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§ 1. Introduction

In a series of papers ([3]~[7]), the author has discussed real
continuous-time stationary Gaussian processes X (¢) with reflection
positivity and developed a theory of generalized Langevin equations describ-
ing the time evolution of such processes. His original aim was two-fold :
1) Deep understanding of a mathematical structure behind significant Kubo’

s fluctuation-dissipation theorem in statistical physics ([2]) ;

2) Applications of the theory as a useful model in various fields of science.

The first aim was achieved in and [7]. Indeed, we established two
different kinds of Langevin equations—the first (resp. second) KMO-
Langevin equation with a white (resp. Kubo) noise as a random force, and
proved the generalized fluctuation-dissipation theorems based on these equa-
tions. For the simplest process with Markovian property, i. e., for
Ornstein-Uhlenbeck Brownian motion, these two kinds of equations take the
same form, and the classical Einstein relation is valid. For a general X (¢),
however, the situation turns out to be not so simple ; the Einstein relation
still holds if we use the equation of the second type, but does not hold in the
case of the first type. So we raised in [7] a question how this interesting
deviation from the Einstein relation can be measured experimentally in the
remarkable case of Stokes-Boussinesque-Langevin equation of the first type.

With the second aim in mind, the author proceeded to investigate the
discrete-time case in the previous paper [8], and the present paper is a
continuation of [8]. Let us recall that we have considered in station-
ary Gaussian time-series X (#) with reflection positivity and established a
discrete analogue of the results for the first KMO-Langevin equation obtained
in [6] and [7]. As in the continuous-time case mentioned above, we have
obtained the generalized Einstein relation based on the first KMO-Langevin
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equation with discrete time, to observe the expected deviation from the
classical Einstein relation valid only in the Markovian case.

The purpose of the present paper is to derive the second KMO-Langevin
equation for the same time series X (%) as in and then to prove the
generalized fluctuation-dissipation theorems based on this equation of the
second type. To this end we have to introduce the Kubo noise I (#) as-
sociated with X (»), in addition to the familiar white noise &(#). In the
simplest Markovian case, the two noise processes coincide, which means
that the two kinds of discrete KMO-Langevin equations take the same form.
Now, the point is that, even if we use the equation of the second type, the
generalized Einstein relation is also different from the classical one ; this is
a remarkable fact we have found in th discrete-time theory, in contrast to the
situation in the continuous-time case explained above. We can go further by
calculating the ratio of such two kinds of deviations concerning the general-
ized Einstein relations based on two kinds of discrete KMO-Langevin equa-
tions.

We now state the content of this paper. As in the previous paper [8],
we will treat the covariance function R of X of the following form:

QD Rop=[tMed  (neD),

where o is a bounded Borel measure on [—1,1] such that
1.2) c({—=1,1)=0

11 1
1.3 ‘[l(m+ﬁ)6(dt><oo.

Note that (1.2) and (1.3) imply that
1.4 Rel'(2).
By (1.4),we can define a function [R] on U;(0) ={ze C; |z|<1} by

1.5 [R](z):%g‘,oR(n)z".

The function (2[R](—1))"[R](z) is called a complex mobility function of
X. By using (I hgorem 4.1 in which gives a fundamental structure for
the outer function % of X, we W111 m §2 obtam the following structure
theorem for the function [R]

THEOREM 2. 1. There exzsts a unique trzple (aa, B, p2) Such that
( 1 ) a2>0 and ﬁ2>0
(ii) p. is a bounded Borvel measure on [—1,1] with p,({—1,1})=0
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(iii) for amy zE Ul(QD

[R](z)=—% L

V27 Bt -2+ -2) [T

Iz

We call the triple (a, ﬁ;, ) or (as, B, v2) in [Theorem 2.1 the second
KMO-Langevin data associated with ¢(or R), where y, is a function on Z
difined by

1.6 p=ga (A=) [ T pmd)

It is noted that

i;

0 for ne{-1, -2,...}
RIS I Y C for ne{0, 1)
[lrre—1pcan) for ne(2,3,..),

which implies that
1.8) el (Z).

It will be found in § 3 that the correspondence between ¢ and (ay, B, p2) iS
bijective (Theorem 3.1). Furthermore, we will obtain a formula by which
the triple (a,, B, 72) can be calculated from o (Theorem 3.2).

By using the Gaussian white noise & in (2.15) in and the [
(Z)-function E; defined by

(1 h

E"(fz; [R] ).

we will in § 4 introduce a real stationary Gaussian proces I=(I(n) ; n€Z)
by

(1.9

BONNIOE /;_”mzﬁ}_wE,(n—m)g(m) a.s).

Then we will obtain the following causal representation theorem for the
process X in terms of the noise process I :

THEOREM 4. 1.
(i) X<n>:% S R—m)I(m)  a.s (neZ)

m=—oo

(i) o(X(m); m<n)=c(l(m); m<n) ne2z).
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The process I is called the Kubo noise associated with X. The spectral
density A; and the covariance function R; of I will be calculated. Then we
will find that the process I has no reflection positivity except the case where
X has a simple Markovian property.

By using Theorem 2.1, we will in §5 derive a stochastic difference
equation with the Kubo noise I as its random force; this is the desired
description of the time evolution of X (cf. Theorem 6.1/ in [8]).

THEOREM 1. 1.

(1.11) X —-Xn—-D=—FRXm+Xn—1))—(v*X)(n)+al(n)
a.s. (ne2).

We call equation (1.11) the second KMO-Langevin equation for X.
As a basic example of X, for each p&(—1,1), we willin § 3, §4 and §
6 consider the Markov process X, with covariance function R, of the form

(1.12) Ry(m)=p".

Note that
[R)(D) = — o €T
P 27 1—pz ! :
By rewriting it into the form (iii) in [[heorem 2. 1, we have
@) 1

_a
(1.13) [Rp]<z)—/;—” BPA+2)+1—-2’

where

_ /2 1 _pmy_ 1P
(1.14) a}?’—\/; T+5 and ﬂ}?’—ﬁﬁ})—l+p.

Therefore, we find from [Theorem 5. 1 that the second KMO-Langevin equa-
tion for X, becomes:

(1.15 X,(m)—X,(n—D=—-BP(X,(m)+Xp(n—1))+afL,(n)
a.s. (ne2),

where I,= (Ir(n) ; nEZ) is the Kubo noise associated with X,. It is noted
that (a®)'a@I, is a Gaussian white noise.

Concerning a discrete analogue of R. Kubo’s fluctuation-dissipation
theorem for the continuous-time case in [7], we will in § 6 obtain the follow-
ing
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THEOREM 6. 1.
(i) For any 6(—=x, n)

,32(1+e"“’)+11—e1'9+27;,72<9> =Q[R](=D)[R] (™).

(ii) The spectral measure of the stationary process dzI

R“’) RO 911 6,470 Re(B1 + ) +1— e+ 277(6))
—|ﬁ2(1+e”’) +1_€lo+27l"}/2(0>|2}d0

(i) D_R? 1+ 7(0)),

wherve D is the diffusion constant of X.

By taking into account the physical meaning of R. Kubo s fluctuation-
dissipation theorem for the continuous-time case given in [7], we will call
the relations (i), (ii) and [iii) in [Theorem 6.1 the generalized first
fluctuation-dissipation theorem, the generalized second fluctuation-
dissipation theorem and the generalized Einstein relation, respectively.

Since the diffusion constants D, of the Markov processes X, (p=(—1,
1)) become

R,(0 1

we conclude from the generalized Einstein relation [(iii) in[Theorem 6. 1| that
for non-Markovian process there occures a deviation from the classical
Einstein relation (1.16) for the Markov processes, even if we use the second
KMO-Langevin equation (1.11). In § 7 we will estimate the ratio of the two
deviations from the classical Einstein relation arising from the use of the first
and second KMO-Langevin equations, (6.1) in and (1.11).

We will derive in § 8 the first KMO-Langevin equation describing the
time evolution of the Kubo noise I associated with X (Theorem 8.2).
Conversely, it will be proved that the Gaussian white noise & itself satisfies
some stochastic difference equation with I as its random force (Theorem 8.
3). These theorems tell us that the two noise processes & and I can play an
exchangeable role as a random force in our dscription of the time evolution
of X.

Finally, we will in §9 obtain the generalized fluctuation-dissipation
theorem based on the first KMO-Langevin equation for I and then estimate
how large the deviation from the classical Einstein relation is (Theorems 9.

1 and 0.2).
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In Appendix, we will prove a useful expression of the outer function in
the continuous-time case, which will be used in § 2 and has been implicitly

used in [3], and [5].
The author would like to thank the referees for their valuable and
constructive advices.

§ 2. Complex mobility function

As was stated in § 1, we will consider a non-negative definite function R
of the form

@D  Rw=[tredd  (ne),

where ¢ is a bounded Borel measure on [—1,1] such that
(2.2) c({—1,1})=0

2.3) [1(—1%+—1i—t)d(dt) <.

The conditions (2.2) and (2.3) imply that
Q2.4 Rel'(2).
We can then define a function [R] on U;(0) by

@5  [RI@=g- S RODZ"

which is also expressed in terms of o:

1
74

_1r
(2.6) [R](2)= 5 ), o(dt).
DEFINITION 2.1. The function (2[R](—1))7'[R] is called the com-
plex mobility function associated with R or X.
In order to give a useful expression of [R](z) as the outer function of

some Hardy density, we now consider a bounded Borel measure o, on [—1,
1] defined by

@D aWdh=g([ TiroW@))edb.
Note that

2.8 o1({—1,1})=0

@9 [Tt a@n<e.

1



On the theory of discrete KMO-Langevin equations with reflection positivity (1) 7

By using this measure o;, we define another non-negative definite function R,
on Z by

(2.10) Rl(n):[it'”‘m(dt).

It was shown in that R, has the Hardy spectral density A;=A,(8) (= (—
7, m)) such that

(211) A1<€> 2”/‘ ‘1 te 10|2 61<dt)
(2.12) log A\ eL'((—=, ).

LEMMA 2.1. [R] coincides with the outer function of A,, . e.,

[R)()=exp( e [ SatZlog i(8)d)  (ZELLO).

ProorF. We denote by F the outer function of A;. It then follows from
Lemma 3.2 in that

(2.13) F(Z)— /_ hlc( ) (ze U,(0)),

where 7, . is the outer function of the Hardy density A, of the form

@10 8= [ o) (§ER)

with a bounded Borel measure o‘l,g 6n [0, 00) given by
(2.15) on,c=¢(0oD);
Here ¢ is a familiar homeomorphism from (—1,1] onto [0, o) such that

—1

2.16) o= 1+t

Define a bounded Borel measure v, on [0, o) by

(2.1D vc—qS( J2 o‘)

1+-

Then, we claim

2.18)  Gre(d) =5 ([ e (dA))wedl).

Let g be any real valued bounded Borel function on [0, ). We see from (2.
7, (2.15) and (2.17) that
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[re e =o [ o) ([ 1o ot
_ 1 el44m @ )(/ 1+¢ 1)
2 Jo J2 J2A=¢' )
On the other hand, by (2.16),
1+¢7(1) 1+¢71(1) _ 1
J2 o J2A—-¢' (D¢ ()) AT
Hence, we have (2.18).

By (2.14) and (2.18), we appeal to A in Appendix to con-
clude that

Vc(dll,)> Vc<d/l)

me(© =70 [ Tow@) e,

By combining this with (2.13), and using (2.16) and (2.17),

1
o A(l+z)+1-2

e

F<z):£ Vc<d/1)

Thus, we have completed the proof of Lemma 2. 1. (Q.E.D)
By (2.8), (2.9) and Lemma 2.1, we can apply [Theorem 4.1 in to

the function [R] to obtain the basic structure

THEOREM 2.1.  There exists a unique triple (as, Bo, po) such that
(i) a>0 and >0

(ii) p. is a bounded Borel measure on [—1,1] with p,({—1,1})=0
(iii) for any z< Uy (0)

1
mﬁz(l—l—z)-i—l z+(1— z2>f

[R](2)=

§3. The second KMO-Langevin data
In §5 of we have defined two sets 3); and &, :

3.1 M.={0; o is a bounded Borel measure on [—1, 1] such that

c({—1,1) = 0and/<1+t 11t>6(dt)<oo}

3.2) Z1={(a, B, p); a>0,8>0 and p is a bounded Borel measure on
[—1,1] such that p({—1, 1}) =0},
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and studied the bijective mapping L, from >}; onto ;.
Similarly to (5.3) in [8], for each €, we put

Rd(n)zflt'”'d(dt) (ne2)

3.3 | AelO)=g [ gamroldt) (b€ (~m o)

he(r=exp(q [ Lt ilog AL(O)dD)  (zE VO,

We begin with the study of another correspondence between ¢ &3}, and
(a, B, p2) €%, established in Theorem 2. 1.

THEOREM 3.1.  There exists a bijective mapping L, from 3, onto ¥,
such that for any c€Y and (an, B, p.) = L.(0)E £,

1
mﬁ2(1+z)+1 2+ (1— 22>f

G.40  [Rs](2)=

Proor. By [Theorem 2. 1|, there exists an injective mapping L, from >},
into 7, satisfying relation (3.4), and so we have only to show that L, is
surjective. Let (ay, B, p2) be any element of &,. By [Theorem 4.1 in [8],
we obtain an element o, of 3}, such that L,(6y)=(as, B, p2). Further, it
follows from Theorems 4.2 and 4.4 in that this measure o, can be
expressed in the form

3.5  od)=g([ TEod)ed)

with some ¢=3),. Therefore, we can apply Lemma 2. 1 to see that [Ry] is
equal to %y,. Recalling the definition of L, in [8], we conclude that L,(¢) =

(az, B, po). Q.E.D)

DEFINITION 3.1. Foreach o3, wecall atriple (as, B, p2) (=L:(0))
or (a, B, ) the second KMO-Langevin data associated with o or R,
where y;’is a function on Z defined by

3.6  p=g (A=) [ @)

From Proposition 5.1 in [8], we note that
0 for ne{-1, —2,...}
: dt) for ne{0, 1}
GB.7D  nw= [ o :
/i(z‘”—t"’z)pz(dt) for n€{2,3,...)
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(3.8) Y.l (Z)
3.9 Zrm=0

(-]

(3.10) Z( 1) y.(n) =0.

The following theorem gives a formula concerning the second KMO-
Langevin data (a,, B, 7») associated with a fixed c€3),.

THEOREM 3. 2.

(i) azz\/%ﬁﬁ—ta(dw.

(i) A= o[ Trotd)™

(i) 70 =g tsr ([Re] () ™)) = (Bt D o= (Br—D s (nEZ).

PrOOF. By substituting z=—1 (resp. z=1) into (3.4), we have (i)
(resp. (ii)). Furthermore, by substituting z=¢* into (3.4),

(l—eZi")/I;pz(dt)Z % _([Rs] (™)
-1 1—te®® m c
—B1+e?)—1—e®).
The Fourier transform of this equality is nothing but [Gii). (Q.E.D.)

REMARK 3.1. By Remark 5.1 in and [Theorem 3.1, we see that
[Rs]7" is equal to the outer function of the Hardy density Az! with o} of the
form (3.5).

ExaMPLE 3.1. For each p(—1,1), let us consider R, corresponding
to the Dirac measure o= dy, :

3.1D  R(my=p"  (nE€Z).
Observing that

1 (/2 1 1
(3.12) [Rp](2)=—F7—= (e Ui (0)),
’ ¢27f< 7)1 T a++1-2

we can see that the second KMO-Langevin data (a@, 82, p@) associated
with R, becomes

(3.13) aP= hle <2>_% and p@=0.
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ExAMPLE 3.2. Let R be the non-negative definite function given by
(3.14) Rm)=ap"+ op'™ (ne2),
where 61, 6;>0 and —1<p, <p,<1. Since

615 [RI@=2 2y B Ge GO,

where

_ 0Pt oo
(3.16) (12—— o_l_|_ 0, <e (pl; pZ));

we find that the second KMO-Langevin data (a,, 8, p.) associated with this
R becomes

_ 2 o,(14+p.) +0:(14p1)

“2—\/; A+p0A+10)

(.17 g,= 0 tp) +od+p) A—p)d—p)
' T o(—p)+od—pD) A+p) A+

_ (hr— ) (=) (aito)
P =2 5 S T 53 (6, — Bo) T G (1)) Qe (4

§4. The Kubo noise (1)

Let X=(X); n=Z) be a real stationary Gaussian process on a
probability space (Q, %, P) ; the covariance function R takes the form (2.
1) with a bounded Borel measure ¢ on [—1, 1] satisfying conditions (2. 2)
and (2.3). As usual, A=k, and E =} denote the outer function and the
canonical representation kernel, respectively. Then, in terms of a normal-
ized Gaussian white noise §=(&(n) ; n=Z), X is expressed in the form

1 Zn) En—m)&E(m) a.s. (me2),

27 m=—

(4.1 X(n)=

which is canonical in the sense that
(4.2) o(X(m); m<n)=c(&E(m); m<n) (neZ).

In this section we will establish another important expression of X :

L Ron—m)I(m)  a.s. (ne2).

27 m==c

(4.3) X(n)=

Such a representation is naturally introduced (Kubo [2]) by taking, as a
representation kernel,
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4.4 En) =X R (ne2).

In order to define explicitly a real stationary Gaussian process I = (n) ;
neZ) in (4.3), we first note that

4.5)  E(8)=[R]("®) be(~n= n)).

By virtue of Theorem 5.1 in and [Theorem 3. 1 we can define a function
hea(U,0)NCUI0)) by

1 k)
Jer [R](2)

where 7 (U,(0)) stands for the set of all holomorphic functions on U,;(0).
We denote by E; the Fourier transform of 7%, :

4.6) ()= (ze U1(0)),

4. Em=hn)= [ :e""‘”h,(e"")dﬁ.

We note that

(4.8 E; is real valued and E,€!'(Z)
4.9 E;=0on {—1, -2, -3,...}.

With this E; as a representation kernel, we set

@10 Im=roe 3 En=mEm)  as (nED).

Note that the right hand side of (4.10) is convergent almost surely and in
the mean (L*(Q, %, P)).
We are now in a position to prove the desired representation (4.3) of X.

THEOREM 4. 1.
) 1 n _
(1) Xn)= mmgwR(n m)I (m) a.s. (nez)

(it) o(X(m); m<n)=cT(m); m<n) (neZ).
Proor. By (2.4), (4.8) and (4.10), we have

L_ & Rii—m)I(m)
2 m==w
1 a1 AL )
= o 2 2R mE(m=D)E() a.s.

J;_nrglR(n~m)E,(m—l) (I<m) is computed by

The kernel K(n, )=

using (4.4)~(4.9):
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K, z>:%<Eo<n—->, E(— D) o
—h(n—D=En-10.

This yields (i). (ii) follows easily from (4.2), (4.10) and (i).

(Q.E.D)
By taking [Definition 8.1 in into account, we will introduce the
following

DEFINITION 4.1. The stationary Gaussian process I given by (4. 10)
is called the Kubo noise associated with X.

Let (ay, B2 p2) (and (au, B2, 1)) be the second KMO-Langevin data
associated with R. We now calculate the covariance function R; of the
Kubo noise I by means of these data.

THEOREM 4. 2.
(1) The spectral density A; is given by

4 2.0 (1+1)?
AIw)—maz(lJrﬁerVz(O)) f =t 0
A teos g [ Zbnnan)

smﬁ (t—s)?
/_[ |1 t10| |1 i0|2P2<dt)/J2(dS)}.

A; is a Hardy density with hy in (4.6) as its outer function.

(T RO+ RO +AE RO 5D

+yZ<0>2+§‘,1 gw(uzj‘)%m} for n=0

(1 ‘*‘ﬁ)’z(@) {A=B)va(n|+1)

—gyz(l)Yz(lnHl)} for n=+0.

(iii) Ry(n)=;

Proor. By (4.7) and (4.10), we see that
R,(n—m):_[”e‘i‘”‘”’)"lh,(e“’)lzdﬁ (n, meZ),

which implies that the spectral density A; is given by
4.1 A(OD =D ((—= n)).

We have to calculate it in terms of the data (a,, £, p.). For that purpose,
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we first claim |
(4.12) Ih(e”)|2=2Re([R](e""))—z%RQOD (be(—n, m)).
Since R(8)=A(0) =|h(e®)2, (4.12) follows from
[R](e*) =53 R(n)e™
and
[R]<e“’)— 2 Rmye +5— L 75, 2 0).

By (4.6) and (4.12), we have

1 RO, 1
[R](e™) >_ 2 |[R]e""|> (OE(=7 7).

The key expession (3.4) enables us to write

413 A =%(2Re<

1 s26

(4.14) Re< [R](ew)):/_mz(prcos ) +1—cos e+[ %pmm
(4.15) Im( [R]l(e"") )ZJ_(ﬁz sin f—sin 6+f1 2tsm 6— 312126 ).

By a simple calculation, we see that

1
(4.16) |W|2
— 2(4/52003 g+4sm 7€+4sm 0/ ’82(1+t2:‘;|£ d p2(dt)

11— (t+s)cos 8+ts
+4 sin 0[1£1 1= e [f[l —se™F p2(dt) p(ds)).

Substituting (4.14) and (4.16) into (4.13), we get
4.17) A6
=27'(/ 2z —R(0) a7 7', cos' 7

1277 (/27 — R(0) ez a5’ sinzg

+ Cra,) ! sin 0(/ Tl%l—g—pz(dt)
[ RSB0,
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'R0 az'A—(t+s)cos 6+1ts)
_f |1—te™?|1—se®|? p2(dt) p2(ds))

— 221/ 27 — R(0) a3 8,) a5, cosZ—Z‘i

+227 (/2 —~R(O)aiai' sin®5

+maptsintd [ [ T P—se"F L Zm(—1, )y 2 tE s
R<O)ail 2 2
—2(t+s)cos 8) —W{(ﬂfrl) Q2+ t*+s*—2tscos 6)
2

+ (B—D (¢l —se”|*+s[1—te”|)}
— R0 az;'(A—(t+s)cos +1ts) | p(dt) p(ds).

On the other hand, by substituting z=0 into (3.4), we get

(4.18) RO)=/2x

az 1+,6‘2+ 70"
Hence

(4.19  A(O)
4

T2z a1+ ot 7 (0))
sin%f [! (t—s)?
+ 2 ./:1[1 ]l—tei0|2|1 seiolzpz<dt)pz(ds)

ALy (0)cos g —sind ||t orp.(dD)).

.., 0 . 1 t
{yz(O)Slnz—-z—+ Slnzﬂ[lmm<dt>

Furthermore, we note that

L0t o A+8)?
72 (0)sin 5 +sin 0/__1 ‘1_teio|2p2(a’t)-sm f T—F te“’|2 p(dt)

and

0 . 1 ¢ 6 1 (1-—1)?
72<0>C0527_Sln20‘/:1m/32<dt>:COSZ7[1'T<:762TPPZ<dt>-

Therefore, by substituting these into (4.19), we arrive at the equaliy (i ).
Next we will show (ii). By Remark 5.1 in [8], Remark 3.1, (4.6)
and (4.11), we see that there exist positive constants ¢; and ¢, such that

<420> 63£A1(0)£C4 (0E<—7Z', 7[)),

which implies that A; is a Hardy density. And so we can define its outer
function #; by
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18 .
i (2) =exp(5- f o log AL(8)d8)  (z€ Ui(0)).
By using Lemma 2.1, (4.6) and (4.11) again, we see that
10
hy(z)= exp<4 f +Z < )dﬁ}

. exp(4 f e ik Iog |h(e®)|?df) «

.exp(4 / e +Zlog|[R 1(e®)|2d6) !
1 h(e®)
,/27: [R](e*)’

which, with (4.6), gives (ii).

Now we will proceed to the proof of (iii). By using (i), we see that
for any neZ,

(4.21) R(n)

sin? 2 9
2

4 —iné 2
/ﬁaz(lqtﬁﬁyz(o)) f</ = zelzdﬁ)(lﬂ) p(dt)

cos?
2

o [Teman [t A=)

_in sin?é
S INAIK TP =seop 40 (=" pe(dDpa(ds)).

For each t=(—1,1) we put

£i() ==

As we have seen in Example 3.1 of [8],
Fy=12mt"  (ne2).
Since sng %—izﬂ and cosz—g—:%—i—y, we see that.-for any »
<{0,1,2,...} and s, t(—1,1),
(4.22) [ e sint 7 £.() dg =g (2t 11— pineh

(4.23) /"e"'”“’ cos 7ft(0)dezm<2tlm+tm—u+t|n+u>
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2o [Temsind £(0)f(6)do
= LR g FT =2 + T (n+2)
e A ARSI RT AT ACE )

— 4 < In—1] __ ln=2—11 __ $in+2—1\ olll
=B A= Z T T s

=—00

. T
=sa=ma—sy (Lrt Dat MLt IV,

where

I n= njz <2t|n—l|_ tln—Z—ll_ t|n+2—l|)s|l|

l=—o0
IIn: é (Zt'”'”—t'”‘z_”——t"‘”‘”)s'”
HI — (Ztln—ll_tln—Z—ll_t|n+2—l|>S|l|
S
V,= i (Qfin=tl _ fln=2=tl _ pin+2=11ygltl
=n+
For =0, we can see that

$2N2.2
10:_(1 £2)%s

(1—1¢%)2¢s?

and [Vo=-— 1= which imply that

42 _ o2
(4.25) ot oMo+ IVo=20 2650,

For n=1, we can see that

_42N2
[ =y

Q-

and [V,= 1% , which imply that -

__ 2 o2
4.2 1ot v,=2 020800,

For n>2, we can see that

s

-2 ‘
I n= <2l¢n__ tn—z_ tn+2> +712 (Zt”‘,‘— tn—2—l__¢n+2—l>sl
1—1ts i=o

e Ho=A=tD(s+2), o=~ #)s(t=s+1%)

17

—L08 L=A- 429, ML= -5 (t—A—1)s)
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é <2tn—l_ tl—n+2__ tn+2—l>sl

l 1

:II
NI

IIIn“— <2tl n tl—n+2_tn+2—l>sl

l 1

Ms_'%,

IV,=

l

(2tl—n_ tl—n+2__ tl_n_2>Sl.

3

I
B
+

And so
(4.27) [,+11,+1,+1V,
= (247 — -2 pn+2) ts +2étn—zsz_”i2tn—z—zsz
1—14s =0 =0

=
+
N

_2 +21 i tt—n+zsl+2 - tl—nsl
=0 l=n-1 l=n+1
_ = —-n-2.1
l=§+3ﬂ §
t n+l__ n+l n-1__on-1 n+3__ ~n+3
B e =
tsn—l tSn+l t3n+3

1t 2 1—ts 1—ts
=29 e a- ),

We note that (4.26) implies that (4.27) holds for n>1. By (4.21)~(4.
25), we see that

(1+t>

R(0)=

J2r a2<1+ﬁ2+yz<o>>‘2f S o)

+/32(27z+——/ @42n- L= <1 ” M= i)

L ana)

2/2n :
" a0+ At 700 Lﬂ“)pz(dt)

+ﬂ2(2+[1(1— D (dt))
vy [ ey,

This fact together with (3.7) implies that holds for n=0.
In case n>1, we use (4.21)~(4.24) and (4.27) to get

_ 4 2 Aty
(4.28) R’(">_Maz<1+ﬂz+yz(0>>‘2[(Zt fr-1_gn+1y

p2(dt)
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+ﬂz§/1<2t"+t"-l+t"“> S L pCdt)

4// (A=s)*"'—(1— t2>t" D) (t— )0 (dD) pa(dS)).

1—1t¢s

By (3.7), we have

R I T R N ETACTEY

s [ertr im0 an= .
Moreover,
sp [ AT A g anpds)

=5 [ [ (=D = (5P = D5 D (1) (= ) (d) o)
23 ([ (=Dt [ spds)

— [(#=Dsmpuds) [ Eo0at))
=253 (n(n+142) [ (@) —y(n+ 14D [ #4p(dt))
=25 ya(n+D) [ (1= 19 (@D —y(n+ D) [ toa(dD))
= —2(F7:(n+ DD+ 71+ Dy

= =23 ya(n+Dy(D).

By substituting (4.29)~(4.31) into (4.28), we find the expression for
n>1. Thus we have proved Theorem 4. 2. Q.E.D)

ExXAMPLE 4.1. For each pe(—1,1), let X,=(X,(n); nEZ) be a
real stationary Gaussian process with covariance function R, of the form (3.
11) in Example 3.1. We denote by (a¥’, 8, pt), (aP, B2, p¥) and I,=
(lL,(n) ; neZ) the first KMO-Langevin data, the second KMO-Langevin
data associated with R, and the Kubo noise associated with X,, respectively.
We then know from (4.21) in and (3.13) that

arfo”:2 /1_‘"2’ a® = /%-Hl——p

(1) — 2)—_
BY=B8=11,
Py’ =pg =0.

(4.32)
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By a simple calculation, we have

1 V2zap 1 aY g )
(4.33) h,p—m T+ B~ Jan ag)_‘/l p?, constant function

(4.34) Ip(n):—g—if;—&(n):,ﬂz(l—pz) &(n), white noise (neZ).

ExaMPLE 4.2. Let X=(X(n); nEZ) be a real stationary Gaussian
process with covariance function R of the form (3.14) in Example 3. 2.
And let I=U (») ;' nEZ) be the Kubo noise associated with X. Put

(4.35) a=a(1—pDp+od—»p)nH
(4.36) @=o01(1—pDA+pd)+0(1—p3A+pD.

(i) The case where ¢,=0: It then follows from (4.25) in [8], (4.6)
and Theorem 4. 2(ii) that the outer function %; of I becomes

_ e 1
(437) hI(ZD“‘ o, + 0y 1_(]22 ‘”CShth(Z);

where 4, is the outer function corresponding to X, in the previous Example
4.1 and ¢ is a positive constant given by

_ V2ona,
(.38 “ s/(0'1+0'2)2—<0'1172+ o2b1)? .

Therefore, we see that
4.3 Im)=cX,(n) (nEeZ),

which implies that the Kubo noise I is a colored noise with a simple
Markovian property, if ¢+0.

The case where 0 : it then follows from (4.27) in [8], (4.6),
(4.37) -and [Theorem 4. 1(ii ) that the outer function %; of I becomes

_ Jn 1-qz AT
(4.40) Mm(2)= o+, 1—gz (ze U1(0)),

)‘where ¢, and 7, are the same in (4.31) and (4.32) of [8], respectively ;

2
(4.41) mz—%—(”’z (ﬂ>—4> if @>0,

4 (+) @ (<)
_a

(4.42) n 0

I

We note that
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(4.43) @q=#+¢ if and only if o (1—p3%) + op(1—0p1) +0.
Therefore, the Kubo noise I is a colored noise with multiple Markovian
property, if g+ q.

§ 5. The second KMO-Langevin equation

By taking the Kubo noise I in (4.10) as a random force, we will derive
a stochastic difference equation which describes the time evolution of X.

THEOREM 5. 1.

6. XW-—Xn—-D==#Xm+Xn—-—1)—(rpx X)) +tal(n) .
a.s. (neZ).

PROOF. The idea of proof is similar to the one of [Theorem 6.1 in [8],
where we established the first KMO-Langevin equation describing the
different time evolution of the same process X by taking the white noise as
a random force. By (2.4) and (3.8), we see from [l heorem 4. 1(i) that
the following two random series are absolutely convergent (a.s.): for any »
ez,

5.2 XW—-Xn-—D+RXm+Xn-1)

per ACOUOICEIDRCNOICRESS

+B((RianR) (=) + (iR (2= m = 1)) (m)
5.3 XOm= 3 yr-DXD
= 3 (3 ya(n—D HiomB U=m) T (m),

272' m=—oo =—00

On the other hand, it follows from (2.4), (2.5), (3.6) and (3.8) that for
any n, meZ,

G4 Koy R) (n—m) — (X000 R) (n—m —1)
+ B ((Xp,ey ) (n—m) + (Xpo,eyR) (n—m—1))

= [CemitmmeQi— e+ g1+ ) [R] (e db
5.5 3 70— D EpmB) U—m)

T . 1 .
= [ e [ gD (R do

T

Therefore, by substituting (5.4) and (5.5) into (5.2) and (5. 3), respec-
tively, we conclude from [Theorem 3. 1| that for any nE Z, ‘ :
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X)) —Xn—D+{X )+ Xn—1))+ (X)) (n)
— 1 - 4 —i(n—-m)6 a;
i R —od) I (m)

=al (n) a.s.,
which completes the proof of ['heorem 5. 1. (Q.E.D.)

DEFINITION 5.1. We call the stochastic difference equation (5.1) the
second KMO-Langevin equation for X.

§ 6. Generalized fluctuation-dissipation theorems (1)

Let (a, B, p1) be any element of ¢, and §=(&(n) ; nEZ) be anormal-
ized Gaussian white noise. In [8], Theorem 6. 2, we have obtained a real
stationary Gaussian process X=(X (n) ; n&Z) which solves uniquely the
first KMO-Langevin equation

6.) X-Xn-D=-fXMW+Xn-1)— (X)) +aén)

a.s. (ne2),
where vy, is a function on Z defined by
0 for ne{-1, -2, ...}
1 dt) for n<{0, 1}
(6.2) nn)= Iltﬂpl( ’
[i(t”—t”‘z)pl(dt) for ne(2,3,...).

We denote by R the covariance function of X. Let (as, 5, ) and I=
(I(n); neZ) be the second KMO-Langevin data and the Kubo noise as-
sociated with o=L{'((ay, B1, pr)) and X, respectively. Inadditionto (6.1),
X also satisfies the second KMO-Langevin equation :

(6.3) Xm)—Xn—1D==FXm+Xn—-1))—(pp*xX)(n)+al(n)
a.s. (me2),

where y, is a function on Z given by (3.7).
We denote by D the diffusion constant of X :

6.4) D:}Jigz—}v—E((gX(nDz).

In we have shown the following generalized fluctuation-dissipation theo-
rems for X based on equation (6.1);
A generalized first fluctuation-dissipation theorem :
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1 _ h(e®
(6.5) Li(l+e®)+1—e®+2x9,(0) hmh(e”) (& (=m 7).

T—7l

A generalized second fluctuation-dissipation theorem :

2
6.6) 5=RO® Cun,

where

6.7 Corn=m( _:: 1B (1+e®)+1—e?+277(6)|72d6) .

A generalized Einstein relation :

R <0> N Cﬁl,n
26 2B

Coin
6.9) Fpr-l= R((Df/ll - (dto(ds).

In this section, we will prove results of the same type based on equation
(6.3).

THEOREM 6. 1.
(1) For any 6(—m, n)

1 -1 i0
ﬁ2(1+€i0)+1—e"0+27z")72(5) :<2[R](_1)> [R]<e ).

(6.8) D=

(i) The spectral density of the stationary process aol

=BD 20+ ot 10Re(B+6%) +1- 9+ 227(8))

—|BA+e*) +1—e*+229%(0) %}
2RO . , 8 1 (A+D?
- T { / | telolz (dt}

+ (1 +cos? 6’[' te"?,,Tz (@)

smza
f/ 11— t10| |1 sezo|2pz<dt)pz(ds)},

G D~R§$> 1+ 7(0)).

PROOF. As we have seen in [Theorem 3.2( i ), we note that
(6.100 @=2y/2z[R](—D),
which, together with [Theorem 2. 11(iii), gives (i ). By substituting (4.18)
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into (4.13), we see that the first expression of (ii) follows from Theorems
P.1(iii) and 4.2(ii). The second expression follows immediately from
Theorem 4.2( i) and (4.18).

In [8], Lemma 7.1, we established

6.10 D=3 Rm-EL.

As is easily seen in [Theorem 3. 2(ii),

6.12) FHROn=LZe

which, together with (4.18), yields (iii). (Q.E.D.)

EXAMPLE 6.1. For each pe(—1,1), let X,=(X,(n); n=Z) be a
real stationary Gaussian Markov process discussed in Example 4. 1. By (6.

13) in and [I'heorem 5. 1|, the first and second KMO-Langevin equations
take the following foms, respectively :

6.13) X,(m)—X,(n—D=—-BP(X,(n)+X,(n—1))+aP&(n)
6.14) Xo(m)—Xp(n—1)=—BP(X,(n)+Xp,(n—1))+aPL(n).

Since it follows from (4.32) and (4.34) that

(6.15) p=py
(6.16) aP’&(m)=aPL(n),

we note that two equations (6.13) and (6.14) actually coincide.

Since by (7.21) in

1
6.1 [R]()=—rFr /iﬁ"m () (EULO),
the relation (i) in Theorem 6.1 is also the same as (6.5) for such a simple
process Xp.
Since p¥ =0, we see from (6.16) that [Theorem 6.1(ii) is rewritten in
the form

@~ Lrayasp.

Since by (7.20) in and (6.15)
(6 . 18) Cﬂg) = Zﬁ(z)

we find that the relation (ii) in [Theorem 6.1 can be reduced to (6.6) for
Xp-
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Finally, since y®=0, we see from (6.18) that the relation in
Theorem 6. 1 coincides with the classical Einstein relation

R,(0) _ R,(0)
289 289

By taking the above Example 6.1 into account, we will introduce the
following

6.199 D=

DEFINITION 6.1. We call the relation (i), (ii) and (iii) in Theo-
rem 6. 1 the generalized first fluctuation-dissipation theorem, the general-
ized second fluctuation-dissipation theorem and the generalized Einstein
relation for the process X based on equation (6.3), respectively.

REMARK 6.1. The left hand side in the relation (i) in[I’heorem 6.1
expresses a complex mobility of the system X described by the second
KMO-Langevin equation (6.3). In this sense, our generalized first
fluctuation-dissipation theorem provides a justification of the unfamiliar
nomenclature of complex mobility function given in Definition 2. 1.

REMARK 6.2. We note that the classical Einstein relation (6.19) for
the simplest system described by equation (6.13) (or(6.14)) does not hold
for the general system described not only by the first KMO-Langevin equa-
tion (6.1), but also by the second one (6.3). In the next section we will
investigate these deviations from the classical Einstein relation.

EXAMPLE 6.2. Let us consider a real stationary Gaussian process X
treated in Example 4.2. By using (3.17) and (6.11), we can see that the
diffusion constant D of X becomes

1 14p, 1+p
6.200 D=+ < B oy Pz)

It would be troublesome to check the generalized Einstein relation via a
direct method of substituting the second KMO-Langevin data (3.17).

§7. The deviation from the Einstein relation

We will begin with the discussions of several relations between two
KMO-Langevin data (ay, 8, 1) and (az, B, v.) which appear in our KMO-
Langevin equations (6.1) and (6. 3), respectively.

ProposITION 7. 1.

) - 27 ay
() RO=1151,,0
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2
(i) RO)=/2x az—i}

_ @ ai
(iii) RO =2z 5 15T

PrROOF. We have already shown (i) in (4.18). By Theorem 5.2
(i) in [8], we have

a1t
il B w A

Hence, (ii) follows from [Theorem 3. 2( i ). Furthermore, by Theorems 5.
2(i) and 5.2(ii) in [8], we have

a} _ (114t
4% Ja1—t

On the other hand, Theorems B.2/( i ) and 3.2(ii) tell us that

(7.3) \/%%:ﬁl%ta(dt).

Therefore, follows from (7.2) and (7.3). (Q.E.D)

(7.D

(7.2) o(dt).

PROPOSITION 7. 2.

Cﬂl,71:2<ﬂ2+ ¥2(0)).
ProOF. By using (6.6), Propositions 2.1(i) and 2.1(ii), we get

RO)=RO A+ 8+ 70~ C,, .,

which yields Proposition 7. 2. (Q.E.D.)

PROPOSITION 7. 3.
. 4o Lo+ .(0)
(1) al_4 27[“21+ﬁ2+72<0>

i) pi=pBt o

Proor. (i) follows from (6.6), Propositions .1(i) and 7.2. By
using Proposition 7.2 again, (ii) follows from (6.8) and [Theorem 6.1
i) (Q.E.D.)

As straightforward consequences of Proposition 7.3( i), we obtain

PROPOSITION 7. 4.
(1) ai<4/27m a,
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2

72(0)= a1 _,32

2
427 ar— af

al
B <

>
4/ 27 ao— af

Now we are in a position to prove

THEOREM 7. 1.
(i) If m=0, then p,=0 and B,=/p.
(i) If p=0, then p,=0 and B,=/p.

PROOF. Suppose that p,=0. Then it follows from Theorem 7.1 in
and Proposition 7.2 that

(7.4) Bi=pF+1.(0).
By substituting (7.4) into Proposition 7. 3(ii), we see that
Be=p1(1+%(0)),

which, together with (7.4), implies that %,(0)=0 and 8,=28. and so p,=0.
Conversely we suppose that p,=0. It then follows from Proposition 7. 3
that Bi.=8.. Therefore, by Proposition 7. 2, we see that

Cﬂl,n :Zﬁl

By using Theorem 7.1 in again, we find that p,;=0. (Q.E.D)
Furthermore we can show

THEOREM 7.2. If p+0, then

< Bp< /<] if g<1
ﬁlzl 1f ﬁzzl
Bi> B> pi>1 if g>1.

Proor. By Proposition 7.3(ii), we see that if 8,=1, then gi=1. We
suppose that 8,<1. By Proposition 7. 3(ii), we see that g2<8,. Then we
make use of Proposition 7.3(ii) again to obtain

7.5 p(0)="Le=BO (Bt B

F—p "
which implies that 8,<B.. We have thus proved that 8i<B </ <1. The
case B,>1 can be proved similarly. (Q.E.D)

REMARK 7.1. In particular, Theorem 7. 2 tells us the following

Bs {g} 1 if and only if B {g} 1.



28 Y. Okabe

With the help of the above equalities, we can now calculate the ratio »
of the deviations of the two generalized Einstein relations (6.8) and Theo-
rem 6. 1(iii) from the classical Einstein relation; by using Propositions 7. 2
and 7.3(ii) , we have

— C L7 (2ﬂ1>_1 _ﬁl_
7.0 =710 T

which concludes from Theorems 7.1, 7.2 and Remark 7.1 that
if ;m=0, then r=1, while
> <
7.7 {z’f m+0, then r {z} 1 according as (5 {;} 1.

§ 8. The Kubo noise (2)

This section is devoted to the further study of the Kubo noise I derived
from the original process X via equation (4.3). Since X has the canonical
representation (4.1) in terms of a normalized Gaussian white noise & we
are interested in the explicit relation between I and & other than (4.10). In
fact, from our point of view of KMO-Langevin equations, we will give two
different interesting descriptions of the time evolution of the Kubo noise I.
One is the stochastic difference equation (8.1) below, which says that I and
& can play the same role as a random force ; the other is equation (8.5) of
I with random force &, which is nothing but the first KMO-Langevin equa-
tion for I.

Let (ay, B, pr) (or(an, B, y1)) and (ay, B, p2) (or(ay, B, y2)) be the first
and second KMO-Langevin data associated with ¢ in the covariance function
(2.1) of X, respectively.

THEOREM 8. 1.

®.D  allm—In-D+aIm+In—1)+nl)n)}
=a{E(M)—En—D+LEM+ER—D)+ (&) ()} a.s. (nEZ).

PrOOF.  From [Theorem 5.1 in [8], Theorems B. 1 and 4. 2(ii), we see
that the outer function #; of I in (4.6) is expressed in the form

R ,6’2(1+z)+1—z+(1—22)f1ljtzpz(dt)
(8.2 z)="422 =
TV pataii-zra-a [

, 2€ U,(0).

tz (41 (dt>

Furthermore, by noting (4.10) and then taking the same consideration as in
the proof of [[Theorem 5. 1, we see that for any n=Z,
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l(n) I(n— 1)+‘/5’1(I(n)+1(n—1))+(%*1)(%)

mm_z_w{ | el — e+ (14 ")
ra-en [ n @) e doEom)  as.
and
§0D= 5= D+ AN +ED)F () ()
=g 3 ([T me(1— o4 g1+ )
+a-e [ p@n)dagom) s
Therefore, by (8.2), we have (8.1). (Q.E.D)

REMARK 8.1. The stochastic difference equation (8.1) tells us that
the Kubo noise I and the white noise & can play equivalent roles in various
descriptions of the time evolution of discrete time series. Such a situation is
also observed in the theory of the autoregressive-moving average model
(ARMA model) with rational spectral densities (see ). It deserves
mention that the spectral density of the Kubo noise I is not always rational.

We will now turn to the second description of the time evolution of the
Kubo noise I from the point of view of the first KMO-Langevin equation for
I. To derive such an equation, there arises the difficulty that the results in
cannot be applied directry to the Kubo noise I, because it does not
possess reflection positivity except the trivial case where I becomes a white
noise.

We start with the following new expression of the outer function /%; of I.

LEmMA 8. 1.
_ 2ayas! 1
hi2)= J2x BB+ +1-z+F() (z€la®),
where

(8.3) F3(z)= \/—‘ 7 (11— ZZ){‘/‘QZG —BD(Bz'—=1)

—/31<1+z>f1 tztzo‘(dt)
~-2 [ 1 Thmed)
+L"1——tzf’l<df>f_11 TRl
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Proor. By [Theorem 4.1 in [8], (2.7) and (4.6), we have, for any z
e U,(0),

@0 a/l@=EArD+1-2+=20 [ 2 op@n) [T en.

Since for any te(—1,1) and z€ U,(0),

11 1+ 1 1 ¢
1~ 1= D == 1 T e D= 17

we have
1 ] L £
T~z 1—7 TG D1 t2+( Dl -7
R SIS P S R i
=137 = tz 1 —

Therefore, by noting condition (2.3), we see that for any z& U,(0),

®5 [ pen=[ 1o+ G- 1>/1 Tro(dt)

tz
-I—(z"’—l)/; 5 Torodt)

(8.6) '/_‘iﬁo‘(dt):[iﬁa(dt)—k(z#—l)f Wo‘(dt)

+ D [ T,

We use (8.5) and (8.6) in the terms 8,(1+2) [ —o(d) and (1-2)-

. /: i 1_} 7 o(dt) of (8.4), respectively, to find that for any z& U, (0),

B (ai'h@) 7 =p [ 1o+ + [ Tietdna-2)
+A=-HA-p) [ TEroldd

—+220-28 [T e
—<1+z><1—z>2f111 t}o(dt)
+(1—2) / T m(d) / o AC)

On the other hand, it follows from [Theorem 3. 2 that
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I iﬁt—o‘(dt)z\/%az, f 11—1_{0‘(61'0:\/%&’2/32_1 and
(8.8)
Lot _ AT e
/:lftszcdl)—zﬁaZ(ﬁz 1)

Therefore, by (8.7) and (8.8), we have proved Lemma 8. 1. (Q.E.D.
It follows from (2.3) and the estimate (5.11) in that F;(e?®)eL!
((—=, =)), which enables us to define a function y; on Z by

8.9 y=g (BN,

For any bounded Borel measure x4 on [—1,1], we denote by M,(n) the
moment function of x :

8.100 M(w=[  tuwd) (eN®.

Furthermore we define a bounded Borel measure g2 on [—1.1] by
(8.1  p(d)=u(—dt).

The above y; possesses the following properties :

LEMMA 8. 2.
(i)
(0 for n<—1
NI L] -1 <
(5o =B ~D = (44 5 Motom+2)
+7.(0) Ms(0)} for n=0
(T =85 Mo(m+2)+ 3 My(m+2)
+ 3 (1= m) My (m) for n=1

LOMSTNEINES Z%aza—ﬂo<ﬁgl—1>+ﬁ1<Ma<z>
= 3 My 2m+3)+ Mo+ 3 My (2m+3)
+ 35,2 m) Mo (m) for n=2
(T B Mo =1+ My (n))— (Mon—1)— My (n)

+mé=071(7’l—m>Ma(7n)} for n>3

(i) »el(Z)
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3(”) 0

,(— 1)"ys(n) =0.

i1l

ﬁMs ||M8

ProOOF. If follows from (8.3) that for any n&Z,

(8.12) \/gaz)’sﬁ’l)—_—lrd'Hn+IIIn+IVn,

where

L = =) (85D o1 et ds

B oo 1+ €)2(1— e 2
Hn——ﬁlfcznf_n i d) o (d)

in <1+elo> (1_ ew)z tz
I, = f<27z[n ¢ = t’” d8)+ tza(dt)

= [ =) [ (ae) [ rotan) de.
11— 1 t

It is easy to see that

(8.13) I, 2\/7 azﬂ B (B —1)(6no—n2).

Since for any t€(—1,1) and neZ,

8 0
/_‘ _ime 1+ e)?(1—e >d¢9

1—te®
0 for n<—1
1 for n=0
=11+t for n=1
—14+t+ ¢ for n=2
[ — 21+ H2A—1) for n>3,
we have
(0 for n<—1
1 t2 B
_ﬂl,[lWG(dt) for n=0
1 t2
(8.14) II.= —ﬁlf -1—0‘(dt) for n=1
(1 t2>t2 _
Lﬁlflf”'l(1+t)0‘(dl‘) for n>3.
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Similarly, we have

(0 for n<—1
1 tz
—[11—_720‘(07) for n=0
1 tZ B
(8.15) M=, /_1 1+t6<dt) for n=1
_ 42 2
_i <1+1t_ tl; L o(dt) for n=2
|- [rra-ean for n=3,
Since
. 1 1 -
(l—ezzo)/:lT_Teu;pl(dt)=27tyl(0)
and

0 for n<—1

11 o 1
<,/:11—te"'6<dt>> ()= {Zn/_lt”o'(dt) for n>0,

we see from (6.2) that

0 for n<—1

(8.16) V.= { & ,yl(n_m)[it’"o‘(a’l‘) for n>0.

m=0

Therefore, (i) can be seen from the above (8.12)~(8.16).

By noting (2.3) and the fact that y,€/'(Z), we see that (ii) follows
from (i). By virtue of (ii), we can take the Fourier inverse transform of
(8.9) in the L!'-sense to obtain

277:(0) = F3(e™) for any <[ —=, n].

By substituting §=0 andd= —x into the above and then noting (8.3), we
have and [(iv), respectively. (Q.E.D)

By virtue of Lemmas and 8.2 (ii), we can prove the following
theorem, in a similar manner to [Theorem 5. 1, by using (4.7) and (4. 10).

THEOREM 8. 2.

8.17) I —In—-1D=—pL"Um)+I(n—1)—(yrDD(n) +2aaz'&(n)
a.s. (me2).

In view of Definition 6.1 in [8], we give the following
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DEFINITION 8.1. We call equation (8.17) the first KMO-Langevin
equation for the Kubo noise I, which describes the time evolution of I
associated with the original process X.

The final topic in this section is an interesting stochastic difference
equation obtained by exchanging the role of I and & in (8.17) : that is, the
Kubo noise [ is taken as a random force and the time evolution of the white
noise & is described in the style of the second KMO-Langevin equation.

By Theorem 4.2 in [8], we know that there exists a bounded Borel
measure v on [—1,1] such that

8.18) v({—-1,1H=0

oo Lt
(8.20) h(z)—lfl v(dt)  (zeU0)).

We note that (8.18)~(8.20) for the outer function % of X correspond to (2.
2), (2.3) and (2.6) for the mobility function [R] of X, respectively. In
addition, there exists a bijective correspondence between ¢ and v via the
following relation :

®.2D) o@D =5([ TEv(d)vab.
LEMMA 8. 3.

1_ 26!1 as
(\/ﬁhl(z>> ﬂl 1ﬁ2(1+2>+1 Z+F4<Z> (ZE (]1(0)),

where

(8.22) Fi(z)= \/‘ - 22){2/—a1(ﬂ —DA—-4
tz

~a0+2 [ 2
(- z)/l tzv(dt)
v(dl‘)}.

7 v(dt)

Proor. With the proof of in mind, we need the following
two facts:

(i) 2z ()™
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27z arz

u(dt)’
2 U.(0)

/1+t”<‘”) \/i’bfl v(dt)= \Falﬁl and

[ tzv<dt>—2/_a1<ﬂl -D).

(i) corresponds to (8. 4) and follows from [Theorem 2.1, (4.6) and
(8.18). By substituting §=0 and — = into Corollary 4.1 (i) in [8], we get
(i), which corresponds to (8.8).

Then, we can take the same procedure as in the proof of to
obtain [Lemma 8. 3. (Q.E.D.)

Recalling that the explicit form of 5 in (8.9) was derived in Lemma 8.
2 from F; in (8.3), we define, by using F, in (8.22), a function y, on Z by

(ﬂz(l-{—z)-l-l z+(1—z

11

(8.29)  y=go (R’

to get
LEMMA 8. 4.
(i)
(0 for n<—1
(T a0 A= =) B M0t
+92(0) M, (0>} for n=0
(JFa) =B E M+ 2+ My (n+2)
+ i_‘. y2(1—m) Mv(m)) for n=1

O R alcﬁ —DA- ) +B (M)
— 3 M,2m+3)+ M)+ 3 M, (2m+3)
+ 3 22— m) M, (m)} for n=2
(JF e MBI (=1 + My () = (M, (n=1) = M, ()

+ 31— m) M, (m)) for n>3
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(i) nel'(Z)
i) 3 y(m)=0

(iv) i — 1)y, (1) =0

With the help of the above lemmas, we show

THEOREM 8. 3.

(8.24) Em)—&En—D=—p1'L(Em)+&En—1))— (%*«5)(%)+2a1 tal (n)
a.s. (mez).

ProorF. By [Lemma 8. 4(ii), we see that the following two random
series are absolutely convergent (a.s.):

EM)—&En—D+p7'B(E(m)+&(n—1))

- L [l emimmo(i— e+ 7,1+ €)) dbg (m)

27[ m=—oo

and

(y,‘*g)(n):miw[ —i(n-m)o, (0)62’0«5(7)2)

Since 74(6) =——F,(¢®), it follows from that
27

EM)—EM—D+Br'B(Em)+EM—1)) + (vax&) (m)
1 i [Ze_i(n_m)o{l—ei6+ﬂ1_lﬁz(1+ei6>+E<€i0>}dﬁt’;‘.<m)

T 27 e
=2ai'a, 1 f} fne‘“”"")"h,(e"")d&f(m) a.s.
/27[ m=-—oo -

Therefore, by (4.7) and (4.10), we have (8.24). (Q.E.D)

REMARK 8.2. Similarly to equation (8.1), we note that the white
noise & and the Kubo noise I associated with the process X can play an
exchangeable role through equations (8.17) and (8. 24).

REMARK 8.3. We have seen in Example 4. 1 that X, is nothing but one
realization of the white noise & and its associated Kubo noise I, becomes

J2x & Since the second KMO-Langevin data (af?, 8%, pi®) associated

with X, becomes (y/2/#,1,0), we can see from [Theorem 5.1 that & is
governed by the following first KMO-Langevin equation :

(8.25) EM)—Em—D=—(CEm+En-1))+2&n) a.s. (neZ).
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We note that equation (8.25) coincides with the second KMO-Langevin
equations associated with the white noise &, but equation (8.24) is not the
second KMO-Langevin equation associated with &, because the noise process
I is not the Kubo noise associated with §.

§9. Generalized fluctuation-dissipation theorems (2)

We stated in § 6 the generalized fluctuation-dissipation theorems ((6.95),
(6.6) and (6.8) with (6.9)) based on the first KMO-Langevin equation (6.
1) of the original process X, and in § 8 we derived equation (8.17) of the
same type describing the time evolution of the Kubo noise I associated with
X. We will in this section obtain analogous results for I based on (8.17).

By (3.8) and Theorem 4. 2(iii), we have

9.D RN Z).

So, as in the definition (6.4) of the diffusion constant Dy of X, we can
define a diffusion constant D; of I by

©9.2)  D=lim B CHI00)»
to get
9.3 D= 2 Ri(n)+——5— RI(O)

THEOREM 9.1. (i) For any 6€(—m=n, n)

1 _ Ri(e™)
AB (e +1—e"+2z7(8) ~ 2 lim y(e™
-1\2
(i) @l_gi:]e,(o)cmz_l’m

wheve

9.0 Cun=r[IBF U +e™ +1- e+ 25O d)™

R;(0)

DI—Zﬁﬂ_ CI’

wheve

_ APACESAOESAON
[+ +pe [[a-na@n+y [ [S=Eawnds
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PrROOF. Since holds for z=¢% and lim F;(e*) =0, we have

6l —=

) . 2aqa7!
2lim 7, () =222
(9.6) 6?}r_n” ;(e) Ners

By combining (9.6) with again, we have (i). The proof of

is similar to that of (6.6) (given in [8], Theorem 7.1(ii)).
We proceed to the proof of [(iii). By Theorem 4. 2(iii), we have

0.0  RO=2a{[ A+DpdD+52+ [ A=Dp(dt)
1 [t/ (t—s)?
L= avpiay

9.8  RW=6{1-B)rr+D=nDnn+d}  reN),

where ¢;=+v 27 (a,(14 B+ 9(0))) 1.
By (3.9), we see that

9.9  SR=a6(B-D [ A+DpED+ FraD S yam))

We claim

910 Sn0Rymn=—5 [ [L= @,

By (3.7) and (3.9),
the left hand side of (9.10)

e OICAORRACHED WADISIFAG)
=5 [+ Opan—F, [ =Dpan [ A+)pds)

=50 [ty [ [HEZLCED o sy

:—%/:111{(1+t>+<1+8)+ (t2—1><1+81?j£:2—1><1+t) }Pz(df>pz<d8)

=the right hand side of (9. 10).
Therefore, by substituting (9.7) and (9.9) with (9.10) into (9.3),
D;=2¢:(1+7:(0)),
which, with Proposition 7.3(ii) and (9.7), yields [iii). (Q.E.D.)

DEFINITION 9.1. We call (i), (ii) and (iii) in Theorem 9.1 the
generalized first fluctuation-dissipation theorem, the generalized second
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fluctuation-dissipation theorem and the generalized Einstein relation for
the Kubo noise I based on equation (8.17), respectively.

The final problem is to estimate the constant C; in (9.5) and see how
large the deviation from the classical Einstein relation is.

THEOREM 9. 2.
(i) The case where p,=0: C;=1.
(ii) The case where p,+0:

{0<C]<ﬁ2-1/2 lf 0<ﬁ2<1
0<Ci< P, if B>1.

0<C<1 if (1—ﬂz>f_itp2<dt>zo.

PrROOF. (i) is an immediate consequence of (9.5). Since, by (9.5),

1<z WBBH70) A1) |
[a+bm@n+ae+ [ A-Dad))

we see that (ii) holds.
For the proof of [iii), we put
er=(denominator of the right hand side of (9.5))?

— (numerator of the right hand side of (9.5))?
and

c7=‘/_1<1+t>pz(dt)+%f:1[i <i:§s>2pz(dt)pz(d8>.

Then we have

©.1D  a={@+ [ (A-Dp@)—401+ )6
+2@+ [ A= DpdD) o=@ A+ nO)ft
=(([ A+ D@10+ 5 O) [ to(d0) B}
+H=2 [ A+ Dp D) A0+ 7(0) (= @) Bt ¢}
=([ A+ D) =) + 40+ RO A= B [ tpeCdD)
[ aonan
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Hence, if (1—8,) [ itpz(dt)zo, then ¢;>0, and so 0< C,<1. (Q.E.D.)

REMARK 9.1. Let us consider the following simple example :
(9.12)  p(dt)=pd(L}(dt) with p>0.
Then it follows from (9.11) that

a=1(B=D (0 —8)%—%),

which leads us to state

(a) the case where p<8:

0<C,<1 0< <1
{ Ci=1 according as =1
C>1 B>1.

(b) the case where p>8:

0<C;<1 BE O, 1>U(%, )
C=1 according as g, =1 or p9_ 3

9%
Ci>1 Q ﬂzE(l,m .

REMARK 9.2. Consider the analogous example :

9.13)  p(dt) =pd(-1} with p>0.

Then
=280 (6= 1) (b= Py
and so
0<C,<1 BE 0, 55U, 00
=1 according as B,= 3 —lf)9p or 1
Ci>1 ﬁze<8f9p, 1.
APPENDIX .

Let v be a bounded Borel measure on [0, o) such that
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(A.D v{0)H=0 and o</0°°x~1u<da><oo.

Then we define a bounded Borel measure ¢ on [0, ) by

(A2 o(d)=gC[ v @) v,
which satisfies (c.f. Lemma 2.6 in [6])
(A.3) o(0)=0 and o<fu+a—l>a<dx><oo.

Furthermore, we define a non-negative L!-function A by

(A.9 A(«f):i”f?i?am), EER.

Noting by Theorem 2.1 in that

log A(&)

(A5 oy

eL'(R),
we get the outer function % of A defined by

(A.6) h(&)=exp( me 1+AC loig_fi/})dl), ceC.

This outer function % can be expressed in a simple form in terms of the
original measure v.

THEOREM A.

MO =4 [ o@D (e,

ProOF. Put

(A F® =5 [ qo7zv(d), ¢CTUR

(STEP 1) We show
(i) Feo(H)NC(C*UR)

(ii) F&=F(-& (EER)
|F(&P=A(&) (6€ER)
Re F(&)>0 (EEC*UR)

(v) |Log F(Re)|<llog 5 [ A w(d|+ o 5 [ gy (@)
+x (R>0, 60, 7).
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(i) and (ii) are clear. (iii) follows from the following computa-
tion: by (A.2), (A.4) and (A.7),

|F(§)|2=ﬁfwfm (Az+2—'};a€z+gz) v(dA)v(dr")
(27[>2/ f ( 2+§2 + A'/Z_*_&-z) l“*‘l,l}(dl)v(dl)
1 J—
:7£ WGWD—MEL EER

Since

A+7ny
+7)?+ &7

Re(F (§+in) =~ f T p(d)>0  for all >0,

we have by noting (A.1).
For the proof of (v ), for any fixed R (0,c0) and <= (0, n), we note
that

|Log F(Re®)|<|log|F (Re™)||+ =

Furthermore, since 0<sin <1, we see from (A.7) that

. 1 1
F(Re?®)|<
[F(Re™)] 2nJo /(A +R sin 6)2+ (R cos 6)2

1 (=

v(dL)

and
|F (Reit?) IZ

D S A AL+ R(1+1")sin 6+ R? ,
= (2”)2_/ / (/1.2+21R sin 0+R2)<A/2+21'R sin 0+R2> V(dl)v(dl )

(2”>2.[f (A+R)? (/1’_+_R>2V<dl>1/(dl’)

sv(d1))2.

_<27r./ (A +R>
Therefore, we have (v).

(STEP 2) We claim that for any £ C™,

1+/1§ log A1)
/ 112z 9
1 1+A§ Log F(1) 1 1+2& Log F(—A)
=i Je A=t 1727 At o) a—e T 1+az A

27l
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By (ii) and (iii) in Step 1,
log A(A) =log|F (1)|+log|F(—1)] (AER).
On the other hand, by (ii) in Step 1,

Log F(A)=log|F (A)|+i Arg F(1)
Log F(—A)=log|F(—A1)|—i Arg F(1) (AER).

Hence, we see that

log A(A)=Log F(A)+Log F(—21) (AeR),
which yields the desired equality.
(STEP 3) We claim that for any £ C*,

(i) 1 14+ A& Log F(A)
Vo Sm e a—=¢  1+2°

— 1 1+1¢ Log F(—1) ,,  Log F(%)
2m‘/RA—¢ 1z A=—7

Log F(©)

dA=Log F (&) — 5

Since 1;_25 Lolgr +FZ§Z> has two simple poles ¢ and 7 on C*, we see that

for any Re (|€]+1, o),

1 [R1+2¢ LogF()l)a,/1
271 J-r A—& 1427

_ 1 =1+ Re”¢ Log F(Re®) ., _Log F (@)

=92 Re"—t 1+ (Re™)’ Re d/1+LogF(z) oy
Since

14+ Re?¢ Log F (Re*) Re| < 1+ R|&| |Log F(Re"")!R’

"Re®®—¢ 1+ (Re')? R—|¢]| R?—1
we use (v ) in Step 1 and apply Lebesgue’s convergence theorem to get

. 71+ Re®¢ Log F(Re*) 1 1510
}?152 ) Re"—¢ 1+ (Re™Y Re?d6=0.

Therefore, we have ().
1+2z2¢6 Log F(—2)

For the proof of (ii), we see that —— 1+22

has a simple

pole —z on C~, and so that

1 [R1+2¢ LogF(—)L)a,ll
2nt J-r A =& 1+A2
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1 1+ Re®*¢ Log F(—Re®)

76
“Zx ) R ¢  1t(RemT Ketdr+

Log F (¥)
—

Since, for any € (—=#,0) —e=¢'®*™ and 8+ <= (0, =), we can take the
same procedure as in (i) to obtain (ii).

Thus, by combining Step 2 with Step 3, we conclude from (A.6) that
A is proved. (Q.E.D)

[1]
(2]

[3]

(4]

References

Box, G. E. P. and G. M. JENKENS, Time series analysis, Forecasting and Control,
Holden-Day, 1976.

KUBO, R., Statistical mechanical theory of irreversible processes I, general theory and
simle applications to magnetic and conduction problem, J. Phys. Soc. Japan, 12
(1957), 570-586.

OKABE, Y., On a stationary Gaussian process with T -positivity and its associated Lan-
gevin equation and S-matrix, J. Fac. Sci. Univ. Tokyo, Sect. IA 26 (1979), 115-
165.

OKABE, Y., On a stochastic differential equation for a stationary Gaussian process with
T -positivity and the fluctuation-dissipation theorem, J. Fac. Sci. Univ. Tokyo,
Sect. IA 28 (1981), 169-213.

OKABE, Y., A generalized fluctuation-dissipation theorem for the one-dimensional
diffusion process, Commun. Math. Phys., 98 (1985), 449-468.

OKABE, Y., On KMO-Langevin equations for stationary Gaussian processes with T -
positivity, J. Fac. Sci. Univ. Tokyo, Sect. IA 33 (1986), 1-56.

OKABE, Y., On the theory of the Brownian motion with Alder-Wainwright effect, J. Stat.
Phys., 45 (1986), 953-981.

OKABE, Y., On the theory of discrete KMO-Langevin equations with reflection positivity
(1), Hokkaido Math. J., 16 (1987), 315-341.

OKABE, Y., On the theory of discrete KMO-Langevin equations with reflection positivity
(IID, to be submitted in Hokkaido Math. J.

Department of Mathematics
Faculty of Science
Hokkaido University



	\S 1. Introduction
	THEOREM 2. ...
	THEOREM 4. ...
	 ...
	THEOREM6.1.(i) For ...

	\S 2. Complex mobility ...
	THEOREM 2. ...

	\S 3. The second KMO-Langevin ...
	THEOREM 3. ...
	THEOREM 3. ...

	\S 4. The Kubo noise (1)
	THEOREM 4. ...

	\S 5. The second KMO-Langevin ...
	THEOREM 5. ...

	\S 6. Generalized fluctuation-dissipation ...
	A generalized first fluctuation-dissipation ...
	A generalized second fluctuation-dissipation ...
	A generalized Einstein ...

	\S 7. The deviation from ...
	THEOREM 7. ...

	\S 8. The Kubo noise (2)
	THEOREM 8. ...
	THEOREM 8. ...

	\S 9. Generalized fluctuation-dissipation ...
	THEOREM 9. ...
	THEOREM9.2.(i) The ...
	 ...

	References

