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Stably solitary foliations
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\S 1. Introduction and the statement of results.

Let \phi be the 1-dimensional foliation of S^{3} determined by the Hopf
fibration p:S^{3}arrow S^{2} . As is easily verified, \phi admits no transverse foliations
of codimension one. But there exists a small perturbation \phi’ of \phi which is
transverse to the Reeb foliation of S^{3} . Thus it is in general unstable under
the small perturbation that a foliation admits no transverse foliations.

For codimension one foliations of 3-manifolds, there are various inves-
tigations of the transverse foliations ([9], [5], [6], [8] and [7]).
In [8], Tamura showed that for every closed oriented 3-manifold, there
exists a codimension one foliation which admits transverse 2-plane fields and
admits no transverse foliations of codimension one. We say such a foliation
solitary. In this paper we consider the foliations which satisfy the solitarity
stably under the perturbation. More precisely we prove

THEOREM 1. Let M be a closed oriented 3-manifold and let Fo1^{2}(M)

denote the space of codimension one C^{2} foliations of M with the C^{2} -topology
(see [2] and [1]). Then there exist a foliation \mathscr{F} and a neighborhood \mathfrak{R} of
\mathscr{F}inFo1^{2}(M) such that every element \mathscr{F}’\in \mathfrak{R} is solitary.

REMARK 1. For every closed oriented 3-manifold and for every
homotopy class \tau , Yano([11]) constructed a 1-dimensional foliation
consisting in \tau which admits no transverse foliations stably under the
perturbation.

The author wishes to thank Professor I. Tamura for helpful suggestion
and encouragement.

\S 2. Proof of Theorem 1.

Theorem 1 is proved from the following two theorems.
THEOREM 2(Tamura [8]). Let ^{Rn)} be the codimension one C^{\infty} foliation

of the solid tones S^{1}\cross D^{2} as below. Then for n\neq 0 , \mathscr{F}^{(n)} is solitary.
THEOREM 3. Let \mathscr{F}^{(n)} be the foliation of S^{1}\cross D^{2} as below and let K=

(S^{1}\cross D^{2})’ be the compact codimension 0 submanifold of S^{1}\cross D^{2} as below.
Then there exists a neighborhood \mathfrak{R} of \mathscr{F}^{(n)} in Fo1^{2}(S^{1}\cross D^{2}) such that for
every element J^{l}\in \mathfrak{R} there is a compact codimension 0 saturated submanifold
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K’ such that the restriction \mathscr{F}’|K’ is C^{0} isotopic to \mathscr{F}|K.
THE CONSTRUCTION OF J^{(n)} .

Let h_{n} : S^{1}\cross D^{2}arrow S^{1}\cross D^{2} be the C^{\infty} diffeomorphism defined by
h_{n}(e_{r}^{2\pi ix}re^{2\pi iy})=(e^{2\pi\alpha}. re^{2\pi i(y+nx)}) , 0\leq x\leq 1,0\leq y\leq 1,0\leq r\leq 1 .

Let \Sigma(k)=D^{2}-\bigcup_{i=1}^{k} Int D_{i}^{2} be the k-punctured 2-disc.

We have a decomposition of the solid torus as follows:
S^{1}\cross D^{2}=h_{n}(S^{1}\cross\Sigma(2))\cup h_{n}(S^{1}\cross D_{1}^{2})\cup h_{n}(S^{1}\cross D_{2}^{2}) .

Let \mathscr{F}_{\pi,k} be the C^{\infty} foliation of S^{1}\cross\Sigma(k) obtained by the turbulization of the
product foliation \{\{t\}\cross\Sigma(k):t\in S^{1}\} along the boundary S^{1}\cross\partial\Sigma(k) . Let
\mathscr{F}_{0}^{(n)}=\{h_{n}(L) : L\in J_{\pi,2}^{}\} . Then the union of \mathscr{F}_{0}^{(n)} and two Reeb components

\mathscr{F}_{R} of h_{n}(S^{1}\cross D_{1}^{2}) and h_{n}(S^{1}\cross D_{2}^{2}) determines a codimension one C^{\infty}

foliation of S^{1}\cross D^{2} , which is denoted by\mathscr{F}_{1}^{(n)} . Consider the decomposition of
S^{1}\cross D^{2} :

S^{1}\cross D^{2}=(S^{1}\chi\Sigma(1))’\cup(S^{1}\cross D^{2})’ where
(S^{1}\cross D^{2})’=(S^{1}\cross\Sigma(2))’\cup(S^{1}\cross D_{1}^{2})’\cup(S^{1}\cross D_{2}^{2})’(see Figure 1).

(S^{1}\cross\Sigma(

J^{(n)} for n=1
Figure 1.
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Let J^{n)} be the foliation of S^{1}\cross D^{2} consisting of foliations \mathscr{F}_{\pi,1} of (S^{1}\cross\Sigma(1))’.

\mathscr{F}_{\pi,2} of (S^{1}\cross\Sigma(2))’. \mathscr{F}_{1}^{(n)} of (S^{1}\cross D_{1}^{2})^{rr} as above, and the Reeb component

\mathscr{F}_{R} of (S^{1}\cross D_{2}^{2})’- Furthermore we can impose the following conditions:
(a) Each compact leaf of \mathscr{T}^{n)} has an expanding holonomy along the leaf
loop which is homotopic to the core circle S^{1}\cross\{0^{\iota},of S^{1}\cross D^{2} .
(b) For the compact leaf \partial(S^{1}\cross D^{2}) , the above holonomy map is
C^{\infty}-tangent to the identity.
(c) For the other compact leaves, the above holonomy maps are
hyperbolic.

PROOF OF TEOREM 1 FROM THEOREMS2AND 3.
For each closed oriented 3-manifold M. take a transversely oriented C^{\infty}

foliation J_{0}^{} of codimension one with a Reeb component and with a
transverse 2-plane field, and replace the Reeb component by the foliation \mathscr{F}^{(n)}

of Theorem 2. Since the perturbation keeps the topological type of \mathscr{F}^{(n)}|K

by Theorem 3, the perturbed foliation \mathscr{F}’ is also solitary again by Theorem

2.
In the rest of this section we prove Theorem 3. For it, we use the

following theorem due to Hirsch ([2]) (For our purpose, minor modifications
are carried out).

THEOREM 4(Theorem 1.1 of [2]).

Let M be a closed 3-manifold and let Fo1^{2}(M) be the space of C^{2} foliations
of M of codimension one with the C^{2} topology {defined in [2] ) . Let L be a

toral leaf of a codimension one foliation \mathscr{F} and let \alpha\in\pi_{1}(L, x_{0}) for some
base point x_{0}\in L . Assume the linear holonomy along \alpha is non-trivial {and

thus hypcrbolic). Then there exists \epsilon_{0}>0 with the following properties :

If 0<\epsilon<\epsilon_{0} , then there exists a neighborhood \mathfrak{R}\subset Fo1^{2}(M) of \mathscr{F} such that for
every \mathscr{F}’\in \mathfrak{R} there are a compact leaf L’\in \mathscr{F}’ and a C^{2} -diffeomorphism h : L
arrow L’ satisfying d(x, h(x))<\epsilon , where d is the induced distance by a

Riemannian metric on M. Moreover L’ is unique.
PROOF OF THEOREM 3.
STEP 1. We will prove the small perturbation keeps the topological type

of the Reeb component J^{(n\rangle}|(S^{1}\cross D_{2}^{2})
\prime\prime Let L denote the compact leaf \partial

(S^{1}\cross D_{2}^{2})
\prime\prime and take a small collar neighborhood C:L\cross[-\epsilon, \epsilon]- S^{1}\cross D^{2} of

L such that C(L\cross\{0\})=L, C(L\cross[0, \epsilon])\subset(S^{1}\cross D_{2}^{2})
\prime\prime and C(L\cross\{t^{1},) is

transverse to \mathscr{F}^{(n)} for each t\in[-\epsilon, \epsilon]-\{0\} .
Let N=(S^{1}\cross D_{2}^{2})’-C(L\cross[0, \epsilon]) and let P:S^{1}\cross D^{2}arrow N be a product

structure such that (i) for each t\in S^{1} , P(\{t\}\cross D^{2}) is a leaf of \mathscr{F}^{(n)}|N and
(ii) for each x\in D^{2} , P(S^{1}\cross\{x\}) is transverse to \mathscr{F}^{(n)}|N.

Let \mathscr{F}’ be a small C^{2} perturbation of \mathscr{F}^{(n\rangle} . By Theorem 4, there exists
a compact leaf L’ of J^{^{l}} in C(L\cross[-\epsilon, \epsilon]) near L. Let \alpha’ be a loop in L’
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homotopic to the core circle of S^{1}\cross D^{2} . Then the linear holonomy along \alpha’

is also non-trivial. Consider \mathscr{F}’|N. We may assume C(L\cross\{\epsilon\}) and the
circles P(S^{1}\cross\{x\}) , x\in D^{2} , are transverse to \mathscr{F}’ .

Then we see \mathscr{F}’|N is a product foliation by 2-discs. From this \mathscr{F}’|\partial N

is a trivial foliation by circles. This implies the holonomy group of L’ is of
rank 1 and thus \mathscr{F}’|T is a Reeb component with hyperbolic holonomy, where
T denotes the closure of the connected component of S^{1}\cross D^{2}-L’ containing
N. A C^{0} isotopy from T to (S^{1}\cross D_{2}^{2})

\prime\prime is easily constructed. We see also
\mathscr{F}’|(S^{1}\cross D_{1}^{2})

\prime\prime has two Reeb components near (h_{n}(S^{1}\cross D_{1}^{2}))’ and (h_{n}(S^{1}\cross

D_{2}^{2}))’

STEP 2. We will prove the perturbation keeps the topological type of
\mathscr{F}^{(n)}|(h_{n}(S^{1}\cross\Sigma(2))’- Let \mathscr{F}’ denote a small perturbation of \mathscr{F}^{(n)} . Let L_{1}=

a (h_{n}(S^{1}\cross D_{1}^{2}))’ and let L_{2}=\partial(h_{n}(S^{1}\cross D_{2}^{2}))’ Let L_{i}’ be the compact leaf of
\mathscr{F}’ corresponding to L_{i}(i=1,2) and let T_{i}’ be the solid torus bounded by L_{i}’ .
By a lemma of Kopell ([2]), for each non-compact leaf L’ of \mathscr{F}’ outside both
T_{1}’ and T_{2}’ and spiraling to L_{1}’ and L_{2}’ , the intersection of L’ and a collar of

L_{i}’ is a circle. Thus by the bundle structure argument as in Step 1, we see L’
is diffeomorphic to the open 2-punctured 2-disc. This shows Step 2.

By a similar argument as above, we see that for J^{’} there exists a
compact codimension 0 submanifold K’ near K=(S^{1}\cross D^{2})’ such that \mathscr{F}’|K’

is C^{0} isotopic to \mathscr{F}^{(n)}|K. This completes the proof of Theorem 3.
REMARK 2. For a transverse pair ( \mathscr{F}, \mathscr{C}) of codimension one

foliations of a 3-manifold, we say ( J^{}, \mathscr{C}) unraisable to a total foliation if
there exists no codimension one foliation \mathscr{H} such that ( \mathscr{F}, \mathscr{C}, \mathscr{H}) forms a
total foliation. Every closed oriented 3-manifold admits such a pair(see
[7] ) . For such a pair, we can consider the stability as in the case of the
solitary foliations. For example, let M be the total space of the S^{1} bundle
over the 2-torus T^{2}=El^{2}/Z^{2} with non-trivial Euler class, and let \pi : Marrow T^{2}

be the projection. Let ( \overline{\mathscr{F},}\overline{\mathscr{C}}) be the transverse pair of codimension one
foliations of T^{2} such that each leaf of J^{}- (resp. \overline{\mathscr{C}} ) is a circle parallel to the
x-axis (resp. the y -axis) of T^{2} . Then the induced pair (\pi^{*}\overline{\mathscr{F}}\pi^{*}\overline{\mathscr{C}}) is
unraisable to a total foliation(by Milnor [4] and Wood [10]). We can
verify this pair does not satisfy the stability in the sense above. We now
pose the following

PROBLEM. Find a stable unraisable pair.

REFERENCES

[1] D. B. A. EPSTEIN, A topology for the space of foliations, Lecture Notes in Math. 597,
Geometry and Topology, Rio de Janeiro 1976, Springer Verlag, 132-150.

[2] M. W. HIRSCH, Stability of compact leaves of foliations, Dynamical systems (edited



Stably solitary foliatiom 147

by M. Peixoto), Academic Press, New York, 1973, 135-153.
[3] N. KOPELL, Commuting diffeomorphisms, Global analysis, Proc. Symp. in pure

Math., vol. 14, A. M. S., 1970, 165-184.
[4] J. MILNOR, On the existence of a connection with zero curvature, Comm. Math. Helv.,

32 (1958), 215-223.
[5] T. NISHIMORI, Existence problem of transverse foliations for some foliated

3-manifolds, Tohoku Math. J., 34 (1982), 179-238.
[6] T. NISHIMORI, Foliations transverse to the turbulized foliations of punctured torus

bundles over a circle, Hokkaido Math. J., 13(1984), 1-25.
[7] A. SATO, Every 3-manifold admits a transverse pair of codimension one foliations

which cannot be raised to a total foliation, to appear in Foliations (edited by I.
Tamura), Advanced Studies in Pure Mathematics, vol. 5, N.-Holland/

Kinokuniya, 1984.
[8] I. TAMURA, Dynamical Systems on Foliations and Existence Problem of Transverse

Foliations, to appear in ibid.
[9] I. TAMURA and A. SATO, On transverse foliations, Publ. Math. I. H. E. S., 54

(1981), 5-35.
[10] J. WOOD, Bundles with totally disconnected structure group, Comm. Math. Helv., 46

(1971), 257-273.
[11] K. YANO, Non-singular Morse-Smale flows on 3-manifolds which admit transverse

foliations, to appear in Foliations (edited by I. Tamura).

Department of Geveral Education
School of Engi neering
Meiji Uviversity


	\S 1. Introduction and ...
	THEOREM 1. ...

	\S 2. Proof of Theorem ...
	THEOREM 2(Tamura ...
	THEOREM 3. ...

	REFERENCES

