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Twisted linear actions on projective spaces
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0. Introduction

In this paper, we shall study the twisted linear actions of non-compact
Lie groups on complex projective spaces and quaternion projective spaces.
A twisted linear action is defined by F. Uchida [4] who gave an example
of SL(n, R) actions on a (2n-1) -sphere. In contrast to compact Lie
groups, those SL(n, R) -actions are uncountably many topologically dis-
tinct C^{\omega} -actions (of. [4], [5]). From this point of view it seems interest-
ing to study twisted linear actions of non-compact Lie groups on compact
manifolds other than spheres. The remainder of this note is divided into
three sections. In Section 1, we define twisted linear actions of Lie groups
on F-projective spaces, where F=C, H and show that twisted linear
actions of compact Lie groups on these spaces are equivariantly dif-
feomorphic to linear actions (Theorem 1. 4). In Section 2, we show that
there are uncountably many topologically distinct C^{\omega} -actions of SL(n, F)
on an (nk-1) -dimensional F-projective space, where n>k\geqq 2 (Theorem

2. 3). In Section 3, we show that there are uncountably many C^{1} -

differentiably distinct but topologically equivalent C^{\omega} -actions of SL(n, F)
on an m-dimensional F-projective space, where m\geqq n\geqq 2 (Theorem 3. 3
and Theorem 3. 5). The author wishes to express his hearty gratitude to
Professor Fuichi Uchida who offered this topic and helpful advice.

1. Twisted linear actions on projective spaces

Throughout this paper, let F be the field of complex numbers C or
quaternions H and M(n, m;F) the set of all F-matrices of type (w, m) .
Moreover let F^{n} denote the right F-vector space of all w-dimensional
F-column vectors and we set M_{n}(F)=M(n, n;F) . We denote the set of
all square real matrices of degree n by M_{n}(R) . We define \iota_{1} : M_{n}(C)arrow

M_{2n}(R) and \iota_{2} : M_{n}(H)-arrow M_{2n}(C) by

\iota_{1}(A+iB)=(\begin{array}{ll}A -BB A\end{array}) and \iota_{2}(C+iD)=(\begin{array}{ll}C -DD \overline{C}\end{array}) ,

where A, B\in M_{n}(R) and C, D\in M_{n}(C) . Then we see that \iota_{1} and \iota_{2} are
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injective ring homomorphisms. We define \iota : M_{n}(F)- M_{d_{F}n}(R) by
(d_{F}, \iota)=(2, \iota_{1}) or (4, \iota_{1}\iota_{2}) for F=C or H, respectively. We set

SL(n, H)=\{A\in M_{n}(H) ; \det(\iota_{2}(A))=1\} .

Then we have SUn,H) =\iota_{2}^{-1}(SL(2n, C)) . For A\in M(n, m ; F) , A^{*}

denotes the adjoint matrix of A . We set U(n, F)=\{A\in M_{n}(F):A^{*}A=
I_{n}\} . Then U(n, C) , U(n, H) is equal to the unitary group U(n) ,
symplectic group Sp(n) , respectively. For u, v\in F^{n} , we define their her-
mitian inner product by iu,v\rangle =u^{*}v and the norm of u by ||u||=\sqrt{\langle u,u\rangle}

1. 1. We say that X\in M_{n}(F) satisfies the condition (T) if \frac{1}{2}(X+

X^{*}) is a positive definite hermitian matrix. It is easy to see that X

satisfies the condition (T) if and only (T’) \frac{d}{dt}||\exp(tx)z||>0 for each z\in

F_{0}^{n}=F^{n}-\{0\} , t\in R. If X satisfies (T’) , then

\lim_{tarrow+\infty}||\exp(tX)z||=+\infty and \lim_{tarrow-\infty}||\exp(tX)z||=0

for each z\in F_{0}^{n} and hence there exists a unique real valued C^{\omega} -function \tau

on F_{0}^{n} such that

||\exp(\tau(z)X)z||=1 for z\in F_{0}^{n} .

The following lemma is proved in [4, Lemma 2. 2].

LEMMA 1. 1. Let X\in M_{n}(F) , where F=R, C or H and assume
that all the eigenvalues of X have positive real parts. Then there exists P
\in C/(w, F) such that P^{-1}XP satisfies the condition (T).

Throughout this paper, F_{0} denotes the multiplicative group of non-zero
elements of Fr For X\in M_{n}(F) whose all eigenvalues have positive real
parts, we define a real analytic right F_{0} -action \alpha_{F}^{X} on F_{0}^{n} as follows:

\alpha_{F}^{X} : F_{0}^{n}\cross F_{0}arrow F_{0}^{n} , \alpha_{F}^{x}(z, \zeta)=\exp((\log|\zeta|)X)z(\zeta/|\zeta|) .

By Lemma 1. 1, there exists P\in GL(n, F) such that X_{0}=P^{-1}XP satisfies
the condition ( T) . For this matrix X_{0} , we define C^{\omega} -diffeomorphism
\Phi_{X_{0}} , \Psi x_{0} : F_{\overline{0}}F_{0}^{n} by

\Phi_{X_{0}}(z)=\exp((\log||z||)X_{0})z/||z|| ,
\Psi_{Xo}(w)=\exp(\tau(w)X_{0})we^{-\tau(w)} .

Then we have \Phi_{X_{0}}^{-1}=\Psi_{X_{0}} . Moreover, for the above matrix X , we define a
C^{\omega} -diffeomorphism F_{X} of F_{0}^{n} by F_{X}=L_{P}\circ\Phi_{Xo} , where L_{P}(z)=Pz for each z
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\in F_{0}^{n} . F_{X} depends probably on a choice of P. Then we have F_{X}^{-1}=

\Psi_{X_{0}}\circ L_{P}^{-1} . Furthermore we have the commutative diagram

\alpha_{F}^{I_{n}}

F_{0}^{n}\cross F_{0}|

(1. 1)
F_{X}\cross 1

\downarrow

\alpha_{F}^{X}

F_{0}^{n}\cross F_{0}

F_{0}^{n}

\downarrow F_{X}

F_{0}^{n} .

We denote the orbit space of the action \alpha_{F}^{X} by P_{n-1}^{X}(F) . Then P_{n-1}^{I_{n}}(F) is
the usual (n-1) -dimensional F projective space P_{n-1}(F) . We denote the
\alpha_{F}^{X}-0rbit through z\in F_{0}^{n} by [z]_{X} and the canonical projection of F_{0}^{n} onto
P_{n-1}^{X}(F) by \pi_{X} . Then a C^{\omega} -manifold structure of P_{n-1}^{X}(F) is canonically
induced by the real analytic right F_{0} action \alpha_{F}^{X} on F_{0}^{n} such that the projec-
tion \pi_{X} : F_{0}^{n}arrow P_{n-1}^{X}(F) is a C^{\omega} -submersion. Furthermore we have the
commutative diagram

F_{X}
F_{0}^{n} F_{0}^{n}

(1.2)
\downarrow\pi \downarrow\pi_{X}

\overline{F}_{X}

P_{n-1}(F) P_{n-1}^{X}(F)

where \pi=\pi_{I_{n}},\overline{F}_{X} is a C^{\omega} -diffeomorphism defined by \tilde{F}_{X}([z])=[F_{X}(z)]_{X}

and [z]=[z]_{I_{n}} for z\in F_{0}^{n} .

1. 2. Let G be a Lie group, \rho:Garrow GL(n, F) a matricial represen-
tation and X a square F-matrix of degree n whose all eigenvalues have
positive real parts. We call (\rho, X) an FTC-pair of degree n , if \rho(g)X=

X\rho(g) for each g\in G. For an FTC-pair (\rho, X) of degree n , we can
define a C^{\omega} -mapping

\xi_{F} : G\cross P_{n-1}^{X}(F)arrow P_{n-1}^{X}(F) by \xi_{F}(g, [z]_{X})=[\rho(g)z]_{X}

and we see that \xi_{F} is a real analytic G action on P_{n-1}X(F) . We call
\xi_{F}=\xi_{F}^{(\rho,X)} a twisted linear action of G on P_{n-1}^{X}(F) determined by the
FTC-pair (\rho, X) and we say that \xi_{F} is associated to the matricial repre-



342 H. \^Oike

sentation \rho . Moreover we have a real analytic G-action \xi_{F}^{0} : G\cross P_{n-1}(F)

arrow P_{n-1}(F) defined by

\xi_{F}^{0}(g, [z])=[F_{X}^{-1}(\rho(g)F_{X}(z))] .

Then the following diagram is commutative:

\xi_{F}^{0}

G\cross P_{n-1}(F)

(1.3)
1\cross\tilde{F}_{X}|

G\cross P_{n-1}^{X}(F)\downarrow

\xi_{F}

P_{n-1}(F)

\downarrow\tilde{F}_{X}

P_{n-1}^{X}(F) .

We call also \xi_{F}^{0} a twisted linear action of G on P_{n-1}(F) determined by the
FTC-pair (\rho, X) and we say that \xi_{F}^{0} is associated to the matricial repre-
sentation \rho .

1. 3. For a given Lie group G, we introduce certain equivalence
relations on FTC-pairs. Let (\rho, X) and (\sigma, Y) be of degree n, where \rho ,
\sigma:Garrow GL(n, F) are matricial representations and X, Y are F-
matrices of degree n whose all eigenvalues have positive real parts. We
say that (\rho, X) is algebraically equivalent to (\sigma, Y) :
in case F=C, if there exist A\in GL(n, C) , a positive real number c and a
real number d satisfying

(1.4) Y=cAXA^{-1}+\sqrt{-1}dI_{n} and \sigma(g)=A\rho(g)A^{-1}

for each g\in G and in case F=H, if there exist \^A GLCn,H) and a posi-
tive real number c satisfying

(1.5) Y=cAXA^{-1} and \sigma(g)=A\rho(g)A^{-1}

for each g\in G ,
We say that (\rho, X) is C^{r} equivalent to (\sigma, Y) , if there exists a C^{r}-

diffeomorphism f : P_{n-1}^{X}(F)arrow P n-1Y (F) (r=0,1,2, \cdots , \infty, \omega) such that
the following diagram is commutative:
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G\cross P_{n}^{X}|^{-1}’(F)

(1.6)
1\cross f

\downarrow

G\cross P_{n-1}^{Y}(F)

\xi_{F}^{(\rho,X)}

P_{n-1}^{X}(F)

\xi_{F}^{(\sigma,Y)}

\downarrow f

P_{n-1}^{Y}(F) .

We call f a G-equivariant C^{r}-diffeomorphism. We prove the following
lemma.

LEMMA 1. 2. If (\rho, X) is algebraically equivalent to (\sigma, Y) , then
(\rho, X) is C^{\omega} equivalent to (\sigma, Y) .

PROOF. We prove the lemma only in case F=C, since in case F=
H, it is shown in the similar manner. Suppose that there exist A\in

GL(n, C) , a positive real number c and a real number d satisfying (1. 4).
We define an automorphism of the Lie grouup C_{0} by

f(\zeta)=\zeta\exp((\log|\zeta|)(1-c-\sqrt{-1}d)/c) .

Then the following diagram is commutative:

\alpha_{C}^{X}

C_{0}^{n}\cross C_{0}|

(1.7)
L_{A}\cross f

\downarrow

\alpha_{C}^{Y}

C_{0}^{n}\cross C_{0}

C_{0}^{n}

\downarrow L_{A}

C_{0}^{n} .

there L_{A}(z)=Az for z\in C_{0}^{n} . Now we define a. C^{\omega}-diffeomorphism \tilde{L}_{A} :
P_{n-1}^{X}(C)arrow P_{n-1}^{Y}(C) by \tilde{L}_{A}([z]_{X})=[Az]_{Y} . It is easily shown that \tilde{L}_{A} is
G-equivariant. q. e . d .

Let \rho : GL(n, F) be a matricial representation of a Lie group G.
We say that \rho is in standard form, if there exist irreducible representa-
tions \rho_{j} : Garrow GL(n_{j}, F)(j=1,2, \cdots. r) (furthermore \rho_{j}(G)\subset GL(n_{j}, F_{j})

in case F=H) such that

(1. 8) \rho=(\rho_{1}\otimes I_{h})\oplus\cdots\oplus(\rho_{r}\otimes I_{k_{1}}) ,

(1. 9) End_{G}(\rho)=\{
(I n_{1}\otimes M_{h}(C) ) \oplus\cdots\oplus(I_{n_{r}}\otimes M_{k_{r}}(C))(F=C)

(I_{n_{1}}\otimes M_{h}(K_{F_{1}}))\oplus\cdots\oplus(I_{n_{r}}\otimes M_{h}(K_{F_{r}}))(F=H) ,
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where n=n_{1}k_{1}+\cdots+n_{r}k_{r}, F_{j}=R, C or H , End G(\rho)=\{X\in M_{n}(F),\cdot

X\rho(g)=\rho(g)X for g\in G} and K_{R}=H, K_{C}=C, K_{H}=R. It is well known
that any matricial representation of a compact Lie group is equivalent to
one in standard form (cf. [1, ch . 3], [2, ch. II] or [3, ch. VI] ). The fol-
lowing lemma is easily shown by (1. 8), (1. 9) and Lemma 1.1.

LEMMA 1. 3. Let \rho be a F-matricial representation in standard form
of a Lie group G. Let X\in End_{G}(\rho) and assume that all the eigenvalues
of X have positive real parts. Then there exists P\in Ant_{G}(\rho)\cap GL(n, F)

such that PXP^{-1} satisfies the condition ( T) .

Now we prove the following theorem.

THEOREM 1. 4. Let G be a compact Lie group and \rho:Garrow GL(n,

F) a matricial representation. Then any FTC-pair (\rho, X) is C\omega -

equivalent to (\rho, I_{n}) . In other words, any twisted linear acion of G on
P_{n-1}(F) associated to \rho is equivariantly Ca)-diffeomorphic to the linear
action of G on P_{n-1}(F) associated to \rho .

PROOF. Since G is compact, there are P_{1}\in GL(n, F) and a represen-
tation \sigma:Garrow U(n, F) in standard form satisfying \sigma(g)P_{1}=P_{1}\rho(g) for
each g\in G. Then P_{1}XP_{1}^{-1}\in End_{G}(\rho) and all eigenvalues of P_{1}XP_{1}^{-1} have
positive real parts, so there exists P_{2}\in Aut_{G}(\sigma) such that P_{2}P_{1}XP_{1}^{-1}P_{2}^{-1}

satisfies the condition ( T) by Lemma 1.3. Set P=P_{2}P_{1} and Y=PXP^{-1} .
Then (\sigma, Y) is an FTC-pair. Moreover we have the commutative dia-
gram

G\cross P_{n-1}(F)G\cross P_{n-1}(F)G\cross P_{n-1}^{Y}(F)G\cross P_{n- 1}^{X}(F, )P_{n- 1}(F)P_{n-1}(F)P_{n-1}^{Y}(F)P_{n-1}^{X}(F)\downarrow\xi_{F}^{(\rho J_{n})}\downarrow\tilde{L}_{P}\tilde{\Phi}_{Y}\downarrow\xi_{F}^{(\sigma,I_{n})}\xi_{F}^{(\sigma,Y)}\tilde{L}_{P}\downarrow\xi_{F}^{(\rho,X)}\underline{1\cross\tilde{L}_{P}}\underline{1\cross\tilde{\Phi}_{Y}}\underline{1\cross\tilde{L}p}

where \tilde{\Phi}_{Y}([z])=[\exp((\log||z||)Y)z/||z||]_{Y} (cf. (1. 3)). It is easily seen
that \tilde{L}_{P}^{-1}\circ\tilde{\Phi}_{Y}\circ\overline{L}_{P} is a C^{\omega} -diffeomorphism. q . e . d .

2. First typical examples

Here we shall study twisted linear actions of G=SL(n, F) on the
(nk-1) -dimensional F-projective space associated to a representation \rho=

\rho_{n}\otimes I_{k} , that is, \rho(A)=A\otimes I_{k} for each A\in G.
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2. 1. Suppose that A\in M_{n}(C) , B\in M_{k} ( C) or A\in M_{n}(H) , B\in
M_{k}(R) or A\in M_{n}(R) , B\in M_{k}(H) . Denote by A\otimes B the Kronecker prod-
uct written in the form

A\otimes B=(\begin{array}{l}b_{11}A----------- b_{1k}A|[l|||||||| \iota^{I}||[||||||b_{k1}A----------- b_{kk}A\end{array})\in M_{nk}(F) .

Let u_{1} , .. u_{k} be column vectors in F^{n} . Then the correspondence

(u_{1}, \cdots. u_{k})\vdash- \{\begin{array}{l}u_{1}\vdots u_{k}\end{array}\}

defines a linear F-isomorphism \lambda : M (n, k; F)arrow F^{nk}, where we regard
M(n, k;F) as a right F-vector space. As usual, for X, Y\in M(n, k;F) ,
we define their hermitian inner product by

\langle X, Y\rangle=trace(X^{*}Y)

and the norm of X by ||X||=\sqrt{\langle X,X\rangle} . Then \lambda is an isometry. Further-
more the equality

(A\otimes B)\lambda(X)=\lambda(AX^{t}B)

holds, where A\in M_{n}(C) Cresp. M_{n}(H)) , B\in M_{k}(C) Cresp. M_{k}(R)) and X
\in M (n, k; C) Cresp. M (n, k; H)) . In this section, we shall identify F^{nk}

with M(n, k;F) via the isometry \lambda .

2. 2. We obtain the following lemma directly.

LEMMA 2. 1. Let \hat{M} be a square F-matrix of degree nk. Then
\hat{M}(A\otimes I_{k})=(A\otimes I_{k})\hat{M}

for each \^A SLCn,F) if and only if \hat{M}=I_{n}\otimes M, where in case F=C
(resp. H), M is a certain square C(resp. R) -matrix of degree k. Further-
more all the eigenvalues of I_{n}\otimes M have positive real parts if and only if
all the eigenvalues of M have positive real parts.

Consequently, (\rho_{n}\otimes I_{k}, I_{n}\otimes M) is a CTC Cresp. HTC) -pair for any
square C(resp. R) -matrix M of degree k whose all eigenvalues have posi-
tive real parts and any FTC-pair (\rho_{n}\otimes I_{k},\hat{M}) is written in such form.
Furthermore CTC Cresp. FTC -pair (\rho_{n}\otimes I_{k}, I_{n}\otimes M) and (\rho_{n}\otimes I_{k}, I_{n}\otimes N)
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are algebraically equivalent if and only if there exist X\in GL(k, C) (resp.
GL(k, R)) , a positive real number c and a real number d (resp. a posi-
tive real number c ) satisfying N=cXMX^{-1}+\sqrt{-1}dI_{k} (resp. N=
cXMX^{-1}) .

2. 3. In case F=C(resp. H) , let M be a square C(resp. R) -matrix
of degree k whose all eigenvalues have positive real parts. Denote by \zeta_{F}^{M}

the twisted linear SL(n, F) action on the (nk-1) -dimensional F-
projective space determined by the FTC-pair (\rho_{n}\otimes I_{k}, I_{n}\otimes M) . We iden-
tify F_{0}^{nk} with M(n, k;F)_{0}=M(n, k;F)-\{0\} via the isometry \lambda . More-
over we identify the orbit space of a right F_{0} action \alpha_{F}^{M} on M(n, k;F)_{0}

defined by

\alpha_{F}^{M}(Z, \zeta)=Z\frac{\zeta}{|\zeta|} exp ((\log|\zeta|){}^{t}M)

with P_{nk-1}^{\hat{M}}(F) via \lambda where \hat{M}=I_{n}\otimes M. We denote the \alpha_{F}^{M}-0rbit through Z
\in M(n, k;F)_{0} by [Z]_{\hat{M}}\in P_{nk-1}^{\hat{M}}(F) . Then the C^{\omega} -diffeomorphism \overline{F}_{\hat{M}} of
P_{nk-1}(F)=P_{nk-1}^{\hat{I}_{k}}(F) onto P_{nk-1}^{\hat{M}}(F) is given by

\overline{F}_{\hat{M}}([Z])=[F_{\hat{M}}(Z)]_{\hat{M}}=[\Phi_{\hat{M}_{0}}(Z){}^{t}P]_{\hat{M}} ,

where in case F=C(resp. H) , for some P\in GL(k, C) (resp. GL (k, R))
M_{0}=P^{-1}MP satisfies the condition ( T) and

\Phi_{\hat{M}_{0}}(Z)=\frac{Z}{||Z||} exp ((\log||Z||){}^{t}M) .

Moreover we can describe \zeta_{F}^{M} : SL(n, F)\cross P_{nk-1}^{\hat{M}}(F)arrow P_{nk-1}^{\hat{M}}(F) by

\zeta_{F}^{M}(A, [Z]_{\hat{M}})=[AZ]_{\hat{M}} .

Let I(M) and O(M) denote the isotropy group at

[(\begin{array}{l}I_{k}0\end{array})]_{\hat{M}}

and the orbit through that point, respectively, with respect to the twisted
linear action \zeta_{F}^{M} . We define a homomorphism g_{F}^{M} : F_{0}arrow GL(k, F) by

g_{F}^{M}( \zeta)=\frac{\zeta}{|\zeta|}\exp((\log|\zeta|){}^{t}M) .

We obtain the following lemma.

LEMMA 2. 2. Suppose that n>k\geqq 2 . Then
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(i) the isotropy group I(M) is written in the form

I(M)=\{(------|-)g_{F}^{M}(\zeta)||*\in SL(n, F)\overline{o}* : \zeta\in F_{0}\} ;

(ii) the orbit O(M) is equal to

{ [Z]_{\hat{M}}\in P_{nk-1}^{\hat{M}}(F)|Z\in M(n, k;F)_{0} ; rank (Z)=k};

(iii) the orbit o(M) is an open dense subset of P_{nk-1}^{\hat{M}}(F) .

2. 4. The purpose of this section is to prove the following theorem.

THEOREM 2. 3. Let n>k\geqq 2 . Then any two of FTC-pairs in the
form (\rho_{n}\otimes I_{k}, I_{n}\otimes M) are algebraically equivalent if and only if they are
C^{0} -equivalent.

First we prepare two lemmas for the proof.

LEMMA 2. 4. Set K_{C}=C and K_{H}=R. For M\in M_{k}(K_{F}) whose all
eigenvalues have positive real parts, the homomorphism g_{F}^{M} : F_{0}arrow GL(k, F)

defined in Subsection 2.3 is an intO-homeomorphism.

PROOF. There exists P\in GL(k, K_{F}) such that {}^{t}P^{-1t}M^{t}P={}^{t}M0

satisfies the condition ( T) . Then F_{{}^{t}M} : F_{\overline{0}}F_{0}^{k} defined by

F_{{}^{t}M}(z)={}^{t}P\exp((\log||z||){}^{t}M_{0})z/||z||

is a C^{\omega} -diffeomorphism (see 1. 1). Hence a product mapping of kF_{M}^{t} ’s

F_{{}^{t}M} :=F_{{}^{t}M}\cross\cdots\cross F_{{}^{t}M} : F_{0}^{k}\cross\cdots\cross F_{0}^{k}=(F_{0}^{k})-(F_{0}^{k})^{k}

is a C^{\omega} -diffeomorphism. We regard (F_{0}^{k})^{k} as an open subset of M_{k}(F) .
A mapping j_{k} : F_{0}arrow GL(k, F) defined by j_{k}(\zeta)=\zeta I_{k} is an int0-
homeomorphism. Therefore Fk{}^{t}M\circ j_{k} : F_{0}arrow(F0k)^{k} is an int0-
homeomorphism. It is easily seen that

g_{F}^{M}(\zeta)=(F_{{}^{t}M}^{k}(j_{k}(\zeta))){}^{t}P^{-1}

for each \zeta\in F_{0} . Hence g_{F}^{M} is an int0-homeomorphism. q. e . d .

LEMMA 2. 5. Let f_{F} be an automorphism of the Lie group F_{0} . The
Lie algebra automo2phism\tilde{f}_{F} of F uniquely induced by f_{F} is given by the
following form :

\tilde{f}_{C}(x+\sqrt{-1}y)=(a+\sqrt{-1}b)x+ -1 \delta y (x+\sqrt{-1}y\in C) ,
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for some real numbers a, b and \delta;a\neq 0 and \delta=\pm 1 ,

\tilde{f}_{H}(x+z)=ax+qz\overline{q}(x\in R,\overline{z}=-z\in H)

for some a\in R;a\neq 0 and q\in H;|q|=1 .

PROOF. We define a Lie group homomorphism \lambda : F_{0}arrow R by \lambda(\zeta)=

\log|\zeta| , where we regard R as an additive group. Then we have the fol-
lowing short exact sequence:

1– U(1, F)arrow F_{0^{arrow}}^{\lambda}Rarrow 0 .

Each automorphism f_{F} of F_{0} induces uniquely automorphisms f_{\acute{F}}, f_{F}’ of
U(1, F) , R, respectively and the diagram

U(1,F’)U(1,F)\downarrow f_{F} |_{F_{0}}^{F_{0}}f_{F}

\lambda

RR\downarrow f_{F}’

\lambda

is commutative. It is well known that each automorphism f_{F}’ of U(1, F)
is gievn by f_{C}(\zeta)=\zeta or \zeta-(\zeta\in U(1, C)=U(1)) , f_{H}(\zeta)=q\zeta^{-} (\zeta\in

U(1, H)=Sp(1)) for some q\in H:|q|=1 . By these facts, The lemma is
easily shown. q . e . d .

PROOF OF THE THEOREM 2. 3. Since the necessary condition follows
immediately from Lemma 1.2, we have only to show the sufficient condi-
tion. Let M, N\in M_{k}(K_{F}) , where K_{C}=C and K_{H}=R. Suppose that all
the eigenvalues of M, N have positive real parts. Let n>k\geqq 2 . Assume
that there exists an SLCn,F)-equivariant homeomorphism f of P_{nk-1}^{\hat{M}}(F)

with a twisted linear action \zeta_{F}^{M} onto P_{nk-1}^{\hat{N}}(F) with a twisted linear action
\zeta_{F}^{N} . Then we obtain f(O(M))=O(N) and hence I(M) and I(N) are
conjugate in SL(n, F) . Thus there exists T\in SL(n, F) such that I(S)=
TI(M)T^{-1} . Then it easily shown that

T=(\begin{array}{ll}X C0 Y\end{array}) ,

for some X\in SL(n, F) , Y\in GL(n-k, F) and C\in M(k, n-k;F) . Now
we can assign each \zeta\in F_{0} to \zeta’\in F_{0} such that X^{M}g_{F}(\zeta)X^{-1}=g_{F}(N\zeta’) . Then
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we obtain an automorphism f_{F} of an abstract group F_{0} such that f_{F}(\zeta)=\zeta’

for each \zeta\in F_{0} . By Lemma 2.4, f_{F} is a homeomorphism of F_{0} onto F_{0} .
Hence f_{F} is an automorphism of the Lie group F_{0} . By Lemma 2.5, we see
that for some a, b\in R;a\neq 0 and \delta=\pm 1 ,

f_{C}(e^{x+\sqrt{-1}y})=e^{\overline{f}_{C}(x+\sqrt{-1}y)}=e^{(a+\sqrt{-1}b)x+\sqrt{-1}\delta y},

where x+\sqrt{-1}y\in C and that for some a\in R;a\neq 0 and q\in H;|q|=1 ,

f_{H}(e^{x+z})=e^{\overline{f}_{H}(x+z)}=(e^{a})^{x}qe^{z}\overline{q,}

where x\in R and \overline{z}=-z\in H. First we shall investigate the case F=C .
By the above observations, we have

(2. 1) exp (x(X^{t}MX^{-1})+\sqrt{-1}yI_{k})=\exp(m^{t}N+\sqrt{-1}(bx+\delta y)I_{k})

for each x+\sqrt{-1}y\in C. Therefore we obtain

X^{t}MX^{-1}=a^{t}N+\sqrt{-1}bI_{k} and \delta=1 .

Since all the eigenvalues of M, N have positive real parts, a is a positive
real number. Hence it is shown that in this case, CTC-pairs (\rho_{n}C\cross I_{k} ,
I_{n}\otimes M) and (\rho_{n}\otimes I_{k}, I_{n}\otimes N) are algebraically equivalent (see 2. 2). Next
we shall investigate the case F=H. By the above observations, we have

(2. 2) Xe^{z}\exp(x^{t}M)X^{-1}=qe^{z}\overline{q}\exp(ax^{t}N)

for each x+z\in H(x\in R,\overline{z}=-z\in H) . In particular, we have X\zeta X^{-1}=

q\zeta\overline{q}I_{k} for each \zeta\in H ; |\zeta|=1 . This fact implies X_{0}=\overline{q}X\in GL(k, R) .
Hence by (2. 2), we have

exp (x(X_{0}^{t}MX_{0}^{-1}))=\exp(x(a^{t}N))

for each x\in R. Therefore for some positive real number a, X_{0}{}^{t}MX_{0}^{-1}=

a^{t}N holds good. Hence it follows from this fact that HTC-pairs (\rho_{n}C\cross I_{k} ,

I_{n}\otimes M) and (\rho_{n}\otimes I_{k}, I_{n}\otimes N) are algebraically equivalent. q . e . d .

3. Second typical examples

Here we shall study twisted linear actions of G=SL(n, F) on the
(n+k-1) -dimensional F-projective space associated to a representation
\rho=\rho_{n}\oplus I_{k} , that is, \rho(A)=A\oplus I_{k} for each A\in G.

3. 1. Let A\in M_{n}(F) and B\in M_{k}(F) . We denote by A\oplus B the
matrix
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(\begin{array}{ll}A 00 B\end{array})\in M_{n+k}(F) .

We obtain the following lemma.

LEMMA 3. 1. Let n\geqq 2 and k\geqq 1 . Let X\in M_{n+k}(F) . Then
X(A\oplus I_{k})=(A\oplus I_{k})X

for A\in SL(n, F) if and only if X=cI_{n}\oplus M for some M\in M_{k}(F) and c
\in K_{F} , where K_{C}=C and K_{H}=R. Furthermore all the eigenvalues of X
have positive real parts if and only if c and all the eigenvalues of M have
positive real parts.

3. 2. Let M\in M_{k}(F) and suppose that all the eigenvalues of M have
positive real parts. Denote by \chi_{F}^{M} the twisted linear SLCn,F)-action on
the (n+k-1) -dimensional F-projective space P_{n+k-1}^{(M)}(F) determined by
the FTC-pair (\rho_{n}\oplus I_{k}, (M)) , where (M)=I_{n}\oplus M. Then \chi_{F}^{M} is written in
the form

\chi_{F}^{M}(A, [u\oplus v]_{(M)})=[(Au)\oplus v]_{(M)} .

3. 3. Let us define closed subgroups L_{F}(n) and N_{F}(n) of SLCn,F)
by the forms

L_{C}(n)=\{(\begin{array}{lll}1* \cdots *0 \vdots 0 A_{0} \end{array}) ; A_{0}\in SL(n-1, C)\} ,

N_{C}(n)=\{(\begin{array}{llll}\mathcal{A} * \cdots *0 \vdots 0 A_{0} \end{array}) ; \ \lambda\det\lambda\in C_{0}, A_{0}\in GL(n-1A_{0}=1’ C)\} ,

L_{H}(n)=\{(\begin{array}{lll}1* \cdots *0 \vdots 0 A_{0} \end{array}) : A_{0}\in SL(n-1, H)\} ,

N_{H}(n)=\{(\begin{array}{llll}\lambda * \cdots *0 \vdots 0 A_{0} \end{array}) ;
\lambda\in H_{0},

A_{0}\in GL(n-1, H)\}\ |\lambda|^{2}\det(\iota_{2}(A_{0}))=1^{\cdot}
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Denote by F(M) the fixed point set of L_{F}(n) with respect to the twisted
linear action \chi_{F}^{M} . Then we have the following lemma.

LEMMA 3. 2. With respect to the twisted linear action \chi_{F}^{M} ,

F(M)=\{[e_{1}a\oplus v]_{(M)}\in P_{n+k-1}^{(M)}(F)|a\in F, v\in F^{k} ; |a|^{2}+||v||^{2}\neq 0\} ,

where e_{1}={}^{t}( 1, 0, \cdots , O)\in F^{n} . The isotropy group at [0_{n}\oplus v]_{(M)} coincides
with SL(n, F) , the one at [e_{1}\oplus 0_{k}]_{(M)} coincides with N_{F}(n) and if a||v||\neq

0 , then the one of at [e_{1}a\oplus v]_{(M)} coincides with L_{F}(n) , where 0_{n} (resp. 0_{k})

is the zero vector of F^{n}(resp. F^{k}) .

3. 4. Notice that the normalizer N(L_{F}(n)) of L_{F}(n) acts on F(M)
naturally via \chi_{F}^{M} , N(L_{F}(n)) coincides with N_{F}(n) and the factor group
N(L_{F}(n))/L_{F}(n)=N_{F}(n)/L_{F}(n) is naturally isomorphic to the Lie group
F_{0} . The F_{0} action \hat{\chi}_{F}^{M} : F_{0}\cross F(M)arrow F(M) induced naturally by \chi_{F}^{M} is
as follows:

\hat{\chi}_{F}^{M}(\lambda, [e_{1}a\oplus v]_{(M)})=[e_{1}\lambda a\oplus v]_{(M)} .

Here we shall show the following theorem.

THEOREM 3. 3. Suppose that M\in M_{k}(F) is an arbitrary matrix whose
all eigenvalues have positive real parts. Then the FTC-pair (\rho_{n}\oplus I_{k}, (M))

is C^{0} -equivalent to (\rho_{n}\oplus I_{k}, (I_{k})) . In other words, there exists an
SL(n, F) -equivariant homeomorphism of P_{n+k-1}^{(M)}(F) with a twisted linear
action \chi_{F}^{M} onto P_{n+k-1}(F) with a linear action associated to \rho_{n}\oplus I_{k} .

PROOF. By the above remark, we can construct uniquely an F_{0} -

equivariant homeomorphism f_{0} of F(I_{k}) onto F(M) satisfying the follow-
ing conditions

f_{0}([e_{1}a\oplus v])=[e_{1}a\oplus F_{M}(v)]_{(M)} for v\in F_{0}^{k}

and

f_{0}([e_{1}\oplus 0_{k}])=[e_{1}\oplus 0_{k}]_{(M)} ,

where F_{M} is defined in 1.1 and 0_{k} is the zero vector of F^{k} . Next we con-
sider the diagram
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SU(n, F)\cross F(I_{k})| P_{n+k-1}.\cdot..\cdot.\cdot.(F)

\emptyset

1\cross f_{0} .\cdot.
\cdot

f
\downarrow

\psi_{M}

i

SU(n, F)\cross F(M) P_{n+k-1}^{(M)}(F) ,

where SU(n, C)=SU(n) , SU(n, H)=Sp(n) and
\psi(K, [e_{1}a\oplus v])=[Ke_{1}a\oplus v] ,
\psi_{M}(K, [ e_{1}a\oplus v]_{(M)})=[Ke_{1}a\oplus v]_{(M)} .

By the construction of f_{0} and the diagram (1. 1) , we see that
\phi(K, [e_{1}a\oplus v])=\phi(K’-[e_{1}a’\oplus v’]) if and only if \phi_{M}(K, f_{0}([e_{1}a\oplus v]))=

\phi_{M}(K’, f_{0}([e_{1}a’\oplus v’])) and hence we obtain unique bijection f of P_{n+k-1}(F)

onto P_{n+k-1}^{(M)}(F) satisfying

f\circ\phi=\phi_{M}\circ(1\cross f_{0}) .

Then f is a homeomorphism, because \emptyset and \phi_{M} are closed continuous
mappings. Finally, we show that f is SL(n, F) -equivariant. Let A\in

SL(n, F) , K\in SU(n, F) and [ e_{1}a\oplus v]\in F(I_{k}) . Then, there are B\in
SU(n, F) and U\in N_{F}(n) such that AK=BU and hence

f(\chi_{F}(A, \phi(K, z)))=f(\chi_{F}(AK, z))=f(\chi_{F}(BU, z))

=f(\phi(B, \chi_{F}(U, z)))

=\phi_{M}(B, f_{0}(\chi_{F}(U, z)))

=\psi_{M}(B_{ \chi_{F}(U f_{0}(z)))=\chi_{F}^{M}(BU f_{0}(z))}^{M},,,
=\chi_{F}^{M}(AK, f_{0}(z))=\chi_{F}^{M}(A, \phi_{M}(K, f_{0}(z)))

=\chi_{F}^{M}(A, f(\phi(K, z))) ,

where \chi_{F}=\chi_{F^{k}}^{I} and z=[e_{1}a\oplus v]\in F(I_{k}) . Cosequently, we see that f is an
SL(n, F) -equivariant homeomorphism of P_{n+k-1}(F) with a linear action
associated to \rho_{n}\oplus I_{k} onto P_{n+k-1}^{(M)}(F) with a twisted linear action \chi_{F}^{M}.q . e . d .

3. 5. Denote by F(M)_{0} an open subset of F(M) consisting of
[e_{1}a\oplus v]_{(M)} with a\in F_{0} and define \omega_{F}^{M} : F(M)_{0}arrow F^{k} by

\omega_{F}^{M}([e_{1}a\oplus v]_{(M)})=\exp((-\log|a|)M)v\overline{a}/|a|=\alpha_{F}^{M}(v, a^{-1}) ,

where \alpha_{F}^{M} is defined in 1. 1. \chi_{F}^{M} induces naturally a real analytic left F_{0} -

action \beta_{F}^{M} on F^{k} by
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\beta_{F}^{M}(\zeta, v)=\exp((-\log|\zeta|)M)v\overline{\zeta}/|\zeta|=\alpha_{F}^{M}(v, \zeta^{-1}) .

Then \omega_{F}^{M} is an equivariant C^{\omega} -diffeomorphism satisfying \omega_{F}^{M}([e_{1}\oplus 0_{k}]_{(M)})=

0_{k} , where 0_{k} is the zero vector of F^{k} . For any linear action of a Lie
group on a Euclidean space, the tangential representation of its isotropy
group at the origin of the Euclidean space is equivalent to itself. Hence
we have the following lemma.

LEMMA 3. 4. For the F_{0} action \chi_{F}^{M} on F(M) , the tangential represen-
tation of the isotropy group F_{0} on T(F(M))_{p} is equivalent to \beta_{F}^{M} , where
p =[e_{1}\oplus 0_{k}]_{(M)} .

Finally we shall show the following result.

THEOREM 3. 5. Let M, N\in M_{k}(F) and suppose that all eigenvalues
of M, N have positive real parts. If there exists an SL(n, F) -equivariant
C^{1}-diffeomorphism f of P_{n+k-1}(M)(F) with a twisted linear action \mathcal{X}\tau M onto
P_{n+k-1}^{(N)}(F) with a twisted linear action \chi_{F}^{N} , then

\iota(N)=P\iota(M)P^{-1}

for some P\in GL(d_{F}k, R) , where \iota : M_{k}(F)arrow M_{d_{F}k}(R) is the ring
homomo\uparrow phism defined in Section 1.

PROOF. By the existence of such an equivariant diffeomorphism f ,
we obtain an F_{0} -equivariant C^{1} -diffeomorphism f_{0} : F(M)– F(N) .
Considering points whose isotropy groups coincide with F_{0} , we can
assume f_{0}([e_{1}\oplus 0_{k}]_{(M)})=[e_{1}\oplus 0_{k}]_{(N)} . Then we obtain an F_{0} -equivariant
R-linear isomorphism

(df_{0})_{p} : T(F(M))_{p}– T(F(N))_{q}

of tangential representation spaces of the isotropy group F_{0} , where p=[e_{1}

\oplus 0_{k}]_{(M)} and q=[e_{1}\oplus 0_{k}]_{(N)} . (df_{0})_{p} induces an F_{0} -equivariant R-linear
automorphism \phi of F^{k} such that the diagram

is commutative. Since \phi is F_{0} -equivariant, we have
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\phi\circ\beta_{F}^{M}=\beta_{F}^{N}\circ(1\cross\phi) .

Hence we have \phi(\exp(-tM)\phi^{-1}(u))=\exp(-tN)u for each t\in R, u\in F^{k} .
It follows from this fact that there exists P\in GL(d_{F}k, R) such that
Pexp (-t\iota(M))P^{-1}=\exp(-t\iota(N)) for each t\in R. Therefore we have
\iota(N)=P\iota(M)P^{-1} for some P\in GL(d_{F}k, R) . q . e . d .
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