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Abstract

In the present paper we prove a Trotter-Kato type convergence the0-
rems for semi-groups of linear operators of class (1, A) . Our results
genaralize those of I. Miyadera [5]

\S 0. Introduction

The present paper deals with the problem of convergence of semi-
groups of linear operators, that is, determining wether or not a given
sequence of semi-groups converge in some sense to a semi-group. This
problem was investigated by many authors in the case of a sequence of C_{0}

semi-groups T_{n}(t) satisfying the condition
||T_{n}(t)||\leq Me^{\omega t} n\in N,

where M and \omega are independent of n(cf. [1], [3], [4], [6], [8]) . Miyadera
[5] also treated the problem under somewhat more general conditions and
for a more general class (1, A) of semi-groups.

Employing a more general procedure of taking limits of sequences of
operators (namely the limit inferior), we prove a generalization of the
results of Miyadera [5] (Theorem 2 and Corollary 1 below). Therefore
under rather mild conditions, convergence is established where it is pos-
sible that the limit does not exist in the sense of [5], [8]. We also note
that convergence of C_{0} semi-groups holds under weaker conditions than
the one mentioned above (see Corollary 2 and the remarks below).

\S 1. Preliminaries

In what follows, CX,||.|| ) is a Banach space, L(X) the space of
bounded linear operators on X. For an arbitrary linear operator A from
X to itself, D(A) , R(A) and G(A) denote the domain, range, and the
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graph of A , respectively. Occasionally we follow the practice of identify-
ing an operator by its graph. We also denote the resolvent set of A by
\rho(A) and the resolvent operator by R(\lambda:A)=(\lambda I-A)^{-1} .

Let (X_{n}, ||.||_{n}) , n=1,2 , \ldots be a sequence of Banach spaces and let P_{n} :
Xarrow X_{n} , n\in N be continuous linear maps such that for each x in X

\lim_{narrow\infty}||P_{n}x||_{n}=||x|| .

In this case the Banach-Steinhause theorem shows that there exists a con-
stant c>0 such that

||P_{n}x||_{n}\leq c||x|| (1)

A sequence (x_{n}) , x_{n} in X_{n} is said to converge to an element x in X
written in

1-imx_{n}=x, = \lim_{narrow\infty}||P_{n}x-x_{n}||_{n}=0 .
We also consider sequences of operators (A_{n}) , A_{n} : X_{n}arrow X_{n} , and the

limit of the sequence (A_{n}) , denoted by lim A_{n} (cf. [8]), is an operator on
X whose domain consists of all x in X for which there exists a corre-
sponding element y such that P_{n}x\in D(A_{n}) and 1-imA{}_{nn}Px=y . A more gen-
eral procedure of forming limits of sequences of operators is that of limit
inferior denoted by lim inf A_{n} or as we shall denote it by \hat{A} , it is defined
(see also [4]) as follows:

lim inf A_{n}=\{(x, y)\in X\cross X : there exists a sequence (x_{n}) , x_{n}\in D(A_{n})

such that, 1-imx_{n}=x and 1-imA_{n}x_{n}=y }.
Considering lim inf A_{n} as a function on X it is, in general, multivalued
and is an extension of the operator lim A_{n} . The following set will also be
useful in our investigation ,\cdot

D^{o}=\{x\in X : there exists a sequence (x_{n}) , x_{n}\in D(A_{n}) such that
1-imx_{n}=x and \sup_{n}||A_{n}x_{n}||<\infty }.

Next we review few facts about semi-groups of linear operators, for
further details and information (refer to [2] and [9]). A semi-group of
linear operators on X is a mapping T(t):(0, \infty) -arrow L(X) satisfying T(t+
s)=T(t)T(s) , for all t, s>0 . It will be assumed here that T(t) is
strongly continuous on (0, \infty) . The infinitesimal operator of T(t) is
defined as usual by

A_{0}x= \lim_{harrow 0+}h^{-1}(T(h)-I)x

whenever the limit exists. In general, A_{0} is an unbounded operator which
need not even be closed. If the closure \overline{A}_{0} exists, then it is called the
infinitesimal generator (i.g.) of T(t) . The type of T(t) , denoted by \omega ,
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is given by:

\omega=\lim_{t>}\inf_{0}t^{-1} log ||T(t)|| .

If T(t) is strongly continuous at t=0 , then it is called a C_{0} semi-
group. In this case, there exists constants M>0 , \omega such that ||T(t)||\leq

Me^{\omega t} . t\geq 0 , and A_{0} is closed (cf [2]). In the abscence of continuity at
the origin we consider a more general class of semi-groups known as class
(1, A) (cf [2]), which we now define

DEFINITION. A strongly continuous semi-group T(t) , t>0 is said to
be of class (1, A) iff the following conditions are satisfied:

(a) \int_{0}^{1}||T(t)||dt<\infty ,

(b) \lim_{\lambdaarrow\infty}\lambda\int_{0}^{\infty}e^{-\lambda t}T(t)xdt=x, \mathfrak{R}e\lambda>\omega, x\in X.
It follows from (a) that the integral in (b) exists and defines a bounded
linear operator R(\lambda) on X. Moreover the closure \overline{A}_{0} exists and R(\lambda,\cdot

\overline{A}_{0})=R(\lambda) , for \mathfrak{R}e\lambda>\omega . Finally we note that every C_{0} semi-group is of
class (1, A) but that the converse is not true in general as indicated by
the examples in [2], [7].

\S 2. Convergence of Semi-groups.

In what follows, the notation \{T(t, A), t>0\} will be used to mean a
semi-group T(t) with i.g . A . For conditions(*) and (**) below, we refer
to [5].

THEOREM 1. For each n in N, let \{ T(t;A_{n}), t>0\} be a semi-group
of linear operators on X_{n} of class (1, A) . Let there exist constants M,

K>0 and \omega\geq 0 such that

\int_{0}^{\infty}e^{-\omega\xi}||T(\xi;A_{n})||_{n}d\xi\leq M, n\in N (*)

and

||\lambda R(\lambda;A_{n}||_{n}\leq K, \lambda\geq\omega, n\in N. (**)

Further, assume that D^{O} and R(\lambda_{0}I-\hat{A}) are dense in X, for some \lambda_{0}>\omega .
Then \hat{A} is a densely defifined single valued operator on X with \rho(\hat{A})\supseteq

(\omega, \infty) and such that

\lim_{\lambdaarrow\infty}\lambda R(\lambda; \text{\^{A}}) x=x, x\in X (2)

and moreover, for each \lambda>\omega
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\lim_{narrow\infty}||R(\lambda;A_{n})P_{n}x-P_{n}R(\lambda,\cdot\hat{A})x||_{n}=0 , x\in X. (3)

PROOF. Let \lambda_{0}>\omega be as in the hypothesis and let x\in R(\lambda_{0}I-\hat{A}) ,

then it is easy to verify that there exists a unique element y\in X such that

\lim_{narrow\infty}||R(\lambda_{0}I ; A_{n})P_{n}x-P\theta||_{n}=0 . (4)

Hence we obtain a map J(\lambda_{0}):R(\lambda_{0}I-\hat{A})arrow X defined by J(\lambda_{0})x=y . Also
(*) implies

||R(\lambda;A_{n}||_{n}\leq M, n\in N, \mathfrak{R}e\lambda>\omega . (5)

Combining (4), (5) and the assumption that R(\lambda_{0}I-\hat{A}) is dense, we con-
clude by continuity that J(\lambda_{0}) may be extended to all of X and further-
more

\lim_{narrow\infty}||R(\lambda_{0 }; A_{n})^{\kappa}P_{n}x-P_{r}J(\lambda_{0})^{\kappa}x||_{n}=0 , \kappa\in N, x\in X. (6)

where J (\lambda_{0})^{\kappa} is defined inductively on \kappa . Now each \lambda>\omega for which (4)

holds, yields an operator J(\lambda) which satisfies (6). The following argu-
ment shows that J(\lambda) exists for all \lambda>\omega . Let \Lambda be the set of all numbers
\lambda>\omega for which J(\lambda) is defined. We note in view of lemma 4.1 of [5] that
the representation

R( \lambda ; A_{n})=\sum_{\kappa=0}^{\infty}(\lambda-\lambda_{0})^{\kappa}R(\lambda_{0} ; A_{n})^{\kappa+1} (7)

is valid for \omega<\lambda<2\lambda_{0}-\omega . Using (6) and (7) one can verify that \Lambda is
both open and closed in (\omega^{ },\infty) and since \lambda_{0}\in\Lambda , we find that \Lambda=(\omega^{ },\infty) .

Next we verify that J(\lambda) is Abel summable, i.e.,

\lim_{\lambdaarrow\infty}\lambda f(\lambda)x=x, x\in X.

Let x\in D^{O} . and (x_{n}) a sequence, x_{n}\in D(A_{n}) such that \varlimsup_{x_{n}=x} and
||A_{n}x_{n}||_{n}\leq b . Then

||P_{n}(\lambda J(\lambda)x-x)||_{n}\leq||P_{n}(\lambda J(\lambda)x)-\lambda R(\lambda;A_{n})P_{n}x||_{n}

+||\lambda R(\lambda;A_{n})P_{n}x-\lambda R(\lambda;A_{n})x_{n}||_{n}

+||\lambda R(\lambda;A_{n})x_{n}-x_{n}||_{n}+||x_{n}-P_{n}x||_{n}

and the 3rd term on the right hand side is dominated by

||R( \lambda;A_{n})A_{n}x_{n}||_{n}=\frac{1}{\lambda}||A_{n}x_{n}+A_{n}R(\lambda;A_{n})A_{n}x_{n}||_{n}

\leq\frac{1}{\lambda}||A_{n}x_{n}||_{n}(1+||A_{n}R(\lambda;A_{n})||_{n})
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\leq\frac{b}{\lambda}(2+K) .

Passing to the limit as narrow\infty and then as \lambdaarrow\infty , we obtain \lim_{\lambdaarrow\infty}\lambda J(\lambda)x=

x. Since D^{o} is dense in X , the conclusion follows by the Banach-
Steinhaus argument.

To show that \hat{A} is single valued, assume that (0, y)\in\hat{A} and let x_{n}\in

D(A_{n}) , n\in N be such that \varlimsup_{x_{n}=0} and \varlimsup A_{n}x_{n}=y . Put y_{n}=

(\lambda I-A_{n})x_{n}(\lambda>\omega) . Then \lim_{narrow\infty}||y_{n}+P\theta||_{n}=0 , hence

\lim_{narrow\infty}||R(\lambda;A_{n})P\theta||_{n}\leq\lim_{narrow\infty}||R(\lambda;A_{n})P\theta+R(\lambda jA_{n})y_{n}||_{n}

+ \lim_{narrow\infty}||R(\lambda;A_{n})y_{n}||_{n}=0 .

From this and (6) we find that J(\lambda)y=0 for all \lambda>\omega , which implies y=0.
It remains to show that J(\lambda)=R(\lambda;\hat{A}) , for \lambda>\omega . Let x\in X and y=

J(\lambda)x. Then, as befor\^e \lim_{narrow\infty}||R(\lambda; A_{n})P_{n\theta}x-P||_{n}=0 and with y_{n}=R(\lambda ;
A_{n})P_{n}x we find that 1-imy_{n}=y and 1-imA\theta n=\lambda y-x. Therefore y\in D(\^A)
and \text{\^{A}} y=\lambda y-x , which yields x=(\mbox{\boldmath $\lambda$}I-\^A)J (\lambda)x. Similarly, one verifies
that \int(\lambda) (\mbox{\boldmath $\lambda$}I-\^A)x=x, for x\in D(\hat{A})

We shall use the following notation for convenience;

H(\omega)=\{\lambda:\mathfrak{R}e\lambda>\omega\} ,
S(\omega)=\rho(\hat{A})\cap H(\omega) .

PROPOSITION 1. Suppose that \{ T (t ; A_{n}) : t>0\} satisfifies (*) and (**)
such that D^{o} and R(\lambda_{0}I-\hat{A}) are dense in X for some \lambda_{0}>\omega, then the
following assertions hold :

(a) For each \lambda\in S(\omega)

R( \lambda,\cdot\hat{A})=\lim inf R(\lambda;A_{n}) (8)

and
||R(\lambda;\hat{A}||\leq M (9)

(b) H(\omega)\subseteq\rho(\hat{A}) ,
(c) R( \lambda;\hat{A})^{\kappa}=\lim inf R(\lambda;A_{n})^{\kappa}-(\mathcal{K}\geq 1) , \lambda\in H(\omega) ,
(d) For each z\in D(\hat{A}^{2}) there exists a sequence (z_{n}) , z_{n}\in D(A_{n}^{2}) such

that
1-imz_{n}=z , 1-imA_{n}z_{n}=\hat{A}z and 1-imA_{n}^{2}z_{n}=\hat{A}^{2}z, in particular lim inf A_{n}^{2}\supset\hat{A}^{2} .

PROOF. (a) Let \lambda\in S(\omega) and let x\in X, y\in D(\^A) be such that x=
\mbox{\boldmath $\lambda$}y-\^Ay. Then, by definition, there exists y_{n}\in D(A_{n}) , n\in N such that
1-imy_{n}=y and 1-imAv_{n} =\^Ay. Put x_{n}=\lambda y_{n}-A\theta n . Then, clearly 1-imx_{n}=x
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and 1-imR(\lambda;A_{n})x_{n}=R(\lambda;\hat{A})x , while (9) follows from (8) and (5).

(b) Let x\in D(\^A), y=\^Ax and let x_{n}\in D(A_{n}) , n\in N be such that
1-imx_{n}=x and 1-imA_{n}x_{n}=\hat{A}x. Then, by (5)

||x_{n}||_{n}\leq K||\lambda_{0}x_{n}-A_{n}x_{n}||_{n} .

Passing to the limit, we get

||x||\leq M||\lambda_{0}x-\hat{A}x||

and since by assumption R(\lambda_{0}I-_{A}\hat{4}) is dense, we find that \lambda_{0}\in S(\omega) .
Now, let \lambda_{n}arrow\lambda , where \lambda_{n}\in S(\omega) and \lambda\in H(\omega) . Using (9), we find that
for each x\in X,

||\lambda-\hat{A})R(\lambda_{n} ; \hat{A})x-x||=||(\lambda-\lambda_{n})R(\lambda_{n} ; \hat{A})x||\leq M|\lambda-\lambda_{n}|||x|| ,

showing that R(\mbox{\boldmath $\lambda$}I-\^A) is dense in X. Replacing \lambda_{0} in the preceding
argument by \lambda , we have that \lambda\in S(\omega) . Thus S(\omega) is a nonvoid closed
and open subset of H(\omega) , hence is equal to it.

(c) follows from (a) and (b) by induction
(d) Let z\in D(\hat{A}^{2}) and let x\in X be such that z=R(\lambda_{0} ; \hat{A})^{2}x. Put y=

R(\lambda_{0} ; \hat{A})x, x_{n}=P_{n}x, y_{n}=R(\lambda_{0} ; A_{n})x_{n} and z_{n}=R(\lambda_{0} ; A_{n})y_{n} . Using (a) we
find that

1-imy_{n}=R(\lambda_{0} ; \^A)x=y and 1-imz_{n}=R(\lambda_{0} ; \hat{A})y=z . Thus
\varlimsup(\lambda_{0}z_{n}-A_{n}z_{n})=1-imy_{n}=y=\lambda_{0}z-\hat{A}z , which implies
1-imA_{n}z_{n}=\hat{A}z . Similarly
\varlimsup(\lambda oy_{n}-A\theta n)=1-imx_{n}=x=\lambda_{0}y-\hat{A}y implies
l–imA\mbox{\boldmath $\theta$}n=\^Ay. Hence
1-imA_{n}(\lambda_{0}z_{n}-A_{n}z_{n})=\hat{A}(\lambda_{0}z-\hat{A}z) and 1-imA_{n}^{2}z_{n}=\hat{A}^{2}z .

We now state the main result

THEOREM 2. For each n in N let \{T(t;A_{n}), t>0\} be a semi-group

of class (1, A) on X_{n} such that conditions (*) and (**) are satisfified.
Then the following assertions are equivalent:
(i) There exists a semi-group T(t) of class (1, A) defifined on X such
that for each x in X and x_{n} in X_{n} , n=1,2,3 , \ldots

1-imx_{n}=x\Rightarrow\varlimsup T(t,\cdot A_{n})x_{n}=T(t)x, t>0 (10)

uniformly on compact subsets of (0, \infty) ,
(ii) D^{o} and R(\lambda_{0}I-\hat{A}) , for some \lambda_{0}>\omega are dense in X.

In either case \hat{A} is the i.g. of T(t) .

PROOF. ( i )\supset(ii)
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Assume that there exists a semi-group T(t) of class (1, A) satisfying
(10) with i.g . A and let x\in X, x_{n}\in X_{n} , (n\geq 1) be such that 1-imx_{n}=x.
Then for sufficiently large \lambda

\lim_{narrow\infty}||R(\lambda;A_{n})x_{n}-P_{n}R(\lambda;A)x||_{n}

\leq\lim_{narrow\infty}\int_{0}^{\infty}e^{-\lambda t}||T(t;A_{n})x_{n}-P_{n}T(t)x||_{n}dt=0 .

Fix a large \lambda and let x\in D(A) . Then there exists y\in X such that \lambda x-

Ax-y. Letting y_{n}=Pv and x_{n}=R ( \lambda; An)yn, we have that 1-imx_{n}=x ,
1-imA_{n}x_{n}=\varlimsup(\lambda x_{n}-y_{n})=\lambda x-y=Ax and so A\subset\hat{A} . Since T(t) is of class
(1, A) , R(\lambda I-A) and D(A) are both dense in X , hence the same is true
for R(\lambda I-\hat{A}) and D^{o} Now it follows from this and (3) that A=\hat{A} .

(ii)\supset(i)

From Theorem 1 and Proposition 1 \hat{A} is a closed operator whose
resolvent R(\lambda;\hat{A}) is bounded in the half plane H(\omega) . Therefore, in
view of a lemma of Hille and Phillips (cf. [2]) there exists \gamma>\omega such
that

Y(t;z)=z+t \hat{A}z+\frac{1}{2\pi i}\int_{\gamma-i\infty}^{\gamma+i\infty}e^{\lambda t}R(\lambda;\hat{A})\hat{A}^{2}z\frac{d\lambda}{\lambda^{2}} (11)

defines for each z\in D(\hat{A}^{2}) a continuous function on t\geq 0 with Y(0;z)=z.
Similarly, since each T(t;A_{n}) is of class (1, A) with H(\omega)\subseteq\rho(A_{n}) ,

T (t; A_{n})w=w+tA_{n}w+ \frac{1}{2\pi i}\int_{\gamma-i\infty}^{\gamma+i\infty}e^{\lambda t}R(\lambda ; A_{n})A2nw\frac{d\lambda}{\lambda^{2}} , w\in D

[A_{n}^{2}] . (12)

Now let z\in D(\hat{A}^{2}) and let (z_{n}) be a sequence as given by Proposition
l-(d), replacing w by z_{n} in (12) and passing to the limit as narrow\infty , we find
that the 1st and 2nd terms in the right hand side of (12) tend to those in
the right hand side of (11). To see that the integral in (12) also con-
verges to the integral in (11), we note firstly by Proposition 1 that

1-imR(\lambda,\cdot A_{n})A_{n}^{2}z_{n}=R(\lambda;\hat{A})\hat{A}^{2}z

and secondly that there exist positive constants M , \alpha independent of n
such that the integrand in (12) is dominated in norm by \alpha Me^{\gamma t}/|\lambda|^{2} , and
this is integrable over the line \gamma . In conclusion we find that

\varlimsup T(t;A_{n})z_{n}=Y(t;z) , t\geq 0 , z\in D(\hat{A}^{2}) . (13)

Furthermore, using Theorem 7.7.4 of [2] and (13) we have

||Y(t;z)||\leq(C_{1}M^{2}e^{\gamma t}/t^{2})||z|| , t>0 , z\in D(\hat{A}^{2}) , (14)
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where C_{1} is a constant. Therefore since D(\hat{A}^{2}) is dense in X, Y(t;z)
has a unique bounded extension T(t) on X which satisfies (14).

It is readily verified that
\varlimsup T(t:A_{n})P_{n}z=T(t)z, z\in X, (15)

uniformly on compact subsets of (0, \infty) and that T(t) has the semi-group
property. To verify that it is of class (1, A) , we note from

||T(t)|| \leq\lim\inf_{n}||T(t;A_{n}||_{n} that
\int_{0}^{\infty}e^{-\omega t}||T(t)||dt\leq\lim_{n}\inf\int_{0}^{\infty}e^{-\omega t}||T(t ; A_{n}||dt\leq M.

Thus the integral

R( \lambda)x=\int_{0}^{\infty}e^{-\lambda t}T(t)xdt

exists for all x\in X, \mathfrak{R}e\lambda>\omega , and as before
\lim_{narrow\infty}||R(\lambda;A_{n})P_{n}x-P_{n}R(\lambda)x||_{n}=0 .

Hence R(\lambda)=R(\lambda; \hat{A}) , in particular recalling (2), we see that T(t) is of
the class (1, A) and \hat{A} is the i.g . of T(t) .

COROLLARY 1. Suppose that the hypotheses of Theorem 2 are fu lfilled.
Then the following are equivalent:
(i) There exists a semi-group T(t) of class (1, A) defifined on X such
that for each x in X and x_{n} in X_{n} , n=1,2,3 , \ldots .

1-imx_{n}=x\Rightarrow\varlimsup T(t;A_{n})x_{n}=T(t)x, t>0 ,

uniformly on compact subsets of (0, \infty) ,
(ii) There exists a densely defifined operator A such that A \subset\lim inf A_{n}

and such that R(\lambda I-A) is dense for some \lambda>\omega .
In either case the closure \overline{A} is the i.g. of T(t) .

COROLLARY 2. If for each n in NT(t;A_{n}) is a C_{0} semi-group sat-
isfying conditions (*) and (**) , then the conclusion of Theorem 2 and or
Cor1 holds.

REMARKS
1. Replacing A by lim A_{n} in Corollary 1, one obtains the results of [5]
which also extends the results of [8] on this point.
2. We note, in Corollary 2 that the limit semi-group need not be of class
C_{0} . In fact if it is a C_{0} semi-group, then
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||T (t ; A_{n})||_{n}\leq Me^{\omega t}- t\geq 0 ,

where M and \omega are independent of n .
References

[1] M. HASEGAWA, A note on the convergence of semi-groups of operators. Proc. Japan

Acad. 40 (1964), 262-266.
[2] E. HILLE and R. S. PHILLIPS, Functional analysis and semi-groups, rev. ed., Amer.

Math. Soc. Colloq. Publ., Vol. 31, Providence, R. I., 1957.
[3] T. KATO, “ Purturbation Theory for Linear Operators” Berlin-Heidelberg-New York-

Tokyo, Springer 1984.
[4] T. G. KURTZ, Extensions of Trotter’s operator semi-group approximation theorems, J.

Func. Anal. 3 (1969), 354-375.
[5] I. MIYADERA, Perturbation theory for semi-groups of operators, SQgaku., 20 (1968), 14

-25.
[6] S \^OHARU, On the convergence of semi-groups of operators, Proc. Japan Acad., 42

(1966), 880-884.
[7] R. S. PHILLIPS, An inversion formula for the Laplace transforms and semi-groups of

linear operators, Annals of Math. Vol. 59, No. 2 (1954), 325-356.
[8] H. F. TROTTER, Approximation of semi-groups of operators, Pac. Jour. Math., 8

(1958), 887-919.
[9] K. YOSIDA, “ Functional Analysis ” (6th edition) Springer Verlag (1980).

Mathematics Department
Kuwait University


	\S 0. Introduction
	\S 1. Preliminaries
	\S 2. Convergence of Semi-groups.
	THEOREM 1. ...
	THEOREM 2. ...

	References

