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Twisted linear actions on projective spaces
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0. Introduction

In this paper, we shall study the twisted linear actions of non-compact
Lie groups on complex projective spaces and quaternion projective spaces.
A twisted linear action is defined by F. Uchida who gave an example
of SL(n, R)-actions on a (2n—1)-sphere. In contrast to compact Lie
groups, those SL(», R)-actions are uncountably many topologically dis-
tinct C“®-actions (of. [4], [5]). From this point of view it seems interest-
ing to study twisted linear actions of non-compact Lie groups on compact
manifolds other than spheres. The remainder of this note is divided into
three sections. In Section 1, we define twisted linear actions of Lie groups
on F'-projective spaces, where FF’=C, H and show that twisted linear
actions of compact Lie groups on these spaces are equivariantly dif-
feomorphic to linear actions (Theorem 1.4D. In Section 2, we show that
there are uncountably many topologically distinct C“-actions of SL(n, F)
on an (nk—1)-dimensional F-projective space, where n>k=2
2.3). In Section 3, we show that there are uncountably many C!-
differentiably distinct but topologically equivalent C“-actions of SL(#n, F)
on an m-dimensional F'-projective space, where m=n=2 (Theorem 3.3
and [Theorem 3.5). The author wishes to express his hearty gratitude to
Professor Fuichi Uchida who offered this topic and helpful advice.

1. Twisted linear actions on projective spaces

Throughout this paper, let F be the field of complex numbers C or
quaternions H and M (n, m ; F) the set of all F-matrices of type (n, m).
Moreover let F” denote the right F-vector space of all #-dimensional
F-column vectors and we set M,(F)=M(n, n; F). We denote the set of
all square real matrices of degree n by M,(R). We define ¢ : M,(C)—
M,,(R) and ¢, : M,(H)—M,,(C) by

: b o)

where A, BEM,(R) and C, DEM,(C). Then we see that ¢, and ¢, are

o (A+iB) = _i) and 4,(C+iD)=(
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injective ring homomorphisms. We define ¢: M,(F)— My.(R) by
(dr, O=02, ) or (4, 4,t,) for F=C or H, respectively. We set

SL(n, H)={A=M,(H) ; det(,(A))=1}.

Then we have SL(n, H)=(¢;'(SL2n, C)). For A€M(n, m F), A*
denotes the adjoint matrix of A. We set U(n, F)={AcsM,(F); A*A=
L}. Then U(n, C), Uln, H) is equal to the unitary group U(n),
symplectic group Sp(n), respectively. For u, vEF" we define their her-

mitian inner product by <#, v>=u*v and the norm of « by |u|=v<u, u).

1. 1. We say that Xe M, (F) satisfies the condition (7T) if %(X—F
X*) is a positive definite hermitian matrix. It is easy to see that X
satisfies the condition (7) if and only (7)) di;llexp(tx)zll>0 for each z&€
F;=F"—{0}, t€R. If X satisfies (T"), then

tligg”exp(tX)zH =400 and tli{rgollexp(tX)zll =0

for each zEF{ and hence there exists a unique real valued C“-function r
on F'§ such that

lexp(z(z) X)z|=1 for zEF2.
The following lemma is proved in [4, Lemma 2. 2].

LEMMA 1.1. Let XeM,(F), wheve F=R, C or H and assume

that all the eigenvalues of X have positive real parts. Then there exists P
EGL(n, F) such that P~*XP satisfies the condition (T).

Throughout this paper, F, denotes the multiplicative group of non-zero
elements of F. For X&eM,(F) whose all eigenvalues have positive real
parts, we define a real analytic right Fy-action a¥ on F7 as follows:

ary: FiX Fo—F%, ar(z, ) =exp(Uog|tD XDz (E/|CD.

By Lemma 1.1, there exists PEGL(n, F) such that X,=P 'XP satisfies
the condition (7). For this matrix X,, we define C®-diffeomorphism
(I)xo, ‘I’xo . F{}—>F6‘ by

Dx,(2) =exp((oglzl) Xo) 2/ zl,
Uy, (w) =exp(r(w) Xy) we =,

Then we have ®x,=¥x,. Moreover, for the above matrix X, we define a
C“-diffeomorphism Fx of F? by Fx=Lpo®x, where Lr(z) =Pz for each z
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€F}. Fx depends probably on a choice of P. Then we have Fx'=
Wx,cLp'. Furthermore we have the commutative diagram

I
F1xF, e Y
(1.1 Fx X1 Fx
ay \
FXF, "F7.

We denote the orbit space of the action ay by Px_1(F). Then P (F) is
the usual (#»—1)-dimensional F-projective space P,_,(F). We denote the
az-orbit through z€F7 by [z]x and the canonical projection of F? onto
Pi1(F) by nx. Then a C®-manifold structure of Ps-1(F) is canonically
induced by the real analytic right Fy-action a» on F# such that the projec-
tion 7x: F3——P7_1(F) is a C®-submersion. Furthermore we have the
commutative diagram

F; By
(1.2) i .
Py (F) Fx  pX,(p

where 7=m,, Fx is a C¢-diffeomorphism defined by Fx([z])=[Fx(z)]x
and [z]=[z], for zEF2.

1.2. Let G be a Lie group, 0: G—GL(n, F) a matricial represen-
tation and X a square F-matrix of degree » whose all eigenvalues have
positive real parts. We call (p, X) an FTC-pair of degree #, if o(g) X =
Xp(g) for each g&G. For an FTC-pair (p, X) of degree u, we can
define a C“-mapping

Er: GXPr_1(F)—P3_1(F) by & (g, [z]x)=[0(®z]x

and we see that & is a real analytic G-action on P 7-1(F). We call
Er=E¥"Y a twisted linear action of G on P%¥(F) determined by the
FTC-pair (p, X) and we say that & is associated to the matricial repre-
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sentation p. Moreover we have a real analytic G-action &%: GXP,_,(F)
—P,_,(F) defined by

£x(g, [zD=[Fx'(p(¢9) Fx(2))].

Then the following diagram is commutative :

0
GX Py 1 (F) s Py (F)
(1.3 1x By o
| Ex g
GXP¥_(F) P (F).

We call also &% a twisted linear action of G on P,_,(F) determined by the

FTC-pair (p, X) and we say that &% is associated to the matricial repre-
sentation p.

1.3. For a given Lie group G, we introduce certain equivalence
relations on FTC-pairs. Let (p, X) and (o, Y) be of degree n, where p,
0:G— GL(n, F) are matricial representations and X, Y are F-
matrices of degree » whose all eigenvalues have positive real parts. We
say that (p, X) is algebraically equivalent to (o, Y) ;
in case F =C, if there exist A& GL(n, C), a positive real number ¢ and a
real number d satisfying

1.4 Y=cAXA'+v—1dl, and 0(g)=Ap(g)A™

for each ¢&G and in case F=H, if there exist ASGL(n, H) and a posi-
tive real number ¢ satisfying

(1.5) Y=cAXA ! and o(g)=Ap(g)A!

for each g=G,

We say that (p, X) is CT-equivalent to (o, Y), if there exists a C7-
diffeomorphism f:P 3 (F)— P (F) (r=0,1,2,:+,00, w) such that
the following diagram is commutative :
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(p, XD
GXP¥,(F) = »PX_(F)
(1.6) 1% f f
é%g, )

GXPY_(F) =P (F).

We call f a G-equivariant C’-diffeomorphism. We prove the following
lemma.

LEMMA 1.2.  If (p, X) is algebraically equivalent to (o, Y), then
(o, X) is C®-equivalent to (0, V).

ProOF. We prove the lemma only in case F=C, since in case F=
H, it is shown in the similar manner. Suppose that there exist AE
GL(n, C), a positive real number ¢ and a real number d satisfying (1.4).
We define an automorphism of the Lie grouup C, by

f(©=¢texp(UogleDA—c—v—1d)/c).

Then the following diagram is commutative :

X
Cix G, = C7
(1.7) LA Xf LA
, al R
CixC, "C2.

where La(z)=Az for z&C?. Now we define a C “-diffeomorphism 7 4:

21(C)—P¥1(C) by La([z]x)=[Az]y. It is easily shown that L . is

G-equivariant. g.e.d.

Let o: G—GL(n, F) be a matricial representation of a Lie group G.

We say that e is in standard form, if there exist irreducible representa-

tions p;: G—>GL(n;, F) (j=1,2,+,r) (furthermore 0;(G)CGL(n;, F;)
in case F=H) such that

(1.8) 0=(0Q®L)D - D(p,R1,),

(I n®M(C)HD-DU,KRM,(C)) (F=C)
49 EndG(p)_{(]m@Mkl(KFl))@“'@(]n,®Mk,<KF,)) (F=H),
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where n=mk + +nk, F;=R, C or H, End¢(po)={X & M,(F);
Xo(g)=p0(g) X for g€G} and Kr=H, K=C, Kyg=R. 1t is well known
that any matricial representation of a compact Lie group is equivalent to
one in standard form (cf. [1, ch.3], [2, ch.II] or [3, ch. VI]). The fol-
lowing lemma is easily shown by (1.8), (1.9) and Lemma 1.1l

LEMMA 1.3. Let o be a F-matricial representation in standard form
of a Lie group G. Let XEEndc(p) and assume that all the eigenvalues
of X have positive real parts. Then there exists PEAntc(o) N GL(n, F)
such that PXP~' satisfies the condition (T).

Now we prove the following theorem.

THEOREM 1.4. Let G be a compact Lie group and o:G— GL(n,
F) a wmatricial vepresentation. Then any FTC-pair (o, X) is C “-
equivalent to Cp, I,). In other words, any twisted linear acion of G on
P,_.(F) associated to p is equivariantly C-diffeomorphic to the linear
action of G on P,_,(F) associated to p.

ProoOF. Since G is compact, there are PL&GL(»n, F) and a represen-
tation 0: G—U(n, F) in standard form satisfying o(g)P,=P,p(g) for
each ¢€G. Then P, XP:i'€End¢(p) and all eigenvalues of P, XPi' have
positive real parts, so there exists P,€Autc(o) such that PP, XP7'P;!
satisfies the condition (7) by Lemma 1.3. Set P=PFP,P, and Y =PXP™'.
Then (o, Y) is an FTC-pair. Moreover we have the commutative dia-
gram

1XL X @ XL
GxP,,-1<F>—L—"—>GxPAF)ﬂ»GXPZ.l(F) @prz‘_m

~ ~ ~

p(F—Lr p % prm—Le_prp)

where &){([zl)Z[exp((logHz”) Y)z/|zllly (cf. (1.3)). It is easily seen
that Lp'e®yeLp is a C“-diffeomorphism. q.e.d.

2. First typical examples

Here we shall study twisted linear actions of G=SL(n, F) on the

(nk—1)-dimensional F'-projective space associated to a representation o=
0,X1,, that is, p(A)=ARXKI, for each A€G.
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2.1. Suppose that A € M,(C), B M,(C) or A< M,(H), B €&
M,.(R) or AcM,(R), BEM,(H). Denote by AQB the Kronecker prod-
uct written in the form

A®B=| - emacm,
bkiA ----------- bkLA
Let u, ..., ux be column vectors in F”. Then the correspondence
"
(g, | wy) — :
U
defines a linear F-isomorphism A: M (n, k; F)— F " where we regard

M(n, k; F) as a right F-vector space. As usual, for X, YEM(n, k; F),
we define their hermitian inner product by

(X, Y>=trace(X*Y)

and the norm of X by [X|=v<X, X>. Then A is an isometry. Further-
more the equality

(AR®B)A(X)=A(AX*B)

holds, where A€ M,(C) (resp. M,(H)), B&€ M,(C)(resp. M,(R)) and X
EM(n, k; C)(resp. M(n, k; H)). In this section, we shall identify Fm*
with M (n, k; F) via the isometry A.

2.2. We obtain the following lemma directly.
LEMMA 2.1. Let M be a square F-matrix of degree nk. Then
M<A®]k> = <A®]k>M

for each ASSL(n, F) if and only if M=I,QM, where in case F=C
(resp. H), M is a certain square C (vesp. R)-matrix of degree k. Further-
more all the eigenvalues of LM have positive real parts if and only if
all the eigenvalues of M have positive real parts.

Consequently, (0,&1, LOM) is a CTC(resp. HTC)-pair for any
square C(resp. R)-matrix M of degree & whose all eigenvalues have posi-
tive real parts and any F7TC-pair (p,&®1,, M) is written in such form.
Furthermore CTC(resp. HTC) -pairs (0,&Q1I,, I, QM) and (0,QL., I,QN)
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are algebraically equivalent if and only if there exist X GL (%, C) (resp.
GL(k, R)), a positive real number ¢ and a real number d (resp. a posi-

tive real number ¢) satisfying N =cXMX '+ —1dIl, (resp. N=
cXMX™1).

2.3. Incase F=C(resp. H), let M be a square C(resp. R)-matrix
of degree & whose all eigenvalues have positive real parts. Denote by &%
the twisted linear SL(#, F)-action on the (nk—1)-dimensional F'-
projective space determined by the FTC-pair (0,&1I., LOM). We iden-
tify Fy* with M(n, k; F)o=M(n, k; F)—{0} via the isometry A. More-
over we identify the orbit space of a right F,-action a¥ on M(n, k; F),
defined by

ay(Z, &)= Z*é—l exp((log|¢D M)

with P_ (F) via A where M =I,®M. We denote the a¥-orbit through Z
eEM(n, k;F}o by [Z]MEP%_l(F). Then the C¢-diffeomorphism Fj; of
P (F)=P% (F) onto P _,(F) is given by

FallZD=[FiDlai=[®i1(2)P)s,

where in case F=C(resp. H), for some PEGL(k C)(resp. GL(k R))
M,=P~*MP satisfies the condition (7°) and

04 (2) zﬁexp((logﬂZIDtM).

Moreover we can describe &% : SL(n, F) XPﬁ_l(F)—>Pﬁ'zz_1(F) by
¢r(A, [Z]1in=[AZ]x.
Let I(M) and O(M) denote the isotropy group at

()]

0/]1m

and the orbit through that point, respectively, with respect to the twisted
linear action ¢¥. We define a homomorphism g% : F——GL(k, F) by

gr (O =|—§|—exp((log|§|)‘M).

We obtain the following lemma.

LEMMA 2.2.  Suppose that n>k=2. Then
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(1) the isotropy group I(M) is written in the form

100 ={("2)esLin, By teR);

Cii)  the ovbit O(M) is equal to
([Z1a€EPh (F)IZEM(n, k; Fy ; rank(Z)=F);
(ii1)  the orbit O(M) is an open dense subset of PnM;_l(F).
2.4. The purpose of this section is to prove the following theorem.

THEOREM 2.3. Let n>k=22. Then any two of FTC-pairs in the
form (0,Q1I,, ,OAM) are algebraically equivalent if and only if they are
C°-equivalent.

First we prepare two lemmas for the proof.

LEMMA 2.4. Set K¢c=C and Ky=R. For MEM,(Kr) whose all
eigenvalues have positive real parts, the homomorphism g% : F,—— GL(k, F)
defined in Subsection 2.3 is an into-homeomorphism.

PrROOF. There exists P & GL(k Kp) such that (P VYM!P=tM"°
satisfies the condition (7). Then F4,: F¥——F'¥ defined by

Fu(2)="Pexp(Uoglz|D*M z/|z|
is a C“-diffeomorphism (see 1.1). Hence a product mapping of 2 F'u’s
Fo =F X XFy: Ft;X- - XFt=(FO——(FP*

is a C”-diffeomorphism. We regard (F®* as an open subset of M,(F).
A mapping j.: F;—— GL(k, F) defined by j;.({)=¢I, is an into-
homeomorphism. Therefore F % °j,: F——(F %* is an into-
homeomorphism. It is easily seen that

gr () = (F& G ()P
for each £ F,. Hence g¥ is an into-homeomorphism. qg.e.d.

LEMMA 2.5. Let frp be an automorphism of the Lie group F,. The
Lie algebra automorphism fr of F uniquely induced by fr is given by the
following form :

Felx+V=1p)=(a+V/—1b)x+/—10y x+/—-1ye0),
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for some real numbers a, b and & ; a+0 and 5==+1,
Fux+z)=ax+qzq (XER, z=—2z€H)
for some aER ;a#+0 and q=H : |q|=1.

PROOF. We define a Lie group homomorphism A: F,——R by A(¢) =
log|¢|, where we regard R as an additive group. Then we have the fol-
lowing short exact sequence :

1— U, F)—»FOL»R——»O.

Each automorphism fr of F, induces uniquely automorphisms f5, fi of
U, F), R, respectively and the diagram

U, F) .F, AR
fF fF 7

! : A !

U(l, F) ;FO ’R

is commutative. It is well known that each automorphism f5 of U(1, F)
is gievn by fc(E) =& or & (€ U, C)=UQ)), fu(O)=qtq (¢
U, H)=Sp(1)) for some q=H ; |g/=1. By these facts, The lemma is
easily shown. g.e.d.

PROOF OF THE THEOREM 2.3. Since the necessary condition follows
immediately from Lemma 1.2, we have only to show the sufficient condi-
tion. Let M, NeM,(Kr), where K;=C and Ky=R. Suppose that all
the eigenvalues of M, N have positive real parts. Let #>%=2. Assume
that there exists an SL(%, F)-equivariant homeomorphism f of P%_,(F)
with a twisted linear action ¢¥ onto PY,_,(F) with a twisted linear action
¢¥. Then we obtain F(O(M))=0(CN) and hence I(M) and I(N) are
conjugate in SL(n, F). Thus there exists TE€SL(n, F) such that I(S)=
TI(M)T-'. Then it easily shown that

X C
T‘( 0 Y)’
for some X&GL(k, F), YEGL(n—k F) and CEM(k, n—Fk:F). Now
we can assign each {EF, to {'EF, such that Xg¥ ()X '=g¥(¢). Then
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we obtain an automorphism fr of an abstract group F, such that fr({)=¢"
for each ¢ F,. By Lemma 2.4, fr is a homeomorphism of F; onto Fj.
Hence fr is an automorphism of the Lie group F,. By Lemma 2.5, we see
that for some ¢, bER ; a+0 and 6= %1,

fe(e*t 1) = ol V=T = platd=1 b)x+may’

where x++v —1yE C and that for some ¢€R ; a+0 and g=H ;|q|=1,
fa (¥t = e/ux+ = (e9)*ge?q,

where xR and z=—z<H. First we shall investigate the case F=C.
By the above observations, we have

2.D exp(x(X*MX )+ —1yl,) =exp(axN +v —1Cbx+ 8y) 1)
for each x++v—1y€ C. Therefore we obtain
XMX'=a'N+v—1bl, and 6=1.

Since all the eigenvalues of M, N have positive real parts, a is a positive
real number. Hence it is shown that in this case, CTC-pairs (0,&1,,
LROM) and (0,Q1,, I, ON) are algebraically equivalent (see 2.2). Next
we shall investigate the case F =H. By the above observations, we have

(2.2) Xefexp(x!M) X '=qe*gexp(axtN)

for each x+z€eH(xER, z2=—z2<H). In particular, we have X{X'=
q¢ql, for each ¢€H ;|¢|=1. This fact implies X,=gXEGL(, R).
Hence by (2.2), we have

exp(x(XEMX D)) =expx(aiN))

for each x€R. Therefore for some positive real number ¢, X{MX;'=
a'N holds good. Hence it follows from this fact that H7'C-pairs (0,&1,
LOM) and (0,QI,, ,LON) are algebraically equivalent. q. e. d.

3. Second typical examples

Here we shall study twisted linear actions of G=SL(n, F) on the

(n+k—1)-dimensional F-projective space associated to a representation
o0=0,PI,, that is, p(A)=API, for each AEG.

3.1. Let A€M, (F) and B M,(F). We denote by ADB the
matrix
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<AO

| )E M (E).

We obtain the following lemma.
LEMMA 3.1. Let n=2 and k=1. Let XEM,,,(F). Then
X(APL)=(UABIH X

for AESL(n, F) if and only if X=cl,®M for some MEM,(F) and ¢
EKr, where Kc=C and Ky=R. Furthermore all the eigenvalues of X

have positive real parts if and only if ¢ and all the eigenvalues of M have
positive real parts.

3.2. Let MeM,(F) and suppose that all the eigenvalues of M have
positive real parts. Denote by x# the twisted linear SL (%, F)-action on
the (n+k—1)-dimensional F-projective space P$%._,(F) determined by
the FTC-pair (0,DI,, (M)), where (M)=L®M. Then x¥ is written in
the form

X%(A, [MEBU](M)) = [(AZO@U](M).

3.3. Let us define closed subgroups L z(#) and Nr(n) of SL(n, F)
by the forms

1* ...... *
0
Lew=i : , | AeSLi-1, 0,
. 0
0
( /1* ...... *
Nl L A€G,, AEGL(n—1,C)
AT A, | & Adet A,=1 ,
0
(] eeenen *
0
Ly(n)=4| : 4 ; As€SL(n—1, H)t,
. 0
1\ o
/1* ...... *
N 0 AEH,, A/EGL(n—1, H)
HEN L 4 | & JAPdet(6,(A) =1
0
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Denote by F(M) the fixed point set of L z(n) with respect to the twisted
linear action xy. Then we have the following lemma.

LEMMA 3.2.  With respect to the twisted linear action x¥,
F(M):{[eldC'BU](M)EPSK)k—l(FNaEE vEFk; |d|2+||1)”2¢0},

where ¢,='1,0,-,00€F" The isotropy group at [0,Dv]wm coincides
with SL(n, F), the one at [e;®0.)an coincides with Np(n) and if allv|+
0, then the one of at [e,a®v)w coincides with L p(n), where 0,(resp. 0,)
is the zevo vector of F"(resp. F*).

3.4. Notice that the normalizer N (L (#)) of L z(n) acts on F(M)
naturally via x#, N (L p(»n)) coincides with Np(») and the factor group
NLrm))/Lr(n)=Np(n)/Lr(n) is naturally isomorphic to the Lie group
F,. The F,-action ¢ : F,X F(M)—F (M) induced naturally by x¥ is
as follows:

f%(li, [9161@U](M)> = [el/la@v](m.
Here we shall show the following theorem.

THEOREM 3.3.  Suppose that MEM,(F) is an arbitrary matrix whose
all eigenvalues have positive real parts. Then the FTC-pair (0,DI,, (M))
is Cl-equivalent to (0,®I,, (I,)). In other words, there exists an
SL(n, F)-equivariant homeomorphism of P3.(F) with a twisted linear
action xy onto P, .(F) with a linear action associated to p,PI,.

PrOOF. By the above remark, we can construct uniquely an F,-
equivariant homeomorphism f, of F(I,) onto F(M) satisfying the follow-
ing conditions

ﬁ)([eﬂ@v]):[&d@FM(U)](M) for vEF%
and
ﬁ)([%@ok]):[el@()k]w);

where Fy is defined in 1.1 and 0, is the zero vector of F~ Next we con-
sider the diagram
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SU(n, F)XF(L) ¢ Prsst (F)
1% ¥
| D l
SUn, FYXF (M) > PYD, L (F),

where SU(n, C)=SU (n), SU(n, H)=Sp(n) and

(K, [ea®@v]) =[Ke,a®v],
du(K, [ea®@v])w) =[Ke,a®v] ).

By the construction of £, and the diagram (1.1), we see that
¢(K, [ea®v]) = ¢(K', [aa’®v’]) if and only if ¢u(K, f,([e,aPv])) =
du(K’, i([e.a’®v’])) and hence we obtain unique bijection f of P, ,_,(F)
onto P3P._1(F) satisfying

fod=duo(1Xf).

Then f is a homeomorphism, because ¢ and ¢ are closed continuous
mappings. Finally, we show that f is SL(n, F)-equivariant. Let AS
SL(n, F), K € SU(n, F) and [e;a®v]E€ F(I,). Then, there are B =
SU(n, F) and UE Ny(n) such that AK =BU and hence

fxr(A, ¢(K, 2)))=f (xr(AK, 2))=F (xr(BU, 2))
=f (4B, xr(U, 2)))
=¢u(B, fo(xr(U, 2)))
=¢u(B, x¥ (U, £,(2)))=x#(BU, £,(2))
=xr(AK, £,(2)) =2 (A, ¢u(K, £,(2)))
=xr (A, fY(K, 2))),

where xr=x% and z=[e,a®v]€F(,). Cosequently, we see that f is an
SL(n, F)-equivariant homeomorphism of P,.,,(F) with a linear action

associated to p,®1, onto P3%._1(F) with a twisted linear action y¥.q.e. d.

3.5. Denote by F(M), an open subset of F(M) consisting of
[e.a®v ] with aEF, and define w¥ : F(M),—— F* by

wr ([a®v] ) = exp((—logla) M) va/lal=a¥ (v, aV),

where af is defined in 1.1. ¥ induces naturally a real analytic left F,-
action 8% on F* by
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Br (&, v)=exp((—logltDM)v/|¢|=a¥ (v, V).

Then wy is an equivariant C“-diffeomorphism satisfying w¥ ([e:@0,]an) =
0., where 0, is the zero vector of F* For any linear action of a Lie
group on a Euclidean space, the tangential representation of its isotropy
group at the origin of the Euclidean space is equivalent to itself. Hence
we have the following lemma.

LEMMA 3.4. For the Fy-action x¥ on F(M), the tangential represen-

tation of the isotropy group F, on T(F(M)), is equivalent to BY, where
p=[a®0.]un-

Finally we shall show the following result.

THEOREM 3.5. Let M, NEM,(F) and suppose that all eigenvalues
of M, N have positive real parts. If therve exists an SL(n, F)-equivariant
C*-diffeomorphism f of P Wui(F) with a twisted linear action x ¥ onto
PS2%1(F) with a twisted linear action x%, then

(N)=Pc(M)P!

for some P & GL(dpk R), where (:M,(F)— Max(R) is the vring
homomorphism defined in Section 1.

PROOF. By the existence of such an equivariant diffeomorphism £,
we obtain an Fj-equivariant C!-diffeomorphism f: F(M)—F(N).
Considering points whose isotropy groups coincide with F,, we can

assume f,([e;@0.]an) =[e,P0,]v). Then we obtain an F,-equivariant
R-linear isomorphism

(df(-))pi T(F(M))p_‘_’T<F<N>>q

of tangential representation spaces of the isotropy group F,, where p=[e¢,
@0:]lon and ¢=[e,®0,]w). (df), induces an Fy-equivariant R-linear
automorphism ¢ of F'* such that the diagram

T(F(MD), (df)y T(F(N)),
(dwit) (dwp)q
o ¢ R

is commutative. Since ¢ is Fy-equivariant, we have
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¢oBr=Bro(1X @)

Hence we have ¢(exp(—tM)¢~'(u)) =exp(—tN)u for each tER, ucF*
It follows from this fact that there exists PEGL(drk, R) such that

Pexp(—tt(M))P'=exp(—#t(N)) for each t=R. Therefore we have
t(N)=Pt(M)P-! for some PEGL(drk, R). q.e.d.
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