M+1)+}

respectively as a consequence of their symbol structure explained in [6],
pag . 90.

COROLLARY. Under the same hypotheses of Theorem 5.2, denoting by
N^{*}M the conormal bundle of t=0 in R_{t}\cross M, we have WF(u)\cap N^{*}M=WF
y)\cap N^{*}M, where u\in \mathscr{D}_{r}’(R\cross M) is the solution of the Cauchy problem
(5.19).

PROOF. It is a trivial consequence of Theorem 5.3 since for P\in F_{m-k}^{m}

(R\cross M) , having the form (1. 1), we have \sigma_{m}(P_{m})|_{NM}.\neq 0 .
In the next result we show that singularities of the initial data gj in

Cauchy problem (5. 19) give rise to singularities of the solution u (a fact
which is not a priori obvious). Precisely we have the following theorem.

THEOREM 5. 4. Let the hypotheses of Theorem 5.2 be satisfied and denote
\lambda_{j}(t, x, \xi) , j=1 , \ldots-m the hyperbolic roots of P.

Let x_{0} be a point of M such that:
i) WF\varphi)\cap\pi^{-1}((0, x_{)}))=\phi(\pi : T^{*}(R\cross M)|0- R\cross M being the canO-

nical projcction).

ii) for some \xi_{0} , ( \chi_{J}, \xi_{0})\in\bigcup_{j=0}^{m-k-1}WF(g_{j}) .
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Then there exists a j\in\{1 , \ldots
m^{(},for which:

(5. 38) (0, x_{)}, \lambda_{j}(0_{ X)},, \xi_{0}), \xi_{0})\in WF(u) ,

where u\in \mathscr{D}_{\acute{r}}(R\cross M_{\supset}^{\backslash } is the solution of the Cauchy problem (5. 19).

PROOF. The proof is based on the following fact. If u\in C^{\infty}(R_{t} ;
\mathscr{D}’(M)) and if for some x_{0}\in M we have (0, x_{)} ; \pm 1,0)\in N^{*}M|W|F(u) ,

then (xo, \xi\backslash )\in\partial WF(u) iff (0, x) , \tau, \xi) \in WF(u) for some \tau\in R .
Suppose this fact already proved and suppose that (0, x_{)} : \lambda_{j}(0_{ X)},, \xi_{0}), \xi_{0})

\not\in WF(u) for every j. From Duistermaat-H\"ormander [11] it follows that
{0, x), \tau, \xi_{0} ) |\tau\in R, \cap WF(u)=\phi . On the other hand, by hypothesis i) and
the Corollary we know that \pi^{-1}(0, x_{0})\cap WF(u)\cap N^{*}M=\phi so that we should

have (xo, \xi_{0})\not\in\partial WF(u) . Since \partial WF(u)\supset\bigcup_{j=0}^{m-k-1}WF(g_{j}) we get a contra-

diction.
To conclude we only have to prove the above mentioned property of

\partial WF(u) .
Precisely, we have to prove that if (0, x) , \tau, \xi)\not\in WF(u) for all \tau\in R

then (xo, \xi)\not\in\partial WF(u) .
W-th no loss of generality, suppose|\xi|--1 and denote by \gamma_{+} the

projections along the meridians of the upper and lower semisphere in R^{n+1}

(with the northern and southern pole cut-0ff) onto the equator S^{n-1} given by
\tau=0 .

Our hypothesis can be rewritten as WF(u)\cap((0, x), \tau, \eta)|(\tau, \eta)\in[\gamma_{+}^{-1}

(\xi)\cup\gamma_{-}^{-1}(\xi)\cup(1,0)\cup(-1,0)]--\phi .
We can find a neighborhood U\cross\omega of (xo, \xi) in M\cross S^{n-1} , a \delta>0 and a

neighborhood \omega_{\pm} of (\pm 1,0) in S^{n} . such that
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(5.39) WF(u)\cap j_{(}(t, x, \tau, \eta)\in T^{*}(R\cross M)|0||t|<\delta, x\in U,
(\tau, \eta)\in[\gamma_{+}^{-1}(\omega)\cup\gamma_{-}^{-1}(\omega)\cup\omega_{+}\cup\omega_{-}]\}=\phi .

Take a symbol \chi(t, x, \tau, \xi)\in S_{1,0}^{0} whose support is contained into]-\mbox{\boldmath $\delta$}, \delta[

\cross U\cross(\omega_{+}\cup\omega_{-}) and such that \chi(t, x, D_{t}, D_{x})u\in C^{\infty} .

Let B(x, D_{x})\in OPS_{1,0}^{0}(M) be a proper operator elliptic near (xo, \xi) ,
with symbol supported in U\cross \omega . Now, for|t|<\delta we have WF(B(1-\chi))u
\subset/\iota(t, x, \tau, \eta)||t|<\delta, x\in U, (\tau, \eta)\in\gamma_{+}^{-1}(\omega)\cup\gamma_{-}^{-1}(\omega)_{/}^{(} so that B(1-\chi)u\in
C^{\infty}for|t|<\delta. Since B\chi u\in C^{\infty} . we conclude that Bu=B\chi u+B(1-\chi)u\in C^{\infty}

(]-\delta, \delta[\cross M) and hence (,\eta, \xi)\not\in\partial WF(u) .
REMARK 5. 2. It is worth noting that as a consequence of (5. 38) and of

Theorem 3.1 [6] the singularities of the Cauchy data g_{j} , O\leq j\leq m-k-1 ,
propagate at least along a half bicharacteristic of \tau-\lambda_{i}(t, x, \xi) , for some
i=1 , \ldots . m.

What we propose to do in the sequel is to give sufficient conditions which
ensure propagation along a whole bicharacteristic of \tau-\lambda_{i}(t, x, \xi) and (or)
branching of singularities along at least two bicharacteristics related to two
different factors \tau-\lambda_{i}(t, x, \xi) .

As the proof deeply relies on Theorem 3.1 of [6], we prepare some
notation.

Suppose we are given a differential operator P\in F_{m-k}^{m}(R\cross M) . For
convenience, we assume P given by (1. 1) with \partial_{t} replaced by D_{t}= \frac{1}{\sqrt{-1}}\partial_{t}

so that the roots of the equation \sigma_{m}(P_{m})(t, x, \tau, \xi) are given by \tau=\lambda_{j}(t, x, \xi) ,
j=1 , \ldots . m.

For every (x, \xi)\in S^{*}M we put \rho_{j}(x, \xi)=(0, x, \lambda_{j}(0, x, \xi), \xi) and
denote by \gamma_{j}(x, \xi) the bicharacteristic of \tau-\lambda_{j}(t, x, \xi) issued from \rho_{j}(x, \xi) .
We also put \gamma_{j}^{\pm}(x, \xi)--\gamma_{j}(x, \xi)\cap\{\pm t>0\} . We now define the microlocal
polynomials:

(5. 40) I_{j}(x, \xi:\zeta)=(D_{\tau}\sigma_{m}(P_{m}))(\rho_{j}(x, \xi))\zeta+\sigma_{m-1}(P_{m-1})(\rho_{j}(x, \xi)) ,
j=1 , \ldots . m, \zeta\in C.

We have the following result on branching of singularities.
THEOREM 5. 5. Let P(t, x, D_{t}, D_{x})\in F_{m-k}^{m}(R\cross M) and let u\in \mathscr{D}_{\acute{r}}(R\cross

M) be such that Pu=f\in C^{\infty}(R\cross M) and \partial_{t}^{j}u|_{t=0}=g_{j}\in \mathscr{D}’(M) , j=0 , \ldots .
m-k-l.

Let (x, \xi)\in S^{*}M and suppose \lambda_{1}(0, x, \xi)<\lambda_{2}(0, x, \xi)<\cdots<\lambda_{m}(0, x, \xi) .
Then:

1. Suppose that \rho_{1}(x, \xi)\in WF(u) (resp. \rho_{m} (x, \xi)\in WF(u) ) and I_{1}(x, \xi ;
\zeta)\neq 0 , \forall\zeta\in Z,\zeta\geq-(k-1) (rcsp. I_{m} (x, \xi;\zeta)\neq 0 , \forall\zeta\in Z, \zeta\geq-(k-1) ).
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Furthermore, suppose that for every j, 1<j<m, either \gamma_{j}^{+}(x, \xi)\cap WF

(u)=\phi or \gamma_{j}^{-}(x, \xi)\cap WF(u)=\phi .
Then we have:

(5. 41) \gamma_{1}(x, \xi)\cup\gamma_{m}(x, \xi)\subset WF(u) .

1<j<m

2. In the case m>2 , and k=1 , let \rho_{j}(x, \xi)\in WF(u) for some j, 1<j<
m.
Then:

\alpha) If I_{j}(x, \xi;\zeta)\neq 0 , \forall\zeta\in Z, \zeta\leq-1 , then either \gamma_{j}^{+}(x, \xi) or \gamma_{j}^{-}(x, \xi)

is contained in WF(u) . Moreover, if only one half of the bicharacteristic \gamma j

(x, \xi) is included in WF(u) then both \rho_{j-1}(x, \xi) and \rho_{j+1}(x, \xi) belong to
WF(u) .

\beta) If I_{j}(x, \xi_{ },,\cdot \zeta)\neq 0 , \forall\zeta\in Z, then either \gamma_{j}^{+}(x, \xi) or \gamma_{j}^{-}(x, \xi) is
inchluded in WF(u) and either \rho_{j-1}(x, \xi)or\rho_{j+1}(x, \xi) belongs to WF(u) .

PROOF of point 1. To be definite suppose \rho_{1}(x, \xi)\in WF(u) . By
Theorem 5. 4 we know that (0, x, \pm 1, O)\not\in WF(u) so that by well known
results on propagation we have (0, x, \tau, \xi)\not\in WF(u) for all \tau<\lambda_{1}(0, x, \xi)
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and all \tau>\lambda_{m}(0, x, \xi) . By the hypothesis on I_{1}(x, \xi;\zeta) and the fact that \rho_{1}

(x, \xi)\in WF(u) , applying Theorem 3.1 of [6], we obtain that \rho_{2}(x, \xi)\in

WF(u) . Since either \gamma_{2}^{+}(x, \xi)\cap WF(u)=\phi or \gamma_{2}^{-}(x, \xi)\cap WF(u)=\phi , by

the same Theorem we get \rho_{3}(x, \xi)\in WF(u) . Proceeding in this way we
obtain that \rho_{m}(x, \xi)\in WF(u) so that (5. 34) follows by the same quoted
Theorem.

To prove point 2. we simply apply Theorem 3. 1 of [6] (with r=k=1).

REMARK 5. 3. In Theorem 5. 5 the hypothesis f\in C^{\infty}(R\cross M) can be
replaced, for a fixed x\in M, by the condition WF\varphi ) \cap\pi^{-1}(0, x)=\phi ,

\pi:T^{*}(R\cross M)|0arrow R\cross M being the projection onto the base.
Statements 1. and 2. hold provided we replace everywhere the bichara-

cteristics by small arcs of them.

Examples

1. The Euler-Poisson-Darboux operator.

Let P=t(D_{t}^{2}- \sum_{j=1}^{n}D_{x_{j}}^{2})+\alpha(t, x)D_{t}+\sum_{j=1}^{n}\beta_{j}(t, x)D_{x_{J}}+\gamma(t, x) , t\in R , x\in

R^{n} , with \alpha , \beta_{j} and \gamma smooth functions.
Suppose that u\in \mathscr{D}_{\acute{r}}(R\cross R^{n}) satisfies the Cauchy problem Pu=0,

u|t=0=g\in \mathscr{D}’(R^{n}) .
The hyperbolic roots are \lambda_{1}(\xi)=-|\xi| , \lambda_{2}(\xi)=|\xi|andI_{1}(x, \xi; \zeta)=

2i\zeta-\alpha(0, x)-\langle\beta(0, x) , \xi/|\xi|\rangle , I_{2}(x, \xi ; \zeta)=-I_{1}(x, -\xi ; \zeta) . As a
consequence of Theorem 5.5 if \forall\zeta\in Z_{+}I_{1} (x, \xi: \zeta)\neq 0 and I_{2}(x, \xi; \zeta)\neq 0\forall

(x, \xi)\in WF(g) , we obtain:
WF(u) \supset\bigcup_{(x,\xi)\in WF(g)}(\gamma_{1}(x, \xi)\cup\gamma_{2}(x, \xi) .

On the other hand, supposing in addition that I_{p}(x;\zeta)=\zeta+i\alpha(0, x)\neq 0 ,

\forall\zeta\in R and \forall x, from Theorems 5. 2, 5. 4 we obtain:

WF(u)|t \neq 0=(x,\bigcup_{\xi)\in WF(q)}(\gamma_{1}(x, \xi)\cup\gamma_{2}(x, \xi))|t\neq 0
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2. Let P=tD_{t}(D_{t}-D_{x})+\alpha(t, x)D_{t} , t\in R , x\in R , with \alpha a smooth
function.

Suppose that u\in \mathscr{D}_{r}(R\cross R) satisfies the Cauchy problem Pu=0, u|_{t=1}

=g\in \mathscr{D}’(R) . Supposing I_{p}(x;\zeta)=\zeta+i\alpha(0, x)\neq 0 , \forall\zeta\in Z_{+} and \forall x, we have
u(t, x)=1_{t}\otimes g(x) so that:

WF(u)=\{(t, x, 0, \xi)|(x, \xi)\in WF(g)/( .
The hyperbolic roots are \lambda_{1}(\xi)=0 , \lambda_{2}(\xi)=\xi and I_{1}(x, \xi ; \zeta)\equiv 0 .

-

\nearrow^{\nearrow}’\gamma_{2\backslash A}

, \sigma ’

\nearrow

\nearrow^{\nearrow}

\nearrow’

\nearrow^{\nearrow^{\nearrow}}

’

\gamma_{1} (x, \xi

––

\prime x,\nearrow

\nearrow

\nearrow\prime^{\nearrow}\nearrow\nearrow^{\nearrow}

J^{\nearrow^{\nearrow}}

t<0

—-

t>0
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