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Abstract

The present paper deals with bounded seminormal composition opera-
tors on L^{2} spaces induced by invertible linear transformations of the d-
dimensional Euclidean space R^{d} . A class of density functions on R^{d} for
which seminormal composition operators can be completely characterized
in terms of their symbols is distinguished. The spectrum and some related
topics are discussed for particular case of Gaussian density function.

1. Introduction

Operators of the form C_{A}f=f\circ A acting on certain function spaces are
called composition operators (cf. [4], [12]). The present paper deals
with a special class of composition operators induced by linear transfor-
mations of R^{d} . acting on the function space L^{2}(R^{d}, r(x)dx) , where r is a
positive density function on R^{d} . The most satisfactory description of
seminormal composition operators of this form appears when the density
function r is given by r(\cdot)=\phi(||\cdot||^{2}) , where ||\cdot|| is a Hilbert norm on R^{d}

and \phi is a continuous function operating on positive definite matrices
(i. e.) if (a i,j ) is a positive definite real nxn matrix, then the matrix
(\phi(a_{i,j})) is also positive definite). By the Schoenberg theorem [15] (see

also [1] and [14] ) such a function \phi must have a power series represen-
tation with all non-negative Taylor’s coefficients at 0. It turns out that
subnormality of C_{A} does not depend on the function \phi , though it depends
on the transformation A . Namely C_{A} is subnormal if and only if A is
normal in (R^{d}||\cdot||) . This fact enables us to describe the spectrum of C_{A}

in particular case when \phi=\exp and ||\cdot|| is the usual norm on C^{d} . Section
5 deals with another class of composition operators induced by restrictions
of linear transformations of R^{d} . In this case some new phenomena
appears.

Recall that an operator C is said to be: hyponormal if C^{*}C-CC^{*}\geq 0 ,

subnormal if it is a restriction of a normal operator, quasinormal if C

commutes with C^{*}C. C is called cohyponormal (resp. cosubnormal, c0-
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quasinormal, coisometry) if C^{*} is hyponormal (resp. subnormal, quasinor-
mal, isometry). Seminormal operators are those which are either
hyponormal or cohyponormal.

2. Seminormal composition operators on L^{2}(R^{d},\mathscr{B}(R^{d}), rd\omega_{d})

In all what follows R^{d} . d\geq 1 , stands for real d-dimensional Euclidean
space with norm |\cdot| given by |x|^{2}=\Sigma_{k=1}^{d}|x_{k}|^{2} . x=(x_{1},\ldots,x_{d})\in R^{d} . The same
symbol |\cdot| will also denote norm of complex d-dimensional Euclidean
space C^{d} as well as moduli in R and C . The set of all non-negative
integers will be denoted by N. The symbol \omega_{d} stands for the d-dimen-
sional Lebesgue measure on \mathscr{B}(R^{d}) , the \sigma-algebra of Borel subsets of R^{d} .

Let r be a Borel function on R^{d} such that r(x)\in(0^{ },\infty) for almost
every x\in R^{d} . Define the Borel measure \mu_{r} on R^{d} by d\mu_{r}=rd\omega_{d} . Then \omega_{d}

and \mu_{r} are mutually absolutely continuous \sigma-finite measures. Suppose we
are given an invertible linear transformation A of R^{d} . Then the measure
\mu_{r}A^{-n} defifined by \mu_{r}A^{-n}(\sigma)=\mu_{r}(A^{-n}(\sigma)) is absolutely continuous with
respect to \mu_{r} for every n\geq 0 and the Radon-Nikodym derivative x_{n}=

d\mu_{r}A^{-n}/d\mu_{r} is given by

(2. 1) x_{n}=|\det A|^{-n}\cdot r\circ A^{-n}/r, n\in N,

where \det A stands for the determinant of a matrix associated with A .
This implies that the operator C_{A} given by the formula C_{A}f=f\circ A is well
defined in L^{2}(r)=L^{2}(R^{d}. \mathscr{B}(R^{d}), \mu_{r}) . Call it a composition operator in-
duced by a symbol A . To indicate that the operator C_{A} acts in L^{2}(r) , we
will write C_{A,r} instead of C_{A} . One can prove that within the class of
bounded operators distinct symbols induce distinct composition operators
i . e . A=B if and only if C_{A,r}=C_{B,r} . Since C_{A},{}_{r}C_{B,r}=CA,r and C_{I,r} is the
identity operator on L^{2}(r) , the mapping sending A into C_{A,r} is a semi-
group monomorphism between suitable multiplicative semigroups.

It follows from Theorem 1 in [12] (see also [4]) that C_{A,r} is bounded
if and only if r/r\circ A belongs to L^{\infty}(\omega_{d}) and in this case
(BC) ||C_{A,r}||=|\det A|^{-1/2}||r/r\circ A||_{\infty}^{1/2} .

where ||\cdot||_{\infty} indicates the essential supremum norm in L^{\infty}(\omega_{d}) . If C_{A,r} is
bounded, then C_{A,r}^{*} acts according to the following formula

(AD) C_{A,r}^{*}f=|\det A|^{-1}\cdot f\circ A^{-1}\cdot r\circ A^{-1}/r, f\in L^{2}(r) .

It is obvious that the map U_{r} : L^{2}(r) - L^{2}(1/r) defined by U_{r}f=fr,
f\in L^{2}(r) , is unitary and it satisfies the following equality
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(UE) U_{r}|\det A|C_{A,r}^{*}=C_{A^{-1},1/r}U_{r} .

The condition (UE) justifies why some results of the paper are formulated
for the operators C_{A,r} and C_{A,1/r}, though they are proved only for C_{A,r} .

Denote by \mathscr{H} the family of all entire functions \phi of the form

(2. 2) \phi(z)=\sum_{k=0}^{\infty}a_{k}z^{k} . z\in C,

such that a_{n}\geq 0 for every n\in N and a_{ko}>0 for some h\geq 1 . Thus \phi\cdot\psi ,
\phi\circ\psi , \alpha\phi+\beta\psi\in \mathscr{H}, provided \phi,\psi\in \mathscr{H}, a,\beta\geq 0 and \alpha+\beta>0 . Moreover if
\phi\in \mathscr{H}, then

(2. 3) \phi(s)<\phi(t) , 0\leq s<t

and

(2. 4) |\phi(zw)|^{2}\leq\phi(|z|^{2})\phi(|w|^{2}) , z, w\in C.

The latter follows from the Cauchy-Schwarz inequality for a weighted l^{2}

space with weights a_{n}, n\in N.
In the sequel we need more information about behaviour of members

of \mathscr{H} at \infty . Given \phi\in \mathscr{H}, we define the function q_{\phi} : (0, \infty)arrow(0^{ },\infty] by
q_{\phi}( \theta)=\sup_{t>0}Q_{\theta}(t) for \theta>0 , where Q_{\theta}(t)=\phi(\theta t)/\phi(t) for t>0 . The fol-
lowing lemma gives an explicit formula for the function q_{\phi} .

LEMMA 2.1. Let \phi\in \mathscr{H} If 0 is a zero of \phi of multiplicity m\in N

and \infty is a pole of \phi of order n\in N\cup\{\infty\} , then^{1}

(2. 5) q_{\phi}( \theta)=\theta^{m}\max\{1, \theta^{n-m}\} , \theta>0 ,

where \theta^{\infty}=\infty for \theta>1,1^{\infty}=1 and \theta^{\infty}=0 for \theta\in(0,1) .

PROOF. Let \{a_{k}\}_{k=0}^{\infty} represent \phi via (2. 2) with a_{ko}>0 for some h\geq 1 .
We split the proof into two steps.

Step 1. If \theta>1 and q_{\phi}(\theta)<\infty , then \phi is a polynomial i. e . n\in N.
Indeed the assumption q_{\phi}(\theta)<\infty implies that there exists M>1 such

that

(2. 6) \sum_{k=0}^{\infty}a_{k}(M-\theta^{k})t^{k}\geq 0 , t>0 .

Since \theta>1 , there exists j\in N such that M-\theta^{k}\geq 0 for k=0,1 , \ldots , j and
\theta^{k}-M>0 for k>j . It follows from (2. 6) that

\psi(t)\leq p(t) , t>0

\overline{1By}definition \phi hasa pole of order \infty at \infty if \phi is not a polynomial.



310 J. Stochel

where \psi(z)=\sum_{k=j+1}^{\infty}a_{k}(\theta^{k}-M)z^{k} and p(z)= \sum_{k=0}^{j}a_{k}(M-\theta^{k})z^{k} z\in C . Thus
\psi must be a polynomial of degree not exceeding j . Consequently the
degree of \phi is less or equal to j .

Step 2. If m=0 and \theta>1 , then the function Q_{\theta} is strictly increasing.
To see this take s and t such that 0<s<t . Then the following equal-

ity holds

(2. 7) \phi(s)\phi(\theta t)-\phi(\theta s)\phi(t)=\sum_{0\leq k</}a_{k}a_{l}(\theta^{l}-\theta^{k})t^{k+1}((s/t)^{k}-(s/t)^{l}) .

Since a_{0}>0 , a_{k_{0}}>0 , s/t<1 and \theta>1 , Step 2 is a consequence of (2. 7).

Suppose that m=0 and n=\infty . Then, in virtue of Step 1, the equality
(2. 5) holds for \theta>1 . If 0<\theta\leq 1 , then (2. 3) implies that Q_{\theta}(t)\leq Q_{1}(t)\leq 1

for t>0 . Since \lim_{tarrow 0+}Q_{\theta}(t)=1 , (2. 5) holds for 0<\theta\leq 1 .
Assume that m=0 and n<\infty . If \theta>1 , then Q_{\theta} is strictly increasing,

because of Step 2. Since \lim_{tarrow 0+}Q_{\theta}(t)=1 and \lim_{tarrow\infty}Q_{\theta}(t)=\theta^{n} . (2. 5)

holds for \theta>1 . Similarly as in the previous paragraph we show that
(2. 5) holds for 0<\theta\leq 1 .

If m>0 , then there exists an entire function \psi\in \mathscr{H}\cup C such that
\phi(z)=z^{m}\psi(z) for z\in C , \psi(0)>0 and \psi has a pole of order n-m at \infty .
Since q_{\phi}(\theta)=\theta^{m}q_{\psi}(\theta) for \theta\in(0^{ },\infty) , the case m>0 can be easily reduced
to m=0 . \blacksquare

Let ||\cdot|| be a Hilbert norm on R^{d} Denote by ||A|| the norm of the
operator A in (R^{d}, ||\cdot||) . It is well known that each Hilbert norm ||\cdot|| on
R^{d} has the form ||x||=|Vx| , x\in R^{d} . where V is some positive invertible
operator in (R^{d}, |\cdot|) . Thus the adjoint of A in (R^{d}||\cdot||) is equal to
V^{-2}A^{*}V^{2} and consequently A is normal in (R^{d}. ||\cdot||) if and only if
VA V^{-1} is normal in (R^{d}. |\cdot|) .

The following theorem gives necessary and sufficient conditions for
C_{A,\gamma} to be bounded on L^{2}(r) for r(\cdot)=\phi(||\cdot||^{2}) and \phi\in \mathscr{H}-

PROPOSITION 2. 2. Let r (\cdot)=\phi(||\cdot||^{2}) with \phi\in \mathscr{H}- If \phi is a poly-
nomial, then C_{A,r} and C_{A,1/r} are bounded. If \phi is not a polynomial, then
C_{A,r} (resp. C_{A,1/\gamma} ) is bounded if and only if ||A^{-1}||\leq 1 (resp. ||A||\leq 1 ). In
both cases we have

||C_{A,r}||--|\det A|^{-1/2}q_{\phi}(||A^{-1}||) (resp. ||C_{A,1/r}||=|\det A|^{-1/2}q_{\phi}(||A||) ),

where m\in N is the multiplicity of a zero which \phi has at 0 and n\in N\cup\{\infty\}

is the order of a pole which \phi has at \infty .

PROOF. It follows from Lemma 2. 1 that
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\sup_{x\neq 0}r(x)/r(Ax)=\sup_{x\neq 0}\sup_{t>0}\phi(t||A^{-1}x||^{2})/\phi(t||x||^{2})

(2. 8) = \sup_{x\neq 0}\sup_{t>0}\phi(t||A^{-1}x||^{2}/||x||^{2})/\phi(t)=

= \sup_{x\neq 0}(||A^{-1}x||/||x||)^{2m}\max\{1,(||A^{-1}x||/||x||)^{2(n-m)}\} .

In virtue of (BC), this part of conclusion which concerns C_{A,r} follows
from equalities (2. 8). The other one concerning C_{A,1/r} is a consequence of
(UE). \blacksquare

Our next goal is to characterize seminormal composition operators
C_{A,\gamma} in terms of their symbols. We will make use of results from papers
[19] , [6] and [9] in which this question has been settled in more goneral
context. Assume that C_{A,r} is bounded. Using Corollary 1 from [9] and
Theorem 3 from [6] we get

C_{A,r} (resp. C_{A,r}^{*} ) is hyponormal if and only if(HY)
r^{2}\leq r\circ A^{-1}\cdot r\circ Aa.e . [\omega_{d}] (resp. r^{2}\geq r\circ A^{-1}\cdot r\circ Aa.e . [\omega_{d}] ).

Consequently (see also [19], Lemma 2)

(NO) C_{A,r} is normal if and only if r^{2}=r\circ A^{-1}\cdot r\circ Aa.e . [\omega_{d}] .

Finally

(UN) C_{A,\gamma} is unitary if and only if |\det A|=r\circ A^{-1}/ra.e . [\omega_{d}] .

Notice that within the class of composition operators of the form C_{A,r} ,

coquasinormal and quasinormal operators coincide with normal ones (see

[6], Corollary 5 and [19], Lemmas 2 and 3). Similarly coisometries and
isometries coincide with unitary operators (use (UE) and Lemma 1 in
[19] ) . It follows from what is in [3] that if C_{A,r} is hyponormal, then all
its powers are hyponormal too. On the other hand if the measure \mu_{r} is
finite, then C_{A,\gamma} is hyponormal if and only if C_{A,\gamma} is unitary (cf. [6],
Lemma 7). So only if \mu_{r} is not finite there is a chance of finding hyponor-
mal but not subonormal operators of the form C_{A,r} . At the end of Section
2 we present examples of this sort. Another example of this kind has
been found by Campbell and Dibrell [3].

Below we show that cohyponormal operators of the form C_{A,r} , where
r(\cdot)=\phi(||\cdot||^{2}) and \phi\in \mathscr{H}. must be normal. Notice that the measure \mu_{1/\gamma}

may be infinite (e.g. when \phi is a polynomial of degree not exceeding d/2),

so Proposition 2. 3 does not follow from Lemma 7 in [6].

PROPOSITION 2. 3. Let ||\cdot|| be a Hilbert norm on R^{d} and let \phi\in \mathscr{H} .
If r (\cdot)=\phi(||\cdot||^{2}) and C_{A,\gamma} is bounded, then
(i) C_{A,\Gamma}^{*} is hyponormal if and only if either \phi is a monomial and tA is
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unitary in (R^{d}. ||\cdot||) for some t>0 or \phi is not a monomial and A is
unitary in (R^{d}||\cdot||) .

(ii) C_{A,\gamma} is unitary if and only if A is unitary in (R^{d}-||\cdot||) .
If r (\cdot)=1/\phi(||\cdot||^{2}) and C_{A,r} is bounded, then (i) and (ii) hold replacing

C_{A,r} by C_{A,\Gamma}^{*} .

PROOF. Concentrate on the case r(\cdot)=\phi(||\cdot||^{2}) . We split the proof
into a few steps.

Step 1. If C_{A,\gamma}^{*} is hyponormal, then both A and C_{A,\gamma} are normal.
Indeed, the condition (HY) implies that
(2. 9) \phi(||x||^{2})^{2}\geq\phi(||A^{-1}x||^{2})\phi(||Ax||^{2}) , x\in R^{d}

On the other hand (2. 3) and (2. 4) lead to the following inequalities
\phi(||x||^{2})^{2}=\phi((A^{-1}x, A^{*}x))^{2}\leq\phi(||A^{-1}x||||A^{*}x||)^{2}

(2. 10)
\leq\phi(||A^{-1}x||^{2})\phi(||A^{*}x||^{2}) , x\in R^{d}-

Thus both (2. 9) and (2. 10) give us
\phi(||Ax||^{2})\leq\phi(||A^{*}x||^{2}) , x\in R^{d} .

Since \phi has the property (2. 3), we have ||Ax||^{2}\leq||A^{*}x||^{2} for every x\in R^{d}\wedge

Thus A^{*} is hyponormal in (R^{d}||\cdot||) . Consequently A is normal in (R^{d} .
||\cdot||) (cf. [5], p. 105). Since ||Ax||=||A^{*}x|| for every x\in R^{d} , the inequalities
(2. 9) and (2. 10) turn to equalities. Thus
(2. 11) \phi(||x||^{2})^{2}=\phi(||A^{-1}x||^{2})\phi(||Ax||^{2}) , x\in R^{d} .

This and (NO) imply that C_{A,r} is normal.
Step 2. If C_{A,r} is normal, then we have

(2. 12) \frac{d^{n}}{dz^{n}}\phi(z||x||^{2})^{2}|_{z=0}=\frac{d^{n}}{dz^{n}}(\phi(z||A^{-1}x||^{2})\phi(z||Ax||^{2}))|_{z=0} , x\in R^{d} . n\in N.

This follows from (NO) and the identity principle for holomorphic func-
tions.

Step 3. If C_{A,r} is normal and \phi(z)=\Sigma_{k=j}^{\infty}a_{k}z^{k} with a_{j}>0 for some
j\geq 1 , then tA is unitary in (R^{d}-||\cdot||) for some t>0 .

Indeed, it follows from Step 2 that (2. 12) holds for n=2j. Thus
(2. 13) ||x||^{2}=||A^{-1}x||||Ax|| , x\in R^{d} .

On the other hand

(2. 14) ||x||^{2}=(A^{-1}x, A^{*}x)\leq||A^{-1}x||||A^{*}x|| , x\in R^{d} .
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Since – by Step 1 –A is normal in (R^{d}. ||\cdot||) , one can deduce from
(2. 13) and (2. 14) that the Cauchy-Schwarz inequality (2. 14) turns to
equality. This is possible if and only if for every x\neq 0 there exsits z_{x}\in C

such that A^{*}x=z_{x}A^{-1}x , or equivalently if

(2. 15) AA^{*}x=z_{x}x, x\neq 0 .

This means that z_{x} is a nonzero eigenvalue of the positive operator AA^{*} .
Since eigenspaces corresponding to distinct eigenvalues of AA^{*} are pair-
wise orthogonal, the equality (2. 15) may hold if and only if x arrow Zx is
constant, say z_{x}=t^{-2} for some t>0 . Combining this fact with (2. 15) we
get tA is a coisometry on (R^{d}, ||\cdot||) . Thus tA is unitary.

Step 4. If C_{A,r} is normal and \phi(z)=a_{j}z^{j}+\Sigma_{k=m}^{\infty}a_{k}z^{k} with a_{j}, a_{m}>0 for
some m>j\geq 1 , then A is unitary in (R^{d}, ||\cdot||) .

Indeed, it follows from Step 2 that (2. 12) holds for n=j+m. Thus
(2. 16) 2||x||^{2(j+m)}=||A^{-1}x||^{2j}||Ax||^{2m}+||A^{-1}x||^{2m}||Ax||^{2j}, x\in R^{d} .
On the other hand Step 3 implies that for some t>0 the operator t^{-1}A is
unitary in (R_{7}^{d}||\cdot||) . Thus (2. 16) turns to the equality (t^{2(m-j)}-1)^{2}=0 ,
which holds only if t=1 . Consequently A is unitary.

Step 5. If C_{A,r} is normal and \phi(z)=a_{)}+\Sigma_{k=j}^{\infty}a_{k}z^{k} with a_{0} , a_{j}>0 for
some j\geq 1 , then A is unitary in (R^{d}. ||\cdot||) .

Indeed, it follows from Step 2 that (2. 12) holds for n=j. Thus
(2. 17) 2||x||^{2j}=||A^{-1}x||^{2j}+||Ax||^{2j}, x\in R^{d} .

In virtue of Step 1, A is normal in (R^{d}. ||\cdot||) . Thus
(2. 18) ||x||^{2j}=(A^{-1}x, A^{*}x)^{j}\leq||A^{-1}x||^{j}||A^{*}x||^{j}=||A^{-1}x||^{j}||Ax||^{j} . x\in R^{d} .

Combining the inequalities (2. 17) and (2. 18) we get (||A^{-1}x||^{j}-||Ax||^{j})^{2}\leq 0

for x\in R^{d}- Therefore ||A^{-1}x||=||Ax|| for x\in R^{d}- This and (2. 17) implies
that A is unitary.

Step 6. If C_{A,r} is unitary and \phi(z)=a_{j}z^{j} with a_{j}>0 for some j\geq 1 ,
then A is unitary in (R^{d}, ||\cdot||) .

Indeed, it follows from (UN) that the operator C_{A,r} is unitary if and
only if ||A^{-1}x||^{2}=\epsilon||x||^{2} for x\in R^{d} . where \epsilon=|\det A|^{1/j} . The latter means
that U=(\epsilon^{1/2}A)^{-1} is a unitary operator in (R^{d}, ||\cdot||) . Since |\det U|=1 , we
get \epsilon^{j}=|\det A|=\epsilon^{-1/2} . Therefore \epsilon=1 and A is unitary.

The condition (i) follows from Steps 1, 3, 4 and 5. The condition (ii)

is a consequence of Steps 4, 5 and 6. \blacksquare

\overline{2Characterization(SU)} was presented, among other facts from the paper, at the “ 18^{th} Semi-
nar in Functional Analysis ”, held at Stara Lubovna, Czechoslovakia, June 2-10, 1987.
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The question of subnormality of bounded composition operators with
measurable symbols has been investigated by Lambert in [10]. Using a
version of Corollary 4 in [10] and (2. 1) we get2

(SU) C_{A,r} (resp. C_{A,r}^{*} ) is subnormal if and only if for almost every
x\in R^{d} . the sequence \{r(A^{-n}(x))\}_{n=0}^{\infty} (resp. \{1/r(A^{n}(x))\}_{n=0}^{\infty}) is a
Hamburger moment sequence^{3} .

Since the operator C_{A,r} is one-t0-0ne, we can improve the characterization
(SU) as follows

PROPOSITION 2. 4. Assume C_{A,r} is bounded. If C_{A,r} (resp. C_{A,r}^{*} ) is
subnormal, then for almost every x\in R^{d} . the sequence \{r(A^{-n}(x))\}_{n=-\infty}^{\infty}

(resp. \{1/r(A^{n}(x))\}_{n=-\infty}^{\infty}) is a twO-sided Stieltjes moment sequence. More-
over if \sigma is an open subset of R^{d} such that r is continuous on \sigma, \omega_{d}(R^{d}\backslash

\sigma)=0 and A(\sigma)=\sigma, then the above holds replacing “ for almost every
x\in R^{d}’ ’ by “ for every x\in\sigma’ ’

PROOF. Suppose that C_{A,r} is subnormal and r is continuous on \sigma

which satisfies the assumptions of Proposition 2. 4 (if r is not continuous,
then the proof is based on (SU) ) . Then all functions x_{n} , n\geq 0 , are con-
tinuous on \sigma . Using Theorem 2 in [10] we conclude that the sequence
\{r(A^{-n}(y))\}_{n=0}^{\infty} is a Stieltjes moment sequence for every y\in\sigma. Take x\in\sigma.
Since A k(x)\in\sigma for k\in Z , we get that for each k\in Z the sequence
\{r(A^{-(n+k})(x))\}_{n=0}^{\infty} is a Stieltjes moment sequence. Thus the conclusion
can be derived from the following characterization of tw0-sided Stieltjes
moment sequences (see [1], p. 202)

a sequence \{a_{n}\}_{n=-\infty}^{\infty} of real numbers is a twO-sided Stieltjes moment
sequence if and only if \sum a_{n+m}z_{n}\overline{z}_{m}\geq 0 and \sum a_{n+m+1}z_{n}\overline{z}_{m}\geq 0 for every
sequence \{z_{n}\}_{n=-\infty}^{\infty}\subset C vanishing off a finite set. \blacksquare

Now we can characterize bounded subnormal composition operators
of the form C_{A,\gamma} , where r(\cdot)=\phi(||\cdot||^{2}) and \phi\in \mathscr{H} To do this we need the
following characterization of normal algebraic contractions (cf. [17],
Theorem 6. 3)

(*) If N is an algebraic contraction on a Hilbert space H and \phi\in \mathscr{H},

then N is normal if and only if \{\phi(||N^{n}f||^{2})\}_{n=0}^{\infty} is a Hamburger
moment sequcnce for every f\in H.

Then our result is

THEOREM 2. 5. Let ||\cdot|| be a Hilbert norm on R^{d} and lel\phi\in \mathscr{H} If

3A11 facts concerning moment sequences needed in this paper can be found in [1].
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r(\cdot)=\phi(||\cdot||^{2}) and C_{A,r} (resp. C_{A,1/r} ) is bounded, then C_{A,r} C resp. C_{A.1/r}^{*} )

is subnormal if and only if A is normal in (R^{d}, ||\cdot||) .

PROOF. Assume C_{A,r} is bounded. Suppose that \phi is not a polynomial.
Then it follows from Proposition 2. 2 that ||A^{-1}||\leq 1 . On the other hand,
by the Cayley-Hamilton theorem, the operator A^{-1} is algebraic. In virtue
of Proposition 2. 4, the operator C_{A,r} is subnormal if and only if
\{\phi(||A^{-n}x||^{2})\}_{n=0}^{\infty} is a Hamburger moment sequence for every x\in R^{d} . Com-
bining this fact with (*) we get that A is normal in (R^{d}\neg||\cdot||) .

Assume now that \phi is a polynomial of degree j with its leading
coefficient a_{j}>0 . If A is normal in (R^{d}, ||\cdot||) , then subnormality of C_{A,r}

follows from the Schur theorem (cf. [1], Theorem 3. 1. 12) and the char-
acterization (SU). Conversely if C_{A,r} is subnormal, then due to Proposi-
tion 2. 4, \{\phi(t||A^{-n}x||^{2})\}_{n=0}^{\infty} is a Hamburger moment sequence for all x\in R^{d}

and t>0 . Since
||A^{-n}x||^{2j}= \lim_{tarrow\infty}\phi(t||A^{-n}x||^{2})(a_{j}t^{j})^{-1} . n\in N, x\in R_{2}^{d}

the sequence \{||A^{-n}x||^{2j}\}_{n=0}^{\infty} is a Hamburger moment sequence for every
x\in R^{d} But A^{-1} is algebraic, so Proposition 6. 2 in [17] guarantees nor-
mality of A in (R^{d}, ||\cdot||) . \blacksquare

Notice now that for some functions \phi from \mathscr{H} there are hyponormal
operators C_{A,r} with r(\cdot)=\phi(||\cdot||^{2}) that are not subnormal.

EXAMPLE 2. 6. Put r(x)=\exp(|x|^{2}) for x\in R^{d} . Let A be the linear
transformation of R^{d} . d>1 , defined by

A(x)=(c_{1}x_{2}, c_{2}x_{3}, \ldots.c_{d-1}x_{d}, c_{d}x_{1}) , x=(x_{1,\ldots-}x_{d})\in R^{d} .

where c_{1} , \ldots . c_{d} are nonzero real numbers such that
(2. 19) |c_{j}|\geq 2^{1/2} . j=1 , \ldots.d ,

and

(2. 20) |c_{k}|\neq|c_{t}| for some distinct k and l.
It is easy to see that A is invertible and A^{-1} is a contraction. Moreover,
by (2. 20), A is not normal in (R^{d}. |\cdot|) . Thus, in virtue of Proposition
2. 2 and Theorem 2. 5, the operator C=C_{A,r} is bounded and not subnormal.
We show that C is hyponormal. Indeed, if x=(x_{1}, \ldots- x_{d})\in R^{d} . then
(2. 19) implies

|Ax|^{2}+|A^{-1}x|^{2}\geq|c_{d}|^{2}|x_{1}|^{2}+|c_{1}|^{2}|x_{2}|^{2}+\cdots+|c_{d-1}|^{2}|x_{d}|^{2}\geq 2|x|^{2} .
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for every x\in R^{d} . or equivalently

r^{2}\leq r\circ A\cdot r\circ A^{-1}-

It follows from (HY) that C is hyponormal.
Concluding the whole section, we can say that within the class of

seminormal composition operators of the form C_{A,r} , where r(\cdot)=\phi(||\cdot||^{2})

and \phi\in \mathscr{H}, only hyponormal ones can not be completely characterized in
terms of their symbols. In other words the fact that C_{A,r} is hyponormal
depends essentially on shape of \phi , which is not the case for subnormal,
normal, unitary and cohyponormal operators. Indeed if \phi(z)=z\exp(z) ,
||x||=|x| for x\in R^{d} and A is the same as in Example 2. 6, then for c_{d}=2^{1/2}

and sufficiently large c_{1} the operator C_{A,r} is not hyponormal, though it is
for \phi=exp .

3. Seminormal composition operators on L^{2} ( C^{d}, \mathscr{B}(C^{d}),rd\omega_{2d})

We begin with an observation that all results of Section 2 remain true
for composition operators induced by invertible C-linear transformations
of C^{d} We have only to replace the quantity |\det A| by a new one |\det A|^{2} .
where in this case \det A stands for the determinant of a complex matrix
associated with A . The reason is that for any pair of real d\cross d matrices
C and D we have

|\det(C+iD)|^{2}=|\det \{\begin{array}{ll}C -DD C\end{array}\} | .

The complex case has some advantage over the real one. To see this
consider a bounded composition operator C_{A,r} with r(\cdot)=1/\phi(||\cdot||^{2}) , where
||\cdot|| is a Hilbert norm on C^{d} , \phi\in \mathscr{H} and A is an invertible C-linear trans-
formation of C^{d} . Then C_{A,r}^{*} is subnormal if and only if A is normal in
(C^{d}, ||\cdot||) . In this case there exists a unitary operator U in ( C^{d}, ||\cdot||) such
that the operator D=U^{-1}AU is diagonal. In consequence C_{U,r} is unitary
and, by (AD), C_{D,r}=C_{U},{}_{r}C_{A},{}_{r}C_{U,r}^{*} . This means that a subnormal C_{A,r}^{*} is
unitarily equivalent to C_{D,r}^{*} with some diagonal normal operator D. The
same is true for subnormal composition operators of the form C_{A,1/r}.

Throughout the remaining part of Section 3 the symbol r (resp. \rho )

stands for a density function on C^{d} (resp. C) defined by r(z)=1/
exp (|z|^{2}) , z\in C^{d} (resp. \rho(z)=1/\exp(|z|^{2}) , z\in C ). In this particular case
L^{2}(r)=L^{2}(\rho)\otimes\cdots\otimes L^{2}(\rho) . So if the diagonal operator D from the previ-
ous paragraph is chosen to be of the form

D(z)=(a_{1}z_{1}, \ldots, a_{d}z_{d}) , z=(z_{1}, \ldots, z_{d})\in C^{d}-
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then C_{D,r}=C_{a_{1},\rho}\otimes\cdots\otimes C_{a_{\epsilon l},\rho} , where a is idientified with the transformation
C\ni zarrow az\in C. Summing up we have proved the following

THEOREM 3. 1. If C_{A,r} is bounded, then the following conditions are
equivalent
(i) C_{A,r}^{*} is subnormal,
(ii) A is normal in ( C^{d}. |\cdot|) ,
(iii) there are a_{1} , \ldots , a_{d}\in C such that C_{A,r} is unitarily equivalent to

C_{a_{1},\rho}\otimes\cdots\otimes C_{a_{\epsilon l},\rho} and 0<|a_{j}|\leq 1 for 1\leq j\leq d.
The sequence a_{1} , \ldots , a_{d} appearing in (iii) can be always chosen to be com-
posed of the eigenvalues of A listed in an order taking account of their
multiplicities.

Theorem 3. 1 can be used to describe the spectrum of cosubnormal
composition operators of the form C_{A,r} with r as above. In the sequel
\sigma_{p}(W) , \sigma_{r}(W) and \sigma_{c}(W) stand for the point, the residual and the con-
tinuous parts of the spectrum \sigma(W) of an operator W.

To begin with consider the case d=1 . The following result is an
extension of Theorem 5. 0 from [11].

PROPOSITION 3. 2. Let a\in C be such that C=C_{a,\rho} is bounded.
(i) If 0<|a|<1 , then

\sigma(C)=\{w\in C : |w|\leq|a|^{-1}\} , \sigma_{p}(C)=\sigma_{r}(C*)=\{w\in C:0<|w|<|a|^{-1}\} ,
\sigma_{r}(C)=\sigma_{p}(C^{*})=\emptyset and \sigma_{c}(C)=\sigma_{c}(C^{*})=\{w\in C : |w|=|a|^{-1}\}\cup\{0\} .

(ii) If there exists n\geq 1 such that a^{n}=1 and a^{n-1}\neq 1 , then \sigma(C)=\sigma_{p}(C)=

\sigma_{p}(C^{*})=\{1, a, \ldots a^{n-1}\} .
(iii) If |a|=1 and a n\neq 1 for eve\eta n\geq 1 , then \sigma(C)=\{w\in C : |w|=1\} ,

\sigma_{p}(C^{*})=\sigma_{p}(C)=\{a^{n} : n\in Z\} , \sigma_{c}(C)=\sigma_{c}(C*)=\sigma( C)\backslash \sigma_{p} ( C) and
\sigma_{r}(C)=\sigma_{r}(C^{*})=\emptyset .

PROOF. Part ( i) of Proposition 3. 2 can be proved in the same way as
Theorem 5. 0 in [11]. We mention only that the eigenfunctions f_{z} appear-
ing in the proof of this theorem have to be replaced by the following ones

f_{z}(w)=\exp(z\ln|w|) , w\in C\backslash \{0\} ,

where z is any complex number with {\rm Re} z>-1 .
Suppose that a^{n}=1 and a^{n-1}\neq 1 . Then C^{n} is the identity operator on

L^{2}(\rho) It follows from the spectral mapping theorem that \sigma(C)^{n}=

\sigma(C^{n})=\{1\} . Consequently \sigma(C)\subset\{1, a, \ldots.a^{n-1}\} . But Cf_{k}=a^{k}f_{k} for k\in N ,

where f_{k}(z)=z^{k} z\in C , so \{1, a, \ldots , a^{n-1}\}\subset Op(C) .
Assume that |a|=1 and a^{n}\neq 1 for every n\geq 1 . Then C is unitary and

consequently \sigma(C)\subset\{z’\overline{arrow}C: |z|=1\} and \sigma_{r}(C)=\sigma_{r}(C^{*})=\emptyset . Notice that
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\{a^{n} : n\in N\}\subset\sigma_{p}(C) . Indeed, if k, l\geq 0 and the function h_{k,l} is defined by
hhti(z)=z^{k}\overline{z}^{l}z\in C , then h_{k,l}\in L^{2}(\rho) and Ch_{k,l}=a^{k-l}h_{k,l} . Since a^{n}\neq 1 for
every n\geq 1 , the set \{a^{n} : n\in Z\} is dense in the unit circle. Thus \sigma(C)=

\{z\in C : |z|=1\} .
Now we show that

(3. 1) ( C\backslash \{a^{n} : n\in Z\})\cap\sigma_{p}(C^{*})=\emptyset .

Indeed, if w\in C\backslash \{a^{n} : n\in Z\} , then for k, l\geq 0 we have (w-C)h_{k,l}=(w-
a^{k-l})h_{k,l} . Since the set \{h_{k,l} : k, l\geq 0\} is total in L^{2}(\rho) , the range of w-C
is dense in L^{2}(\rho) . Thus \overline{w}\in C\backslash \sigma_{p}(C^{*}) , which proves (3. 1). It follows
from (3. 1) and Proposition I. 3. 1 in [18] that ( C\backslash \{a^{n} : n\in Z\})\cap op(C)=

\emptyset . This completes the proof. \blacksquare

Now we can turn back to the case d>1 .

PROPOSITION 3. 3. If C=C_{A,r} is bounded, cosubnormal and not
unitary, then

\sigma\{C)=\{z\in C^{d} : |z|\leq|\det A|^{-1}\}

and
\{z\in C^{d} : 0<|z|<|\det A|^{-1}\}\subset\sigma_{p}(C) .

PROOF. Since C is cosubnormal and not unitary, the transformation
A is normal and not unitary (use Proposition 2. 3 and Theorem 2. 5.
This means that A has at least one eigenvalue a such that 0<|a|<1 . By
Theorem 3. 1, the operator C is unitarily equivalent to C_{a_{1},\rho}\otimes\cdots\otimes C_{a_{\epsilon t},\rho}

with a_{1}=a . Thus, in virtue of Proposition 3. 2, { z\in C^{d} : 0<|z|<|\det A|^{-1} ) \subset

\sigma_{p}(C) and consequently \sigma(C)=(z\in C^{d} : |z|\leq|\det A|^{-1} } (see also [2]).

4. Related operators

In this section we draw a few consequences from Theorem 2. 5. Two
of them are inspired by the paper of Mlak [11]. The first one shows that
composition operators induced by some linear transformations of R^{\infty} are
cosubnormal. Denote by )) the Gaussian measure on R with density func-

tion \frac{1}{\sqrt{2\pi}}\exp(-\frac{1}{2}|\cdot|^{2}) . Let 1/_{d} (resp. \nu_{\infty}) stand for the tensor product of

d (resp. countable many) copies of 1/.

THEOREM 4. 1. Let a=\{a_{k}\}_{k=1}^{\infty} be a sequence of real numbers such
that 0<|a_{k}|\leq 1 for k\geq 1 and c= \sup_{n\geqq 1}\prod_{k=1}^{n}|a_{k}|^{-1/2}<\infty . Then the formula

(C_{a}f)(x)=f(a_{1}x_{1}, a_{2}x_{2},\ldots) , x=(x_{1}, x_{2}, \ldots)\in R^{\infty}-
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determines a well defined bounded cosubnormal operator on L^{2}(\nu_{\infty}) . More-
over if |a_{k}|<1 for some k\geq 1 , then \sigma(C_{a})=\{z\in C:|z|\leq c\} .

PROOF. It follows from Theorem 3. 1 in [11] that the operator C_{a} is
well defined and bounded on L^{2}(\nu_{\infty}) . To prove that C_{a}^{*} is subnormal
notice first that functions of the form
(4. 1) f(x)=\overline{f}(x_{1}, x_{2}, \ldots, x_{d}) , x=(x_{1}, x_{2},\ldots)\in R^{\infty}

where \tilde{f}\in L^{2}(\nu_{d}) and d\geq 1 , are dense in L^{2}(1\nearrow\infty) (cf. [16]). Thus, in vir-
tue of the Lambert characterization of subnormal operators (cf. [8], The
orem 3. 1), it is enough to show that the sequence \{||C_{a}^{*n}f||^{2}\}_{n=0}^{\infty} is a Stielt-
jes moment sequence for each function f of the form (4. 1). Take such a
function f. Then, using Proposition 3. 0 from [11], one can check that

(C_{a}^{*}f)(x)=(C_{a_{1}}^{*}\otimes\cdots\otimes C_{a_{d}}^{*}\overline{f})(x_{1}, \ldots, x_{d}) , x=(x_{1}, x_{2}, \ldots)\in R^{\infty} .

where C_{a} is a composition operator on L^{2}(\nu) induced by the transforma-
tion R\ni x — ax\in R. Thus

(4. 2) ||C_{a}^{*n}f||^{2}=||C_{a_{1}}^{*n}\otimes\cdots\otimes C_{aa}^{*n}\overline{f}||^{2} . n\in N.

By Theorem 2. 5, the operators C_{a_{j}}^{*} , j=1 , \ldots . d , are subnormal in L^{2}(\nu) .
Consequently C_{a_{1}}^{*}\otimes\cdots\otimes C_{a_{d}}^{*} is subnormal in L^{2}(fJ_{d}) . This and (4. 2) imply
that \{||C_{a}^{*n}f||^{2}\}_{n=0}^{\infty} is a Stieltjes moment sequence, which completes the
proof of subnormality of C_{a}^{*} . The formula \sigma(C_{a})=\{z\in C : |z|\leq c\} has
been proved by Janas in [7]. \blacksquare

In [11] Mlak has proved that a composition operator C_{a}(0<a<1)
acting on L^{2}(\nu) is unitarily equivalent to an integral operator R_{a} on
L^{2}(\omega_{1}) acting according to the following formula

(R_{a}f)(x)=((1-a^{2}) \Pi)^{-1/2}\int_{R}f(u)\exp((x-au)^{2}(1-a^{2})^{-1}) du,

f\in L^{2}(\omega_{1}) .

It follows from Theorem 2. 5 that R_{a} is a cosubnormal integral operator.
Consider a semigroup \{ T_{a} : a\geq 0\} of bounded operators on L^{2}(\nu)

defined by T_{a}=C_{\exp(-a)}^{*} , a\geq 0 . It is easy to see that \{ T_{a} : a\geq 0\} is a contin-
uous semigroup of subnormal operators. Thus, by the Nussbaum theorem
(cf. [13], Proposition 3), its infinitesimal generator \chi\frac{d}{dx}+(1-x^{2}) is sub-

normal too. Full details and proofs of these and related facts will appear
elsewhere.
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5. Generalized composition operators

Let ||\cdot|| be a Hilbert norm on R^{d} and let X be the open unit ball in
(R^{d}, ||\cdot||) . Given a Borel function r on X such that r(x)\in(0^{ },\infty) for
almost every x\in X , we define the \sigma-finite Borel measure \mu_{r} on X by d\mu_{r}=

rd\omega_{d} . Let A be an invertible linear transformation of R^{d} such that AX\subset

X , or equivalently that ||A||\leq 1 . Denote by T the restriction of A to X\tau

Since the measure \mu_{r}T^{-n} is absolutely continuous with respect to \mu_{r} and

x_{n}=d\mu_{r}T^{-n}/d\mu_{r}=|\det A|^{-n}\cdot \chi_{T^{n}X}\cdot r\circ T^{-n}/r, n\in N,

where \mathcal{X}\sigma stands for the indicator function of the set \sigma , the transformation
T induces the composition operator C_{T,r} in L_{X}^{2}(r)=L^{2}(X, \mathscr{B}(X),\mu_{r}) via
C_{\tau,r}f=f\circ T. The operator C_{\tau,r} is bounded if and only if x_{1}\in L^{\infty}(X, \omega_{d})

and in this case ||C_{\tau,r}||^{2}=||x_{1}||_{\infty} (cf. [12]).
Denote by \mathscr{H}(\Delta) the class of all holomorphic functions \phi on the open

unit disc \Delta such that \frac{d^{n}\phi}{dz^{n}}(0)\geq 0 for every n\geq 0 and \frac{d^{j}\phi}{dz^{j}}(0)>0 for at least

one j\geq 1 . The class \mathscr{H}(\Delta) shares the properties (2. 3) and (2. 4) on \Delta

with the class \mathscr{H}. Moreover if the function \phi has a power series represen-

tation \phi(z)=\sum_{k=0}^{\infty}a_{k}z^{k} . z\in\Delta , then

\phi(1-)=\lim_{tarrow 1-}\phi(t)=\sum_{k=0}^{\infty}a_{k} .

Now we focus our interest on the question of boundedness of C_{T,r} in
two special cases.

PROPOSITION 5. 1. Assume that \phi\in \mathscr{H}(\Delta) has a zero of multiplicity
m\geq 0 at 0. If r(\cdot)=1/\phi(||\cdot||^{2}) , then C_{\tau,r} is bounded and ||C_{\tau,r}||=

|\det A|^{-1/2}||A||^{m_{\wedge}} If r(\cdot)=\phi(||\cdot||^{2}) and A is not unitary in (R^{d}. ||\cdot||) , then
C_{\tau.r} is bounded if and only if \phi(1-)<\infty . In this case ||C_{\tau,r}||=|\det A|^{-1/2}

(\phi(1-)/\phi(||A^{-1}||^{-2}))^{1/2} . If r(\cdot)=\phi(||\cdot||^{2}) and A is unitary in (R^{d},-||\cdot||) ,

then C_{\tau,r} is bounded and ||C_{\tau,r}||=|\det A|^{-1/2} .

PROOF. Since ||C_{\tau,r}||^{2}=||x_{1}||_{\infty} , it is enough to determine the quantity
|\det A|||x_{1}||_{\infty} .

Using the equality (2. 7) one can prove that if 0<\theta<1 , then the func-
f or tarrow\phi(\theta t)/\phi(t) is decreasing on the open interval (0, 1) . This in
turn implies that

(5. 1) \sup_{0<t<1}\phi(\theta t)/\phi(t)=\lim_{tarrow 0+}\phi(\theta t)/\phi(t)=\theta^{m}
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and

(5. 2)
\sup_{0<t<1}\phi(t)/\phi(\theta t)=\lim_{tarrow 1-}\phi(t)/\phi(\theta t)=\phi(1-)/\phi(\theta) ,

for 0<\theta<1 .
Assume that r(\cdot)=1/\phi(||\cdot||^{2}) . Then, by (5. 1), we have

| \det A|||x_{1}||_{\infty}=\sup_{0<||x||<1}\phi(||Ax||^{2})/\phi(||x||^{2})

= \sup_{0<||x||<1\sup_{0<t<1}}\phi(t||Ax||^{2}/||x||^{2})/\phi(t)

= \sup_{0<||x||<1}(||Ax||/||x||)^{2m}=||A||^{2m}<\infty ,

which proves boundedness of C_{T,r} and shows ||C_{\tau,r}||=|\det A|^{-1/2}||A||^{m} .
Suppose now that r(\cdot)=\phi(||\cdot||^{2}) and A is not unitary in (R^{d}, ||\cdot||) .Then the set \{x\in X\backslash \{0\}: ||Ax||/||x||<1\} is nonempty and, by (5. 2), the f01-lowing equalities hold

| \det A|||x_{1}||_{\infty}=\sup_{0<||x||<1}\phi(||x||^{2})/\phi(||Ax||^{2})

= \sup_{0<||x||<1\sup_{0<t<1}}\phi(t)/\phi(t||Ax||^{2}/||x||^{2})

= \sup{ \phi(1-)/\phi(||Ax||^{2}/||x||^{2}) : 0<||x||<1 and ||Ax||/||x||<1 }
= \phi_{\backslash }^{(}1-)/\phi(\inf_{0<||x||<1}||Ax||^{2}/||x||^{2})=\phi(1-)/\phi(||A^{-1}||^{-2}) ,

so C_{T,r} is bounded if and only if \phi(1-)<\infty . If A is unitary in (R^{d}. ||\cdot||) ,then x_{1}\in L^{\infty}(X, \omega_{d}) and consequently the operator C_{T,r} is bounded what-ever \phi(1-) would be.
\blacksquare

The next proposition shows that in most cases bounded hyponormal
composition operators of the form C_{T,r} must be unitary. This fact doesnot follow from Lemma 7 in [6] , because the measure \mu_{r} may be infinite.

PROPOSITION 5. 2. If C_{T,r} is a bounded hyponormal operator, then A
is unitary in (R^{d}. ||\cdot||) . If \phi : [0, \infty)– (0, \infty) is a Borel function,
r(\cdot)=\phi(||\cdot||) and A is unitary in (R^{d}. ||\cdot||) , then C_{T,r} is unitary.

PROOF. Assume that T is hyponormal. Then (cf. [6], Corollary 11)
x_{1}\geq x_{1^{\circ}}Ta . e. , or equivalently 0\leq r^{2}\leq\chi_{TX}\cdot r\circ T\cdot r\circ T^{-1}a . e. . This means
that r=0a. e . on the set X\backslash TX. Suppose that X\neq TX. Since TX is anopen convex subset of the unit ball X. the set X\backslash TX has nonempty inte-
rior. Consequently \omega_{d}(X\backslash TX)>0 , which contradicts our assumption r>0a . e. . Thus X=TX, or equivalently A is unitary in (R^{d}. ||\cdot||) . The other
part of the conclusion is obvious. \blacksquare

Now we determine conditions for the adjoint of C_{T,r} to be hyponor-
mal , quasinormal and isometry. It follows from Theorem 3 in [6] that
C_{\tau,r}^{*} is hyponormal if and only if
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(5. 3) r^{2}\geq\chi_{TX}\cdot r\circ T\cdot r\circ T^{-1}a.e. .

C_{T,r}^{*} is quasinormal if and only if (cf. [6], Theorem 4)

(5. 4) r^{2}=r\circ T\cdot r\circ T^{-1}a . e . on the set TX.
Finally C_{T,r}^{*} is isometry if and only if

(5. 5) r/r\circ T=|\det A|a . e. .

All these facts permit us to prove the following

PROPOSITION 5. 3. Let ||\cdot|| and T be as above and \phi\in \mathscr{H}(\Delta) .
If r(\cdot)=1/\phi(||\cdot||^{2}) , then

(i) C_{T,r}^{*} is quasinormal if and only if either \phi is a monomial and tA is
unitary in (R^{d}. ||\cdot||) for some t>0 or \phi is not a monomial and A is
unitary in (R^{d}, ||\cdot||) .

(ii) C_{\tau,r}^{*} is isometry if and only if A is unitary in (R^{d}, ||\cdot||) . If r(\cdot)=
\phi(||\cdot||^{2}) and C_{\tau,r} is bounded, then (i) and (ii) hold. Moreover

(ii) C_{\tau.r}^{*} is hyponormal if and only if C_{T,r}^{*} is quasinormal.

PROOF. Assume r (\cdot)=1/\phi(||\cdot||^{2}) . If C_{T,r}^{*} is quasinormal, then – in
virtue of (5. 4) – \phi(||x||^{2})^{2}=\phi(||Ax||^{2})\cdot \phi(||A^{-1}x||^{2}) for x\in TX. Thus we
can repeat arguments used in the proof of Steps 1 to 5 of Proposition 2. 3
to get the condition (i) If C_{T,r}^{*} is isometry and \phi is a monomial, then –

by (5. 5) -|\det A|\phi(||x||^{2})=\phi(||Ax||^{2}) for every x\in X. So we can repeat
the proof of Step 6 of Proposition 2. 3 to get the condition (ii).

Assume r(\cdot)=\phi(||\cdot||^{2}) . The proof of the conditions (i) and (ii) is simi-
lar to that from the previous paragraph. If C_{T,r}^{*} is hyponormal, then
using (5. 3) we get \phi(||x||^{2})^{2}\geq\phi(||Ax||^{2})\cdot \phi(||A^{-1}x||^{2}) for x\in TX. Following
arguments utilized in the proof of Step 1 of Proposition 2. 3 we conclude
that C_{T,r}^{*} is quasinormal. This finishes the proof. \blacksquare

Below we show that the question of subnormality of C_{T,r}^{*} is equivalent
to the question of subnormality of some generalized composition operators
(cf. [12]).

Let B be an invertible linear transformation of R^{d} such that B^{-1}X\subset

X, or equivalently ||B^{-1}||\leq 1 . Denote by S the measurable transformation
within the space X defined by D(S)=B^{-1}X and Sx=Bx for x\in D(S) .
Let r be a Borel function on X such that r(x)\in(0^{ },\infty) for almost every
x\in X Since the measure \mu_{r}S^{-n} is absolutely continuous with respect to
\mu_{r} and



Seminormal composition 0perators on L^{2} spaces induced by mat\dot{n}ces 323

(5. 6) \lambda_{n}=d\mu_{r}S^{-n}/d\mu_{r}=|\det B|^{-n}\cdot r\circ S^{-n}/r, n\in N,

the transformation S induces the generalized composition operator C_{S.r} in
L_{X}^{2}(r) via C_{s,r}f=\chi_{D(S)}\cdot f\circ S. The operator C_{S,r} is bounded if and only if
\lambda_{1}\in L^{\infty}(X, \omega_{d}) (cf. [12], Theorem 1).

Using the equality (5. 6) and Corollary 4 in [10] (adapted to general-
ized composition operators) we get

PROPOSITION 5. 4. A bounded generalized composition operator C_{S.r} is
subnormal if and only if for almost every x\in X, the sequence
\{r(B^{-n}(x))\}_{n=0}^{\infty} is a Hamburger moment sequence. Moreover if r:X\backslash \{0\}

arrow(0^{ },\infty) is continuous, then the above holds replacing ’‘ for almost
every x\in X’’ by ’‘ for every x\in X\backslash \{0\}

”

Turn back to the bounded operator C_{T,r} . It is easy to see that its
adjoint acts according to the following formula

C_{\tau,r}^{*}f=|\det A|^{-1}\cdot\chi_{TX}\cdot f\circ T^{-1}\cdot r\circ T^{-1}/r, f\in L_{X}^{2}(r) .

Moreover the mapping U : L_{X}^{2}(r)arrow L_{X}^{2}(1/r) defined by Uf=fr for
f\in L_{X}^{2}(r) is unitary and satisfies the following condition
(5. 7) U|\det A|C_{\tau,r}^{*}=C_{S,1/\gamma}U,

where S comes from B=A^{-1} Thus the question of subnormality of C_{T,r}^{*}

for r(\cdot)=1/\phi(||\cdot||^{2}) and \phi\in \mathscr{H}(\Delta) can be answered as follows

THEOREM 5. 5. If r (\cdot)=1/\phi(||\cdot||^{2}) with \phi\in \mathscr{H}(\Delta) , then the operator
C_{T,r}^{*} is subnormal if and only if A is normal in (R^{d}. ||\cdot||) .

PROOF. In virtue of (5. 7) and Proposition 5. 4, the operator C_{\tau.r}^{*} is
subnormal if and only if \{\phi(||A^{n}x||^{2})\}_{n=0}^{\infty} is a Hamburger moment sequence
for every x\in X. Since A is an algebraic contraction, the conclusion of
Theorem 5. 5 is a consequence of the following version of Theorem 6. 3
in [17] (its proof is similar)

If N is an algebraic contraction on a Hilbert space H and \phi\in \mathscr{H}(\Delta) ,
then N is normal if and only if \{\phi(||N^{n}f||^{2})\}_{n=0}^{\infty} is a Hamburger
moment sequence for every f\in H such that | \int||<1 . \blacksquare

Now a few comments are in order. Assume that \phi\in \mathscr{H}(\Delta) . If r(\cdot)=

1/\phi(||\cdot||^{2}) , then seminormal generalized composition operators of the form
C_{S,r} coincide with normal ones (or with unitary ones, provided \phi is not a
monomial). If r(\cdot)=\phi(||\cdot||^{2}) , then there are generalized composition oper-
ators of the form C_{S,r} which are hyponormal but not subnormal (consider
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\phi=exp , ||x||=|x| for x\in R^{d} and S attached to B=A, where A is as in
Example 2. 6).

References

[1 ] Ch. BERG, J. P. R. CHRISTENSEN, P. RESSEL. Harmonic analysis on semigroups (Ber-

lin: Springer, 1984).

[2] A. BROWN, C. PEARCY, Spectra of tensor products of operators, Proc. Amer. Math.
Soc. 17 (1966), 162-166.

[3] P. DIBRELL, J. T. CAMPBELL, Hyponormal powers of composition operators, Proc.
Amer. Math. Soc. 102 (1988), 914-918.

[4] N. DUNFORD, J. T. SCHWARTZ, Linear operators, Part I, (New York-London:, 1958).
[5] P. R. HALMOS, A Hilbert space problem book (New Jersey: Van Nostrad, 1967).
[6] D. HARRINGTON, R. WHITLEY, Seminormal composition operators, J. Operator Theory,

11 (1984), 125-135.
[7] J. JANAS, Inductive limit of operators and its applications, Studia Math., 90 (1988), 87

-102.
[8] A. LAMBERT, Subnormality and weighted shifts, J. London Math. Soc. 14 (1976), 476

-480.
[9] A. LAMBERT, Hyponormal composition operators, Bull. London Math. Soc, 18 (1986),

395-400.
[10] A. LAMBERT, Subnormal composition operators, Proc. Amer. Math. Soc. 103 (1988),

750-754.
[11] W. MLAK, Operators induced by transformations of Gaussian variables, Ann. Polon.

Math. 46 (1985), 197-212.
[12] E. NORDGREN, Compositions operators on Hilbert spaces, Lecture xNotes in Math-

ematics 693 (Berlin: Springer-Verlag, 1978), 37-63.
[13] A. E. NUSSBAUM, Semi-groupes of subnormal operators, J. London Math. Soc. 14

(1976), 340-344.
[14] W. RUDIN, Positive definite sequences and absolutely monotonic functions, Duke Math.

J. 26 (1959), 617-622.
[15] I. J. SCHOENBERG, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96

-108.
[16] G. E. SHILOV, Fan Dik Tin, Integral, measure and derivative on linear spaces, Moscow

1967.
[17] J. STOCHEL, Characterizations of subnormal operators, to appear in Studia Math.
[18] B. SZ.-NAGY, C. FOIAS. Hamonic analysis of operators on Hibert space (Budapest:

Akademiai Kiado, 1970).

[19] R. WHITLEY, Normal and quasinormal composition operators, Proc. Amer. Math. Soc.
70 (1978), 114-118.

Instytut Matematyki
Uniwersytet Jagiellonski
ul Reymonta 4
30-059 Krak\’ow
Poland


	1. Introduction
	2. Seminormal composition ...
	THEOREM 2. ...

	3. Seminormal composition ...
	THEOREM 3. ...

	4. Related operators
	THEOREM 4. ...

	5. Generalized composition ...
	THEOREM 5. ...

	References

