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\S 1. Introduction and Main Results.

In Riemannian geometry, the spaces of constant curvature are consid-
ered to be the typical models in various problems. For example, the
famous sphere theorem deals with compact Riemannian manifolds whose
sectional curvatures are similar to that of the standard sphere. For non-
compact Riemannian manifolds, we have the following theorem. Let K_{M}

denote the sectional curvature of a Riemannian manifold M and k be a
nonpositive constant.

GAP THEOREM 1. 1 (Greene-Wu [5], Kasue-Sugahara [3]). Let M be a
complete noncompact Riemannian manifold of dimension n\geqq 3 . Suppose
that M satisfifies the following three conditions.
(i) M has a pole 0, i.e. , the exponential mapping \exp_{0} from the tangent
space T_{0}M to M is a diffeomorphism.
(ii) K_{M}\leqq k or K_{M}\geqq k everywhere.
(iii) \lim_{rarrow}\inf_{\infty}\max_{d(o,p)=r}k(r)|K_{M}-k|=0 , where d(0, p) denotes the distance

between two points 0 and p and k(r)=r^{2} for k=0 and k(r)=
exp (2r\sqrt{-k}) for k<0 .
Then M is isometric to the n-dimensional simply connected space of con-
stant curvature k.

In this theorem, the third condition can be understood that M is in a
neighbourhood of the model in the set of Riemannian manifolds. This
theorem asserts that there are gaps in the positive and negative sides of
the model spaces in the set of Riemannian manifolds. But the first condi-
tion implies that M is diffeomorphic to R^{n} and the assertion is restricted
within metrics on R^{n} .

We note that Gromov claimed that for M with K_{M}\geqq k=0 the first
condition can be relaxed to
(i’) M is simply connected at infifinity,
where M is said to be simply connected at infinity if for any compact
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subset V of M there is a compact subset V’ of M such that V is
contained in V’ and M\backslash V’ is connected and simply connected.

We generalize the claim of Gromov to the following

PROBLEM. Classify Riemannian manifolds M which satisfy the follow-
ing two conditions.
(ii) K_{M}\geqq k or K_{M}\leqq k everywhere.
(iii) K_{M} converges to k at infifinity.

In case of K_{M}\leqq k , we have the following lemma.

LEMMA 1. 1 (Kasue-Sugahara [3]. If the universal covering of M is
homeomorphic to R^{n}(n\geqq 3) and if M is simply connected at infifinity, then
M is simply connected.

It follows from the Hadamard-Cartan theorem and this lemma that
(i’) implies ( i) if K_{M}\leqq 0 . Therefore ( i) can be replaced by (i’) in this
case.

THEOREM 1. 2 (Kasue-Sugahara [3]). Let M be a complete non-
compact Riemannian manifold of dimension n\geqq 3 . Suppose that M satisfifies
the following three conditions.
(i’) M is simply connected at infifinity.
(ii) K_{M}\leqq k everywhere.
(iii) \lim_{rarrow}\inf_{\infty}\max_{d(o,p)=r}k(r)|K_{M}-k|=0 , where k(r)=r^{2} for k=0 and k(r)=
exp (2r\sqrt{-k}) for k<0 .
Then M is isometric to the n-dimensional simply connected space of con-
stant curvature k.

Here in this paper we present the following

CONJECTURE 1. Let M be a complete noncompact Riemannian mani-
fold of dimension n\geqq 3 . Suppose that M satisfifies the following three condi-
tions.
(i’) M is simply connected at infifinity.
(ii) K_{M}\geqq k everywhere.
(iii) \lim_{rarrow}\inf_{\infty}\max_{d(0,p)=r}k(r)|K_{M}-k|=0 .

Then M is isometric to the n-dimensional simply connected space of con-
stant curvature k.

The next theorem supports this conjecture.

THEOREM 1. 3(Greene-Wu[5]). Let M be complete noncompact
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Riemannian manifold of dimension n\geqq 3 . Suppose that M satisfifies the fol-

lowing three conditions.
(i’) M is simply connected at infifinity.
(ii) K_{M}\geqq 0 everywhere.
(iii’) M is flat outside a compact set.
Then M is isometric to the n-dimensional euclidean space R^{n} .

In this paper we consider the following conjecture as a step to prove
Conjecture 1.

CONJECTURE 2. Let M be a complete noncompact Riemannian mani-
fold of dimension n\geqq 3 . Suppose that M satisfifies the following three condi-
tions.
(i’) M is simply connected at infifinity.
(ii) K_{M}\geqq-1 everywhere.
(iii’) K_{M}=-1 outside a compact set.
Then M is isometric to the n-dimensional hyperbolic space of constant cur-
vature -1.

DEFINITION. A Riemannian manifold M is said to be of constant
curvature k at infifinity if there is a compact proper subset V of M such
that K_{M}=k outside V. Two Riemannian manifolds M and N are said to
be isometric at infifinity if there are compact proper subsets V_{M}\subset M and V_{N}

\subset N and an isometry between M\backslash V_{M} and N\backslash V_{N} .
In Theorem 1.3 and Conjecture 2, the condition (i’) restricts the

dimension of M to be greater than or equal to 3. But the next lemma
enables us to rewrite them in the form which contains the case of dimen-
sion 2 as follows.

LEMMA 1. 2 (Greene-Wu[5]). Let M be a noncompact complete
Riemannian manifold of dimension n\geqq 3 . Suppose that M is simply con-
nected at infifinity and that M is of constant curvature k at infifinity. Then
M is isometric at infifinity to the simply connected space of constant curva-
ture k.

THEOREM 1. 4. Let M be a complete Riemannian manifold of dimen-
sion n\geqq 2 . Suppose that K_{M}\geqq 0 and M is isometric to the n-dimensional
Euclidean space at infifinity. Then M is isometric to the n-dimensional
Euclidean space.

We note that this theorem iS a weak version of the Geroch conjecture
[4] in dimension 3.
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CONJECTURE 3. Let M be a complete noncompact Riemannian mani-
fold of dimension n\geqq 2 . Suppose that K_{M}\geqq-1 and M is isometric at
infifinity to the n-dimensional real hyperbolic space of constant curvature
-1. Then M is isometric to the n-dimensional hyperbolic space of con-
stant curvature -1, i.e. , the real hyperbolic space cannot be changed its
structure inside any compact subset with K_{M}\geqq-1 .

We present here the elliptic version for this conjecture.

CONJECTURE 4. Let M be an open hemisphere of the n-dimensional
standard sphere S^{n}(1) of constant curvature 1. Then its structure cannot
be changed in any compact subset with K_{M}\geqq 1 .

In this paper, we give two proofs of Theorem 1.4. One is reduced to
the splitting theorem of Cheeger-Gromoll [2] for Riemannian manifolds of
nonnegative curvature and the other can be applied to the proof of conjec-
tures 3 and 4 with the assumption that the compact sets are small. We
shall prove

THEOREM 1. 5. Let H^{2}(-1) be the 2-dimensional hyperbolic space of
constant curvature -1. Then H^{2}(-1) cannot be changed its (topological
and Riemannian) structure inside any compact set with the sectional curva-
ture K\geqq-1 .

THEOREM 1. 6. Let H^{n}(-1) be the hyperbolic space of constant cur-

vature -1. Let V_{H}(r) be a metric ball of radius r<r_{-1}= \log\frac{20\sqrt{2}-1}{17} .

Then H^{n}(-1) cannot be changed its (topological and Riemannian)
structure in V_{H}(r) with the sectional curvature K\geqq-1 .

THEOREM 1. 7. Let S^{n}(1) be the sphere of constant curvature 1. Let
V_{S}(r) be a metric ball of radius r<r_{+1}=\pi/4 . Then S^{n}(1) cannot be
changed its (topological and Riemannian) structure in V_{s}(r) with the sec-
tional curvature K\geqq 1 .

As for the Euclidean space, we can shrink compact sets by homothety.
Therefore the size of a set has no sense. On the other hand, a homothety
of the hyperbolic space or the sphere changes the curvature of the space.

\S 2. The First Proof of Theorem 1.4.

LEMMA 2. 1. Suppose M is isometric to the n-dimensional Euclidean
space R^{n} at infifinity. Then M has a line, where a geodesic \gamma:Rarrow M is
said to be a line if \gamma restricted to any subinterval is distance-minimizing.
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PROOF. Let V_{M} and V_{E} be compact sets of M and R^{n} such that there
is an isometry \varphi:R^{n}\backslash V_{E}arrow M\backslash V_{M} . Let \alpha:Rarrow R^{n} be a straight line. Let
\alpha_{t} be a minimizing geodesic from \varphi(\alpha(-t)) to \varphi(\alpha(t)) in M. If \alpha_{t} does
not pass V_{M} , then the geodesic \varphi^{-1}\circ\alpha_{t} coincides \alpha|_{[-t,t]} . Therefore \alpha_{t}

passes a compact set \{\varphi(\alpha(0))\}\cup V_{M} for any t. Then \{\alpha_{t}\}_{t\in R} contains a
convergent subsequence. It is clear that the limit is a line since it is the
limit of minimizing curves.

PROOF OF THEOREM 1. 4. From the splitting theorem for Riemannian
manifolds of nonnegative curvature [2] and the lemma above, we get a
Riemannian decomposition M=R^{m}\cross M’ with m>0 . Since M is flat at
infinity, M’ must be flat and so is M.

It follows from Lemma 1.1 that M is simply connected if n=\dim M\geqq

3 , which implies that M is isometric to R^{n} .
Suppose that M is of two dimension. Then dim M’=0 or 1. Since

M is complete, M’ is isometric to S^{1} , R^{1} or a point. Since M is isometric
to R^{2} at infinity, M’ is isometric to R^{1} or a point. Therefore M is
isometric to R^{2} .

\S 3. The Second Proof of Theorem 1. 4.

Let V(r) be a ball of radius r centered at 0 in the n-dimensional
Euclidean space R^{n} .

LEMMA 3. 1. Let p and q be points in R^{n} . Let \theta denote the angle
\angle opq . If

|po|-r>|po|\cos\theta+r,

then the segment pq is shorter than the R^{n}\backslash V(r) -part of any curve from p
to q.

PROOF. Let \alpha denot the angle \angle oqp . Let c be a curve from p to q.
If c does not pass V(r) , it is clear that length(c)\geqq lpql. Suppose that c
passes V(r) . Let x denote the first point at which c crosses the bound-
ary of V(r) and y the last point. Then we have

length (c)\geqq|px|+|qy|\geqq(|po|-r)+(|qo|-r)
>|po|\cos\theta+|qo|\geqq|p0|\cos\theta+|qo|\cos\alpha

=|pq| .

Let M be a complete Riemannian manifold of nonnegative curvature.
Let V_{M} be a compact set of M and \varphi an isometry from R^{n}\backslash V(r) to
M\backslash V_{M} . Let S be a hypersphere in R^{n} of radius l\geqq 8r centered at 0 . Let
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p be a point of S and q be the antipodal point of p.

LEMMA 3. 2. The image of the segment pq by \varphi outside V(r) is a
part of a minimizing geodesic between \varphi(p) and \varphi(q) . And the distance
between \varphi(p) and \varphi(q) is equal to the length |pq| .

PROOF. Let x be a point in S with xo\perp po . Then from Lemma 3.1,
we see that the segments px and qx does not pass V(r) and that the
images \varphi(px) and \varphi(qx) by \varphi are minimizing geodesies. Let \gamma be a
minimizing geodesic from \varphi(p) to \varphi(q) . We consider a geodesic triangle
\Delta_{M}\varphi(p)\varphi(q)\varphi(x) with sides \gamma , \varphi(qx) and \varphi(xp) . We compare this tri-
angle with Apqx. Since they have the same angle at x and \varphi(x) , we see
|pq|\geqq length(\gamma) from Toponogov’s comparison theorem. Let \Delta pq’x be a
triangle in R^{n} with |pq’|=length(\gamma)\leqq|pq| and \angle xpq’=\angle\varphi(x)\varphi(p)\varphi(q) .
Then from Toponogov’s comparison theorem we get

(*) |qx|=length\varphi(qx)\leqq|q’x|

If the image of the segment pq outside V (r) by \varphi is not a part of \gamma , then
we may choose x so that the angle of \Delta_{M}\varphi(p)\varphi(q)\varphi(x) at \varphi(p) is less
than \angle xpq=\pi/4 . It is clear that if \angle xpq’<\angle xpq=\pi/4 or |pq’|<|pq| , then
|q’x|<|qx| , which contradicts (*) . Hence length(\mbox{\boldmath $\gamma$}) =|pq| and the image of
pq by \varphi outside V(r) is a part of \gamma .

LEMMA 3. 3. Let \gamma:[0,2l]arrow M be a unit speed geodesic which starts
from \varphi(S) in the direction of an inside normal to \varphi(S) and X a Jacobi
fifield along \gamma with X(0) , X’(0)\in T_{\gamma(0)}\varphi(S) . Then X vanishes at \gamma(l) and
\gamma(l) is the fifirst focal point of \varphi(S) along \gamma. Moreover the sectional cur-
vature of 2-planes which is tangent to \gamma is 0.

PROOF. Let p=\gamma(0) and q=\gamma(2l) . From Lemma 3.2, we see that q
\in\varphi(S) and \gamma|_{[0,2l]} is minimizing. Let X be a Jacobi field along \gamma with
X(0) , X’(0)\in T_{p}(\varphi(S)) . Then X is the infinitesimal variation of a varia-
tion of geodesies of length 2l which start from \varphi(S) in the normal direc-
tion. From Lemma 3.2, we see that these geodesies arrive at \varphi(S) nor-
mally at the other ends. Therefore X(2l) , X’(2l)\in T_{q}(\varphi(S)) . We con-
sider the geodesic \tilde{\gamma}(t)=\gamma (2 l-t) and the Jacobi field \tilde{X}(t)=X (2 l-t)
along \gamma . From a generalization of the Rauch-Berger comparison theorem
by Warner [6], X and \overline{X} must vanish before or at l . Suppose X van-
ishes before l . Then X vanishes two distinct points in the interval (0,

2 l ). Since \gamma|_{[0,2l]} is minimal, it is impossible (cf. [1] Corollary 1.24).
From the equality condition in the comparison theorem, we see that the
sectional curvature is 0.
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LEMMA 3. 4. Let
F– { \exp l_{1/}; 1J are inside unit normals to \varphi(S) }.

Then F consists of a single point.

PROOF. Let f/(S) be a 1-parameter family of inside unit normal

vectors to \varphi(S) . Then X_{s}(t)= \frac{\partial}{\partial s}\exp t\iota/(s) is a Jacobi field along t|arrow

\exp t)/(s) with X_{s}(0) , X_{s}’(0)\in T(\varphi(S)) . Then from Lemma 3.3, X_{s}(l)=

\frac{d}{ds}\exp l)/(s)=0 . Hence \{\exp l_{1J}(s)\} is a single po\overline{l}nt and the lemma fol-

lows.
Let f\nearrow and \nu’ be distinct inside unit normal vectors to \varphi(S) . Since the

geodesies \exp t\nu and \exp t)/’(0\leqq t\leqq l) are minimizing, they have no com-
mon points except \exp l\nu=\exp l\iota J’ . Therefore the map \exp_{F} : { v\in T_{F}(M) ; |

v|\leqq l\}arrow M is injective and the boundary of the image is \varphi(S) . Since the
sectional curvature of 2-planes which are tangent to geodesies emanating
from F is 0, the image is isometric to a ball of radius l in R^{n} and M is
isometric to the Euclidean space.

\S 4. The Second Proof of Theorem 1. 4: dim M=2.
Let M be a complete 2-dimensional Riemannian manifold of non-

negative curvature. Let V_{M} and V_{E} be compact sets of M and R^{2} respec-
tively. Suppose that there is an isometry \varphi:R^{2}\backslash V_{E}arrow M\backslash V_{M} . Let S be a
circle of radius l in R^{2} which contains V_{E} in its interior. We denote the
inside of S by D_{E} and the inside of \varphi(S) by D_{M} .

LEMMA 4. 1. D_{M} is orientable.

PROOF. If D_{M} is not orientable, there is a double cover \pi:D’arrow D_{M} ,
where D’ is orientable. Let S’ be the boundary of D’ Then we have the
Gauss-Bonnet formula for D’

\int_{D’}K’+\int_{s}
,

k’=2\pi\chi(D’) ,

where K’ denotes the Gauss curvature of D’ and k’ denotes the geodesic
curvature of S’ . Here we have

\int_{D’}K’\geqq 0=2\int_{D_{E}}K_{E} ,

\int_{s}

,
k’=2 \int_{s}k_{S}=4\pi ,

\chi(D’)\leqq 1=\chi(D_{E}) .
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Therefore we get

2 \int_{D_{E}}K_{E}+2\int_{s}k_{s}\leqq\int_{D}, K’+ \int_{s}
,

k’=2\pi\chi(D’)\leqq 2\pi\chi(D_{E}) .

These inequalities contradict the Gauss-Bonnet formula

\int_{D_{E}}K_{E}+\int_{s}k_{S}=2\pi\chi(D_{E})

for the domain D_{E} .

LEMMA 4. 2. D_{M} is flat and its Euler number is 1.

PROOF. As in the proof of Lemma 4.1, we have the Gauss-Bonnet
formulas for domains D_{E} and D_{M}

\int_{D_{E}}K_{E}+\int_{s}k_{S}=2\pi\chi(D_{E})

\int_{D_{M}}K_{M}+\int_{\varphi(S)}k_{\varphi(S)}=2\pi\chi(D_{M})

and relations

K_{M}\geqq 0=K_{E}

\int_{\varphi(S)}k_{\varphi(S)}=\int_{s}k_{S}=2\pi

\chi(D_{M})\leqq 1=\chi(D_{E}) .

Therefore we get

\int_{D\epsilon}K_{E}+\int_{s}k_{s}\leqq\int_{D_{M}}K_{M}+\int_{\varphi(S)}k_{\varphi(S)}=2\pi\chi(D_{M})\leqq 2\pi\chi(D_{E}) ,

which proves the lemma.
Therefore M is flat and simply connected, i.e., M is isometric to the

2-dimensional Euclidean space.

\S 5. Proof of Theorem 1.5.

Let M be a complete 2-dimensional Riemannian manifold with K_{M}\geqq

-1 . Let V_{M} and V_{H} be compact sets of M and H^{2}(-1) respectively.
Suppose that there is an isometry \varphi:H^{2}(-1)\backslash V_{H}arrow M\backslash V_{M} . Let S be a
circle of radius l in H^{2}(-1) which contains V_{H} in its interior. We denote
the inside of S by D_{H} and the inside of \varphi(S) by D_{M} .

LEMMA 5. 1. D_{M} is orientable.

PROOF. If D_{M} is not orientable, there is a double cover \pi:D’arrow D_{M} ,
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where D’ is orientable. Let S’ be the boundary of D’ Let K’ denote the
sectional curvature of D’ . Then it follows from a generalization of the
Rauch-Berger comparison theorem by Waner[6] that the focal radius of S’
in D’ is less than or equal to l and the area of D’ is less than or equal to
2area(D_{H}) . Hence we have

\int_{D}

,
K’ \geqq 2\int_{D_{H}}K_{H}=-2 .area (D_{H}) .

Then the lemma can be proved as in the proof of Lemma 4.1.

LEMMA 5. 2. D_{M} is of constant curvature -1 and its Euler number
is 1.

PROOF. As in the proof of Lemma 5.1, We have an inequality

\int_{D_{H}}K_{H}\leqq\int_{D_{M}}K_{M} .

Then the lemma can be proved as in the proof of Lemma 4.2.
Therefore M is of constant curvature -1 and simply connected, i.e.,

M is isometric to the 2-dimensional Hyperbolic space.

\S 6. Proof of Theorem 1.6.

Let H^{n}(-1) be the n-dimensional hyperbolic space of constant curva-
ture -1. Let 0 be a point of H^{n}(-1) . Let x and y be points of H^{n}(-1)

with xo\perp yo and |xo|=|yo| , where xo denotes the geodesic segment between
x and 0 and |xo| denotes its length. Let S_{\chi}(|xy|/2) and S_{y}(|xy|/2) denote
the metric spheres of radius |xy|/2 centered at x and y. Then S_{x}(|xy|/2)

and S_{y}(|xy|/2) converge to horospheres which tangent each other as |xo|=
|yo|arrow\infty and the distance between 0 and the horospheres is r_{-1} . Therefore
we have the following

LEMMA 6. 1. Let V(r) be the metric ball of radius r<r_{-1} centered
at 0. We take x and y far away from 0 so that metric spheres S_{X}(|xy|/2)

and S_{y}(|xy|/2) do not intersect V(r) . Then the geodesic segment xy does
not pass V(r) and is shorter than the H^{n}(-1)\backslash V(r) -part of any curve
from x to y.

Let M be a complete Riemannian manifold with curvature K_{M}\geqq-1 .
Let V_{M} be a compact set of M. Let V(r) be the metric ball of radius
r<r_{-1} in H^{n}(-1) centered at 0. Suppose there is an isometry \varphi :
H^{n}(-1)\backslash V(r)arrow M\backslash V_{M}t Let S be the metric sphere of radius l in
H^{n}(-1) centered at 0 whose inside contains V(r) . Let p be a point of
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S and q the antipodal point of p in S. Let x be a point of S with xo\perp p0 .
From Lemma 6.1, we may assume that the geodesic segments px and qx
are shorter than H^{n}(-1)\backslash V(r) -part of any curve between their ends.
Then we can prove lemmas 3.2, 3.3, 3.4 and consequently Theorem 1.6 as
in section 3.

\S 7. Proof of Theorem 1.7.

Let S^{n}(1) be the n-dimensional sphere of constant curvature 1. Let 0
be a point of S^{n}(1) . Let x and y be points of S^{n}(1) with xo\perp yo and
|xo|=|yo|<\pi/2 , where xo denotes the geodesic segment between x and 0
and |xo| denotes its length. Then next lemma is clear.

LEMMA 7. 1. Let V(r) be the metric ball of radius r<r_{+1}=\pi/4

centered at o. We take x and y far away from 0 so that r+\pi/4<|xo|=
|yo|<\pi/2 . Then the geodesic segment xy does not pass V(r) and is shor-
ter than the S^{n}(1)\backslash V(r) -part of any curve from x to y.

Let M be a complete Riemannian manifold with curvature K_{M}\geqq 1 .
Let V_{M} be a compact set of M. Let V(r) be the metric ball of radius
r<r_{+1} in S^{n}(1) centered at 0 . Suppose there is an isometry \varphi:S^{n}(1)\backslash

V(r)arrow M\backslash V_{M} . Let S be the metric sphere of radius l<\pi/2 in S^{n}(1)

centered at 0 whose inside contains V(r) . Let p be a point of S and q
the antipodal point of p in S. Let x be a point of S with xo\perp p0 . From
Lemma 7.1, we may assume that the geodesic segments px and qx are
shorter than the S^{n}(1)\backslash V(r) -part of any curve between their ends. Then
we can prove lemmas 3.2, 3.3, 3.4 and consequently Theorem 1.7 as in sec-
tion 3.

References

[1] J. CHEEGER and D. GROMOLL, The splitting theorem for manifolds of nonnegative
Ricci curvature, J. Differential Geometry 6 (1971), 119-129.

[2] J. CHEEGER and D. G. EBIN, Comparison Theorems in Riemannian Geometry, North-
Holland Amsterdam, 1975.

[3] A. KASUE and K. SUGAHARA, Gap theorems for certain submanifolds of Euclidean
space and hyperbolic space form, Osaka J. of Math. 24 (1987), 679-704.

[4] R. GEROCH, General relativity, Proc. Sympos. Pure Math. 27(2) (1975), 401-414.
[5] R. E. GREENE and H. WU, Gap theorems for noncompact Riemannian manifolds, Duke

Math. J. 49 (1982), 731-756.
[6] F. WARNER, Extension of Rauch comparison theorem to submanifolds, Trans. Amer.

Math. Soc. 122 (1966), 341-356.

Department of Mathematics
Osaka Kyoiku University


	\S 1. Introduction and ...
	THEOREM 1. ...
	THEOREM 1. ...
	THEOREM 1. ...
	THEOREM 1. ...

	\S 2. The First Proof ...
	\S 3. The Second Proof ...
	\S 4. The Second Proof ...
	\S 5. Proof of Theorem ...
	\S 6. Proof of Theorem ...
	\S 7. Proof of Theorem ...
	References

