On the bisectable metrics on the 2-sphere S²

Masayuki IGARASHI (Received February 16, 1989, Revised August 2, 1989)

Introduction

A Riemannian manifold (M, g) is called an $SC_{2\pi}$ -manifold, and its Riemannian metric g an $SC_{2\pi}$ -metric on M, if all of its (maximal) geodesics are simply closed and have the same length 2π . For example, the standard 2-sphere (S^2, g_o) is an $SC_{2\pi}$ -manifold. Moreover it is known that there are many $SC_{2\pi}$ -metrics on S^2 which are essentially different from each other (see [1], Chapter 4, C, and [2] for details). Among $SC_{2\pi}$ -metrics on S^2 , L. W. Green characterized the standard 2-sphere (S^2, g_o) in terms of the Blaschke condition (see [1] p. 143). It seems interesting to study another sufficient condition for an $SC_{2\pi}$ -manifold (S^2, g) to be isometric to (S^2, g_o) .

An $SC_{2\pi}$ -metric g on S^2 has the property that every geodesic γ divides S^2 into two domains. More precisely, there are two domains (connected open subsets) H_1 and H_2 in S^2 which satisfy $S^2 = \gamma \cup H_1 \cup H_2$ (disjoint union) and $\gamma = \partial H_1 = \partial H_2$, where γ should be confounded with a subset of S^2 . Either of the two domains is called a hemisphere with respect to g. In the case of the standard metric g_o all of its hemispheres have the same area 2π . This suggests the following definition:

An $SC_{2\pi}$ -manifold (S^2,g) is a (geodesically) bisectable manifold if each geodesic divides S^2 into two hemispheres having the same area. The $SC_{2\pi}$ -metric g on S^2 is then called a (geodesically) bisectable metric.

Here, we are led to the following conjecture:

If an $SC_{2\pi}$ -metric g on S^2 satisfies the bisectability condition, then (S^2, g) is isometric to (S^2, g_o) .

The main purpose of this paper is to give a partial affirmative answer to this conjecture.

Let us consider a one-parameter deformation $\{g_t\}$ of the standard metric g_o on S^2 (such that $g_t|_{t=0}=g_o$). Then we define a symmetric 2-form h on S^2 by $h=\frac{\partial}{\partial t}g_t|_{t=0}$, which is called the linearization of $\{g_t\}$ (at t=0).

The one-parameter deformation $\{g_t\}$ is said to be a one-parameter bisectable deformation of g_o on S^2 if each g_t is a bisectable metric. Furthermore a symmetric 2-form h on S^2 is said to be an infinitesimal bisectable deformation of g_o on S^2 if it is the linearization of a certain one-parameter bisectable deformation of g_o on S^2 .

Here, our main results may be stated as follows:

THEOREM A. Any infinitesimal bisectable deformation h of g_o on S^2 is trivial, that is, there exists a vector field X on S^2 such that $h = \mathcal{L}_X g_o$, \mathcal{L}_X being the Lie derivation with respect to X.

THEOREM B. Let $\{g_t\}_{t\in I}$ be a one-parameter bisectable deformation of g_o on S^2 , where I is an open interval containing 0. If g_t depends real analytically on the parameter t, then there exists a one-parameter family $\{\Psi_t\}_{t\in I}$ of transformations of S^2 , defined on the same interval I, such that Ψ_0 = identity and $g_t = \Psi_t * g_o$.

In § 1 we study even functions and hemispherically even functions on (S^2, g_o) . As usual an even function means a function on (S^2, g_o) which is invariant under the antipodal transformation of (S^2, g_o) . A hemispherically even function is defined as a function f on (S^2, g_o) which satisfies

$$\int_{H_1} f dA = \int_{H_2} f dA ,$$

where (H_1, H_2) is any pair of standard hemispheres determined by a geodesic or a great circle of (S^2, g_o) , and dA is the standard area element of (S^2, g_o) . We show there the following

THEOREM C. A function on (S^2, g_o) is an even function if and only if it is a hemispherically even function.

In § 2 we show a necessary and sufficient condition for an $SC_{2\pi}$ -metric on S^2 to be bisectable. In § 3 we prove Theorem A by using a corollary to Theorem C. In § 4 we prove Theorem B, following the argument due to N. Tanaka in [3].

Throughout this paper, we assume the differentiability of class C^{∞} unless otherwise stated.

The author expresses his hearty gratitude to Prof. N. Tanaka and Dr. K. Kiyohara for their valuable advice.

§ 1. Hemispherically even functions

In this section every function on (S^2, g_o) is understood to be continuous. As usual a function f on (S^2, g_o) is called an odd function if $\tau^*f = -f$, where τ is the antipodal transformation of (S^2, g_o) . We note that every function is uniquely written as a sum of an even function and an odd function. To prove Theorem C, it is therefore sufficient to show the following

THEOREM C'. Let f be a hemispherically even function on (S^2, g_o) . If f is an odd function, then f vanishes identically.

PROOF. We utilize the canonical polar coordinate (θ, φ) on (S^2, g_o) which is defined for $0 \le \theta \le \pi$, $0 \le \varphi < 2\pi$. In this coordinate the north pole N corresponds to $\theta = 0$. We denote by γ_{λ} the meridian great circle which is represented by $\varphi = \lambda$, $\pi + \lambda$. If $0 < \lambda < \pi$, it can be immediately seen that γ_0 and γ_{λ} split (S^2, g_o) into four pieces of domains $D(0 < \varphi < \lambda)$, $D(\lambda < \varphi < \pi)$, $D(\pi < \varphi < \pi + \lambda)$ and $D(\pi + \lambda < \varphi < 2\pi)$, where $D(a < \varphi < b)$ means the domain represented by $0 < \theta < \pi$, $a < \varphi < b$. Since f is a hemispherically even function on (S^2, g_o) , we have

$$\int_{D(0 < \varphi < \lambda)} f dA = \int_{D(\pi < \varphi < \pi + \lambda)} f dA \qquad \text{for } \lambda \in]0, \pi[.$$

This can be written in the form

$$\int_0^{\lambda} \int_0^{\pi} f(\theta, \varphi) \sin \theta \, d\theta d\varphi = \int_0^{\pi+\lambda} \int_0^{\pi} f(\theta, \varphi) \sin \theta \, d\theta d\varphi \quad \text{for } \lambda \in]0, \pi[.$$

Since f is an odd function on (S^2, g_o) , it follows that

$$\int_0^{\lambda} \int_0^{\pi} f(\theta, \varphi) \sin \theta \, d\theta d\varphi = 0 \qquad \text{for } \lambda \in]0, \pi[.$$

Differentiating this equation with respect to λ , we find that

$$\int_0^{\pi} f(\theta, \lambda) \sin \theta \, d\theta = 0 \qquad \text{for } \lambda \in]0, \pi[.$$

This implies that

$$\int_0^{\pi} f(c(s)) \sin s \, ds = 0$$

for any great hemicircle $c: [0, \pi] \longrightarrow (S^2, g_o)$ parametrized by arc-length s.

Now, we take an arbitrary point q of (S^2, g_o) , and show that f(q)=0. Clearly we may assume that q is the north pole N. Let

- $c: [0, \pi] \longrightarrow (S^2, g_o)$ be a great hemicircle parametrized by arc-length s which satisfies the following conditions:
- 1) It issues from the point represented by $(\pi/2, 0)$ in the canonical polar coordinate.
 - 2) It does not pass through the north pole N.
 - 3) The upper standard hemisphere contains $c(]0, \pi[)$.

Let S be the antipodal point of N, that is, the south pole. Let r be the angle between the NS-axis and the plane which contains the great hemicircle c. Then, in the canonical polar coordinate, c can be represented in the form

$$c(s) = (\theta(s), \varphi(s)),$$

and $(\theta, \varphi) = (\theta(s), \varphi(s))$ is related to s by the following rule:

$$\begin{cases} \sin \theta \cos \varphi = \cos s \\ \sin \theta \sin \varphi = \sin s \sin r, \\ \cos \theta = \sin s \cos r \end{cases}$$

Recalling the argument above, we have

$$\int_0^{\pi} f(\theta(s), \varphi(s)) \sin s \, ds = 0.$$

Performing the change of the variables, $s \longrightarrow \theta$, in this integral equation, we get

$$\int_{r}^{\frac{\pi}{2}} \{f(\theta, \varphi(\theta)) + f(\theta, \pi - \varphi(\theta))\} \frac{\sin \theta \cos \theta}{\sqrt{\sin^{2} \theta - \sin^{2} r}} d\theta = 0.$$

Since this equation is invariant under the S^1 -action of revolution whose rotation axis is the NS-axis, it follows that

$$\int_{r}^{\frac{\pi}{2}} \{f(\theta, \varphi(\theta) + u) + f(\theta, \pi - \varphi(\theta) + u)\} \frac{\sin \theta \cos \theta}{\sqrt{\sin^{2}\theta - \sin^{2}r}} d\theta = 0.$$

for any $u \in [0, 2\pi[$. Thus this gives

$$\int_0^{2\pi} \int_r^{\frac{\pi}{2}} \{f(\theta, \varphi(\theta) + u) + f(\theta, \pi - \varphi(\theta) + u)\} \frac{\sin \theta \cos \theta}{\sqrt{\sin^2 \theta - \sin^2 r}} d\theta du = 0.$$

Putting $F(\theta) = \int_0^{2\pi} f(\theta, u) du$, we see from the Fubini theorem that

$$\int_{r}^{\frac{\pi}{2}} \frac{F(\theta)\sin\theta\cos\theta}{\sqrt{\sin^{2}\theta - \sin^{2}r}} d\theta = 0.$$

Here we remark that this equation holds for any $r \in]0, \pi/2[$, and $F(\theta)$ is independent of r. Thus by the same way as in the proof of Theorem 4.13 in [1], pp. 102-104, we obtain

$$F(\theta) = \int_0^{2\pi} f(\theta, u) du = 0 \qquad \text{for any } \theta \in]0, \frac{\pi}{2}[.$$

Letting θ tend to 0, we get

$$f(N) = 0$$
. Q. E. D.

A function f on (S^2, g_o) is called a hemispherically zero function if it satisfies

$$\int_{H} f dA = 0$$

for any standard hemisphere H of (S^2, g_o) .

COROLLARY. Every hemispherically zero function on (S^2, g_o) is an even function on (S^2, g_o) .

REMARK. R. Michel has obtained the following result which is equivalent to this corollary:

THEOREM (R. Michel [4]). Let ω be a 1-form on the 2-dimensional standard real projective space $(\mathbf{R}P^2, \, \widehat{g}_o)$. If the integral of ω on any closed geodesic of $(\mathbf{R}P^2, \, \widehat{g}_o)$ vanishes, then ω is exact.

In fact, it can be easily seen that a function on (S^2, g_o) is an odd function if and only if there exists a 1-form ω on (RP^2, \hat{g}_o) such that

$$fdA = d(p*\omega)$$
,

where p is the canonical projection of (S^2, g_o) onto (RP^2, \widehat{g}_o) . Furthermore we have

$$\int_{H}fdA=\int_{H}d\left(p\ast \omega \right) =\int_{\partial H}p\ast \omega =2\int_{p\left(\partial H\right) }\omega$$

for any standard hemisphere H of (S^2, g_o) . From these facts follows immediately the equivalence.

§ 2. The bisectability condition

In this section we discuss the bisectability condition for an $SC_{2\pi}$ -metric on S^2 . For this purpose we may only deal with an $SC_{2\pi}$ -metric g of the

following form:

$$g = e^{2\rho} g_o$$

where ρ is a certain function on S^2 .

PROPOSITION. Let $g = e^{2\rho}g_o$ be an $SC_{2\pi}$ -metric on S^2 . Then, g is a bisectable metric if and only if the following equality holds for each hemisphere H with respect to g:

$$\int_{H} (1 - e^{2\rho} + \Delta \rho) dA = 0,$$

where Δ and dA are the Laplacian and the area element of g_o respectively.

PROOF. Let K and dA_{ρ} be the Gaussian curvature and the area element with respect to $g = e^{2\rho}g_o$ respectively. A short calculation gives

$$K-e^{-2\rho}=e^{-2\rho}\Delta\rho$$
.

Since $\int_{H} K dA_{\rho} = 2\pi$ by the Gauss-Bonnet theorem, it follows that

$$2\pi - \int_{H} dA_{\rho} = \int_{H} (1 - e^{2\rho} + \Delta \rho) dA$$
.

By the Weinstein's theorem ([1] p. 59 and [5]) we know that the area of (S^2, g) is equal to 4π . Hence we obtain the proposition. Q. E. D.

§ 3. Proof of Theorem A

Now, we will prove Theorem A. Let h be an infinitesimal bisectable deformation of g_o on S^2 , that is, it is the linearization of a certain one-parameter bisectable deformation $\{g_t\}$ of g_o on S^2 . For the one-parameter deformation, we can find a smooth one-parameter family $\{\varphi_t\}$ of transformation of S^2 such that φ_0 =identity and $\varphi_t^*g_t$ is of the form:

$$\varphi_t * g_t = \exp(2\rho_t) g_o$$

where $\{\rho_t\}$ is a certain one-parameter family of functions on S^2 which satisfies $\rho_0 \equiv 0$ (see [6], the proof of lemma 1, and [7]). Then h can be written as

$$h = 2\dot{\rho}g_o - \mathcal{L}_{Y}g_o$$
,

where $\dot{\rho}$ is the derivation of ρ_t with respect to t at t=0, and Y is the infinitesimal transformation of the one-parameter family $\{\varphi_t\}$ of transformation

mations of S^2 . Since $\varphi_t^* g_t = \exp(2\rho_t) g_o$ is also a one-parameter bisectable deformation of g_o , it follows from Proposition in § 2 that

$$\int_{H_t} \{1 - \exp(2\rho_t) + \Delta \rho_t\} dA = 0$$

for each hemisphere H_t with respect to $\varphi_t^*g_t$. Notice that $1-\exp(2\rho_0)+\Delta\rho_0\equiv 0$. Differentiating this equation with respect to t at t=0, we have

$$\int_{H} (\Delta \dot{\rho} - 2\dot{\rho}) dA = 0$$

for each standard hemisphere H of (S^2, g_o) , or, in other words, $\Delta \dot{\rho} - 2\dot{\rho}$ is a hemispherically zero function on (S^2, g_o) . By Corollary in § 1 this equation implies that $\Delta \dot{\rho} - 2\dot{\rho}$ is an even function on (S^2, g_o) . On the other hand we assert that $\Delta \dot{\rho} - 2\dot{\rho}$ is an odd function on (S^2, g_o) . Indeed, $h = 2\dot{\rho}g_o$ satisfies the so-called zero energy condition (cf. [1] p. 151), because $\{g_t\}$ is a one-parameter $SC_{2\pi}$ -deformation of g_o on S^2 , that is, each g_t is an $SC_{2\pi}$ -metric on S^2 . It follows that $\dot{\rho}$ and hence $\Delta \dot{\rho} - 2\dot{\rho}$ are odd functions on (S^2, g_o) , which proves our assertion (see [1] p. 123). We have therefore shown that

$$\Delta \dot{\rho} = 2 \dot{\rho}$$
.

Hence we see that $\dot{\rho}$ is the restriction of a certain linear function on \mathbf{R}^3 to (S^2, g_o) (see [8] p. 160). As is well known, this implies that there is an infinitesimal conformal transformation X of (S^2, g_o) such that $\mathcal{L}_X g_o = 2\dot{\rho}g_o$, which proves Theorem A.

§ 4. Proof of Theorem B

In this section, we will give the proof of Theorem B, following the same reasoning as in Appendix in [3].

Let $\{h_t\}_{t\in I}$ and $\{\tilde{h}_t\}_{t\in I}$ be two one-parameter families of symmetric 2-forms on S^2 , I being an open interval containing 0. By the notation $h_t \equiv \tilde{h}_t \pmod{t^m}$ we mean that there is a one-parameter family $\{k_t\}_{t\in I}$ of symmetric 2-forms on S^2 such that

$$h_t = \tilde{h}_t + t^m k_t$$
, $t \in I$.

The same notation will be also used for one-parameter families of functions on S^2 .

LEMMA. Let $\{\overline{g}_t\}$ be a one-parameter bisectable deformation of g_o on

 S^2 . Assume that \overline{g}_t is of the following form:

$$\bar{g}_t = \exp(2\rho_t)g_o$$

where ρ_t is a certain function on S^2 . Then, there exist a series of infinitesimal conformal transformations $\{X^{(i)}\}_{i=0}^{\infty}$ of (S^2, g_o) such that for each integer $m \ge 0$

$$(*)_m \qquad \mathscr{L}_{Xt} \overline{g}_t \equiv \frac{\partial}{\partial t} \overline{g}_t \pmod{t^{m+1}},$$

where $X_t = \sum_{i=0}^m t^i X^{(i)}$.

PROOF. We will define $\{X^{(i)}\}_{i=0}^{\infty}$ inductively as follows. By the proof of Theorem A we can find an infinitesimal conformal transformation $X^{(0)}$ such that

$$\mathcal{L}_{X^{(0)}}g_o = 2\dot{\rho}g_o$$
.

This implies $(*)_0$. Now, we assume that there are infinitesimal conformal transformations $\{X^{(i)}\}_{i=0}^m$ which satisfy $(*)_m$. Let $\{\Phi_t^{(m)}\}$ be the (smooth) one-parameter family of conformal transformations of (S^2, g_o) generated by $X_t = \sum_{i=0}^m t^i X^{(i)}$, that is, $\Phi_0^{(m)} = \text{identity}$ and

$$\frac{\partial}{\partial t} \Phi_t^{(m)}(q) = X_t(\Phi_t^{(m)}(q)) \qquad \text{for } q \in S^2.$$

We define a Riemannian metric $\bar{g}_t^{(m)}$ on S^2 by $\bar{g}_t = (\Phi_t^{(m)}) * \bar{g}_t^{(m)}$. Since $\Phi_t^{(m)}$ is a conformal transformation, $\bar{g}_t^{(m)}$ can be also written as

$$\bar{g}_t^{(m)} = \exp(2\rho_t^{(m)})g_o$$
,

where $\rho_t^{(m)}$ is a certain function on S^2 . Now, we have

$$\mathcal{L}_{X_t} \bar{g}_t + (\Phi_t^{(m)}) * \left(\frac{\partial}{\partial t} \bar{g}_t^{(m)} \right) = \frac{\partial}{\partial t} \bar{g}_t.$$

It follows from $(*)_m$ that

$$\frac{\partial}{\partial t} \bar{g}_t^{(m)} \equiv 0 \pmod{t^{m+1}}$$
,

which implies

$$\partial^{j} \rho^{(m)} = \frac{\partial^{j}}{\partial t^{j}} \rho_{t}^{(m)}|_{t=0} = 0 \qquad \text{for } j=1, \dots, m+1.$$

Since $\{\bar{g}_t^{(m)}\}$ is a one-parameter bisectable deformation of g_o on S^2 , it follows from Proposition in § 2 that

$$\int_{H} \{ \Delta (\partial^{m+2} \rho^{(m)}) - 2 \partial^{m+2} \rho^{(m)} \} dA = 0$$

for each standard hemisphere H of (S^2, g_o) . Furthermore we can easily verify that $\partial^{m+2}\rho^{(m)}$ is an odd function on (S^2, g_o) . Hence, in the same way as in § 3, we know that

$$\Delta(\partial^{m+2}\rho^{(m)})=2\partial^{m+2}\rho^{(m)},$$

which implies that there exists an infinitesimal conformal transformation $X^{(m+1)}$ such that

$$\mathcal{L}_{X^{(m+1)}}g_o = \frac{2\partial^{m+2}\rho^{(m)}}{(m+1)!}g_o.$$

Therefore, putting $Y_t = X_t + t^{m+1}X^{(m+1)}$, we have

$$\mathcal{L}_{Y_t} \bar{g}_t \equiv \frac{\partial}{\partial t} \bar{g}_t \pmod{t^{m+2}}.$$
 Q. E. D.

We are now in a position to prove Theorem B. We know that there is a smooth one-parameter family $\{\varphi_t\}_{t\in I}$ of transformations of S^2 such that φ_0 =identity and $\varphi_t^*g_t$ is of the form:

$$\varphi_t^* g_t = \exp(2\rho_t) g_o$$
,

where ρ_t is a certain function on S^2 . We put $\overline{g}_t = \varphi_t^* g_t$, and apply Lemma together with its proof to the one-parameter bisectable deformation $\{\overline{g}_t\}$ of g_o on S^2 . For each m let $\Phi_t^{(m)}$ and $\overline{g}_t^{(m)}$ be as in the proof of Lemma, and let $\overline{K}_t^{(m)}$ and K_t be the Gaussian curvature of $\overline{g}_t^{(m)}$ and g_t respectively. Now, we have

$$\frac{\partial}{\partial t} \bar{g}_{t}^{(m)} \equiv 0 \pmod{t^{m+1}} \qquad \text{for each } m,$$

which means that

$$\bar{g}_t^{(m)} \equiv g_o \pmod{t^{m+2}}$$
 for each m .

Therefore we obtain

$$\overline{K}_{t}^{(m)} \equiv K_{0}(=1) \pmod{t^{m+2}}$$
 for each m .

Since $K_t = (\Phi_t^{(m)} \circ \varphi_t^{-1}) * \overline{K}_t^{(m)}$, it follows that

258 M. Igarashi

$$K_t \equiv K_0 \pmod{t^{m+2}}$$
 for each m .

Since g_t and hence K_t depend real analytically on the parameter t, we have thus seen that

$$K_t = K_0 = 1$$
 for any $t \in I$.

By a standard method we can therefore construct a one-parameter family $\{\Psi_t\}_{t\in I}$ of transformations of S^2 such that Ψ_0 =identity and $g_t = \Psi_t * g_o$, which completes the proof of Theorem B.

References

- [1] A. BESSE, Manifolds all of whose Geodesics are Closed, Springer, Berlin-Heidelberg-New York, 1978.
- [2] V. GUILLEMIN, The Radon transform on Zoll surfaces, Adv. in Math., 22 (1976), 85-119.
- [3] K. KIYOHARA, On the infinitesimal Blaschke conjecture, Hokkaido Math. J., 10 (1981), 124-142.
- [4] R. MICHCEL, Sur quelques problèmes de Géométre Globale des Géodésiques, Bol. Soc. Brasil. Mat., 9 No. 2 (1978), 19-38.
- [5] A. WEINSTEIN, On the volume of manifolds all of whose geodesics are closed, J. Diff. Geom., 9 (1974), 513-517.
- [6] A. FRÖLICHER and A. NIJENHUIS, A theorem on stability of complex structures, Proc. Nat. Acad. Sci., U. S. A., 43 (1957), 239-241.
- [7] K. KODAIRA and D. C. SPENCER, On deformations of complex analytic structures, III. Stability theorems for complex structures, Ann. of Math., 71 (1960), 43-76.
- [8] M. BERGER, P. GAUDUCHON and E. MAZET, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194, Springer, Berlin-Heidelberg-New York, 1967.

Department of Mathematics Hokkaido University Sapporo 060, Japan

Added in Proof

For the latter half of the proof of Theorem C' in § 1, more precisely, the part which followed after the sentence "Now, we take......", a simpler and more elegant method was suggested by the referee of this paper. He proposed to use a linear function $x \longrightarrow \langle v, x \rangle$ on \mathbb{R}^3 , where $\langle \bullet, \bullet \rangle$ is the canonical inner product in \mathbb{R}^3 and v is an arbitrary element of \mathbb{R}^3 . Since $x \longrightarrow \langle v, x \rangle f(x)$ is an even function on (S^2, g_o) , $\int_0^{2\pi} f(c(s)) \langle v, c(s) \rangle ds = 0$ implies $f(x) \equiv 0$ from the Theorem 4.53 in [1], where c(s) is an arbitrary great circle parametrized by the arc-length s. We are grateful to the referee for this comment.