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On some sublattices of the Leech lattice

Koichiro HARADA and M. L. LANG
(Received April 13, 1989)

§0. Introduction

This paper is a continuation of Harada-Lang and M. L. Lang
to investigate the behaviour of the conjugacy classes of the automorphism
group of the Leech lattice. In [8], the second author showed that fifteen
conjugacy classes behave differently from other classes in connection with
Conway-Norton’s “ Monstrous Moonshine ” [2]. In [5], the nonzero-genus
property of these fifteen conjugacy classes was studied and five elliptic
curves defined over integers were produced.

In this paper, the invariance sublattices, their automorphism groups
and realization of them in .0 will be investigated. More precisely, let
g=G=.0, the automorphism group of the Leech lattice A, and A,=
{x€Alg(a)=21}. For each g=G, the structure of A, will be explicitly
determined. The results, including the ranks, the Gram matrices, the
automorphism groups will be listed in TABLE1 at the end of this paper.
The identification of some of the well known lattices, such as Es, Es, D%,
Coxeter-Todd, and Barnes-Wall lattices, is also given.

The Leech lattice A and its automorphism group G=.0 are well
known for their unique properties, a dense packing of the 24 dimensional
Euclidean space, for example. The question discussed in this paper is:
how complete is the Leech lattice in connection with the conjugacy classes
of G=.0? More precisely, is Aut(Ag) induced from the normalizer
Ne(<g>) of <g> in G for all g&G? It has turned out that it is true
for all but 9 conjugacy classes of G. The exceptional classes are —24, 2c,
30, _4A, 4F, 61, 9c, 12], and —20c.

§ 1. Invariance sublattices

The Leech lattice A may be defined in many equivalent ways (see
Conway-Sloane [3], Kondo-Tasaka [6]). The following is one of the typi-
cal ones. Let

(O Q={wx,0,1,...,22},
(2) G=the Golay code viewed as a subset of the power set P(Q) and
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as a vector space over GF(2),

3) {ew, @, @, ..., en}=the canonical basis of the Euclidean space R*
with inner product <e;, ¢;> =206,

@ As={X=G)EZ¥Z x:=60mod 2)} for =0 or 1; and

B) ex=X e for XEPQ) (.e. XCTQ).

ieX

Under the notation above, the Leech lattice A is defined to be the
union of

{%ex +AlXEG} and

{—i—eg-f—%ex-FAlIXe G).

A is a positive definite even integral unimodular lattice inherited from the
inner product <, > of R* defined above. The minimal vectors of A have
square length 4.

Define Ag={1EAlg(A)=1} for gG. A, is also a positive definite
even integral lattice but not unimodular in general. It is not in general
easy to determine Ay explicitly. The Mathieu group M. and its extension
2'2 Mo, are naturally embedded in G. If g€ My, then

Ay :chg {{%ex + (Ao) g}, {%eﬁ—%ex +(AD )}

where Gy, (Ao)g, (A1) are the subsets consisting of the elements fixed by
g. Using this result, Kondo-Tasaka [6, 7] treated the case g=22M,. also.
All necessary information for us can be deduced from these two papers @
and if g€2"%Mo. We will give below an example.

EXAMPLE 1. Let ¢g=11,=1*11*=(0)(0)(1, 2, 4,8, 16,9, 18,13, 3,6, 12)
(5,10, 20,17,11, 22,21,19,15,7, 1) E Mo CG=Aut(A). Then

011,4(2) — 0(Z, A)
Where

4 0 2 -1
0 4 -1 2
A= 2 —1 4 -1
-1 2 -1 4

PROOF. It suffices to find a suitable basis for Aii.. Let A be an ele-
ment in A, then A is of the form
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e+ bey+ cex, + dex,
where

X1=Q,2,4,8,16,9,18,13,3,6,12)

X.=(5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14)

4 b dez+%z
It is immediate that A can be generated by £, f, £, and f,
where

ﬁ:%&d—%em

f2: —eoo—f"lll—e.q
. 1

fs—— eoo-i-Zeg

ﬁ: - &ﬁ‘%é{)

Let n=A—fi, =/, s=f—fi, and nu=/;, we have Gram matrix of {v, v
vs, va)=A.

The harder cases are when g&2?M,. In [8] the second auther found
Ay explicitly and determined its theta series for all such g.

»

§ 2. Isometries of A,

In this section, we will discuss the group Auf(Ag) of the invariance
sublattice Ay, g€ G=.0=Aut(A). The normalizer N¢;(<g>) acts natu-
rally on A,y and so induces a subgroup of Aut(Ag). It is not hard to deter-
mine the kernel of the action of Ne(<g>) on Ay. This will give us a
lower bound of |Aut(Ag)|. As expected, Nc(<g>) does induce the full
Aut(Ag) for the majority of the conjugacy classes of G.

If the rank of A, is small, say 2 or 4, then a direct computation by
hand is in general sufficient. An example is given below.

EXAMPLE 2. Let g=11.€EMuCG. Then Aut(Ag) =Dy, a dihedral
group of order 24.

PROOF. Let {v, w, s, us} be basis with Gram matrix
4 0 2 —1
0 4 —1 2
2 —1 4 -1

—1 2 —1 4

Ag=
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The minimal vectors of Ay are of square length 4 and if vs=vi—wvs, ve=
v2—vs, then

Xo={Fuv, v, T, T, tovs, L1}

is the set of all minimal vectors of Ag. The Gram matrix of the set {u,
o, Us, Us, U5, Us} 1S

4 0 2 -1 2 1
0 4 -1 2 1 2
2 -1 4 -1 -2 0
B‘—12—140—2
2 1 =2 0 4 1
L1 2 0 -2 1 4]

Next we will show that Aut(Ag) contains a subgroup <op, 7> =Dy
which is transitive on X,. Define

0. N2, b2>— U1, V32U, Uy s
Pp. U2V U Us U, Uy
T. 02, W0, U3V, UsUs

Then o, p, 7€ Aut(Ag), 0(op)=12, 0(z)=2 and (po)"=(op)~'. Hence
<op, 7> =Ds. It can readily be checked that <op, 7> is transitive on
Xg.

To complete the proof, it suffices to show | Aut(A ¢)v,|=2. Let y €
Aut(Ag) such that y(v)=wn. The matrix B implies y () =¢ew with ¢=
+1. Suppose e=1:1ie. y(un)=w, y(r) =w. Since 2=<uw, 15> =<y,
y(vs)>, we get y(vs)=ws or v by inspecting the first row of B. But an
inspection of the second row forces y(w)=us. Likewise, y(vs)=ruva.
Thus y=1.

Suppose e =—1. Again y(vs) =uvs or vs. But by inspecting the second
row of B, we must conclude y(vs) =vs and y(vs) =vs. Likewise, y(vs)=—
vs and y(vs) =—ws. Thus y is uniquely determined and y*=1, as desired.

If the rank of Ay is 6 or more, the method described in EXAMPLE 2 is
sometimes tedious. In general, we do the following procedure :

STEP 1. Find a subset XqgCTAg on which Aut(Ag) acts faithfully. A
typical choice of such an Xj. is

Xo={1EA4 <A, 1>=<y, v> for some vE B,}
where

B, is a basis for Ag.
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If B, consists of minimal vectors of Ay only, then X, is the set of all
minimal vectors of Ay, which was the case for g=11.. We will get a
(crude) upper bound |Aut (A)|<|X,]|!.

STEP 2. Express Xy as a union of Aut(Ag) invariant subsets. A typ-
ical expression is

Xo=USe(u1, p2)

where S;(u1, u2) ={xE X,| the number of y&X, such that <x, y> =y is
w2}, We will obtain an upper bound

|Aut (A =TT (Se(ar, )| D

If Aut(Ag) acts transitively on X, then Xy=S,(u1, u2) whenever S,(u1, u2)
#+ ¢ and so this step will yield no information. Knowing that Aut(Ag) is
transitive, however, is a useful information.

STEP 3. Suppose Aut(Ag) is transitive on X, Pick x€X, and

investigate the action of the stabilizer Aut(Ag)x on Xy\{x} expressing
Xo\{x} as a union of Aut(Ag) invariant subsets of some kind.
The following is one of the harder cases.

EXAMPLE 3. Let g=6:=1°223°6* €S Moy CG. Then |Aut(Ae:)|=6912=
2833,

PROOF.  Let {u, vo, vs, v, w5, vs, 17, vs} be basis with Gram matrix

4 0 1 1 2 0 2 0]

0 4 1 1 2 0 0 2

1 1 4 2 1 1 2 2

A.— 1 1 2 4 2 -1 2 2
2 2 1 2 4 =2 1 1
0 0 1 -1 =2 4 0 0

2 0 2 2 1 0 4 0

L0 2 2 2 1 0 0 4

The minimal vectors of A, are of square length 4 and the set of all mini-
mal vectors Xy is of size 72. Let Xy={zxuw, tw, ..., T1s). The Gram
matrix of {w, v, ..., vss}=B is listed in TABLE 2. By the method we de-
scribed above we conclude that

| Aut (Ass) | <6912

Next, we will show that the lower bound of |Aut(As.)| is also 6912.
By Wilson [9], the normalizer N¢(<6:>) has ovder 82944. Let o €
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Ng(<6z>) act trivally on Ae:.. Inspecting the matrix A, o fixes two
vectors wy and w, with <wy, wi> = <w., w2> =6, and <wi, w.>=0. This
implies that ¢ € + 633 = M, ( see Conway [ 1] for notation ). Since
Nu,,(<6>) has order 12, we conclude that N¢(6z) has order>82944/12=
6912.

We summarize our results in the table below.

(0). The last column is the group of isometries induced by Ne(<g>).
(1). * means that Nc(<g>) does not induces Aut(Ag).

(2). W () denotes the Weyl group.

(3). [n] denotes an arbitrary group of ovder n.

(4). As, is the Barnes-Wall lattice (see Conway-Sloane [3)).

(5). As is the D% lattice (see Coxeter-Todd [4].

(6). Asy is the Coxeter-Todd lattice (see Conway-Sloane [3].

TABLE 1.
Frame shape Gram wmatrix Isometry Ne(g)
1a 1% Leech lattice .0 .0
24 1828 Barnes-Wall 21205 (2)  2Yf0§ ()
—24 2'%/18 2Fs W (Es) *
2c 21 [ 4—-2 0 0 0 0 0 0 0 0 0 0] 2"Se *
-2 4-2 0 0 0 0 0 0 0 0 O
0—-2 4-2 0 0 0 0 0 0 0 O
0 0—-2 4-2 0 0 0 0 O 0 O
0 0 0—-2 4-2 0 0 0 0 0 0
0 0 0 0—-2 4—-2 0 0 0 0 0
0 0 0 0 0—-2 4-—-2 0 0 0 O
0 00 0 0 0—-2 4-—2 0 0 O
0O 6 0 0 0 0 0—-2 4—2-2 0
0O 0 0 0 06 0 0 0—-2 4 0 0
0o 0 0 0 0 0O 0O 0—-2 0 4-2
L 0 0 0 0 0 0O O 0 0 0—2 6]
3p 183° (4 2 2 2 2 2 2 2 1 2 1 1] 6U.(3)2 6U.(3)2
2 4 2 2 2 2 2 1 2 2 11
2 2 4 2 2 2 1 2 2 2 11
2 2 2 4 2 1 2 2 2 2 1 2
2 2 2 2 4 1 1 1 1 1 2 1
2 2 2 1 1 4 2 2 2 2-1-1
2 21 2 1 2 4 2 2 2-11
21 2 2 1 2 2 4 2 2-11
1 2 2 2 1 2 2 2 4 2-11
2 2 2 2 1 2 2 2 2 4-1 1
1 111 2—-1-1-1-1-1 4 2
1’17 11 2 1-1 1 1 1 1 2 4
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