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On the behavior of solutions of elliptic and parabolic
equations at a crack*

Ali AZZAM
(Received July 7, 1989)

In [2], [4] we studied the initial-Dirichlet problem for parabolic equa-
tions in n-dimensional domains with non-smooth boundaries and inves-
tigated the behavior of the solutions near the edges of the boundary. In
these papers, the “ angles ” \omega(P) at the edges were always considered to
be less than 2k. The case of cracks (or slits), which corresponds to the
value \omega=2\pi , is of great practical importance, cf [6], [8] and the refer-
ences mentioned there.

In this paper, we consider domains with cracks, which correspond to
angles of value 2\pi on the boundary. We investigate the behavior at the
tips of these cracks, of solutions of the Dirichlet problem for elliptic equa-
tions, as well as the initial-Dirichlet problem for parabolic equations.
The plan in this paper will be as follows. We first consider the Dirichlet
problem for an elliptic equation in a domain G with cracks on the bound-
ary. The full details of the proofs will be given. We then state the result
for the initial-Dirichlet problem for a parabolic equation in GX[0, T] ,
and to establish the result in this case, we only indicate the necessary
modifications on the proofs given in the elliptic case.

We describe first the domain G\subset R^{n} n\geq 2 in which we consider the
problem. The boundary \partial G of G consists of a finite number of (n-1)-
dimensional surfaces \Gamma_{i} : i=1,2 , \ldots k of class C^{2+a} . The surface \Gamma_{i} may
intersect only with \Gamma_{i-1} and \Gamma_{i+1} across (n-2) -dimensional manifolds S_{i-1}

and S_{i} . The surface \Gamma_{i} may also be isolated; does not intersect with any
of the other surfaces. Let P\in S_{i} ; S_{i}=\Gamma_{i}\cap\Gamma_{i+1} and let the angle at P
between \Gamma_{i} and \Gamma_{i+1} be \gamma(P) , where 0<\gamma(P)<2\pi . In [2], [4] we studied
the smoothness properties of solutions of the initial-Dirichlet problem for
parabolic equations near the boundary point P. The case when \gamma(P)=2\pi

was not studied there. In this paper we confine ourselves with this case.

THEOREM 1. Let G\subset R^{n} . n\geq 2 , and let \Gamma\subset\partial G be an (n-1)-
dimensional surface with edge S. Let \partial G\backslash \Gamma , \Gamma and S be of class C^{2+a} .
In G we consider the Dirichlet problem
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(1) Lu\equiv a_{ij}(x)u_{x_{i}x_{j}}+a_{i}(x)u_{x_{i}}+a(x)u=f(x) , in G
(2) u=0 on \partial G

where x= (x_{1;}\ldots x_{n}) and we use the summation convention. We assume
that (1) is uniformly elliptic in G. If a_{ij} , a_{i} , a and f belong to C^{a}(\overline{G}) ,

0<\alpha<1 , then u\in C^{\frac{1}{2}-\epsilon}(\overline{G}) , where \epsilon>0 is arbitrarily small.
We first simplify the problem through the following remarks.

REMARK 1. Under the assumptions of the theorem, it follows that u
\in C^{2+a}(G_{1}), , where G_{1} is any compact subregion of \overline{G} with positive dis-
tance from the edge S, [1]. Thus it is sufficient to prove that u\in

C^{\frac{1}{2}-\epsilon}(B(P, \rho)) , where P is any point on S and B(P, \rho)\subset G is a ball with
center at P and radius \rho , \rho>0 .

REMARK 2. We can assume that the surface \Gamma coincides with the
hyperplane x_{k}=0 , k=3, \ldots . n and that the crack around P has the equa-
tion x_{2}=0 . This can be always accomplished using invertible C^{2+a} maps.

REMARK 3. We can assume that P is located at the origin x=0.
We can also assume that a_{ij}(0)=\delta_{ij} , the Kronecker delta, i, j=1,2 . This
can be reached by using the following nonsingular transformation

y_{1}= \frac{1}{\Lambda\sqrt{a_{22}(0)}}[a_{22}(0)x_{1}-a_{12}(0)x_{2}]

y_{2}= \frac{1}{\sqrt{a_{22}(0)}}\

y_{k}=x_{k} , k>2

where

\Lambda=[a_{11}(0)a_{22}(0)-a_{12}^{2}(0)]^{\frac{1}{2}}

REMARK 4. In our proof we assume that the solution u vanishes
outside a small sphere with center at O and of radius 3r_{0} say. This situa-
tion may be reached by introducing first the cut-0ff function
\xi(|x|)\epsilon C^{3}(R^{n}) , that satisfies

\xi(|x|)=\{
1 0\leq|x|\leq 2r_{0}

0 |x|\geq 3r_{0}

and then considering the function v(x)=\xi(|x|)u(x) , which will satisfy an
equation of the form(l) with v(x)\equiv 0 for r\geq 3r_{0} .

To prove the theorem, we first need an estimate for the solution.
This is accomplished by constructing a barrier function.
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LEMMA. There exists \rho>0 such that in B(O, \rho) we have

(3) |u(x)|\leq Mr^{\frac{1}{2}-\epsilon} .

where r^{2}=x_{1}^{2}+x_{2}^{2} , \epsilon>0 is arbitrarily small, and M>0 is a constant in-
depcndent of r.

PROOF. We first fix \epsilon , 0< \epsilon<\frac{1}{2} and we consider positive numbers \beta ,

\lambda and l1 that satisfy

\beta<\frac{2\epsilon\pi}{1-2\epsilon} , \lambda=\frac{\pi}{2\pi+2\beta} , 1/< \lambda<\frac{1}{2} , l\nearrow=\frac{1}{2}-\epsilon

then we define the function v(x) as follows

v(x)=-Mr^{\nu} cos \lambda(\theta-\pi) , M>0

where \theta is given by x_{1}=r cos \theta and x_{2}=r sin \theta . We write

Lu\equiv\Delta u+[a_{ij}(x)-\delta_{ij}]u_{x_{i}x_{j}}+a_{i}u_{x_{i}}+au .

Now Lv is given by

Lv=M(\lambda^{2}-\nu^{2})r^{\nu-2} cos \lambda(\theta-\pi)+o(r^{1/-2}) .

Noting that 1/-2<0 , and that for any \theta\in[0,2\pi] we have cos \lambda(\theta-\pi)

\geq\cos\lambda\pi>0 , we can make Lv\geq|f(x)| in B(O, \rho) by taking \rho>0

sufficiently small. Thus in B(O, \rho)\backslash \Gamma we have

L(u-v)\leq 0 .

Since u\equiv 0 on the boundary of B(O, \rho)\backslash \Gamma , we have u-v\geq 0 there.
Taking \rho sufficiently small to apply the Maximum Principle, we finally
reach u-v\geq 0 in B(O, \rho)i . e. ,

u\geq-Mr^{\nu} cos \lambda(\theta-\pi)\geq-Mr^{\nu}

Similarly we can prove the other part of inequality(3). The lemma is
proved.

We now prove Theorem 1, taking into consideration Remarks 1-4.

PROOF OF THEOREM 1. Consider any two points P and Q in \overline{B}(O, \rho)

with distances r_{1} and r_{2} from the crack line x_{k}=0 , k\geq 2 , where 0\leq r_{2}\leq r_{1}\leq

\rho . If r_{2} \leq\frac{1}{2}r_{1} then d(P, Q) \geq\frac{1}{2}r_{1} and from the previous lemma, it fol-

lows that
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|u(P)-u(Q)|\leq Mr^{\frac{1}{21}-\epsilon}+Mr^{\frac{1}{22}}\epsilon\leq

\leq 2Mr^{\frac{1}{21}}\epsilon\leq M_{0}[d(P, Q)]^{\frac{1}{2}-\epsilon} .

where M_{0} depends on M and \epsilon .

If r_{2}> \frac{1}{2}r_{1} , we consider the domain

D_{P}= \{x\in B(O, \rho),\frac{1}{2}r_{1}\leq r\leq r_{1} , |x_{i}-x_{i}^{0}|\leq_{\frac{1}{2}\gamma_{1}}, i--3, \ldots n\} ,

where (x_{1}^{0} , ... . x_{n}^{0}) are the coordinates of P. The transformation

(4. a) x_{i}-- \frac{2r_{1}}{\rho}x_{i\prime}’i=1,2

(4. b) x_{i}-x_{i}^{0}= \frac{2r_{1}}{\rho}(x_{i}’-x_{i}^{0}) , i>2 ,

transforms D_{P} into

D_{P}’= \{\frac{\rho}{4}\leq r’\leq\frac{\rho}{2}, |x_{i}’-x_{2}^{0}.|\leq\frac{\rho}{4}, i>2\} . r^{\prime 2}=x_{1^{2}}’+x_{2}^{\prime 2} In D_{P}’ the function

v(x’)=u(x) satisfies the elliptic equation

c_{ij}(x’)v_{x_{i}x_{j}}+ \frac{2r_{1}}{\rho}c_{i}(x’)v_{x_{i}}+(\frac{2r_{1}}{\rho})^{2}c(x’)v=(\frac{2r_{1}}{\rho})^{2}h(x’) , where c_{ij} , c_{i} , c and h

are the coefficients of (1) after the transformation (4). Consider

D_{P}’= \{\frac{\rho}{8}\leq r’\leq\rho, |x_{i}’-x_{i}^{0}|\leq\frac{\rho}{4}, i>2\} .

In D_{P}’ and D_{P}^{rr} we apply the Shauder estimate [1], to get

||v||_{2+a}^{D_{P}’} \leq C_{0}[||v||_{0}^{D_{P}^{J}}+(\frac{2r_{1}}{\rho})^{2}||h||_{a}^{D_{\acute{\acute{P}}}}] ,

We note that C_{0} is independent of r_{1} , since it depends on the maxi-
mum norms of the coefficients of the equation and in our problem r_{1}/\rho<1 .
The constant C_{0} also depends on \alpha and the ellipticity of the equation

(inf c_{ij}(x’)\xi_{i}\xi_{j}). Since r= \frac{2r_{1}}{\rho}r’ thus from the previous lemma, it fol-

lows that, in D_{P}’ ,

||v||_{0}^{D_{P}}\leq M_{0}r^{\frac{1}{21}\epsilon}

Thus
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(5) ||v||_{2+a}^{D_{P}}\leq C_{1}r^{\frac{1}{21}-\epsilon} .

where C_{1} depends on C_{0} and M_{0} .
Let H_{\gamma}^{\Omega}(W) be the H\"older coefficient of exponent \gamma of the function W

in the domain \Omega , then since

(6) H_{\frac{1}{2}-\epsilon}^{D_{P}}(v)\leq k||v||_{2+a}^{D_{P}} ,

it follows from (4), (5) and (6) that

H_{\frac{1}{2}-\epsilon}^{D_{P}}(u)\leq h ,

where k_{0} depends on k and C_{1} This completes the proof of the theorem.
We now turn to the parabolic case. Let G, \partial G, \Gamma and S be as given

in Theorem 1. In \Omega=GXJ, J=[0, T] we consider the initial-Dirichlet
problem

(7) Lu\equiv a_{ij}(x)u_{x_{i}x_{j}}+a_{i}(x, t)u_{x_{i}}+a(x, t)u-u_{t}=f(x, t)

where the solution u(x, t) satisfies the initial condition

(8. a) u(x, 0)=0, x\in\overline{G},

and the Dirichlet boundary condition

(8. b) u(x, t)|_{\partial GX\int}=0 ,

THEOREM 2. Let u(x, t) be a solution of the parabolic equation (7)

in \Omega, that satisfies the initial-Dirichlet conditions (8). If a_{ij} , a_{i} , a and f
\in C^{a}(\overline{\Omega}) , then

(9) u\in C^{\frac{1}{2}-\epsilon}(\overline{\Omega}) ,

where \epsilon>0 is arbitrarily small.
We note that, in [4], we studied the smoothness of solutions of (7)

-(8) in domains with edges of l‘ angles ” \omega(P) that are less than 2k.
The result there was u\in C^{\frac{\pi}{\omega}-\epsilon} The result (8) in the given crack case coin-
cides with that result for \omega=2\pi .

As mentioned in the introduction, we conclude by indicating here the
modifications needed on the proof given for the elliptic case.

REMARK 1’ The case of a smooth boundary was studied in great
details, cf [7]. So it remains to prove our claim in B(P, \rho)XJ ; cf
Remark 1.
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REMARK 2’ Remarks 2-4 are still valid here.

REMARK 3’. A bound of the form (3) for the solution v(x, t) in B(P,
\rho)X\overline{J} may be found using the same barrier function, as in the lemma.

REMARK 4’. The proof of Theorem 2 goes along the same lines as
that of Theorem 1, but here we use the Shauder-type estimates for solu-
tions of parabolic equations as given in [7].
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