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‘ t -designs ’ in H(d, q)
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Abatract

We define two kinds of .\cdot t -designs ’ in H(d, q) , which is a semilattice
of all partial mappings from a d-element set to a q-element set, and prove
Fisher type inequalities for those. t -designs ’ They are generalizations of
the Ray-Chaudhuri and Wilson inequality for (combinatorial) t-designs
and the Rao bound for orthogonal arrays of strength t . We give exam-
ples of t -designs r. which attain those bounds.

1. Introduction

Interesting similarities between (combinatorial) t -designs and orth-
ogonal arrays have been pointed out by several authors. For example, P.
Delsarte defined a concept of regular semilattices and t -designs in them
([2]) and now those two types of designs, namely, (combinatorial)

t -designs and orthogonal arrays are understood as examples of t-designs
in regular semilattices or those in Q-polynomial association schemes. We
consider Hamming type (or hypercubic-type) regular semilattices and
define two types of t -designs \prime r

. namely, [t] -designs and \{t\} -designs, both
of which are generalizations of those two classical-type designs. See
Definition 2. 2. The concept of [t] -designs seems to be first introduced and
studied by H. Nagao and others ([1], [4]. See Corollary 3. 3).

In this paper we give Fisher type inequalities for two kinds of. t-
designs r As special cases they include the Ray-Chaudhuri and Wilson
inequality for (combinatorial) t -designs and the Rao bound for orthognal
arrays. In the final section we give several constructions of . t-designs.
and also give a series of examples which attain the bound of the Fisher-
type inequality. Our method of proof is standard and uses higher inci-
dence matrices, so in that sense it follows the method of R. Wilson [5].

2. ‘ t -designs ’ and its incidence matrices

We begin with the definition of a semilattice H(d, q) . Throughout
this paper ‘ t -designs: are considered in this semilattice unless we specify.
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DEFINITION 2. 1. Let d and q be positive integers, D a d-element set
and Q a q-element set. Then H(d, q)=(L, \leq) is a semilattice defined as
follows.

(1) L= \bigcup_{J\subset D}Q^{J}= { \alpha=(\alpha, f) : farrow Q , a mapping |f\subset D }

=the set of all partial mappings from D to Q.
(2) (\alpha_{1},fi)\leq(\alpha_{2}, f_{2}) if J1\subset f_{2} and \alpha_{2|f_{1}}=\alpha_{1} .
(3) (\alpha,f)=(\alpha_{1}, f_{1})\wedge(\alpha_{2}, f_{2}) ,

where J=\{j\in J_{1}\cap J_{2}|\alpha_{1}(j)=\alpha_{2}(j)\} , and \alpha=\alpha_{1|J}(=\alpha_{2|J}) .
Let X_{i}= \bigcup_{J\subset D,|\int|=i}Q^{J} . For \alpha=(\alpha,J)\in L, D(\alpha) denotes the domain of

\alpha , i.e. , J . Let L_{k}= \bigcup_{i=0}^{k}X_{i} .

By definition L is a disjoint union of X_{0} , X_{1} , \ldots , X_{d} .

DEFINITION 2. 2. Let t, k be integers with 0\leq t\leq k\leq d .
(1) A nonempty subset Y of X_{k} is a [t]-((d, q), k, \lambda) design or sim-

ply a [t] -design, provided that, for an element \alpha in X_{t} , the number
\lambda_{t}(\alpha)=|\{y\in Y|\alpha\leq y\}|

is a constant \lambda (independent of the choice of \alpha in X_{t} ).
(2) A nonempty subset Y of L is a \{t\}-((d, q), \lambda_{1} , \ldots

\lambda_{t} ) design or
simply a \{t\} -design, provided that, for an element \alpha in X_{i} , t\acute{h}e number

\lambda_{i}(\alpha)=|\{y\in Y|\alpha\leq y\}|

is a constant \lambda_{i} (independent of the choice of \alpha in X_{i}) with i=1,2 , \ldots . t .

REMARK. (1) As it is remarked in the introduction, the concept of
[t] -design is not new. ([1], [4])

(2) A (combinatorial) t -design, or t-(d, k, \lambda ) design is a [t]-((d, 1) ,
k, \lambda) design, and an orthogonal array of strength t is a [t]-((d, q), d, \lambda)

design.
In addition to the definitions we mention few more notational conven-

tions and terminologies.
Let \alpha and \beta be elements of a semilattice defined in Definition 2. 1.
(1) \alpha and \beta are said to be disjoint if D(\alpha)\cap D(\beta)=\phi .
(2) \alpha and \beta are said to be consistent if there exists an element x\in X_{d}

such that \alpha\leq x , \beta\leq x .
Let A, B and C be finite sets.
(3) Let MatCA, B ) denote the set of all matrices over the real num-

bers R having A and B as row and column labeling sets, and for X\in

Mat (A, B) , (\alpha, \beta)\in A\cross B, X[\alpha, \beta] denote the (\alpha, \beta) entry of X. Let
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V(A) denote the set of all column vectors over R having A as a row
labeling set.

Let 0\leq u, i, j\leq k\leq d.
(4) W_{ij} denotes a matrix in Mat{XifX_{j}) whose (\alpha, \beta) entry W_{ij}[\alpha ,

\beta] is 1, if \alpha\leq\beta and is 0 otherwise.
(5) W_{ij}^{u} denotes a matrix in Mat{XifX_{j}) whose (\alpha, \beta) entry W_{ij}^{u}[\alpha ,

\beta] is 1, if \alpha and \beta are consistent and \alpha\wedge\beta\in X_{u} and is 0 otherwise.
(6) For a subset Y\subset L, N_{i} denotes a matrix in Mat(Xif Y) whose

(\alpha, y) entry N_{i}[\alpha, y] is 1, if \alpha\leq y and is 0 otherwise.
(7) For a subset Y\subset X_{k}, C_{k,Y} denotes a matrix in Mat(X_{k}, Y)

whose (\alpha, y) entry C_{k,Y}[\alpha, y] is 1, if \alpha=y and is 0 otherwise. In particu-
lar, we have W_{ik}C_{k,Y}=N_{i} .

(8) For a subset A\subset L, 1_{A} denotes the all one vector in V(A) , and
1_{i} denotes 1_{X_{i}} .

(9) For a subset Y\subset L, N_{i}^{u} denotes a matrix in Mat{Xif Y) whose
(\alpha, y) entry N_{i}^{u}[\alpha, u] is 1, if \alpha and y are consistent and \alpha\wedge y\in X_{u} and is
0 otherwise.

We collect several basic lemmas, which we need later.

LEMMA 2. 1. For 0\leq i\leq j\leq t\leq k\leq d,

W_{ij}W_{jk}=(\begin{array}{ll}k -ij -i\end{array}) W_{ik} .

Proof. Let (\alpha, \beta)\in X_{i}\cross X_{k} . Then

W_{ij}W_{jk}[\alpha, \beta]=|\{\gamma\in X_{j}|\alpha\leq\gamma\leq\beta)|=(\begin{array}{ll}k -ij -i\end{array}) W_{ik} .

Hence we have the relation.

LEMMA 2. 2. For 0\leq i\leq j\leq t\leq- k\leq d, we have the following.
(1) For a subset Y\subset X_{k}, Y is a[t]-((d, q), k, \lambda) design if and only

if N_{t}1_{Y}=\lambda 1_{t} .
(2) If a subset Y\subset X_{k} is a[t]-((d, q), k, \lambda) design, Y is a[i]-

((d, q) , k, \lambda_{i}) design with

\lambda_{i}=(\begin{array}{l}d-it-i\end{array})q^{t-i}\lambda/(\begin{array}{l}k-it-i\end{array})=(\begin{array}{ll}d -ik -i\end{array})q^{t-i}\lambda/(\begin{array}{ll}d -tk -t\end{array})

So in particular, it is a\{t\}- ((d, q) , \lambda_{1} , \ldots . \lambda_{t} ) design with

\lambda_{i}=|Y|(\begin{array}{ll}d -ik -i\end{array})/(\begin{array}{l}dk\end{array})q^{i}-
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PROOF. (1) It is clear from the definition.
(2) Suppose Y\subset X_{k} is a [t]-((d, q), k, \lambda) design. Then

\lambda(\begin{array}{ll}k -ij -i\end{array})q^{t-i}l_{i}=\lambda W_{it}l_{t}=W_{it}N_{t}l_{Y}=W_{it}W_{tk}C_{k,Y}lY

=(\begin{array}{ll}k -it-i \end{array}) W_{ik}C_{k,Y}1_{Y}=(\begin{array}{l}k-it-i\end{array})N_{i}1_{Y}. .

So by (1), Y is a [ i]-((d, q) ,k,\lambda_{i}) design with

\lambda_{i}=(\begin{array}{l}d-it-i\end{array})q^{t-i}\lambda/(\begin{array}{l}k-it-i\end{array}) =(\begin{array}{ll}d -ik -i\end{array})q^{t-i}\lambda/(\begin{array}{ll}d -tk -t\end{array}) .

Here, the last equality follows from a well-known identity of binomial
coefficients. In particular, \lambda_{0}=|Y| . So

\lambda=|Y|(\begin{array}{ll}d -ik -i\end{array})/(\begin{array}{l}dk\end{array})q^{t} . and \lambda_{i}=|Y|(\begin{array}{ll}d -ik -i\end{array})/(\begin{array}{l}dk\end{array})q^{i} .

LEMMA 2. 3. Let Y\subset L be a\{t\}- ((d, q) , \lambda 1 , \ldots , \lambda t ) design, and
(\alpha, \beta)\in X_{i}\cross X_{j} with i+j\leq t. If \alpha and \beta are disjoint then the following
hold.

(1) \lambda_{i}^{j}=| {y\in Y|\alpha\leq y, \beta and y are disjoint}l is a constant independent
of the choices of \alpha and \beta.

(2) \lambda_{i}^{j}+q\lambda_{i+1}^{j-1}=\lambda_{i}^{j-1} with j\geq 1 , and \lambda_{i}=\lambda_{i}^{0} .

PROOF. (1) follows form (2). For the proof of (2), we proceed
by induction on j. Let \gamma\in X_{j-1} , \gamma\leq\beta and a\in D(\alpha)\backslash D(_{\gamma}) . For each c

in Q, let

\Lambda_{C}=\{y\in Y|\alpha\leq y, D(\gamma)\cap D(y)=\phi, y(a)=c\}

\Lambda_{0}=\{y\in Y|\alpha\leq y, D(\beta)\cap D(y)=\phi\} .

Then

\{y\in Y|\alpha\leq y, D(\gamma)\cap D(y)=\phi\}

= \Lambda_{0}\cup(\bigcup_{c\in Q}\Lambda_{C}) , (disj oint union).

Since the left hand side is equal to \lambda_{i}^{j-1} by induction hypothesis, and |\Lambda_{C}|=

\lambda_{i+1}^{j-1} , for each c\in Q , we have the assertion.

LEMMA 2. 4. \lambda_{i}^{j}=\sum_{u=0}^{j}(-1)^{u}(\begin{array}{l}ju\end{array})q^{u}\lambda_{i+y} .

PROOF. We proceed by induction on j. If j=0, there is nothing to
prove. Using the recurrence relation in the previous lemma, and the
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induction hypothesis, we have
\lambda_{i}^{j+1}=\lambda_{i}^{j}-q\lambda_{i+1}^{j}

= \sum_{u=0}^{j}(-1)^{u}(\begin{array}{l}ju\end{array})q^{u}\lambda_{i+u}-\sum_{v=0}^{j}(-1)^{v}(\begin{array}{l}jv\end{array})q^{v+1}\lambda_{i+v+1}

= \lambda_{i}^{0}+\sum_{u=1}^{j}((-1)^{u}(\begin{array}{l}ju\end{array})q^{u}\lambda_{i+y}+(-1)^{u}(\begin{array}{ll} ju -1\end{array})q^{u} \lambda_{i+u})

+(-1)^{j+1}q^{j+1}\lambda_{i+j+1}

= \sum_{u=0}^{j+1}(-1)^{u}(j +1u)q^{u} \lambda_{i+u} .

Lemma 2. 5. \sum_{u=0}^{j}(-1)^{u}(\begin{array}{l}ju\end{array})(\begin{array}{ll}d -i-uk -i-u\end{array})= (d k-i-i-j) , if i+j\geq k.

PROOF. In H(d, q) , let q=1 . Let Y=X_{k} . Then Y in a [t]-((d, 1) ,

k, (\begin{array}{lll} d -t( k -t\end{array})) design, for t=0,1 , \ldots . k. So by Lemma 2. 3 and 2. 4, the left

hand side becomes \lambda_{i}^{j} for this trivial t -design. Hence \lambda_{i}^{j}=(\begin{array}{ll}d -i-j k-i\end{array}) .

Lemma 2. 6. Let Y be a[t]- ((d, q) , k, \lambda) design. If i+j\leq t, then

\lambda_{i}^{j}=(\begin{array}{ll}d -i-j k-i\end{array})q^{t-i}\lambda/(\begin{array}{ll}d -tk -t\end{array}) .

PROOF. Since \lambda_{i+u}=(\begin{array}{ll}d -i-uk -i-u\end{array})q^{t-i-u}\lambda/(\begin{array}{ll}d -tk -t\end{array}) ,

\lambda_{i}^{j}=\sum_{u=0}^{j}(-1)^{u}(\begin{array}{l}ju\end{array})q^{u}\lambda_{i+u}

= \sum_{u=0}^{j}(-1)^{u}(\begin{array}{l}ju\end{array})q^{u}(\begin{array}{ll}d -i-uk -i-u\end{array})q^{t-i-u} \lambda/(\begin{array}{ll}d -tk -t\end{array})

= \frac{q^{t-i}\lambda}{(\begin{array}{ll}d -tk -t\end{array})}\sum_{u=0}^{j}(-1)^{u}(\begin{array}{l}ju\end{array})(\begin{array}{ll}d -i-uk -i-u\end{array})

=(\begin{array}{ll}d -i-j k-i\end{array})q^{t-1}\lambda/(\begin{array}{ll}d -tk -t\end{array}) .

In [2], Delsarte defined a concept of regular semilattices and devel-
oped a theory of t -designs in these semilattices. As for [t]-((d, q), k, \lambda)

designs, the underlying semilattice is L_{k} , which is a union of X_{0} , \ldots . X_{k} .
By inspection, we can show the following:

(*) If L_{k} is a regular semilattice then either q=1 or k=d.
The case q=1 corresponds to the Johnson scheme and the (combinatorial)
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t -designs, while the case k=d corresponds to the Hamming scheme and
the orthogonal arrays. In these cases we have regular semilattices, so we
may fully apply Delsarte’s theory of t -designs. As we do not depend on
his theory, we shall not give the proof of the statement (*) in this paper.

3. Fisher’s inequality

In this section we give two generalizations of the Fisher’s inequality.
One is obtained by the determination of the condition that an incidence
matrix of a \{t\} -design is of full rank. This leads to a generalization of
the inequlity of Ray-Chaudhuri and Wilson. On the other hand, for a
[t] -design we obtained a lower bound of the rank of an incidence matrix
to get a Fisher type inequality, which is equivalent with the Rao bound, if
it is an orthogonal array, i . e. , a [t]- ((d, q) , d, \lambda) design.

Lemma 3. 1. Let Y\subset L be a\{t\}- ((d, q) , \lambda_{1} , \ldots
\lambda_{t} ) design. If i+j

\leq t,

N_{i}(N_{j}^{u})^{T}= \sum_{v=0}^{m1n\{i,j\}}(\begin{array}{l}j-vu-v\end{array})\lambda_{i+u-v}^{j-u}W_{ij}^{v} ,

where T denotes the transpose of the matrix.

PROOF. Let (\alpha, \beta)\in X_{i}\cross X_{j} with \alpha\wedge\beta\in X_{v} . Then
N_{i}(N_{j}^{u})^{T}[\alpha, \beta]=| {y\in Y|\alpha\leq y, \beta\wedge y\in X_{u}, \beta and y are consistent}l.

So N_{i}(N_{j}^{u})^{T}[\alpha, \beta] equals 0, if \alpha and \beta are not consistent. Suppose \alpha and
\beta are consistent. Then by counting the number above, we have

N_{i}(N_{j}^{u})^{T}[\alpha, \beta]=(\begin{array}{l}j-vu-v\end{array})\lambda_{i+u-v}^{j-u} ,

and the relation follows.

THEOREM 3. 2 Let Y\subset L be a\{2a\}- ((d, q) , \lambda_{1} , \ldots
\lambda_{2S}) design. If

\lambda_{s}^{s}\neq 0 , then

|Y|\geq rankN_{s}=(\begin{array}{l}ds\end{array})q^{s_{\wedge}}

PROOF. Since 0\leq\lambda_{i}^{j}=\lambda_{i}^{j-1}-q\lambda_{i+1}^{j-1}\leq\lambda_{i}^{j-1} by Lemma 2. 3, \lambda_{S}^{i}\neq 0 for i=
0,1 , \ldots , s. By the previous lemma, letting i=j=s, we have

N_{s}(N_{S}^{0})^{T}=\lambda_{S}^{s}W_{SS}^{0}

N_{S}(N_{S}^{1})^{T}=s\lambda_{s+1}^{s-1}W_{SS}^{0}+\lambda_{S}^{s-1}W_{SS}^{1}
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N_{s}(N_{s}^{u})^{T}= \sum_{v=0}^{u-1}(\begin{array}{l}s-vu-v\end{array})\lambda_{s+u}^{s-u}W_{ss}^{v}+\lambda_{S}^{s-u}W_{ss}^{u}

N_{s}(N_{s}^{s})^{T}= \sum_{v=0}^{s-1}(\begin{array}{l}s-vs-v\end{array})\lambda_{2s-v}^{0}W_{ss}^{v}+\lambda_{S}^{0}W_{ss}^{u}

Hence I=W_{ss}^{s} can be written as a linear combination of
N_{s}(N_{s}^{0})^{T}. N_{s}(N_{s}^{1})^{\tau_{\wedge}}\ldots-N_{s}(N_{s}^{s})^{T}-

Thus there exists a matrix M in Mat(Y, X_{s}) such that

I=N_{s}M,

where I denotes |X_{s}| by |X_{s}| identity matrix. Hence

|Y|\geq rankN_{s}=|X_{s}|=(\begin{array}{l}ds\end{array})q^{s} .

COROLLARY 3. 3 (Nagao [4]). Let Y be a[2s]-((d, q), k, \lambda) -design.
If k+s\leq d, then

|Y|\geq(\begin{array}{l}ds\end{array})q^{s}-

PROOF. Suppose k+s\leq d. Let \alpha\in X_{S} . Since \lambda_{S}\neq 0 , there exists
y\in Y such that \alpha\leq y . Since y\in X_{k} , there exists \beta\in X_{s} , where y and \beta

are disjoint. Hence \lambda_{s}^{s}\neq 0 . Thus we may apply the previous theorem.
Also see Lemma 2. 6.

REMARK. The proofs of Theorem 3. 2 and 3. 3 are essentially same as
that of Nagao for [t] -design. Since Theorem 3. 2 is stated for \{t\} -designs,
it includes a slight generalization of the Ray-Chandhuri and Wilson in-
equality. In order to show that an incidence matrix N_{s} is of full rank, we
used a condition k+s\leq d. So Corollary 3. 3 says nothing on an orth-
ogonal array, where k=d.

Now we turn to a proof of an inequality for a [t] -design. The follow-
ing seems to be a well-known technique to reduce the problem of comput-
ing the rank of an incidence matrix N_{s} to that of W_{Sk} , but it gives us a
starting point for our proof.

Lemma 3. 4. Let L\subset X be a[t]- ((d, q) , k, \lambda) design, and \lambda_{i}(i=0 ,
1, \ldots

;t) be the constants in Lemma 2. 2. For 0\leq i, j\leq k with i+j\leq t,
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N_{i}(N_{j})^{T}= \sum_{u=0}^{m1n\{i,j\}}\lambda_{i+j-u}W_{ij}^{u}=\frac{\lambda}{(\begin{array}{ll}d -tk -t\end{array})q^{k-t}}W_{ik}(W_{jk})^{T}

.

PROOF. Let \alpha\in X_{i} and \beta\in X_{j} with \alpha\wedge\beta\in X_{u} . Then

N_{i}(N_{j})^{T}[\alpha, \beta]=|\{y\in Y|\alpha\leq y, \beta\leq y\}|

=\{
\lambda_{i+j-u} if \alpha and \beta are consistent
0 otherwise.

N_{i}(N_{j})^{T}= \sum_{u=0}^{m1n\{i,j\}}\lambda_{i+j-u}W_{ij}^{u}

= \frac{\lambda}{(\begin{array}{ll}d -tk -t\end{array})q^{k-t}}\sum_{u=0}^{m1n\{i,j\}}(\begin{array}{l}d-i-j+uk-i-j+u\end{array})q^{k-i-j+y}W_{ij}^{u}

= \frac{\lambda}{(\begin{array}{ll}d -tk -t\end{array})q^{k-t}}W_{ik}(W_{jk})^{T}

,

LEMMA 3. 5. Let Y\subset X_{k} be a[2s]- ((d, q) , k, \lambda) design. Then |Y|\geq

rank (N_{2S})\geq rank(N_{s})=rank( W_{Sk}) .

PROOF. Since the columns of an incidence matrix N_{2s} is indexed by
the elements of Y. the rank of the matrix N_{2s} does not exceed |Y| . By
Lemma 2. 1,

W_{s,2s}N_{2s}=(\begin{array}{l}k-ss\end{array})N_{S} .

So the row space of N_{2s} is in that of N_{s} . Since N_{s} and W_{Sk} are real
matrices, the row space of N_{s} (resp. W_{sk} ) is equal to that of N_{s}^{T}N_{s} (resp.
W_{Sk}^{T}W_{Sk}) . Moreover, since nonzero eigenvalues with multiplicities are the
same both in A^{T}A and AA^{T} for any matrix A , we may apply the previous
lemma to obtain the following.

|Y|\geq rank(N_{2S})\geq rank(N_{s})=rank(N_{s}^{T}N_{S})=rank(N_{s}N_{s}^{T})

=rank(^{\frac{\lambda}{(\begin{array}{ll}d -tk -t\end{array})q^{k-t}}}W_{Sk}W_{Sk)}^{T}

=rank( W_{Sk} WSk)=rank W_{Sk}^{T}W_{Sk})=rank( W_{Sk}) .

LEMMA 3. 6. In H(d, 1) with 0\leq s\leq k\leq d, the following hold.

(1) rank ( W_{sk})=(\begin{array}{l}ds\end{array}) , if s+k\leq d.
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(2) rank ( W_{sk})=(\begin{array}{l}dk\end{array}) , if s+k\geq d.

PROOF. See Theorem 11 in [3].
Let A=W_{Sk} with 0\leq s\leq k\leq d and x) be an element in X_{d} . X_{ji}=\{\alpha\in X_{j}|

\alpha\wedge x_{)}\in X_{j-i}\} .
For \mu , \nu\in X_{ii} let

X_{ji}^{\mu}=\{\alpha\in X_{ji}|\alpha\geq\mu\} ,

A_{i}^{\mu\nu} denote the restriction of A to X_{is}^{\mu}\cross X_{ki}^{\nu} and A_{ij} denote the restriction
of A to X_{si}XX_{kj} . Then it is easy to see that A_{ij}=0 if i>j and we may
arrange the rows and the columns of A so that the diagonal blocks are
A_{ii}, s and the below diagonals are all zero matrices. Hence

rank (A) \geq\sum_{i=0}^{s} rank (A_{ii}) .

Since \mu , \nu\in X_{ii}, \mu\wedge x_{)}\in X_{0} , \nu\wedge x_{\}}\in X_{0} , and A_{i}^{\mu\nu}=0 if \mu\neq\nu . So again we
may arrange the rows and the columns of A_{ii} so that the diagonal blocks
are A_{i}^{\mu \mathfrak{l}1} ’s and the offdiagonals are all zero matrices. Hence

rank (A_{ii}) \geq\sum_{\mu\subset X_{ii}} rank (A_{i}^{\mu\nu}) .

By inspection it is easy to see that A_{i}^{\mu\nu} is nothing but an incidence matrix
W_{s-i,k-i} in H(d-i, 1) .

Since s-i+k-i\leq d-i , if and only if i\geq s+k-d , Lemma 3. 6 implies
the following.

(1) rank (A_{i}^{\mu\nu})=(\begin{array}{ll}d -is -i\end{array}) , if i\geq s+k-d.

(2) rank (A_{i}^{\mu\nu})=(\begin{array}{ll}d -ik -i\end{array}) , if i\leq s+k-d.

Combined with Lemma 3. 5, we proved the following theorem.

THEOREM 3. 7. (1) Let 0\leq s\leq k\leq d. Then

rank ( W_{Sk}) \geq\sum_{i=0}^{s+k-d-1}(\begin{array}{ll}d -ik -i\end{array}) (\begin{array}{l}di\end{array})(q-1)^{i}+\sum_{i=s+k-d}^{s}(\begin{array}{ll}d -is -i\end{array}) (\begin{array}{l}di\end{array})(q-1)^{i}

(2) Let Y\subset L be a[2s]-((d, q), k, \lambda) design. Then

| Y|\geq\sum_{i=0}^{s+k-d-1}(\begin{array}{ll}d -ik -i\end{array}) (\begin{array}{l}di\end{array})(q-1)^{i}+\sum_{i=s+k-d}^{s}(\begin{array}{ll}d -is -i\end{array}) (\begin{array}{l}di\end{array})(q-1)^{i}

REMARK. (1) With a little more effort we can show that the equal-
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ity holds in Theorem 3. 7. (1), if either s+k\leq d or k=d.
(2) If s+k\leq d , the first summand yields zero in the right hand side

of the inequality. So

| Y|\geq\sum_{i=0}^{s}(\begin{array}{ll}d -is -i\end{array}) (\begin{array}{l}di\end{array})(q-1)^{i}=\sum_{i=0}^{s}(\begin{array}{l}ds\end{array})(\begin{array}{l}si\end{array})(q-1)^{i}=(\begin{array}{l}ds\end{array})q^{s}

This gives an alternative proof of Corollary 3. 3.
(3) If k=d, the second summand has only one term. So

| Y|\geq\sum_{i=0}^{s}(\begin{array}{l}di\end{array})(q-1)^{i} .

This gives the Rao’s bound of an orthogonal array of strength 2s , which is
the dual of the Hamming bound in Coding theory when the space is linear
and Q is a field of q-elements. Note that Y^{\perp} is a (2s+1) -code in that
case.

4. Examples

A) Let x) be an element of X_{d} in H(d, q) , q>1 , and \Delta_{q,x_{0}}=\Delta a surjective
mapping from a semilattice H(d, q) to H(d, q-1) defined as follows.

For \alpha\in L ( i . e. , an element of H(d, q) ),
D(\Delta\alpha)=\{s\in D(\alpha)|\alpha(s)\neq x_{)}(s)\} , and
(\Delta\alpha)(s)=\alpha(s) if s\in D(\Delta\alpha) .

We employ the bar notation for the images of \Delta . For example, \Delta\alpha=\overline{\alpha} ,
\Delta L=\overline{L} and \Delta Y=\overline{Y} if Y is a subset of L. We identify H(d, q-1) or \overline{L}

as a subset of H(d, q) or L.

DEFINITION 4. 1. A subset \overline{Y} of \overline{L} is a \{t\} -design of type q, if \overline{Y} is a
\{t\}-(d, q-1),\overline{\lambda}_{1} , \ldots . \overline{\lambda}_{t} ) design with \overline{\lambda}_{i}=q^{-i}|\overline{Y}| .

LEMMA 4. 1. A subset \overline{Y} of \overline{L} is a\{t\} -design of type q, if and only
if

\lambda_{i}(\alpha)=|\{y\in Y|\alpha\leq y\}|=q^{-i}|Y|

for each element \alpha in X_{i} satisfying \alpha\wedge x_{)}\in X_{0} with i=0, \ldots-t, where Y=
\Delta^{-1}(\overline{Y})\cap X_{d} .

PROOF. Let \alpha be an element in X_{i} satisfying \alpha\wedge x_{1}\in X_{0} . Then \Delta\alpha=

\overline{\alpha}=\alpha . Moreover for an element x in X_{d} , \alpha\leq x is equivalent to \Delta(\alpha)\leq

\Delta(x) . Hence |\{\overline{y}\in\overline{Y}|\overline{\alpha}\leq\overline{y}\}|=|\{y\in Y|\alpha\leq y\}| as the restriction of the map-
ping \Delta to X_{d} is a bijection onto \overline{L}.

Hence \lambda_{i}(\alpha)=\overline{\lambda}_{i}=q^{-i}|\overline{Y}|=q^{-i}|Y| .
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PROPOSITION 4. 2. (1) If a subset \overline{Y} of \overline{L} is a\{t\} -design of type q,

then \Delta^{-1}( \overline{Y})\cap X_{d} is a[t] -design with \lambda=q^{-t}|Y| , i. e.y an orthogonal array
of strength t.

(2) Conversely, if a subset Y of X_{d} is a[t] design, then \Delta(Y) is a
\{t\} -design of type q.

PROOF. (2) Since Y is a subset of X_{d} , Y=\Delta^{-1}( \overline{Y})\cap X_{d} . By
Lemma 2.2, \lambda_{i}=q^{t-1}\lambda and |Y|=\lambda_{0}=q^{t}\lambda . We have \lambda_{i}=q^{-i}|Y| . Hence the
assertion follows from Lemma 4. 1.

(1) Let Y=\Delta^{-2}(\overline{Y})\cap X_{d} and \alpha be an element of X_{t} with \alpha\wedge x_{1}\in X_{s} .
We show by double induction on t and s that

\lambda_{t}(\alpha)=|\{y\in Y|\alpha\leq y\}|=q^{-t}|Y| .

If s=0 , the assertion holds by Lemma 4. 1. Now assume that \lambda_{u}(\beta)=

q^{-u}|Y| for any element \beta in X_{u} such that \beta\wedge x_{1}\in X_{j} , with 0\leq u<t , or u=t
and 0\leq j<s . Choose a\in D so that \alpha(a)=x_{0}(a) . Let D_{1}=D\backslash \{a\} ,
Q_{1}=Q\backslash \{\alpha(a)\} and \alpha^{0} be an element of X_{t-1} defined by \alpha^{0}=\alpha_{|D_{1}} . For each
c\in Q , let \alpha c be an element of X_{t} defined by \alpha_{1}^{c_{D^{1}}} and \alpha(ca)=c . Then
\{y\in Y|\alpha^{0}\leq y\} is a disjoint union of \{y\in Y|\alpha^{0}\leq y\} and \bigcup_{c\in Q_{1}}\{y\in Y|\alpha^{c}\leq y\} .

Since \alpha^{c}(a)\neq x_{)}(a) , while \alpha(a)=x_{)}(a) , we have \alpha^{c}\wedge x_{\}}\in X_{s-1} . Hence we
have

\lambda_{t}(\alpha)=\lambda_{t-1}(\alpha^{0})-\sum_{c\in Q_{1}}\lambda_{t}(\alpha)^{c})=q^{-t+1}|Y|-(q-1)q^{-t}|Y|=q^{-t}|Y| .

The construction above, especially when q=2 , may be known to
many, who are interested in t -designs with multiple block sizes.

We give two types of examples of [t] -designs. The first is a trivial
example called a product type. The second is less trivial and we give a
series of [2]-designs which attain the bound in Corollary 3. 3.
B) Let Y_{1} be a [t]-((d, 1), k, \lambda_{1}) design, i . e. , a combinatorial /-design,
and \{ Y_{a}\}_{a\in Y_{1}} be a collection of [t]- ((k, q) , k, \lambda_{2}) designs, i . e. , orthogonal
arrays of strength t . Let \{D_{a}\}_{a\in Y_{1}} be a collection of the domain sets of
Y_{a} ’s of size k. Since each \alpha\in Y_{1} is a k -element subset, we fix a bijection

f_{a} from \alpha to C_{a} . Let Y=\{(\beta, \alpha)|\alpha\in Y_{1}, \beta\in Y_{a}\} . Let D((\beta, \alpha))=\alpha , and
for a\in\alpha , (\beta, \alpha)(a)=\beta(f_{a}(a)) . Then Y yields a subset of a semilattice
H(d, q) . Now it is easy to see that Y is a [t]-((d, q), k, \lambda_{1}\lambda_{2}) design.
We call this [t] -design, a product type.

By a little computation it is not hard to see that any [2s] -design of
product type with s\geq 1 and k\neq d does not attain the bound given in TheO-
rem 3. 7.
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C) Let x) be an element of X_{d} and Y be a [t]-((d, q), d, \lambda) design satis-
fying the following.

(*) There is a constant k such that \alpha\wedge x_{)}\in X_{d-k} for every \alpha in
Y\backslash \{x_{)}\} .
Assume q>1 , then we have k\geq t. Now it follows from Proposition 4. 2
that \Delta(Y\backslash \{x_{1}\}) is a [t]-((d, q-1), k, \lambda) design.

LEMMA 4. 3. Let C be a[d, m, t+1] linear code over a field with
q-elements, where d is the dimension of the underlying vector space, m is
the dimension of C and t+1 is the minimum weight of C. If every non-
zero vector of C^{\perp}has a constant weight k, then C^{\perp}is a[t]-((d, q), d, \lambda)

design satisfying the condition (*) . Here \lambda=q d-m-t. In partiqular,
\Delta(C^{\perp}\backslash \{0\}) is a[t]-((d, q-1), k, \lambda) design.

Proof. Let H be a generator matrix of C^{\perp} . Since the minimum
weight of C is t+1 , any choice of t -columns of H are linearly indepen-
dent. Hence C^{\perp} is a [t]- ((d, q) , d, \lambda) design and the rest of the asser-
tions are straight forward.

Let C be a [q+1, q-1] Hamming code over a field GF(q) with q-
elements. Then C is a [q+1, q-1,3] code and a generator matrix of C^{\perp} .
or equivalently a parity check matrix of C has columns which are pair-

wise linearly independent. For example the first q columns are (\begin{array}{l}1a\end{array}) ,

a\in GF(q) , and the last column is (\begin{array}{l}01\end{array}) . Then it is easy to check that

every nonzero vector of C^{\perp} has weight q. Thus by Lemma 4. 3, \Delta(C^{\perp}\backslash

\{0\}) is a [2]-((q+1, q-1), q , 1) design. Hence this design attains the
bound in Theorem 3. 2 or equivalently, the bound in Corollary 3. 3. The
following is the smallest example, [2]- ((4, 2) , 3, 1) design by this construc-
tion.

y_{1}=(1,1,1, *) , y_{2}=(2,2,2, *)

y_{3}=(1,2, *, 1) , y_{4}=(2,1, *, 2)

y_{5}= (1, *, 2, 2) , y_{6}=(2, *, 1, 1)

y_{7}= (*, 1, 2, 1) , y_{8}=(*, 2,1, 2)

Here Q=\{1,2\} , and * denotes the point where the value is not defined.
D) The following is an example of [2]-((7,2), 4 , 1) design which does not
come from the construction given in C. This design also attains the
bound.

y_{1}=(2,1,1, *, 1, *, *) , X^{=}(1,2,2, *, 2, *, *) ,
y_{3}=(*, 2,1,1, *, 1, *) , y_{4}=(*, 1,2,2, *, 2, *) ,
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y_{5}=(*, *, 2,1,1, *, 1) , y_{6}=(*, *, 1,2, 2, *, 2) ,
y_{7}= (1, *, *, 2, 1, 1, *) , g\S = (2, *, *, 1, 2, 2, *) ,
;n=(*, 1, *, *, 2,1,1) , y_{10}=(*, 2, *, *, 1, 2,2) ,
y_{11}=(1, *, 1, *, *, 2,1) , y_{12}=(2, *, 2, *, *, 1,2) ,
y_{13}=(1,1, *, 1, *, *, 2) , y_{14}=(2,2, *, 2, *, *, 1) .
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