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A twisted version of the Frobenius-Schur indicator
and multiplicity-free permutation representations
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1. Introduction
Let G be a finite group, and
7. 9", 9€G

an automorphism of G such that z?=1. For a complex irreducible charac-
ter x of G, we define the twisted Frobenius-Schur indicator c. (x) by

c:(x) = |G|_1g§6 x Cgg").

When the z-action is trivial, this is nothing but the classical Frobenius-
Schur indicator [2], which we denote by c(x). The purpose of this paper
is to show that some of the standard properties (found, e.g. in [1; § 12C,
§ 73AD of c(+) can naturally be generalized to those of ¢:(+). Partly this
was also observed by R. Gow [3].

Let x be an irreducible character of G. There are following three
possibilities :

(1) The character x is afforded by a matrix representation R of G
such that

(1.1) R@H=R(g), 9=aG,

where the bar means the complex conjugation.
(2:) The character y satisfies

1.2 x@H=x(®, 9€G,

but it can not be afforded by a representation R with the property (1.1).
(3:) The character yx does not satisfy (1.2).
Our main result is the following genaralization of a theorem of
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Frobenius and Schur [2].

THEOREM 1.3. Let x be an irveducible character of G. Then

1 if x is of type (1.),
cr(x):{ -1 if x is of type (2.),
0 if x is of type (3.).

This is proved in Section 3. In Section 4, we remark that the twisted
Frobenius-Schur indicators already appeared implicitly in a classical work
[9] of G. W. Mackey. Once this is recognized, it is not difficult to formu-
late and prove the z-version of the Mackey’s result. In Section 5, as an
application of [Theorem 1. 3, we prove:

THEOREM 1.4. Let the pair (G, ) be one of the following :

(a) G is of odd ovder and t is any involutive automorphism of G,

(b) G={9=G|g”=g} and g°=g° for g=G, where G is the group
of invertible elements of an associative algebra with unity over an alge-
braically closed field, and o is an algebraic group endomorphism of G such
that the o*-fixed point set G is finite.

Let G: be the fixed point set of v in G. Then we have :

(1)  The induced character 1¢.(=1c)°) is multiplicity-free, and an
irveducible character x of G is a component of 1¢. if and only if x"=7x.

(ii)  Amy irreducible character of G is either of type (1) or of type
Bo).

When G is the general linear groupGL.(Fq:) over a finite field Fg: of
q° elements and the r-action on G is given by

i) =(xd), () EGLA(Fy2),

or by
)T =)™, () EGLp(Foq2).

(these two cases are covered by case (b) of [Theorem 1.4D, [Theorem 1.4
(i) was proved by Gow by a totally different method. (Motivated by
this result of Gow, the first-named author proved [Theorem 1.4 (i) in an
unpublished paper [7]) A further application to “almost” multiplicity-
free permutation representations of a finite reductive group will be given
in a forthcoming paper of the first-named author.

NOTATION: For a set X, |X| denotes its cardinality. Let Y be a
subset of X. For a map f from X to another set, f |y denotes the restric-
tion of f to Y. Let G be a finite group. Then G (or G") means the set
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of complex irreducible characters of G. For a complex valued class func-
tion @ on a subgroup H of G, a® denotes the class function on G induced
from a.

2. Twisted Frobenius-Schur indicators

Let G be a finite group, and G a subgroup of G of index 2. We
choose an element 7 in G—G. (This situation is slightly more general
than that of Section 1.) For a complex irreducible character y of G, we
put

(=G Z x((H=IG]"" T xOGD.
ges xeG-G
When G=<7>XG (direct product), this reduces to the Frobenius-Schur
indicator ¢(x). For any complex valued class function ¥ on G, we define

¢:(x) (and ¢(x)) by the same formula as above. The following lemma
is easy to see.

LEMMA 2.1. Let H be a subgroup of G, and a a class function on
H  Then

c(@®)=cla®+c:(a®.

Let x€G If x=x° (resp. x*x°), where x° is defined by xf(gzz
x(g") for g€G, then we denote by x an (resp. the) element of (G)"
such that

2.2) xle=x (resp. xle=x+x?.

LEMMA 2.3. In the above notations, we have

_[2c(x)  f xT=x
G+ e =] NP A

PROOF. This follows from by putting H=G and a=x.

PROPOSITION 2.4. For an element g of G, we have

xgé e () x (@) ={hEGl(zh)?*=g}|.

PROOF. This follows from and the classical counterpart
(see [2], [1; §73, Ex. 4]) of Proposition 2. 4.

The next result, given implicitly in R. Gow [3; Lemma 2.1] (see also
[4]), generalizes a part of the Frobenius-Schur theorem [2].

THEOREM 2.5. Let x€G.  Then
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(X1 i xT=x,
CT(x)_{O if x"+X
where the bar means the complex conjugation.

PROOF. We consider the following five cases seperately :

(Aa) x"=x=x, (Ab) x"=x+*1x,
Ba) x"=x+1, Bb) x"Fx=1x,
Bo) x"Fx+x, x Fx.

In case (Aa), we have c¢(x)==1 by [2] Hence, if ¢()=0, we have
¢"(x)=F1 by Lemma 2.3. Next, if ¢(z)=1, then c¢(x)=1 by [2]
Hence we have ¢:(x)=1 by Lemma 2.3. Therefore we may assume
c(x)=—1. In this case, we cannot have ¢(x)=1. In fact, if ¢(y)=1,
then the induced character xé is afforded by a real representation of G.
Moreover, by (2.2), we have the irreducible decomposition (over the
complex number field) :

x°=x+x, xFx
Hence, we have either

(1) both y and g’ are afforded by real representations of G, or

(2) x’is complex conjugate to x.

Accordingly, ¢(x) is equal to 1 or 0, which contradicts to our hypothesis.
Hence ¢(x) must be —1. This and imply that ¢ (x)=-—1.
This proves the theorem in case (Aa).

In case (Ab), we have ¢(x)=0 by [2], and ¥=x¢ and zlc=x+x by
(2.2). Hence c(x)==1by [2] Hence ¢:(x)==1 by Lemma 2.3.

In case (Ba), we have ¢(x)=c(x)=0. Hence c:(x)=0.

In case (Bb), we have ¢(xy)==+1. Moreover, we can show that
c(x)=1 if and only if ¢(x)=1. In fact, if c(x)=1, the character xl|c=
x+x° is afforded by a real representation, which implies that c(x)=1.
Conversely, if ¢(x)=1, ¢(f) must be 1 because z=x¢ is afforded by a
real representation. Thus we have shown that ¢(x)=c(x). Hence, by
Cemma 2.3, we have ¢:(x)=0.

In case (Bc), we have c¢(x)=c(x)=0. Hence c¢:(3)=0. This com:-
pletes the proof of [Theorem 2. 5.

3. Proof of Theorem 1.3

In this section, we prove [Theorem 1.3. Let G and 7 be as in Section
1, and G the semi-direct product of G with <z>:
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G=<7>0G.

Let x be an irreducible character of G, and R a matrix representation of
G affording g :

R: G—>GL.(O).

Assume that y is either of type (1.) or of type (2.). This implies that
there exists a matrix X € GL,(C) such that

3.1) XR@HX'=R(g), g=G.
LEMMA 3.2. In the above situation, we have
XX: a].n,

for a non-zero real number a, where 1, is the n-by-n identity matrix.
Moreover, x is of type (1.) (vesp. type (2:)) if a is positive (resp. nega-
tive).

PROOF. By (3.1), we have
XXR(gHX X '=R(g"), g6
Hence, by Schur’s lemma, we have
XX =al,

for some <= C—{0}. Taking the traces of both sides, we see that a is
real. If x is of type (1.), then there exists a matrix YEGL,(C) such
that

(3.3) YR(@OY'=YR@Y, g<G.

Comparing (3.1) with (3.3), and using Schur’s lemma, we have
X=8Y"'Y

for some B C—{0}. Hence
XX = Bp1n

This implies that «=88>0. Conversely, if >0, then
Wa'X)Wa'X) =1,

Hence, by the triviality of the Galois cohomology H'(C/R, GL.(C))
(see, e.g., [10; ch. X, Prop. 3]), we have

Ja'X=Y'Y
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for some YEGL,(C). This and (3.1) lead to (3.3), which means that y
is of type (1;). This proves the lemma.

PROOF OF THEOREM 1.3. By [lheorem 2.5, we already know that
¢:(x)=0 if and only if x is of type (3:). Hence we may assume that
x"'=x. We consider the following four cases seperately :

(A x"=x*x,

Ba) x"=x=x, c(x)=1,

Bb) x'=x=zx, c(x)=—1,

(Be) x"=x=ux, c(x)=0.

Here j is an irreducible character of G with the property (2.2).

We begin with case (A). Let R: G—GL.(C) be a representation
of G affording x. Then there exists a representation R of G affording 7
with the following form:

a0 Ro=("" 55) 9=6
(3.5) ﬁu):(g ’g) P QEGL.(C), PQ=1.

We put
(3.6) R*()=ARXA™, x4,

where
[ 1a 1n> -
A_<—z'1,, i1, YL

Then R*|¢ is a real representation of G affording xtx. By the proof of
Theorem 2.5, ¢:(x)=1 if and only if c¢(x)=1. Assume that c¢(x)=1.
Then there exists a real representation 7 : G——GL,,(R) which is equiv-
alent to R as complex representations. We have

(3.7 BR*x)B'=T), x=0,

for some BEGL:,(C). Moreover, since R%|¢ and T|¢ are equivalent as
real representations, we have

CRY(¢)C'=T(y), ¢gG
for some CE€GL:,(R). Hence,
BR*(¢g)B'=CR*(¢)C™, g=G.

Hence, by Schur’s lemma,
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_ Al 0\,
B=ca’y” )4

for some A, € C—{0}). Using this, (3.6) and (3.7), we have
_ 0 P/ . _l_-_]-— P/+ Q/ _i(P/_Q/) .
T(r)—CA(Q, )asc —ZC<Z.<P,_Q,> _(P,+Q,)>C ,

where P'=Au7'P, @ =1"'uQ. Since T(z) and C are real matrices, we
see from this that P'+ @’ and :(P'— Q") are real matrices. This implies
that

Q=P.
By (3.4) and (3.5), we have

(0 7 zolo 0)-("7" =o)

QRH(QN)'=QR(¢HQ'=R(g), 9=GC.
Moreover
QQ=PQ=PQ=1,.

Hence, by Lemma 3. 2, we see that x is of type (1;). Conversely, assume
that x is of type (1:). Then the representation R: G—GL,(C) can be
taken so that

R(g)=R(g").

Then we can take P=Q=1, in (3.5). Then the representation R* of G
defined by (3.6) in a real representation. Hence ¢(x)=1, which implies
c:(x)=1. This proves the theorem in case (A).

Next we consider cases (Ba)—(Bc). Let R: G—GL,(C) be a rep-
resentation of G affording x. Then R=R lc is a representation of G
affording y. We put A=R(z). Then

(3.8) AR(g9A '=R(g"), =G

Hence

and

3.9 A*=1,.

If we are in case (Ba), then, by the proof of [Theorem 2.5, we always
have c:(x)=1. Hence we have to show that x is always of type (1.).
But, in this case, R can be taken as a real representation. Then, by
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(3.8) and (3.9), we have
AR(9A'=R(g), g€G,
and
AA=A*=1,.

Hence, by Lemma 3.2, x is of type (1-).

If we are in case (Bb), then by the proof of [Theorem 2.5, we have
c:(x)=c(x)=—1. Hence we have to show that x is always of type (2¢)
in this case. Since the representation R is equivalent to R, there exists a
matrix BEGL.(C) such that

(3.10) BR®B'=R&), x=G.

Since ¢(xy)=—1, we have

(3.11) BB=al,, a<0,

by Lemma 3.2. By (3.8) and (3.10), we have
(3.12) BAR(g9)A'B'=R(¢"), g€G,

and

(3.13) BAB'=A.

Now

BA(BA)=ABBA=aA?’=al,

by (3.13), (3.11) and (3.9). Hence, by (3.12) and Lemma 3.2, We see
that y is of type (2.).

If we are in case (Bc), then by the proof of [Theorem 2.5, we have
c:(x)=—c(x)==1. Let e: G—{=£1} be the 1-dimensional representa-
tion of G defined by

ele=1, e(r)=—

Since yx is real valued, xlc=xlc=x. This and the assumption ¢(x)=0
imply that y =e® 5. Hence the representation R is equivalent to e ® R.
Hence there exists a matrix BEGL,(C) such that

(3.14) B(®R)()B'=RW), x=0G.

Hence

(3.15) BR(g)B'=R(g), 9€G.
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By Lemma 3. 2, we have
(3.16) BB=als, ac(x)>0.
Br (3.8) and (3.15), we have
(3.17) BAR(9)A'B'=R(g"), g6
By (3.14) with x=7, we have
(3.18) —BAB'=A.
Now
BA(BA)=—ABBA=—al,
by (3.18), (3.16) and (3.9). Since
sign(— &) = —sign ¢(x) =sign ¢ (x),

we see, from (3.17) and Lemma 3.2, that y is of type (1) (resp. (2:))
if ¢:(x) is equal to 1 (resp. —1). This proves the theorem in cases (Ba)
—(Bc). The proof of [Theorem 1.3 is now complete.

REMARK 3.18. (i) By [Theorem 1.3, we have the following inter-
pretation of the twisted Frobenius-Schur indicator ¢.(¢) (in the case 7*=
1. Let My be a G-module over C affording y€G. Let Bilt,.(M,) (resp.
Bilz,-(My)) be the space of symmetric (resp. skew symmetric) bilinear
forms B(+, *) on M, which are G-invariant in the following sense :

B(gem, g mz) =B (m, mz), g€ G, m, mE M,.

Then
c: (x) =dim Bil¢,: (M;) —dim Bilg,: (M,).

Compare with [1; § 73A].

(ii) A result of A. A. Klyachko [8; Th.4.1] and R. Gow [4; Th. 3]
is equivalent to the following statement :

If G is a general linear group over a finite field, and v 1is the
transpose-inverse automorphism of G, then any x <G is of type (1.).

(iii) [Theorem 1.3 (and [Theorem 2.5 can be generalized in the obvi-
ous manner to the case when G is a compact topological group.

4. Induced characters

We recall a result of G. W. Mackey [9] on the Frobenius-Schur indi-
cators of induced characters following an exposition by C. W. Curtis and
I. Reiner [1; §12C]. Let H be a subgroup of a finite group G. Let D-;
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be a set of representatives of the self-inverse (H, H)-double cosets, i.e.,
the double cosets HxH (x€G) such that (HxH)'=HxH. For x€D-,—
H, choose z=2xxH NHx™'. Then H(x, z)=<z *H NH?> contains “H
NH=xHx'NH as a normal subgroup of index 2. Let L be a (possibly
reducible) H-module over C. Then, on the vector space L®L, we can
define an (*H N H)-module structure by

4.1 RIS =G ") l®Rl, I, 'EL, h&"H NH.

We denote this (*H N H)-module by *L® L. We also define a linear trans-
formation Z on L® L by

4.2) ZUN=("12)I'®(zx)l, [ I'EL.

Then, by letting z acts as Z (resp. —Z), the "H NH)-module "L®L
extends to an H (x, z)-module, which we denote by L% . (resp. Lzz). If a
denotes the character of L, the one of *L® L is given by

*aca: h—a(x ') a(h), h€*HNH.

We denote by (*a*a)* the characters of Li.. The values of (Fa*a)* are
given by

4.3) Caa)funp="a*a,
and
4.4) Cara)*(y)=xa(y®, y2zCHNH).
In fact, by (4.1) and (4.2), we have
Zh(;® [;)=(x""zh) ;® (zhx) I;
for h&*HNH and /l;, ;L. Hence
(@ a)* G =22 <&z, > <(Gzho)l, ;>
= izZ:‘, <@L, >

=+a(x™'(zh)%x)
=+ a((z)?,

where {l} is a basis of L, and, for /€L, <I, ;> €C is defined by :
[:2 <l, lz'>li.

This proves (4.4). By [9; Th.1] (or [1; Th. (12.13)]), we have
(4.5) ca®)=c(a)+
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xeDZ_a:_H|H(x, zx)l‘l{ye 2 (Cara)—Cara) )}

H(x,z2x)

Hence, by (4.3)—(4.5), we have
(4.6) c(a®) :xezD_l czx(almnn).

This last formula, which is not stated explicitly in [9], shows that the
twisted Frobenius-Schur indicator appears quite naturally in the study of
its classical counterpart.

We now formulate the z-version of (4.5) and (4.6).

THEOREM 4.7. Let G, G and t be as in Section 2. Let H be a
subgroup of G such that v*€H, and D-: a set of representatives of the
double cosets H'xH, x= G, such that ((HxH)™\)"=HxH.

(i) Let a be a (possibly reducible) character of H. For x€D-., let
aea be the character h—— a(mhx'v™Va(h) of H*NH. Choose z=2z,
Ex "HNHx. Then H(zx, 1z)=<zz, H¥*NH > contains H*NH as a
normal subgroup of index 2. Movreover, there exist characters (a™+a)* of
H (zx, zz) such that

(drx‘CI’)iIHme: aa

and that
(@ a)*()=xa(y?), yEz(H*NH).

We also have
c:(a®) ZXEZD_ QIH™N H|)_1yeH(2m Tz){(a'rx' a)"—(a™a) }(y)

= 2 Crz;;(“'H”ﬂH) .
xeD_¢

(ii) Let a be a linear chavacter of H. Then
(@)= 2 7:(x),

xeD-r

where, for xED_., we define j:(x) to be 0 or a((zz)) =1, zzEx"H N
H'x, according to whether a™ -a+1 or 1 on H*NH. In particular, we
have

CT(II(D - ID—rI-

PROOF. A self-inverse (H, H)-double coset in G is either of the
form HxH, xD-,, or of the form HxxH, x€D-.. Hence, applying (4.5)
and (4.6) (resp. [9; Cor.1,2] or [1; Cor. (12.19), (12.200]) to a ¢, and
using Lemma 2. 1, we get part (i) (resp. (ii)).
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5. Multiplicity-free permutation representations

Let G be a (not necessarily connected) linear algebraic group over
an algebraically closed field. Let ¢ be an endomorphism of G such that
the group G of o*fixed points of G is finite. Let = be an automorphism
of the finite group G defined by

2'=x° x<G.
Then 7=1. We put
G-={xeG; x"=x}.

By [11; III, 3.22], for a proof of [Theorem 1.4, it is enough to prove the
following.

THEOREM 5.1. Let G, G and G: be as above. We denote by Z(x)
and Z¢(x)° the centralizer of x in G, and its identity component, respec-
tively. We assume that |Ze¢(x)/Ze(x)% is odd for any xEG.. Then we
have the following.

(i) The induced chavacter 1¢. is multiplicity-free.

(ii) Any x€G is of type (1) or (3:). Moreover, xEG is a com-
poment of 1&. if and only if it is of type (1.).

LEMMA 5.2. Let G be a finite group, and = an automorphism of G
such that ©*=1. For any 9€G, we put

¢ ={(h"D7gh; hEG}
and
(g°={n"(gPh; hEG).

We assume :
(a) For any g=G

G719 |=1G (g7 N Gl
(b) Let g, €G. If gt""Ngs*=¢, then
(gfg)° N (g3g2) N G- = ¢.
Then conclusions (1) (ii) of Theorem 5.1 hold.

PROOF. We choose a set {g:}*=1 of elements of G such that

N
G=U g¢* (disjoint).
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Then, by conditions (a) (b), we have
N
G:=U (g9 NGy (disjoint).
Hence, for any class function x on G,
(=G X xTy
geiG
N
=|GI™ 2197 1x (gig0)
N
:IGrl_l Z:l |<gfgi>c N Gr'x (gig:)
N
=G| 2 x(w

i=1 he(gg:)¢NGr

_ -1
=|G-| 2 x ().

Hence, for x€G, ¢:(x) is equal to the multiplicity <1&, x> of x in the
permutation character 1¢, In particular it must be non-negative. Hence,
by [Theorem 1.3, we see that

<1é, x>=c:(x)=1or 0

according to whether x is of type (1) or of type (3-), and that x cannot
be of type (2.). This proves Lemma 5. 2.

PROOF OF THEOREM 5.1. It is enough to show that conditions (a)
(b) in Lemma 5.2 are satisfied for our (G, 7). But this is already
known [6; Lemma 2.4.8, Lemma 2.4.5 (i)].

Let G be a connected reductive group defined over a finite field, and ¢
the Frobenius endomorphism of G. Define G, r and G: as in Theorem 5.
1. Then the assumptions in [Theorem 5.1 are not satisfied in general.
But we can still modify the argument given above, and can show, e. g,
that 1&. is “ almost ” multiplicity-free (in some rigorous sense). This and
other topics on 1¢. will be discussed in a forthcoming paper of the first-
named author.

Acknowledgement. The authors wish to express their thanks to K.
Uno for his help in proving [Theorem 1.3 The first-named author is also
very grateful to R. Gow for interesting correspondence.

Added in Proof. The authors have learned that Professor Michio
Suzuki proved [Theorem 1.4(i) in the case (@) more than thirty years
ago (unpublished). His proof uses an anti-involution of G and is different
from the one given in the present paper.
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