Hokkaido Mathematical Journal Vol. 18(1989) p. 459-468

Gap theorems for Riemannian manifolds
of constant curvature outside a compact set

Dedicated to Professor Noboru Tanaka on his 60th birthday

by Kunio SUGAHARA
(Received February 10, 1988, Revised March 25, 1988)

§1. Introduction and Main Results.

In Riemannian geometry, the spaces of constant curvature are consid-
ered to be the typical models in various problems. For example, the
famous sphere theorem deals with compact Riemannian manifolds whose
sectional curvatures are similar to that of the standard sphere. For non-
compact Riemannian manifolds, we have the following theorem. Let Kj
denote the sectional curvature of a Riemannian manifold M and % be a
nonpositive constant.

GaP THEOREM 1.1(Greene-Wu[5], Kasue-Sugahara[3]). Let M be a
complete noncompact Riemannian wmanifold of dimension n=3. Suppose
that M satisfies the following three conditions.

(i) M has a pole o, i.e., the exponential mapping exp, from the tangent
space ToM to M is a diffeomorphism.

(1) Ku=sk or Ky=Fk everywhere.

(iii) liminf max k&)|Ky—k|=0, where d(o, p) denotes the distance

r - d(o,p)=r
between two points o and p and k(r)=r®* for k=0 and k(r)=
exp(27y/—k) for k<O.
Then M is isometric to the n-dimensional simply commected space of con-
stant curvature k.

In this theorem, the third condition can be understood that M is in a
neighbourhood of the model in the set of Riemannian manifolds. This
theorem asserts that there are gaps in the positive and negative sides of
the model spaces in the set of Riemannian manifolds. But the first condi-
tion implies that M is diffeomorphic to R” and the assertion is restricted
within metrics on R"

We note that Gromov claimed that for M with Ky=k=0 the first
condition can be relaxed to
(i) M is simply connected at infinity,
where M is said to be simply connected at infinity if for any compact
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subset V' of M there is a compact subset V' of M such that V is
contained in V' and M\ V" is connected and simply connected.
We generalize the claim of Gromov to the following

PROBLEM.  Classify Riemannian manifolds M which satisfy the follow-
ing two conditions.
(ii) Ku=k or Ky<k everywhere.
(ili) Ky converges to k at infinity.

In case of Ky<*k, we have the following lemma.

LEMMA 1. 1(Kasue-Sugahara[3]. If the universal covering of M is
homeomorphic to R"(n=3) and if M is simply connected at infinity, then
M s simply conmected.

It follows from the Hadamard-Cartan theorem and this lemma that
(1) implies (i) if Ky=<0. Therefore (i) can be replaced by (i) in this
case.

THEOREM 1. 2(Kasue-Sugahara[3]). Let M be a complete non-
compact Riemannian manifold of dimension n=3. Suppose that M satisfies
the following three conditions.

(1) M s simply connected at infinity.
(i) Ku=<k everywhere.
(iii) lim inf max k(r)|Ku—Fk|=0, where k(r)=v? for k=0 and k(r)=

exp(2ry—Fk) for k<.
Then M is isometric to the n-dimensional simply commected space of con-
stant curvature k.

Here in this paper we present the following

CONJECTURE 1. Let M be a complete noncompact Riemannian mani-
fold of dimension n=3. Suppose that M satisfies the following three condi-
tions.

(") M is simply connected at infinity.
(i) Kuy=k everywhere.
(iii) lim inf nax k(r)|Ky—Fk|=0.

7 —~o0

Then M is isometric to the n-dimensional simply commected space of con-
stant curvature k.

The next theorem supports this conjecture.

THEOREM 1. 3(Greene-Wu[5]). Let M be a complete noncompact
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Riemannian manifold of dimension n=3. Suppose that M satisfies the fol-
lowing three conditions.

(") M s simply connected at infinity.

(i1) Ky=0 everywhere.

(iii") M 1s flat outside a compact set.

Then M is isometric to the n-dimensional euclidean space R™.

In this paper we consider the following conjecture as a step to prove
Conjecture 1.

CONJECTURE 2. Let M be a complete noncompact Riemannian mani-
fold of dimension n=3. Suppose that M satisfies the following three condi-
tions.

1) M is simply conmected at infinity.

(ii) Ky=-—1 everywhere.

(i) Ky=—1 outside a compact set.

Then M is isometric to the n-dimensional hyperbolic space of constant cur-
vature —1.

DEFINITION. A Riemannian manifold M is said to be of constant
curvature k at infinity if there is a compact proper subset V of M such
that Ky, =% outside V. Two Riemannian manifolds M and N are said to
be isometric at infinity if there are compact proper subsets V,CM and Vy
CN and an isometry between M\ V, and N\ Vy.

In Theorem 1.3 and Conjecture 2, the condition (i") restricts the
dimension of M to be greater than or equal to 3. But the next lemma
enables us to rewrite them in the form which contains the case of dimen-
sion 2 as follows.

LEMMA 1.2(Greene-Wu([5]). Let M be a mnoncompact complete
Riemannian manifold of dimension n=3. Suppose that M is simply con-
nected at infinity and that M is of constant curvature k at infinity. Then
M s isometric at infinity to the simply commected space of constant curva-
ture k.

THEOREM 1.4. Let M be a complete Riemannian manifold of dimen-
sion n=2. Suppose that Kyu=0 and M is isometrvic to the n-dimensional
Euclidean space at infinity. Then M is isometric to the n-dimensional
Euclidean space.

We note that this theorem is a weak version of the Geroch conjecture

[4] in dimension 3.
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CONJECTURE 3. Let M be a complete noncompact Riemannian wmani-
fold of dimension n=2. Suppose that Ky=—1 and M is isometric at
infinity to the n-dimensional real hyperbolic space of constant curvature
—1. Then M 1is isometric to the n-dimensional hyperbolic space of con-
stant curvature —1, i.e., the veal hyperbolic space cannot be changed its
structure inside any compact subset with Ky=—1. '

We present here the elliptic version for this conjecture.

CONJECTURE 4. Let M be an open hemispheve of the n-dimensional
standard spheve S™(1) of constant curvature 1. Then its structure cannot
be changed in any compact subset with Ky=1.

In this paper, we give two proofs of [Theorem 1.4. One is reduced to
the splitting theorem of Cheeger-Gromoll for Riemannian manifolds of
nonnegative curvature and the other can be applied to the proof of conjec-
tures 3 and 4 with the assumption that the compact sets are small. We
shall prove

THEOREM 1.5. Let H*(—1) be the 2-dimensional hyperbolic space of
constant curvature —1. Then H?*(—1) cannot be changed its (topological

and Riemannian) structurve inside any compact set with the sectional curva-
ture K = —1.

THEOREM 1.6. Let H"(—1) be the hyperbolic space of constant cur-
vature —1. Let Vy(v) be a metric ball of radius 7<7_1:10g%.

Then H"(—1) cannot be changed its (topological and Riemannian)
structuve in Vy(r) with the sectional curvature K = —1.

THEOREM 1.7. Let S™(1) be the sphere of constant curvature 1. Let
Vs(r) be a metric ball of radius r<v..=n/4. Then S™(1) cannot be
changed its (topological and Riemannian) structure in Vs(v) with the sec-
tional curvature K >1.

As for the Euclidean space, we can shrink compact sets by homothety.
Therefore the size of a set has no sense. On the other hand, a homothety
of the hyperbolic space or the sphere changes the curvature of the space.

§ 2. The First Proof of Theorem 1.4.

LEMMA 2.1.  Suppose M is isometric to the n-dimensional Euclidean
space R" at infinity. Then M has a line, wheve a geodesic y: R—M is
said to be a line if y restricted to any subinterval is distance-minimizing.
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PROOF. Let Vi and Vi be compact sets of M and R” such that there
is an isometry ¢: R"™\Vi—>M\Vy. Let ¢: R>R" be a straight line. Let
@ be a minimizing geodesic from ¢(a(—1)) to ¢(a(t)) in M. If @ does
not pass V), then the geodesic ¢'oq; coincides a|_... Therefore a,
passes a compact set {¢(a(0))}U Vy for any ¢ Then {a@}.cr contains a
convergent subsequence. It is clear that the limit is a line since it is the
limit of minimizing curves.

PROOF OF THEOREM 1.4. From the splitting theorem for Riemannian
manifolds of nonnegative curvature and the lemma above, we get a
Riemannian decomposition M =R™x M’ with m>0. Since M is flat at
infinity, M’ must be flat and so is M.

[t follows from Lemma 1.1 that M is simply connected if #=dim M =
3, which implies that M is isometric to R™

Suppose that M is of two dimension. Then dim M’=0 or 1. Since
M is complete, M’ is isometric to S!, R! or a point. Since M is isometric
to R? at infinity, M’ is isometric to R' or a point. Therefore M is
isometric to R2

§ 3. The Second Proof of Theorem 1. 4.

Let V(7) be a ball of radius » centered at o in the n-dimensional
Euclidean space R™

LEMMA 3.1. Let p and q be points in R". Let 6 denote the angle
Zopq. If

|po|—7»>|polcos§+7,

then the segment pq is shorter than the R™\V (r)-part of any curve from p
to q.

PrROOF. Let ¢ denot the angle Zogp. Let ¢ be a curve from p to gq.
If ¢ does not pass V (7), it is clear that length(c)=|pq|. Suppose that ¢
passes V(7). Let x denote the first point at which ¢ crosses the bound-
ary of V() and y the last point. Then we have

length(c) z|px|+|qy| = (|po| —7) + (|go| —7)
>|polcos§+|qo| = |polcos § +|qo|cosa
=|paql.
Let M be a complete Riemannian manifold of nonnegative curvature.

Let Vi be a compact set of M and ¢ an isometry from R™\V (7) to
M\Vy. Let S be a hypersphere in R” of radius /=87 centered at 0. Let
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p be a point of S and ¢ be the antipodal point of .

LEMMA 3.2.  The image of the segment pq by ¢ outside V(r) is a
part of a minimizing geodesic between ¢(p) and ¢(q). And the distance
between o(p) and ¢(q) is equal to the length |pq|.

PrROOF. Let x be a point in S with xo0 Lpo. Then from Lemma 3.1,
we see that the segments px and gx does not pass V (r) and that the
images ¢(px) and ¢(gx) by ¢ are minimizing geodesics. Let y be a
minimizing geodesic from ¢(p) to ¢(q). We consider a geodesic triangle
Anp(p) p(@) ¢(x) with sides y, ¢(gx) and ¢(xp). We compare this tri-
angle with Apgx. Since they have the same angle at x and ¢(x), we see
|pg|= length(y) from Toponogov’s comparison theorem. Let Apg’x be a
triangle in R"™ with |pg'|=length(y)<|pq] and 2Lxpqg'= 2 o(x)e(P)e(q).
Then from Toponogov’s comparison theorem we get

(*) |qx| = lengthe (gx) <|q'x|

If the image of the segment pg outside V () by ¢ is not a part of v, then
we may choose x so that the angle of Ayp(p) (@) p(x) at o(p) is less
than zxpg=r/4. It is clear that if £xpg’< Zxpg=r/4 or |pq’|<|pq|, then
|g’x| <|gx|, which contradicts (x). Hence length(y)=|pq| and the image of
pg by ¢ outside V (7) is a part of y.

LEMMA 3.3. Let y:[0,2{]>M be a unit speed geodesic which starts
from o(S) in the direction of an inside normal to ¢(S) and X a Jacobi
field along y with X (0), X' ()& Ty0e(S). Then X vanishes at y(l) and
y(l) s the first focal point of ¢(S) along y. Moveover the sectional cur-
vature of 2-planes which is tangent to y is 0.

Proor. Let p=y(0) and g=y(2/). From Lemma 3.2, we see that ¢
E¢(S) and 7|z, is minimizing. Let X be a Jacobi field along y with
X)), X' (0)eT,(¢(S)). Then X is the infinitesimal variation of a varia-
tion of geodesics of length 2/ which start from ¢(S) in the normal direc-
tion. From Lemma 3.2, we see that these geodesics arrive at ¢(S) nor-
mally at the other ends. Therefore X (21), X' QD e T,(¢(S)). We con-
sider the geodesic y(t)=y(2/-t) and the Jacobi field X(£)=X(Q2I-t)
along y. From a generalization of the Rauch-Berger comparison theorem
by Warner [6], X and X must vanish before or at /. Suppose X van-
ishes before /. Then X vanishes two distinct points in the interval (0,
20). Since 7|2y i1s minimal, it is impossible (cf. [1] Corollary 1.24).
From the equality condition in the comparison theorem, we see that the
sectional curvature is 0.
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LEMMA 3.4.  Let
F={exply ;v are inside unit normals to ¢(S)}.
Then F consists of a single point.

Proor. Let y(s) be a l-parameter family of inside unit normal

vectors to ¢(S). Then Xs(z‘):—a% exply(s) is a Jacobi field along ¢
expty(s) with X(0), X/ (0)eT (¢(S)). Then from Lemma 3.3, X,(/)=

%exply(s):o. Hence {exply(s)} is a single point and the lemma fol-

lows.

Let v and v’ be distinct inside unit normal vectors to ¢(S). Since the
geodesics expfy and expty’ (0<¢<[) are minimizing, they have no com-
mon points except exp/y=exply’. Therefore the map expr:{veT-(M) ;|
v|<[}—>M is injective and the boundary of the image is ¢(S). Since the
sectional curvature of 2-planes which are tangent to geodesics emanating
from F is 0, the image is isometric to a ball of radius / in R” and M is
isometric to the Euclidean space.

§4. The Second Proof of Theorem 1.4: dim M=2.

Let M be a complete 2-dimensional Riemannian manifold of non-
negative curvature. Let V), and V; be compact sets of M and R? respec-
tively. Suppose that there is an isometry ¢: R\ V;—>M\V)y. Let S be a
circle of radius / in R? which contains V; in its interior. We denote the
inside of S by Dy and the inside of ¢(S) by Dy.

LEMMA 4.1. Dy is orvientable.

ProoF. If Dy is not orientable, there is a double cover n:D’— Dy,
where D’ is orientable. Let S’ be the boundary of D’. Then we have the
Gauss-Bonnet formula for D’.

[ K+ [ K=2m2D",

where K’ denotes the Gauss curvature of D’ and & denotes the geodesic
curvature of S’. Here we have

[ K=z0=2 K,

[ =2 [ks=1x,

x(D)=1=xDg).
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Therefore we get

2 Kev2[hs [ K+ [ k'=2my(D)s2my(De).

These inequalities contradict the Gauss-Bonnet formula

‘[JEKE+/S.k5:27[x(DE)

for the domain Dx.
LEMMA 4.2. Dy is flat and its Euler number 1s 1.

PrROOF. As in the proof of Lemma 4.1, we have the Gauss-Bonnet
formulas for domains D and Dy

/ KE+/ks:27zx<DE>
Dg S

Ku+ [ koo =212(Du)
Dm e(S)

and relations
Ky=20=K;
4/;( S) k‘p(S):-/;kS:Zﬂ'
X(DM>§1:X<DE>-

Therefore we get

’/;EKE+’/SkS§LMKM+/;(s)ksv(S):zﬂx<DM>§27rx<DE>;

which proves the lemma.
Therefore M is flat and simply connected, i.e., M is isometric to the
2-dimensional Euclidean space.

§5. Proof of Theorem 1.5.

Let M be a complete 2-dimensional Riemannian manifold with Ky =
—1. Let V, and V4 be compact sets of M and H?(—1) respectively.
Suppose that there is an isometry ¢:H*(—D\Vy—>M\Vy. Let S be a
circle of radius ! in H2(—1) which contains Vj in its interior. We denote
the inside of S by Dy and the inside of ¢(S) by Dy.

LEMMA 5.1. Dy is orientable.

Proor. If D, is not orientable, there is a double cover x:D’— Dy,
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where D’ is orientable. Let S’ be the boundary of D’. Let K’ denote the
sectional curvature of D’. Then it follows from a generalization of the
Rauch-Berger comparison theorem by Waner[6] that the focal radius of S’
in D’ is less than or equal to / and the area of D’ is less than or equal to
2area(Dy). Hence we have

f K22 Ky=—2-area(Dy).
D’ Dy

Then the lemma can be proved as in the proof of Lemma 4.1.

LEMMA 5.2. Dy is of constant curvature —1 and its Euler number
s 1.

PROOF.  As in the proof of Lemma 5.1, We have an inequality

Ky | Ky.
Dy Dy

Then the lemma can be proved as in the proof of Lemma 4.2,
Therefore M is of constant curvature —1 and simply connected, i.e.,
M is isometric to the 2-dimensional Hyperbolic space.

§ 6. Proof of Theorem 1.6.

Let H"(—1) be the n-dimensional hyperbolic space of constant curva-
ture —1. Let o be a point of H”(—1). Let x and y be points of H*(—1)
with xo L yo and |xo|=|yo|, where xo denotes the geodesic segment between
x and o and |xo| denotes its length. Let S.(|xy|/2) and S,(|xy|/2) denote
the metric spheres of radius |xy|/2 centered at x and y. Then S,(|xy|/2)
and S,(|xy|/2) converge to horospheres which tangent each other as |xo| =
|yo| oo and the distance between o and the horospheres is ».,. Therefore
we have the following

LEMMA 6.1. Let V (r) be the metric ball of radius v <r_, centeved
at 0. We take x and y far away from o so that metric spheres S,(|xy|/2)
and S,(|xy|/2) do not intersect V (r). Then the geodesic segment xy does
not pass V (r) and is shorter than the H"(—1\V (r)-part of any curve
from x to y. v

Let M be a complete Riemannian manifold with curvature K,=—1.
Let Vi be a compact set of M. Let V() be the metric ball of radius
r<7_; in H"(—1) centered at 0. Suppose there is an isometry ¢:
H"(-D\V((r)->M\V,. Let S be the metric sphere of radius / in
H"(—1) centered at o whose inside contains V (). Let p be a point of
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S and g the antipodal point of p in S. Let x be a point of S with xo L po.
From Lemma 6.1, we may assume that the geodesic segments px and gx
are shorter than H™(—1)\V (»)-part of any curve between their ends.
Then we can prove lemmas 3.2, 3.3, 3.4 and consequently [Theorem 1.6 as
in section 3.

§ 7. Proof of Theorem 1.7.

Let S*(1) be the n-dimensional sphere of constant curvature 1. Let o
be a point of S*(1). Let x and y be points of S™(1) with x0 1L yo and
|xo|=|yo| < z/2, where xo denotes the geodesic segment between x and o
and |xo| denotes its length. Then next lemma is clear.

LEMMA 7.1.  Let V(7) be the metric ball of radius r<r,,=rnx/4
centered at o. We take x and y far away from o so that v+ x/4<|xo|=
lvo|<z/2. Then the geodesic segment xy does not pass V (r) and is shor-
ter than the S*(D\V (r)-part of any curve from x to y.

Let M be a complete Riemannian manifold with curvature K, =1.
Let Vi be a compact set of M. Let V (») be the metric ball of radius
¥ <7 in §"(1) centered at o. Suppose there is an isometry @ S\
V(r)->M\Vy. Let S be the metric sphere of radius /<z/2 in S"(1)
centered at o whose inside contains V' (»). Let p be a point of S and ¢
the antipodal point of p in S. Let x be a point of S with xo L po. From
Lemma 7.1, we may assume that the geodesic segments px and gx are
shorter than the S”(1)\ V (#)-part of any curve between their ends. Then
we can prove lemmas 3.2, 3.3, 3.4 and consequently [Theorem 1.7 as in sec-
tion 3.
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