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‘ t-designs’ in H(d, q)
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Abatract

We define two kinds of ¢ ¢-designs’ in H (d, q), which is a semilattice
of all partial mappings from a d-element set to a g-element set, and prove
Fisher type inequalities for those  #-designs’. They are generalizations of
the Ray-Chaudhuri and Wilson inequality for (combinatorial) ¢-designs
and the Rao bound for orthogonal arrays of strength f. We give exam-
ples of ‘ ¢-designs’ which attain those bounds.

1. Introduction

Interesting similarities between (combinatorial) ¢-designs and orth-
ogonal arrays have been pointed out by several authors. For example, P.
Delsarte defined a concept of regular semilattices and ¢-designs in them
(2D and now those two types of designs, namely, (combinatorial)
t-designs and orthogonal arrays are understood as examples of f-designs
in regular semilattices or those in @-polynomial association schemes. We
consider Hamming type (or hypercubic-type) regular semilattices and
define two types of ‘¢-designs’, namely, [¢]-designs and {¢}-designs, both
of which are generalizations of those two classical-type designs. See
Definition 2. 2. The concept of [¢]-designs seems to be first introduced and
studied by H. Nagao and others ([1], [4]. See Corollary 3.3).

In this paper we give Fisher type inequalities for two kinds of ‘-
designs’. As special cases they include the Ray-Chaudhuri and Wilson
inequality for (combinatorial) f¢-designs and the Rao bound for orthognal
arrays. In the final section we give several constructions of ‘{-designs’
and also give a series of examples which attain the bound of the Fisher-
type inequality. Our method of proof is standard and uses higher inci-
dence matrices, so in that sense it follows the method of R. Wilson [5].

2. ‘t-designs’ and its incidence matrices

We begin with the definition of a semilattice H (d, ¢). Throughout
this paper ‘ ¢-designs’ are considered in this semilattice unless we specify.



404 H. Suzuki

DEFINITION 2.1. Let d and g be positive integers, D a d-element set
and @ a g-element set. Then H(d, ¢)=(L, <) is a semilattice defined as
follows.

D L=]gDQ’:{a=(a,]> : J—Q, a mapping |J CD}

=the set of all partial mappings from D to Q.
2) (a, ) <(a, ) if JCJ and azy, = ar.
3) (a,])=(a, ) N (a, J),
where J={/€iNkla(f)=a(f)}, and a=a;(=azy).
Let X;= U Q). For a=(a,/)EL, D(a) denotes the domain of

JeD,iJ|=i
k
a, i.e, J. Let LkZ.L_JOX,-.
By definition L is a disjoint union of Xo, Xi, ..., Xa.

DEFINITION 2.2. Let ¢ % be integers with 0<¢<k<d.
(1) A nonempty subset Y of X is a [¢]-((d, @), k, 1) design or sim-
ply a [t]-design, provided that, for an element « in X;, the number

La)=l{yeY|a<yl|

is a constant A (independent of the choice of @ in X).
(2) A nonempty subset Y of L is a {¢}-((d, @), Ay, ..., 1+) design or
simply a {t}-design, provided that, for an element « in X;, the number

L) =[{yeY|a<y}
is a constant A; (independent of the choice of « in X;) with i=1, 2, ..., t.

REMARK. (1) As it is remarked in the introduction, the concept of
[t]-design is not new. ([1],[4D

(2) A (combinatorial) ¢-design, or t-(d, k, A) design is a [¢]-((d D),
k, 1) design, and an orthogonal array of strength ¢ is a [¢]-((d, @), d, 1)
design.

In addition to the definitions we mention few more notational conven-
tions and terminologies.

Let @ and B be elements of a semilattice defined in Definition 2. 1.

(1) @ and B are said to be disjoint if D(a)ND(B)=¢.

(2) a and g are said to be consistent if there exists an element xE X,
such that ¢ <x, f<x.

Let A, B and C be finite sets.

(3) Let Mat(A, B) denote the set of all matrices over the real num-
bers R having A and B as row and column labeling sets, and for X €&
Mat(A, B), (a, DEAXB, X|a, B] denote the (a,B) entry of X. Let
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V (A) denote the set of all column vectors over R having A as a row
labeling set.

Let 0<u, 1, j<k<d.

(4) Wi denotes a matrix in Mat(X,, X;) whose (a, ) entry Wyla,
Bl is 1, if @<p8 and is 0 otherwise.

(5) W denotes a matrix in Mat(X;, X;) whose (a, 8) entry W¥[a,
Bl is 1, if & and B are consistent and « ABE X, and is 0 otherwise.

(6) For a subset YCL, N; denotes a matrix in Mat(X; Y) whose
(a,y) entry Nia, y] is 1, if «a<y and is 0 otherwise.

(7) For a subset Y CX,, Ciy denotes a matrix in Mat(Xs V)
whose (a,y) entry Ciyl[a, y] is 1, if a=y and is 0 otherwise. In particu-
lar, we have WiCs,y=N..

(8) For a subset ACL, 1. denotes the all one vector in V(A), and
1; denotes Ix..

(9) For a subset YCL, N¥ denotes a matrix in Mat(X; V) whose

(a,y) entry N¥a, u] is 1, if « and y are consistent and aNye X, and is
0 otherwise.

We collect several basic lemmas, which we need later.
LEMMA 2.1. For 0<i<j<t<k<d

W}J'W}k:(l?— Z) Wi.

PROOF. Let (a,B)EX:XX:. Then
WoWala, A1=llye Xla<y=pl=(3_]) W

Hence we have the relation.

LEMMA 2.2. For 0<i<;j<t<k<d, we have the following.

(1) For a subset Y CX,, Y is a [t]-((d, @), k, 1) design if and only
Z:f Nedy=211..

@2) If a subset YCX, is a [t]-((d @), k 1) design, Y is a [i]-
((d, @, k, A:) design with

a4 ()4 a4

So in particular, it is a {t}—((d, @), Ay, ..., Xs) design with

e () (2
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PROOF. (1) It is clear from the definition.
(2) Suppose Y CX, is a [t]-((d, @), k, 1) design. Then

A(%:;)qt_ili: AWili= WuNdy = Wi WaCr, vy

J
:(k“z.)mkck,yzy:(k _?>N,-1y..
t—1 t—1

So by (1), Yisa [{]-((d, @, k 1,) design with

_ d—i) i (k—-i)_(d—i) i (a’—t)

= e () =G )Gy

Here, the last equality follows from a well-known identity of binomial
coefficients. In particular, A=|Y]|. So

() (e o xm (e

LEMMA 2.3. Let Y CL be a {t}-((d q), A1, ..., L +) design, and
(a, EX: X X; with i+j<t. If a and B are disjoint then the following
hold.

(D) Ai={yeYla<y, B and y are disjoint}| is a constant independent
of the choices of a and B.

(2) A+ qriEi=Aa with 721, and 1:=2A0.

PrOOF. (1) follows form (2). For the proof of (2), we proceed
by induction on j. Let yEX;-1, y<8 and a=D(a)\D(y). For each c
in @, let

Ac={yeY|a<y, D(y)NDG)=¢, y(@=c}
AM={yeYl|a<y, DBNDH)=¢}.

Then

yeYla<y, D(y)NDy)=9}
=AoU (CLEJQ Ac), (disjoint union).

Since the left hand side is equal to 177! by induction hypothesis, and |Ac|=
171 for each cEQ, we have the assertion.

LEMMA 2.4. 1= uZi}ﬂ(—l)"(i)q”AHu.

PROOF. We proceed by induction on j. If j=0, there is nothing to
prove. Using the recurrence relation in the previous lemma, and the
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induction hypothesis, we have
A‘::+1:l‘.': q11+1
= é <_1>u( )q“liw— é (—1)”<])q”+1li+v+1
u=0 Uu v=0 v
— 10 J _1\u ] uy . _1\u ] uy
=13+ 2 (D )ahena+ D4 o)
+ (‘ 1>j+lqj+lli+j+1
J+1 _+_1
=2 o g
u=0 U
Lo Nl d—i—u>:<d-—z- )
Lewwa 2.5, 2 (D)6 T T 0)=(4 1) i ivizn
PROOF. In H(d, @), let g=1. Let Y=X,. Then Y in a [¢]-((d D),
k, (Z t)) design, for ¢t=0, 1,..., -, So by and 2.4, the left

hand side becomes A7 for this trivial ¢-design. Hence MZ(CZ;_Z;]).

LEMMA 2.6. Let Y bea [t]-((d, @), k, L) design. If i+j<t, then
e
A'"( p—i )0 My

PROOF. Since /1,-+u=<d_l._u> toim ”/1/( t>,
k—i—u —t

oAl
v
ey

_ d—i— ]) t—1 <d t)
_< k—1 A/ t
In [2], Delsarte defined a concept of regular semilattices and devel-
oped a theory of f-designs in these semilattices. As for [¢]-((d, @), &, )
designs, the underlying semilattice is Lz, which is a union of Xo, ..., X..
By inspection, we can show the following :

(%) If L, is a regular semilattice then either ¢=1 or k=d.
The case g=1 corresponds to the Johnson scheme and the (combinatorial)
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t-designs, while the case k=d corresponds to the Hamming scheme and
the orthogonal arrays. In these cases we have regular semilattices, so we
may fully apply Delsarte’s theory of #-designs. As we do not depend on
his theory, we shall not give the proof of the statement (*) in this paper.

3. Fisher’s inequality

In this section we give two generalizations of the Fisher’s inequality.
One is obtained by the determination of the condition that an incidence
matrix of a {¢}-design is of full rank. This leads to a generalization of
the inequlity of Ray-Chaudhuri and Wilson. On the other hand, for a
[t]-design we obtained a lower bound of the rank of an incidence matrix
to get a Fisher type inequality, which is equivalent with the Rao bound, if
it is an orthogonal array, i.e., a [¢]-((d, q), d, ) design.

LEMMA 3.1. Let YCL be a {t}-((d, @, Ay, ..., A¢) design. If i+j
<t

pd

" T_min{i,j) j_U iu v
Ni<Nj) - 2 U— i+u-vWij,

v=0
where T denotes the transpose of the matrix.
PROOF. Let (a,f)EX:XX; with a A\BEX,. Then
N:{(N¥a, pl={yEY|a<y, BAyEX, B and y are consistent}].

So N:(N®H[a, B] equals 0, if @ and B are not consistent. Suppose a and
B are consistent. Then by counting the number above, we have

N:(NH[a, ﬁ]:<£ :7;) e,

and the relation follows.

THEOREM 3.2 Let YCL be a {2a}-((d, @), A1, ..., A2s) design. If
As¥F0, then

|Y|=rank Ns=<z’>qs.
PROOF.  Since 0<A/=2%"—¢ai:1<21i™! by Lemma 2.3, 1:+0 for i=
0, 1,...,s. By the previous lemma, letting :=7=s, we have

Ns(N(sDT:lgWgs
Ns<N§>T:SA g;{ gs+ lg_l }ss
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u T_u_1 STV S—u v S—-u u
Ns(Ns —2 M;U stuWis+AsT*Wis

s-1 —
Ns<Ng)T: Z (s v)/lgs—v Wgs‘i'lgwgs

9=0\s— v

Hence [ = W s can be written as a linear combination of
Ns(NDT, Ns(NDT, ..., Ns(NDT.

Thus there exists a matrix M in Mat(Y, Xs) such that
I=N;M,

where I denotes | X;| by | Xs| identity matrix. Hence

|Y|>rank Ns=|Xs|=<f)qs.
COROLLARY 3.3 (Nagao [4]). Let Y be a [25]-((d, q), k, 1)-design.
If k+s<d, then

pix(f)e

PROOF. Suppose k+s<d. Let a€Xs. Since As¥+0, there exists
yEY such that a<y. Since yE Xy, there exists SEX;, where y and g8
are disjoint. Hence 15#0. Thus we may apply the previous theorem.
Also see Lemma 2. 6.

REMARK. The proofs of [Theorem 3.2 and 3. 3 are essentially same as
that of Nagao for [#]-design. Since [Theorem 3.2 is stated for {¢}-designs,
it includes a slight generalization of the Ray-Chandhuri and Wilson in-
equality. In order to show that an incidence matrix Ns is of full rank, we
used a condition £+s<d. So Corollary 3.3 says nothing on an orth-
ogonal array, where £=d.

Now we turn to a proof of an inequality for a [¢]-design. The follow-
ing seems to be a well-known technique to reduce the problem of comput-
ing the rank of an incidence matrix Ns to that of W, but it gives us a
starting point for our proof.

LEMMA 3.4. Let LCX be a [t]-((d, q), k, A) design, and A; (i=0,
1,..., 1) be the constants in Lemma 2.2. For 0<i, j<k with i+j<t{,
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min

1,7}
NN)T=" 3 AW =t
4=0 <d—’t> bt
r—t)9
PROOF. Let «a€X: and fEX; with a ABEX,. Then

N:(Np)[a, l=llyEY|a<y, Byl
_ { Ai+i-u if @ and B are consistent
0 otherwise.

Win(Win)?,

min{i,j}
Nz’(M)T: = li+j—uW?j
_ ) ml%f'}<d——i—j+u
(a’—t) as a0 \E—i—j+u
r—t)4

:Amk( WJk) T)

d_t> k-t
(k—t 1

LEMMA 3.5. Let YCXu be a [2s]-((d q), k, 1) design. Then |Y|=
rank (Nas) = rank (Ns) = rank (Ws) .

)qk_i‘j+“W§-‘j

PROOF. Since the columns of an incidence matrix N:s is indexed by
the elements of Y, the rank of the matrix N.s does not exceed |Y|. By
Lemma 2.7,

WS,ZSNZS=<k§S)Ns.

So the row space of N.s is in that of Ns. Since Ns and W, are real
matrices, the row space of N; (resp. W) is equal to that of Ns'Ns (resp.
Ws! Wse). Moreover, since nonzero eigenvalues with multiplicities are the
same both in ATA and AAT for any matrix A, we may apply the previous
lemma to obtain the following.

| Y| = rank (Nes) = rank (Ns) = rank (Ns"Ns) = rank (N:NsT)
= mnk(—z_—;}— W VVskT)

(k—t)qk_t

= rank (We Ws") = rank (W™ Wer) = rank (W) .
LEMMA 3.6. In H(d 1) with 0<s<k<d, the following hold.

¢9) mnk(Wsk)=<i), if s+k<d.
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@) mnkCVVSk):(Z), if s+k>d.

PROOF. See Theorem 11 in [3]

Let A= W with 0<s<k<d and % be an element in X.. X;;i={a<X]|
a'/\JQ)EAXj—i}.
For u, vEX.: let

L={a€ Xjilla=pu},

A% denote the restriction of A to X% X X% and A denote the restriction
of A to Xs;X Xx;. Then it is easy to see that A;=0 if i>; and we may
arrange the rows and the columns of A so that the diagonal blocks are
A, s and the below diagonals are all zero matrices. Hence

rank(A) > % vank(A.:).

Since u, vEXu, uA%EXo, vAREXo, and A=0 if p#+v. So again we
may arrange the rows and the columns of A. so that the diagonal blocks
are A% ’s and the offdiagonals are all zero matrices. Hence

rank (A:i:) = 2 rank(AY).

HCXii

By inspection it is easy to see that A%” is nothing but an incidence matrix
M—i,k—i in H(d—l, 1)

Since s—i+k—i<d—i, if and only if i=s+k—d, implies
the following.

d

s
@) mnk(Aé‘”)Z(Z:2>, if i<s+k—d.

Combined with Cemma 3.5, we proved the following theorem.

THEOREM 3.7. (1) Let 0<s<k<d. Then

B e ¥ TR
(2) Let YCL be a [2s]-((d, @), k, A) design. Then
=S Do 5 (2@

1 i=s+k-d\S— 1

(L mnk(Ai-“’):( :Z), if i=s+k—d.

REMARK. (1) With a little more effort we can show that the equal-
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ity holds in [Theorem 3.7. (1), if either s+£<d or k=d. |
(2) If s+k<d, the first summand yields zero in the right hand side
of the inequality. So

vz (070 )= ()G )=

This gives an alternative proof of Corollary 3. 3.
(3) If k=d, the second summand has only one term. So

v1>5(9)-D"

This gives the Rao’s bound of an orthogonal array of strength 2s, which is
the dual of the Hamming bound in Coding theory when the space is linear
and € is a field of g-elements. Note that Y+ is a (2s+1)-code in that
case.

4. Examples

A) Let x be an element of Xy in H(d, q), ¢>1, and Aq,x,=A a surjective
mapping from a semilattice H (d, q) to H(d, g—1) defined as follows.
For «€L (i.e., an element of H(d, ¢)),
D(Aa)={s€D(a)|a(s)*+x(s)}, and
(Aa)(s)=a(s) if s€eD(Aa).

We employ the bar notation for the images of A. For example, Aa=a,
AL=L and AY=Y if Y is a subset of L. We identify H(d, g—1) or L
as a subset of H(d, q) or L.

DEFINITION 4.1. A subset Y of Lisa {t}-design of type g, if Yisa
{t}-(d g—D), A4, ..., A+) design with 1.=q"¥| Y.

LEMMA 4.1. A subset Y of L is a {t}-design of type q, if and only

if

rila)=lyeY|a<y}l=q7"|Y|
for each element a in X; satisfying a A%< Xo with 1=0, ..., t, where Y =
A_I(Y>0Xd.

PROOF. Let a be an element in X; satisfying a A%EXo. Then Aa=
a@=a. Moreover for an element x in Xi, a<x is equivalent to A(a)<
A(x). Hence {7€Y|a<j7}|l=l{yEY|a<y}| as the restriction of the map-
ping A to Xu is a bijection onto L.

Hence A:(a)=21:=q"'|Y|=¢7/|Y|.
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PROPOSITION 4.2. (1) If a subset Y of L is a {t}-design of type q,
then A™'(Y) N Xa is a [t]-design with A=q7Y|Y|, i. e., an orthogonal array
of strength t.

(2)  Conversely, if a subset Y of Xa is a [t]-design, then AC(Y) is a
{t}-design of type q.

PROOF. (2) Since Y 1is a subset of Xi; Y=A(Y)NX. By
Lemma 2.2, A;=¢*'A and |Y|=4=¢qA. We have 1;=¢ |Y|. Hence the
assertion follows from Lemma 4. 1.

(1) Let Y=A"%(Y)NX.; and a be an element of X; with a A%< X-.
We show by double induction on ¢ and s that

Ll =[{yeY]a<yll=¢7"Y]I.

If s=0, the assertion holds by Lemma 4.1. Now assume that 1 ,(8)=
g ¥ Y| for any element 8 in X, such that SAwE X;, with 0<u<t, or u=t
and 0 < 7<s. Choose ¢ € D so that a(a)=x0(a). Let D,=D\{a)},
Q=Q\{a(@)} and a° be an element of X;_, defined by a°=app,. For each
cEQ, let a° be an element of X, defined by @ %: and « °(¢)=c. Then

{yeY|a’<y} is a disjoint union of {yE Y|a’<y} and Cgo yeYla®<y}.

Since a°(a)*#x%(a), while a(a)=x(a), we have a° A%< Xs_.. Hence we
have

A:(a) :lt—l(CYO)_Cgllt(aOC):q_tHl Y|_ (C]_1>C]_t| Y|:q_t| Y|-

The construction above, especially when ¢=2, may be known to
many, who are interested in ¢-designs with multiple block sizes.

We give two types of examples of [¢]-designs. The first is a trivial

example called a product type. The second is less trivial and we give a
series of [2]-designs which attain the bound in Corollary 3. 3.
B) Let Yi be a [¢]-((d, 1), & A design, i.e., a combinatorial ¢-design,
and {Y.}eer, be a collection of [t]-((k @), k, A2) designs, i.e., orthogonal
arrays of strength #. Let {D.}eev, be a collection of the domain sets of
Y.'s of size k. Since each €Y is a k-element subset, we fix a bijection
fo from @ to Co. Let Y={(B, a)|la€EY:, f=Y.). Let D((B, a))=a, and
for a€a, (B, a)(@=(2(a)). Then Y yields a subset of a semilattice
H(d, ¢). Now it is easy to see that Y is a [¢]-((d, ¢), & A112) design.
We call this [#]-design, a product type.

By a little computation it is not hard to see that any [2s]-design of
product type with s=>1 and 2+ d does not attain the bound given in Theo-
rem 3.7.
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C) Let % be an element of Xy and Y be a [¢]-((d, ¢), d 1) design satis-
fying the following.

(%) There is a constant 2 such that a A%E Xs—» for every « in
Y\ {x}.
Assume ¢>1, then we have 2=¢{ Now it follows from [Proposition 4.2
that ACY \{x}) is a [¢]-((d, g—1), k, 1) design.

LEMMA 4.3. Let C be a [d m, t+1] linear code over a field with
q-elements, where d is the dimension of the underlying vector space, m is
the dimension of C and t+1 is the minimum weight of C. If every non-
zero vector of C* has a constant weight k, then C* is a [t]-((d, @), d, 1)
design satisfying the condition (%). Here A=q* ™ ‘. In partiqular,
ACCH\0)) is a [t]-((d, q—1), k 1) design.

PROOF. Let H be a generator matrix of C*. Since the minimum
weight of C is t+1, any choice of ¢-columns of H are linearly indepen-
dent. Hence C* is a [t]-((d ¢), d 1) design and the rest of the asser-
tions are straight forward.

Let C be a [¢g+1, ¢g—1] Hamming code over a field GF(q) with g¢-
elements. Then C is a [g+1, ¢g—1, 3] code and a generator matrix of C+,
or equivalently a parity check matrix of C has columns which are pair-

. . . 1
wise linearly independent. For example the first ¢ columns are <a>’

a=GF(g), and the last column is <(1)> Then it is easy to check that

every nonzero vector of C* has weight g. Thus by Lemma 4.3, A(C*\
{0}) is a [2]-((g+1,g—1),q,1) design. Hence this design attains the
bound in [Theorem 3.2 or equivalently, the bound in Corollary 3.3. The
following is the smallest example, [2]-((4, 2), 3,1) design by this construc-
tion.

n=0, 11, %), »=(0,2,2, %)

»=00,2, %, D, m=(@2,1, *,2)

w=(~1, %,2,2), %=, %,1,1)

w=C%1,2,1), w=0%,21,2)
Here ©Q={1, 2}, and * denotes the point where the value is not defined.
D) The following is an example of [2]-((7,2), 4,1) design which does not
come from the construction given in C. This design also attains the
bound.

y1:<2,1,1, *)1’ *y *>; %:(172,2’ *y2’ *y *>)
y3:<*327 1a 17 *yla *>; y4:(*)1y2)2y *,2, *>7
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wp=C*%, %,2 11 %,1), %=C%,% 122 % 2)
w=>1, %, %,2, 1,1, %), =0, %, %,1,2 2 %),
w=C% 1, %, %,2 1, 1), yo=0%,2, %, % 12 2),
==, *,1, %, %,2, 1), =02, %,2, %, %,1,2),
ys=(, 1, %, 1, %, %,2), me=0(2,2, *,2, %, % 1).
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