Stably solitary foliations

By Atsushi SATO (Received December 28, 1984)

$\S 1$. Introduction and the statement of results.

Let ϕ be the 1-dimensional foliation of S^3 determined by the Hopf fibration $p: S^3 \rightarrow S^2$. As is easily verified, ϕ admits no transverse foliations of codimension one. But there exists a small perturbation ϕ' of ϕ which is transverse to the Reeb foliation of S^3 . Thus it is in general unstable under the small perturbation that a foliation admits no transverse foliations.

For codimension one foliations of 3-manifolds, there are various investigations of the transverse foliations ([9], [5], [6], [8] and [7]).

In [8], Tamura showed that for every closed oriented 3-manifold, there exists a codimension one foliation which admits transverse 2-plane fields and admits no transverse foliations of codimension one. We say such a foliation *solitary*. In this paper we consider the foliations which satisfy the solitarity stably under the perturbation. More precisely we prove

THEOREM 1. Let M be a closed oriented 3-manifold and let $Fol^2(M)$ denote the space of codimension one C^2 foliations of M with the C^2 -topology (see [2] and [1]). Then there exist a foliation \mathcal{F} and a neighborhood \mathfrak{N} of \mathcal{F} in $Fol^2(M)$ such that every element $\mathcal{F}' \in \mathfrak{N}$ is solitary.

REMARK 1. For every closed oriented 3-manifold and for every homotopy class τ , Yano([11]) constructed a 1-dimensional foliation consisting in τ which admits no transverse foliations stably under the perturbation.

The author wishes to thank Professor I. Tamura for helpful suggestion and encouragement.

§ 2. Proof of Theorem 1.

Theorem 1 is proved from the following two theorems.

THEOREM 2(Tamura [8]). Let $\mathscr{F}^{(n)}$ be the codimension one C^{∞} foliation of the solid torus $S^1 \times D^2$ as below. Then for $n \neq 0$, $\mathscr{F}^{(n)}$ is solitary.

THEOREM 3. Let $\mathscr{F}^{(n)}$ be the foliation of $S^1 \times D^2$ as below and let $K = (S^1 \times D^2)'$ be the compact codimension 0 submanifold of $S^1 \times D^2$ as below. Then there exists a neighborhood \mathfrak{N} of $\mathscr{F}^{(n)}$ in $\operatorname{Fol}^2(S^1 \times D^2)$ such that for every element $\mathscr{F}' \in \mathfrak{N}$, there is a compact codimension 0 saturated submanifold K' such that the restriction $\mathcal{F}'|K'$ is C° isotopic to $\mathcal{F}|K$. The construction of $\mathcal{F}^{(n)}$.

Let $h_n: S^1 \times D^2 \longrightarrow S^1 \times D^2$ be the C^{∞} diffeomorphism defined by $h_n(e^{2\pi i x}, re^{2\pi i y}) = (e^{2\pi i x}, re^{2\pi i (y+nx)}), 0 \le x \le 1, 0 \le y \le 1, 0 \le r \le 1.$

Let $\Sigma(k) = D^2 - \bigcup_{i=1}^{k}$ Int D_i^2 be the *k*-punctured 2-disc.

We have a decomposition of the solid torus as follows:

 $S^1 \times D^2 = h_n(S^1 \times \Sigma(2)) \cup h_n(S^1 \times D_1^2) \cup h_n(S^1 \times D_2^2).$

Let $\mathscr{F}_{\pi,k}$ be the C^{∞} foliation of $S^1 \times \Sigma(k)$ obtained by the turbulization of the product foliation $\{\{t\} \times \Sigma(k); t \in S^1\}$ along the boundary $S^1 \times \partial \Sigma(k)$. Let $\mathscr{F}_0^{(n)} = \{h_n(L); L \in \mathscr{F}_{\pi,2}\}$. Then the union of $\mathscr{F}_0^{(n)}$ and two Reeb components \mathscr{F}_R of $h_n(S^1 \times D_1^2)$ and $h_n(S^1 \times D_2^2)$ determines a codimension one C^{∞} foliation of $S^1 \times D^2$, which is denoted by $\mathscr{F}_1^{(n)}$. Consider the decomposition of $S^1 \times D^2$:

 $S^1 \times D^2 = (S^1 \times \Sigma(1))' \cup (S^1 \times D^2)'$, where

 $(S^1 \times D^2)' = (S^1 \times \Sigma(2))'' \cup (S^1 \times D_1^2)'' \cup (S^1 \times D_2^2)''$ (see Figure 1).

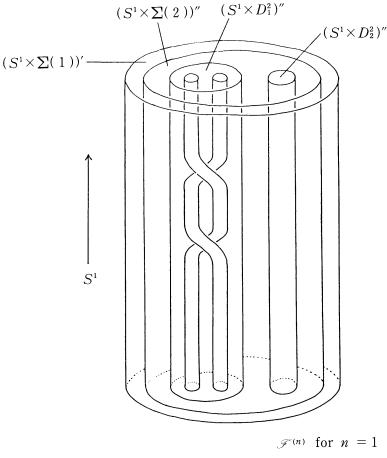


Figure 1.

Let $\mathscr{F}^{(n)}$ be the foliation of $S^1 \times D^2$ consisting of foliations $\mathscr{F}_{\pi,1}$ of $(S^1 \times \Sigma(1))'$, $\mathscr{F}_{\pi,2}$ of $(S^1 \times \Sigma(2))''$, $\mathscr{F}_1^{(n)}$ of $(S^1 \times D_1^2)''$ as above, and the Reeb component \mathscr{F}_R of $(S^1 \times D_2^2)''$. Furthermore we can impose the following conditions: (a) Each compact leaf of $\mathscr{F}^{(n)}$ has an expanding holonomy along the leaf loop which is homotopic to the core circle $S^1 \times \{0\}$ of $S^1 \times D^2$.

(b) For the compact leaf $\partial(S^1 \times D^2)$, the above holonomy map is C^{∞} -tangent to the identity.

(c) For the other compact leaves, the above holonomy maps are hyperbolic.

PROOF OF TEOREM 1 FROM THEOREMS 2 AND 3.

For each closed oriented 3-manifold M, take a transversely oriented C^{∞} foliation \mathscr{F}_0 of codimension one with a Reeb component and with a transverse 2-plane field, and replace the Reeb component by the foliation $\mathscr{F}^{(n)}$ of Theorem 2. Since the perturbation keeps the topological type of $\mathscr{F}^{(n)}|K$ by Theorem 3, the perturbed foliation \mathscr{F}' is also solitary again by Theorem 2.

In the rest of this section we prove Theorem 3. For it, we use the following theorem due to Hirsch([2]) (For our purpose, minor modifications are carried out).

THEOREM 4(Theorem 1.1 of [2]).

Let M be a closed 3-manifold and let $\operatorname{Fol}^2(M)$ be the space of C^2 foliations of M of codimension one with the C^2 topology (defined in [2]). Let L be a toral leaf of a codimension one foliation \mathscr{F} and let $\alpha \in \pi_1(L, x_0)$ for some base point $x_0 \in L$. Assume the linear holonomy along α is non-trivial (and thus hyperbolic). Then there exists $\varepsilon_0 > 0$ with the following properties :

If $0 < \varepsilon < \varepsilon_0$, then there exists a neighborhood $\Re \subset Fol^2(M)$ of \mathscr{F} such that for every $\mathscr{F}' \in \Re$, there are a compact leaf $L' \in \mathscr{F}'$ and a C^2 -diffeomorphism h : L $\rightarrow L'$ satisfying $d(x, h(x)) < \varepsilon$, where d is the induced distance by a Riemannian metric on M. Moreover L' is unique.

PROOF OF THEOREM 3.

STEP 1. We will prove the small perturbation keeps the topological type of the Reeb component $\mathscr{F}^{(n)}|(S^1 \times D_2^2)''$. Let *L* denote the compact leaf $\partial (S^1 \times D_2^2)''$ and take a small collar neighborhood $C: L \times [-\varepsilon, \varepsilon] \rightarrow S^1 \times D^2$ of *L* such that $C(L \times \{0\}) = L$, $C(L \times [0, \varepsilon]) \subset (S^1 \times D_2^2)''$, and $C(L \times \{t\})$ is transverse to $\mathscr{F}^{(n)}$ for each $t \in [-\varepsilon, \varepsilon] - \{0\}$.

Let $N = (S^1 \times D_2^2)'' - C(L \times [0, \varepsilon])$ and let $P: S^1 \times D^2 \to N$ be a product structure such that (i) for each $t \in S^1$, $P(\{t\} \times D^2)$ is a leaf of $\mathscr{F}^{(n)}|N$ and (ii) for each $x \in D^2$, $P(S^1 \times \{x\})$ is transverse to $\mathscr{F}^{(n)}|N$.

Let \mathscr{F}' be a small C^2 perturbation of $\mathscr{F}^{(n)}$. By Theorem 4, there exists a compact leaf L' of \mathscr{F}' in $C(L \times [-\varepsilon, \varepsilon])$ near L. Let α' be a loop in L' homotopic to the core circle of $S^1 \times D^2$. Then the linear holonomy along α' is also non-trivial. Consider $\mathscr{F}'|N$. We may assume $C(L \times \{\varepsilon\})$ and the circles $P(S^1 \times \{x\})$, $x \in D^2$, are transverse to \mathscr{F}' .

Then we see $\mathscr{F}'|N$ is a product foliation by 2-discs. From this $\mathscr{F}'|\partial N$ is a trivial foliation by circles. This implies the holonomy group of L' is of rank 1 and thus $\mathscr{F}'|T$ is a Reeb component with hyperbolic holonomy, where T denotes the closure of the connected component of $S^1 \times D^2 - L'$ containing N. A C^0 isotopy from T to $(S^1 \times D_2^2)''$ is easily constructed. We see also $\mathscr{F}'|(S^1 \times D_1^2)''$ has two Reeb components near $(h_n(S^1 \times D_1^2))''$ and $(h_n(S^1 \times D_2^2))''$.

STEP 2. We will prove the perturbation keeps the topological type of $\mathscr{F}^{(n)}|(h_n(S^1 \times \Sigma(2))'')$. Let \mathscr{F}' denote a small perturbation of $\mathscr{F}^{(n)}$. Let $L_1 = \partial(h_n(S^1 \times D_1^2))''$ and let $L_2 = \partial(h_n(S^1 \times D_2^2))''$. Let L'_i be the compact leaf of \mathscr{F}' corresponding to $L_i(i=1, 2)$ and let T'_i be the solid torus bounded by L'_i . By a lemma of Kopell([2]), for each non-compact leaf L' of \mathscr{F}' outside both T'_1 and T'_2 and spiraling to L'_1 and L'_2 , the intersection of L' and a collar of L'_i is a circle. Thus by the bundle structure argument as in Step 1, we see L' is diffeomorphic to the open 2-punctured 2-disc. This shows Step 2.

By a similar argument as above, we see that for \mathscr{F}' there exists a compact codimension 0 submanifold K' near $K = (S^1 \times D^2)'$ such that $\mathscr{F}' | K'$ is C^0 isotopic to $\mathscr{F}^{(n)} | K$. This completes the proof of Theorem 3.

REMARK 2. For a transverse pair $(\mathcal{F}, \mathcal{G})$ of codimension one foliations of a 3-manifold, we say $(\mathcal{F}, \mathcal{G})$ unraisable to a total foliation if there exists no codimension one foliation \mathcal{H} such that $(\mathcal{F}, \mathcal{G}, \mathcal{H})$ forms a total foliation. Every closed oriented 3-manifold admits such a pair(see [7]). For such a pair, we can consider the stability as in the case of the solitary foliations. For example, let M be the total space of the S^1 -bundle over the 2-torus $T^2 = \mathbb{I} \mathbb{R}^2 / \mathbb{Z}^2$ with non-trivial Euler class, and let $\pi : M \to T^2$ be the projection. Let $(\mathcal{F}, \mathcal{G})$ be the transverse pair of codimension one foliations of T^2 such that each leaf of \mathcal{F} (resp. \mathcal{G}) is a circle parallel to the x-axis (resp. the y-axis) of T^2 . Then the induced pair $(\pi^* \mathcal{F}, \pi^* \mathcal{G})$ is unraisable to a total foliation(by Milnor [4] and Wood [10]). We can verify this pair does not satisfy the stability in the sense above. We now pose the following

PROBLEM. Find a stable unraisable pair.

REFERENCES

- [1] D. B. A. EPSTEIN, A topology for the space of foliations, Lecture Notes in Math. 597, Geometry and Topology, Rio de Janeiro 1976, Springer Verlag, 132–150.
- [2] M. W. HIRSCH, Stability of compact leaves of foliations, Dynamical systems (edited

by M. Peixoto), Academic Press, New York, 1973, 135-153.

- [3] N. KOPELL, Commuting diffeomorphisms, Global analysis, Proc. Symp. in pure Math., vol. 14, A. M. S., 1970, 165-184.
- [4] J. MILNOR, On the existence of a connection with zero curvature, Comm. Math. Helv., 32 (1958), 215–223.
- [5] T. NISHIMORI, Existence problem of transverse foliations for some foliated 3-manifolds, Tohoku Math. J., 34 (1982), 179–238.
- [6] T. NISHIMORI, Foliations transverse to the turbulized foliations of punctured torus bundles over a circle, Hokkaido Math. J., 13(1984), 1-25.
- [7] A. SATO, Every 3-manifold admits a transverse pair of codimension one foliations which cannot be raised to a total foliation, to appear in Foliations (edited by I. Tamura), Advanced Studies in Pure Mathematics, vol. 5, N.-Holland/ Kinokuniya, 1984.
- [8] I. TAMURA, Dynamical Systems on Foliations and Existence Problem of Transverse Foliations, to appear in ibid.
- [9] I. TAMURA and A. SATO, On transverse foliations, Publ. Math. I. H. E. S., 54 (1981), 5-35.
- [10] J. WOOD, Bundles with totally disconnected structure group, Comm. Math. Helv., 46 (1971), 257–273.
- [11] K. YANO, Non-singular Morse-Smale flows on 3-manifolds which admit transverse foliations, to appear in Foliations (edited by I. Tamura).

Department of Geveral Education School of Engineering Meiji Uviversity