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1. Introduction

Let G be a finite group, and
\tau:garrow g^{\tau} . g\in G

an automorphism of G such that \tau^{2}=1 . For a complex irreducible charac-
ter \chi of G, we define the twisted Frobenius-Schur indicator c_{\tau}(\chi) by

c_{\tau}(_{X})=|G|^{-1} \sum_{g\in G}\chi(gg^{\tau}) .

When the \tau-action is trivial, this is nothing but the classical Frobenius-
Schur indicator [2], which we denote by c(\chi) . The purpose of this paper
is to show that some of the standard properties (found, e . g . in [1; \S 12C,
\S 73A]) of c(\cdot) can naturally be generalized to those of C\tau ( \cdot ). Partly this
was also observed by R. Gow [3].

Let \chi be an irreducible character of G. There are following three
possibilities:

(1_{\tau}) The character \chi is afforded by a matrix representation R of G
such that

(1. 1) R(g^{\tau})=\overline{R(g)}, g\in G ,

where the bar means the complex conjugation.
(2_{\tau}) The character \chi satisfies

(1.2) \chi(g^{\tau})=\overline{\chi(g)}, g\in G ,

but it can not be afforded by a representation R with the property (1. 1).
(3_{\tau}) The character \chi does not satisfy (1. 2).

Our main result is the following genaralization of a theorem of
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Frobenius and Schur [2].

THEOREM 1. 3. Let \chi be an irreducible character of G. Then

c_{\tau}(\chi)=\{

1 if \chi is of type (1_{\tau}) ,
-1 if \chi is of type (2_{\tau}) ,
0 if \chi is of type (3_{\tau}) .

This is proved in Section 3. In Section 4, we remark that the twisted
Frobenius-Schur indicators already appeared implicitly in a classical work
[9] of G. W. Mackey. Once this is recognized, it is not difficult to formu-
late and prove the \tau-version of the Mackey’s result. In Section 5, as an
application of Theorem 1. 3, we prove:

THEOREM 1. 4. Let the pair (G, \tau) be one of the following:
(a) G is of odd order and \tau is any involutive automorphism of G,
(b) G=\{g\in G|g^{\sigma}=g\}2 and g^{\tau}=g^{\sigma} for g\in G, where G is the group

of invertible elements of an associative algebra with unity over an alge-
braically closed fifield, and \sigma is an algebraic group endomo\uparrow phism of G such
that the \sigma^{2}- fifixed point set G is fifinite.

Let G_{\tau} be the fifixed point set of \tau in G. Then we have:
(i) The induced character 1_{G\tau}^{G}(=(1_{G\tau})^{G}) is multiplicity-free, and an

irreducible character \chi of G is a component of 1_{G\tau}^{G} if and only if \chi^{\tau}=\overline{\chi} .
(ii) Any irreducible character of G is either of type (1_{\tau}) or of type

(3_{\tau}) .

When G is the general linear groupGL_{n}(F_{q^{2}}) over a finite field F_{q^{2}} of
q^{2} elements and the \tau-action on G is given by

(x_{ij})^{\tau}=(x_{ij}^{q}) , (x_{ij})\in GL_{n}(F_{q}2) ,

or by

(x_{ij})^{\tau}=(x_{ji}^{q})^{-1}-(x_{ij})\in GL_{n}(F_{q}2) .
(these two cases are covered by case ( b) of Theorem 1. 4), Theorem 1. 4
(i) was proved by Gow [5] by a totally different method. (Motivated by
this result of Gow, the first-named author proved Theorem 1. 4 ( i) in an
unpublished paper [7].) A further application to “ almost ” multiplicity-
free permutation representations of a finite reductive group will be given
in a forthcoming paper of the first-named author.

NOTATION : For a set X, |X| denotes its cardinality. Let Y be a
subset of X. For a map f from X to another set, f|_{Y} denotes the restric-
tion of f to Y. Let G be a finite group. Then \hat{G} (or G^{\wedge} ) means the set
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of complex irreducible characters of G. For a complex valued class func-
tion \alpha on a subgroup H of G, \alpha^{G} denotes the class function on G induced
from \alpha .

2. Twisted Frobenius-Schur indicators

Let \tilde{G} be a finite group, and G a subgroup of \tilde{G} of index 2. We
choose an element \tau in \tilde{G} -G. (This situation is slightly more general
than that of Section 1.) For a complex irreducible character \chi of G , we
put

c_{\tau}( \chi)=|G|^{-1}\sum_{g\in G}\chi((\tau g)^{2})=|G|^{-1}\sum_{x\in\tilde{G}-G}\chi(x^{2}) .

When \tilde{G}=<\tau>\cross G (direct product), this reduces to the Frobenius-Schur
indicator c(\chi) . For any complex valued class function \chi on G, we define
c_{\tau}(_{\mathcal{X}}) (and c(\chi) ) by the same formula as above. The following lemma
is easy to see.

LEMMA 2. 1. Let H be a subgroup of G, and \alpha a class function on
H. Then

c(\alpha^{\tilde{G}})=c(\alpha^{G})+c_{\tau}(\alpha^{G}) .

Let \chi\in\hat{G}. If \chi=\chi^{\tau} (resp. \chi\neq\chi^{\tau} ), where \chi^{\tau} is defined by \chi^{\tau}(g)=

\chi(g^{\tau}) for g\in G , then we denote by \tilde{\chi} an (resp. the) element of (\tilde{G})^{\Lambda}

such that

(2.2) \tilde{\chi}|_{G}=\chi (resp. \overline{\chi}|_{G}=\chi+\chi^{\tau} ).

LEMMA 2. 3. In the above notations, we have

c(\chi)+c_{\tau}(\chi)=\{
2c(\overline{\chi}) if \chi^{\tau}=\chi,
c(\tilde{\chi}) if \chi^{\tau}\neq\chi .

PROOF. This follows from Lemma 2. 1 by putting H=G and \alpha=\chi .

PROPOSITION 2. 4. For an element g of G, we have

\sum_{x\in\overline{c}^{c_{\tau}(\chi)_{\mathcal{X}}(g)=|\{h\in G|(\tau h)^{2}=g\}|}} .

PROOF. This follows from Lemma 2. 3 and the classical counterpart
(see [2], [1; \S 73, Ex. 4]) of Proposition 2. 4.

The next result, given implicitly in R. Gow [3; Lemma 2. 1] (see also
[4] ) , generalizes a part of the Frobenius-Schur theorem [2].

THEOREM 2. 5. Let \chi\in\overline{G}. Then
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c_{\tau}(\chi)=\{ 0\pm 1 ifif\chi^{\tau}\neq\chi^{\tau}=\overline{\frac{\chi}{\chi}},

,

where the bar means the complex conjugation.

PROOF. We consider the following five cases seperately:

(Aa) \chi^{\tau}=\overline{\chi}=\chi , (Ab) \chi^{\tau}=\overline{\chi}\neq\chi ,
(Ba) \chi^{\tau}=\chi\neq\overline{\chi} , (Ab) \chi^{\tau}\neq\overline{\chi}=\chi ,
(Bc) \chi^{\tau}\neq\overline{\chi}\neq\chi , \chi^{\tau}\neq\chi .

In case (Aa), we have c(\chi)=\pm 1 by [2]. Hence, if c(\overline{\chi})=0 , we have
c^{\tau}(\chi)=\mp 1 by Lemma 2. 3. Next, if c(\overline{\chi})=1 , then c(\chi)=1 by [2].
Hence we have c\tau(\chi)=1 by Lemma 2. 3. Therefore we may assume
c(\tilde{\chi})=-1 . In this case, we cannot have c(\chi)=1 . In fact, if c(\chi)=1 ,

then the induced character \chi^{\tilde{G}} is afforded by a real representation of \overline{G} .
Moreover, by (2. 2), we have the irreducible decomposition (over the
complex number field) :

\chi^{\tilde{G}}=\overline{\chi}+_{\overline{\mathcal{X}}^{r}}\tilde{\chi}\neq\tilde{\chi}’

Hence, we have either
(1) both \tilde{\chi} and \tilde{\chi}’ are afforded by real representations of \overline{G} , or
(2) \overline{\chi}’ is complex conjugate to \overline{\chi} .

Accordingly, c(_{\tilde{X}}) is equal to 1 or 0, which contradicts to our hypothesis.
Hence c(\chi) must be -1. This and Lemma 2. 3 imply that c_{\tau}(\chi)=-1 .
This proves the theorem in case (Aa).

In case (Ab), we have c(\chi)=0 by [2], and \overline{\chi}=\chi^{\tilde{G}} and \overline{\chi}|_{G}=\chi+\overline{\chi} by
(2. 2). Hence c(\overline{\chi})=\pm 1 by [2]. Hence c_{\tau}(\chi)=\pm 1 by Lemma 2. 3.

In case (Ba), we have c(\tilde{\chi})=c(\chi)=0 . Hence c_{\tau}(\chi)=0 .
In case (Bb), we have c(\chi)=\pm 1 . Moreover, we can show that

c(\chi)=1 if and only if c(\overline{\chi})=1 . In fact, if c(\overline{\chi})=1 , the character \overline{\chi}|_{G}=

\chi\dagger\chi^{\tau} is afforded by a real representation, which implies that c(\chi)=1 .
Conversely, if c(\chi)=1 , c(\tilde{\chi}) must be 1 because \tilde{\chi}=\chi^{\tilde{G}} is afforded by a
real representation. Thus we have shown that c(\chi)=c(\tilde{\chi}) . Hence, by
Lemma 2. 3, we have c_{\tau}(_{\mathcal{X}})=0 .

In case (Aa), we have c(\overline{\chi})=c(\chi)=0 . Hence c_{\tau}(\chi)=0 . This com-
pletes the proof of Theorem 2. 5.

3. Proof of Theorem 1. 3

In this section, we prove Theorem 1. 3. Let G and \tau be as in Section
1, and \tilde{G} the semi-direct product of G with <\tau> :
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\tilde{G}=<\tau>G.

Let \chi be an irreducible character of G, and R a matrix representation of
G affording \chi :

R:Garrow GL_{n}(C) .

Assume that \chi is either of type (1_{\tau}) or of type (2_{\tau}) . This implies that
there exists a matrix X\in GL_{n}(C) such that

(3. 1) XR(g^{\tau})X^{-1}=\overline{R(g)}, g\in G.

Lemma 3. 2. In the above situation, we have
\overline{X}X=\alpha 1_{n},

for a non-zero real number \alpha, where 1_{n} is the n-by-n identity matrix.
Moreover, \chi is of type (1_{\tau}) C resp. type (2_{\tau})) if \alpha is positive C resp. nega-
tive).

Proof. By (3. 1), we have
\overline{X}XR(g^{\tau})X^{-1}\overline{X}^{-1}=R(g^{\tau}) , g\in G.

Hence, by Schur’s lemma, we have
\overline{X}X=\alpha 1_{n}

for some \alpha\in C-\{0\} . Taking the traces of both sides, we see that \alpha is
real. If \chi is of type (1_{\tau}) , then there exists a matrix Y\in GL_{n}(C) such
that

(3.3) YR(g^{\tau})Y^{-1}=\overline{Y}\overline{R(g)}\overline{Y}^{-1} . g\in G.
Comparing (3. 1) with (3. 3), and using Schur’s lemma, we have

X=\beta\overline{Y}^{-1}Y

for some \beta\in C-\{0\} . Hence
\overline{X}X=\overline{\beta}\beta 1_{n} .

This implies that \alpha=\overline{\beta}\beta>0 . Conversely, if \alpha>0 , then
(\sqrt{\alpha}^{-1}\overline{X})(\sqrt{\alpha}^{-1}X)=1_{n} .

Hence, by the triviality of the Galois cohomology H^{1}(C/R, GL_{n}(C))

(see, e.g. , [10; ch. X, Prop. 3]), we have
\sqrt{\alpha}^{-1}X=\overline{Y}^{-1}Y
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for some Y\in GL_{n}(C) . This and (3. 1) lead to (3. 3), which means that \chi

is of type (1_{\tau}) . This proves the lemma.

Proof OF THEOREM 1. 3. By Theorem 2. 5, we already know that
c_{\tau}(_{\mathcal{X}})=0 if and only if \chi is of type (3_{\tau}) . Hence we may assume that
\chi^{\tau}=\overline{\chi} . We consider the following four cases seperately:

(A) \chi^{\tau}=\overline{\chi}\neq\chi ,
(Ba) \chi^{\tau}=\overline{\chi}=\chi , c(\overline{\chi})=1 ,
(Bb) \chi^{\tau}=\overline{\chi}=\chi , c(\overline{\chi})=-1 ,
(Bc) \chi^{\tau}=\overline{\chi}=\chi , c(\overline{\chi})=0 .

Here \tilde{\chi} is an irreducible character of \tilde{G} with the property (2. 2).

We begin with case (A). Let R:Garrow GL_{n}(C) be a representation
of G affording \chi . Then there exists a representation \tilde{R} of \tilde{G} affording \overline{\chi}

with the following form:

(3. 4) \tilde{R}(g)=(_{0}^{R(g)} \frac{0}{R(g)}) , g\in G,

(3.5) \tilde{R}(\tau)=(\begin{array}{ll}0 PQ 0\end{array}) , P, Q\in GL_{n}(C) , PQ=1_{n} .

We put

(3.6) \tilde{R}^{A}(x)=A\tilde{R}(x)A^{-1}-x\in\tilde{G},

where

A=(\begin{array}{ll}1_{n} 1_{n}-i1_{n} i1_{n}\end{array}) , i=\sqrt{-1} .

Then \tilde{R}^{A}|_{G} is a real representation of G affording \chi+\overline{\chi} . By the proof of
Theorem 2. 5, c_{\tau}(\chi)=1 if and only if c(\overline{\chi})=1 . Assume that c(\tilde{\chi})=1 .
Then there exists a real representation T:\tilde{G}arrow GL_{2n}(R) which is equiv-
alent to \tilde{R} as complex representations. We have

(3.7) B\tilde{R}^{A}(x)B^{-1}=T(x) , x\in\tilde{G},

for some B\in GL_{2n}(C) . Moreover, since \tilde{R}^{A}|_{G} and T|_{G} are equivalent as
real representations, we have

C\tilde{R}^{A}(g)C^{-1}=T(g) , g\in G

for some C\in GL_{2n}(R) . Hence,

B\tilde{R}^{A}(g)B^{-1}=C\tilde{R}^{A}(g)C^{-1}-g\in G.

Hence, by Schur’s lemma,
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B=CA (\begin{array}{ll}\lambda 1_{n} 00 \mu 1_{n}\end{array})A^{-1}

for some \lambda , \mu\in C-\{0\} . Using this, (3. 6) and (3. 7), we have

T(\tau)=CA (\begin{array}{ll}0 P’Q’ 0\end{array})A^{-1}C^{-1}=\frac{1}{2}C (\begin{array}{ll}P’+Q’ -i(P’-Q’)i(P’-Q’) -(P’+Q’)\end{array})C^{-1} .

where P’=\lambda\mu P-1, Q’=\lambda^{-1}\mu Q. Since T(\tau) and C are real matrices, we
see from this that P’+Q’ and i(P’-Q’) are real matrices. This implies
that

Q’=\overline{P’}

By (3. 4) and (3. 5), we have

(\begin{array}{ll}0 PQ 0\end{array}) ( \frac{0}{R(g)}) (\begin{array}{ll}0 PQ 0\end{array})=(_{0}^{R(g^{\tau})} \frac{0}{R(g^{\tau})})

Hence

Q’R(g^{\tau})(Q’)^{-1}=QR(g^{\tau})Q^{-1}=\overline{R(g)}, g\in G.

Moreover
\overline{Q’}Q’=P’Q’=PQ=1_{n} .

Hence, by Lemma 3. 2, we see that \chi is of type (1_{\tau}) . Conversely, assume
that \chi is of type (1_{\tau}) . Then the representation R:Garrow GL_{n}(C) can be
taken so that

\overline{R(g)}=R(g^{\tau}) .

Then we can take P=Q=1_{n} in (3. 5). Then the representation \tilde{R}^{A} of \tilde{G}

defined by (3. 6) in a real representation. Hence c(\tilde{\chi})=1 , which implies
c_{\tau}(\chi)=1 . This proves the theorem in case (A).

Next we consider cases (Ba)-(Bc) . Let \tilde{R}:\tilde{G}arrow GL_{n}(C) be a rep-
resentation of \tilde{G} affording \tilde{\chi} . Then R=\tilde{R}|_{G} is a representation of G
affording \chi . We put A=\tilde{R}(\tau) . Then

(3, 8) AR(g)A^{-1}=R(g^{\tau}) , g\in G

and

(3.9) A^{2}=1_{n} .

If we are in case (Ba), then, by the proof of Theorem 2. 5, we always
have c_{\tau}(\chi)=1 . Hence we have to show that \chi is always of type (1_{\tau}) .
But, in this case, \tilde{R} can be taken as a real representation. Then, by
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(3. 8) and (3. 9), we have
AR(g)A^{-1}=\overline{R(g^{\tau})}, g\in G,

and
\overline{A}A=A^{2}=1_{n} .

Hence, by Lemma 3. 2, \chi is of type (1_{\tau}) .
If we are in case (Bb), then by the proof of Theorem 2. 5, we have

c_{\tau}(\chi)=c(_{\mathcal{X}})=-1 . Hence we have to show that \chi is alw\underline{a}ys of type (2_{\tau})

in this case. Since the representation \tilde{R} is equivalent to \tilde{R} , there exists a
matrix B\in GL_{n}( C) such that

(3. 10) B\tilde{R}(x)B^{-1}=\overline{\tilde{R}(x)}, x\in\tilde{G}.

Since c(\chi)=-1 , we have

(3. 11) \overline{B}B=\alpha 1_{n} , \alpha<0 ,

by Lemma 3. 2. By (3. 8) and (3. 10), we have

(3. 12) BAR (g)A^{-1}B^{-1}=\overline{R(g^{\tau})}, g\in G,

and

(3. 13) BAB^{-1}=\overline{A}.

Now
BA\overline{(BA)}=\overline{A}B\overline{BA}=\alpha A^{\overline{2}}=\alpha 1_{n}

by (3. 10), (3. 11) and (3. 9). Hence, by (3. 12) and Lemma 3. 2, We see
that \chi is of type (2_{\tau}) .

If we are in case (Bc), then by the proof of Theorem 2. 5, we have
c_{\tau}(\chi)=-c(\chi)=\pm 1 . Let \epsilon : \tilde{G}arrow\{\pm 1\} be the 1-dimensional representa-
tion of G\sim defined by

\epsilon|_{G}=1 , \epsilon(\tau)=-1 .

Since \chi is real valued, \overline{\tilde{\chi}}|_{G}=\tilde{\chi}|_{G}=\chi . This and \underline{t}he assumption c(\tilde{\chi})=0

imply that \overline{\tilde{\chi}}=\epsilon\otimes\tilde{\chi} . Hence the representation \tilde{R} is equivalent to \epsilon\otimes\tilde{R} .
Hence there exists a matrix B\in GL_{n}(C) such that

(3. 14) B(\epsilon\otimes\tilde{R})(x)B^{-1}=\overline{\tilde{R}(x)}, x\in\tilde{G}.

Hence

(3. 15) BR(g)B^{-1}=\overline{R(g)}, g\in G.
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By Lemma 3. 2, we have

(3. 16) \overline{B}B=\alpha 1_{n} , \alpha c(\chi)>0 .

Br (3. 8) and (3. 15), we have

(3. 17) BAR (g)A^{-1}B^{-1}=\overline{R(g^{\tau})}, g\in G.

By (3. 14) with x=\tau , we have

(3. 18) -BAB^{-1}=\overline{A}.

Now
BA\overline{(BA)}=-\overline{A}B\overline{BA}=-\alpha 1_{n}

by (3. 18), (3. 16) and (3. 9). Since

sign (-\alpha)=- sign c(\chi)=signc_{\tau}(\chi) ,

we see, from (3. 17) and Lemma 3. 2, that \chi is of type (1_{\tau}) (resp. (2_{\tau}) )

if c_{\tau}(_{\mathcal{X}}) is equal to 1 (resp. -1). This proves the theorem in cases (Ba)
(Be). The proof of Theorem 1. 3 is now complete.

REMARK 3. 18. ( i) By Theorem 1. 3, we have the following inter-
pretation of the twisted Frobenius-Schur indicator c_{\tau} ( \cdot ) (in the case \tau^{2}=

1) . Let M_{\chi} be a G-module over C affording \chi\in\overline{G}. Let Bi1_{G,\tau}^{+}(M_{\chi}) (resp.
Bi1_{G,\tau}^{-}(M_{\chi})) be the space of symmetric (resp. skew symmetric) bilinear
forms B (\cdot ,\cdot ) on M_{\chi} which are G-invariant in the following sense:

B (g\cdot m_{1}, g^{\tau}\cdot m_{2})=B(m_{1}, m_{2}) , g\in G , m_{1} , m_{2}\in M_{\chi} .

Then
c_{\tau}(\chi)=\dim Bi1_{G,\tau}^{+}(M_{\chi})- dim Bi1_{G,\tau}^{-}(M_{\chi}) .

Compare with [1 ; \S 73A] .
(ii) A result of A. A. Klyachko [8; Th. 4. 1] and R. Gow [4; Th. 3]

is equivalent to the following statement:
If G is a general linear group over a fifinite fifield, and \tau is the

transpose-inverse automorphism of G, then any \chi\in\hat{G} is of type (1_{\tau}) .
(iii) Theorem 1. 3 (and Theorem 2. 5) can be generalized in the obvi-

ous manner to the case when G is a compact topological group.

4. Induced characters

We recall a result of G. W. Mackey [9] on the Frobenius-Schur indi-
cators of induced characters following an exposition by C. W. Curtis and
I. Reiner [1: \S 12C] . Let H be a subgroup of a finite group G. Let D_{-1}
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be a set of representatives of the self-inverse (H, H) -double cosets, i . e. ,

the double cosets HxH(x\in G) such that (HxH)^{-1}=HxH. For x\in D_{-1}-

H , choose z=z_{x}\in xH\cap Hx^{-1} . Then H(x, z)=<z,Hx\cap H> contains xH
\cap H=xHx^{-1}\cap H as a normal subgroup of index 2. Let L be a (possibly
reducible) H-module over C . Then, on the vector space L\otimes L , we can
define an (^{x}H\cap H) -module structure by

(4. 1) h(l\otimes l’)=(x^{-1}hx)l\otimes hl’ . l, l’\in L, h\in^{x}H\cap H.

We denote this (^{x}H\cap H) -module by xL\otimes L . We also define a linear trans-
formation Z on L\otimes L by

(4. 2) Z(l\otimes l’)=(x^{-1}z)l’\otimes(zx)l, l, l’\in L .

Then, by letting z acts as Z (resp. - Z), the (^{x}H\cap H) -module xL\otimes L

extends to an H(x, z) -module, which we denote by L_{x,z}^{+} (resp. L_{x,z}^{-}). If \alpha

denotes the character of L , the one of xL\otimes L is given by

x\alpha\cdot \alpha:harrow\alpha(x^{-1}hx)\cdot \alpha(h) , h\in^{x}H\cap H.

We denote by (^{x}\alpha\cdot\alpha)^{\pm} the characters of L_{x,z}^{\pm} . The values of (^{x}\alpha\cdot\alpha)^{\pm} are
given by

(4.3) (^{x}\alpha\cdot\alpha)^{\pm}|x_{H\cap H}=^{x}\alpha\cdot\alpha ,

and

(4.4) (^{x}\alpha\cdot\alpha)^{\pm}(y)=\pm\alpha(y^{2}) , y\ni z(^{x}H\cap H) .

In fact, by (4. 1) and (4. 2), we have

Zh(l_{i}\otimes l_{j})=(x^{-1}zh)l_{j}\otimes(zhx)l_{i}

for h\in^{x}H\cap H and l_{i}, l_{j}\in L . Hence

( \alpha^{x}\cdot\alpha)^{\pm}(zh)=\pm\sum_{i,j}<(x^{-1}zh)l_{j}, l_{i}><(zhx)l_{i}, l_{j}>

= \pm\sum_{j}<(x^{-1}(zh)^{2}x)l_{j}, l_{j}>

=\pm\alpha(x^{-1}(zh)^{2}x)

=\pm\alpha((zh)^{2}) ,

where \{l_{i}\} is a basis of L , and, for l\in L, <l, l_{i}>\in C is defined by:

l= \sum_{i}<l, l_{i}>l_{i} .

This proves (4. 4). By [9; Th. 1] (or [1 : Th. (12. 13)]), we have

(4.5) c(\alpha^{G})=c(\alpha)+
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\chi\in\partial_{-1^{-H}}^{|H(x,z_{x})|^{-1}\{\sum_{y\in H(x,z_{X})}((^{x}\alpha\cdot\alpha)^{+}-(^{x}\alpha\cdot\alpha)^{-})(y)\}} .

Hence, by (4. 3)-(4.5) , we have
(4.6) c( \alpha^{G})=\sum_{x\in D-1}c_{z_{X}}(\alpha|x_{H\cap H}) .

This last formula, which is not stated explicitly in [9], shows that the
twisted Frobenius-Schur indicator appears quite naturally in the study of
its classical counterpart.

We now formulate the \tau-version of (4. 5) and (4.6).

THEOREM 4. 7. Let \tilde{G}, G and \tau be as in Section 2. Let H be a
subgroup of G such that \tau^{2}\in H, and D_{-\tau} a set of representatives of the
double cosets HTxH, x\in G, such that ((H^{\tau}xH)^{-1})^{\tau}=H^{\tau}xH.

(i) Let \alpha be a (possibly reducible) character of H. For x\in D_{-\tau}, let
\alpha^{\tau x}\cdot\alpha be the character harrow\alpha(zxhx^{-1}\tau^{-1})\alpha(h) of H^{\tau x}\cap H. Choose z=z_{\chi}

\in x^{-\tau}H\cap H^{\tau}x . Then H(\tau x, \tau z)=<\tau z, H^{\tau x}\cap H> contains H^{\tau x}\cap H as a
normal subgroup of index 2. Moreover, there exist characters (\alpha^{\tau x}\cdot\alpha)^{\pm} of
H(\tau x, \tau z) such that

(\alpha^{\tau x}\cdot\alpha)^{\pm}|_{H^{\tau x}\cap H}=\alpha^{\tau x}\cdot\alpha

and that

(\alpha^{\tau x}\cdot\alpha)^{\pm}(y)=\pm\alpha(y^{2}) , y\in\tau z(H^{\tau x}\cap H) .

We also have

c_{\tau}( \alpha^{G})=\sum_{x\in D-\tau}(2|H^{\tau x}\cap H|)^{-1}\sum_{y\in H(\tau x,\tau z)}\{(\alpha^{\tau x}\cdot\alpha)^{+}-(\alpha^{\tau x}\cdot\alpha)^{-}\}(y)

= \sum_{x\in D-\tau}c_{\tau z_{x}}(\alpha|_{H^{\tau x}\cap H}) .

(ii) Let \alpha be a linear character of H. Then

c_{\tau}( \alpha^{G})=\sum_{x\in D-\tau}j_{\tau}(x) ,

where, for x\in D_{-\tau}, we defifine j_{\tau}(x) to be 0 or \alpha((\tau z_{x})^{2})=\pm 1 , z_{x}\in x^{-\tau}H\cap

H^{\tau}x, according to whether \alpha^{\tau x}\cdot\alpha\neq 1 or 1 on H^{\tau x}\cap H. In par ticular, we
have

c_{\tau}(1_{H}^{G})=|D_{-\tau}| .

PROOF. A self-inverse (H, H) -double coset in \tilde{G} is either of the
form HxH . x\in D_{-1} , or of the form HrxH, x\in D_{-\tau} . Hence, applying (4. 5)
and (4. 6) (resp. [9; Cor. 1, 2] or [1; Cor. (12. 19), (12. 20)]) to \alpha-\tilde{G} and
using Lemma 2. 1, we get part ( i) (resp. ( ii )).
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5. Multiplicity-free permutation representations

Let G be a (not necessarily connected) linear algebraic group over
an algebraically closed field. Let \sigma be an endomorphism of G such that
the group G of \sigma^{2}-fixed points of G is finite. Let \tau be an automorphism
of the finite group G defined by

x^{\tau}=x^{\sigma}. x\in G.

Then \tau^{2}=1 . We put

G_{\tau}=\{x\in G;x^{\tau}=x\} .

By [11; III, 3. 22], for a proof of Theorem 1. 4, it is enough to prove the
following.

THEOREM 5. 1. Let G, G and G_{\tau} be as above. We denote by Z_{G}(x)

and Z_{G}(x)^{0} the centralizer of x in G, and its identity component, respec-
tively. We assume that |Z_{G}(x)/Z_{G}(x)^{0}| is odd for any x\in G_{\tau} . Then we
have the following.

(i) The induced character 1_{G\tau}^{G} is multiplicity-free.
(ii) Any \chi\in\hat{G} is of type (1_{\tau}) or (3_{\tau}) . Moreover, \chi\in\overline{G} is a com-

ponent of 1_{G\tau}^{G} if and only if it is of type (1_{\tau}) .

LEMMA 5. 2. Let G be a fifinite group, and \tau an automorphism of G

such that \tau^{2}=1 . For any g\in G, we put

g^{G,\tau}=\{(h^{-1})^{\tau}gh;h\in G\}

and

(g^{\tau}g)^{G}=\{h^{-1}(g^{\tau}g)h;h\in G\} .

We assume :
(a) For any g\in G

|G|^{-1}|g^{c,\tau}|=|G_{\tau}|^{-1}|(g^{\tau}g)^{G}\cap G_{\tau}| .

(b) Let g_{1} , g_{2}\in G. If g_{1}^{G,\tau}\cap g_{2}^{G,\tau}=\phi, then

(g_{1}^{\tau}g_{1})^{G}\cap(g_{2}^{\tau}g_{2})^{G}\cap G_{\tau}=\phi .

Then conclusions ( i) ( ii) of Theorem 5. 1 hold.

PROOF. We choose a set \{g_{i}\}_{i=1}^{N} of elements of G such that

G= \bigcup_{i=1}^{N}g_{i}^{G,\tau} (disjoint).



A twisted version of the Frobenius-Schur indicator
and multiplicity-free pemutation representations 507

Then, by conditions ( a) ( b) , we have

G_{\tau}= \bigcup_{i=1}^{N}((g_{i}^{\tau}g_{i})^{G}\cap G_{\tau}) (disjoint).

Hence, for any class function \chi on G,

c_{\tau}( \chi)=|G|^{-1}\sum_{g\in G}\chi(g^{\tau}g)

=|G|^{-1} \sum_{i=1}^{N}|g_{i}^{G,\tau}|\chi(g_{i}^{\tau}g_{i})

=|G_{\tau}|^{-1} \sum_{i=1}^{N}|(g_{i}^{\tau}g_{i})^{G}\cap G_{\tau}|\chi(g_{i}^{\tau}g_{i})

=|G_{\tau}|^{-1} \sum_{i=1}^{N}\sum_{h\in(g_{i}^{\tau}gi)^{G}\cap G\tau}\chi(h)

=|G_{\tau}|^{-1} \sum_{h\in G\tau}\chi(h) .

Hence, for \chi\in\overline{G}, c_{\tau}(\chi) is equal to the multiplicity <1_{G\tau}^{G} , \chi> of \chi in the
permutation character 1_{G\tau}^{G} In particular it must be non-negative. Hence,

by Theorem 1. 3, we see that
<1_{G_{T}}^{G} , \chi>=c_{\tau}(\chi)=1 or 0

according to whether \chi is of type (1_{\tau}) or of type (3_{\tau}) , and that \chi cannot
be of type (2_{\tau}) . This proves Lemma 5. 2.

Proof OF THEOREM 5. 1. It is enough to show that conditions ( a)

(b) in Lemma 5. 2 are satisfied for our (G, \tau) . But this is already
known [6 ; Lemma 2. 4. 8, Lemma 2. 4. 5 ( i )].

Let G be a connected reductive group defined over a finite field, and \sigma

the Frobenius endomorphism of G . Define G, \tau and G_{\tau} as in Theorem 5.
1. Then the assumptions in Theorem 5. 1 are not satisfied in general.
But we can still modify the argument given above, and can show, e . g. ,

that 1_{G_{\tau}}^{G} is “ almost ” multiplicity-free (in some rigorous sense). This and
other topics on 1_{G\tau}^{G} will be discussed in a forthcoming paper of the first-
named author.

Acknowledgement. The authors wish to express their thanks to K.
Uno for his help in proving Theorem 1. 3. The first-named author is also
very grateful to R. Gow for interesting correspondence.

Added in Proof. The authors have learned that Professor Michio
Suzuki proved Theorem 1. 4 ( i) in the case ( a) more than thirty years
ago (unpublished). His proof uses an anti-involution of G and is different
from the one given in the present paper.



508 N. Kawanaka and H. Matsuyama

References

[1 ] G. W. CURTIS and I. REINER, “ Methods of Representation Theory ”, Vol. 1, 2, Wiley
Interscience, New York, 1981, 1987.

[2] G. FROBENIUS and I. SCHUR, \"Uber die reelen Darstellungen der endlichen Gruppen, Sit-
zber. Preuss. Akad. Wiss. Berlin (1906), 186-208.

[3] R. GOW, Real valued and 2-rational group characters, J. Algebra 61 (1975), 388-413.
[4 ] R. GOW, Properties of the characters of the finite general linear groups related to the

transpose-inverse involution, Proc. London Math. Soc. (3) 47 (1983), 493-506.
[5 ] R. GOW, Two multiplicity-free permutation representations of the general linear group

GUn,q)2 , Math. Z. 188 (1984), 45-54.
[6] N. KAWANAKA, Liftings of irreducible characters of finite classical groups II, J. Fac.

Sci. Univ. Tokyo, Sec. A. 30 (1984), 499-516.
[7] N. KAWANAKA, Some multiplicity-free induced representations of a finite group (un-

published), 1984.
[8] A. A. KLYACHKO, Models for the complex representation of the groups GL(n,q),

Math. USSR Sbornik 48 (1984), 365-379.
[9] G. W. MACKEY, Symmetric and anti-symmetric Kronecker squares and intertwining

numbers of induced representations of finite groups, Amer. J. Math. 75 (1953),
387-405.

[10] J -P. SERRE, “ Corps Locaux ”. Hermann, Paris, 1962.
[11] T. A. SPRINGER and R. STEINBERG, Conjugacy classes, “ Seminar on Algebraic Groups

and Related Finite Groups” (Lecture Notes in Mathematics Vol. 131, Springer,
Berlin, 1970), 121-166.

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560
Japan

Department of Mathematics
Faculty of School Education
Hyogo University of Teacher Education
YashirO-Cho, KatO-Gun, Hyogo 673-14
Japan


	1. Introduction
	THEOREM 1. ...
	THEOREM 1. ...

	2. Twisted Frobenius-Schur ...
	THEOREM 2. ...

	3. Proof of Theorem 1. ...
	4. Induced characters
	THEOREM 4. ...

	5. Multiplicity-free permutation ...
	THEOREM 5. ...

	References

