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Introduction

We mean by a generalized foliation, a foliation with singular leaves in
the sense of P. Stefan [St] and P. Dazord [D], and in the present paper
we establish a notion of a holonomy groupoid of this generalized foliation.
In order to keep similarities to the case of regular foliations, we set a
limitation on singular leaves, however our result is applicable to some
foliations of Poisson structures and to some foliations which are not
locally simple (cf. [E]). In many cases, we call a generalized foliation
simply a foliation.

According to [D], along a leaf F of a foliation \mathscr{D} on a C^{\infty}-manifold
M there is a unique germ \Delta_{F} of transverse structure. A singular leaf F is
called tractable if F has a saturated neighborhood N in M with following
properties:

(i) N is isomorphic to a fibre bundle over F, \pi_{F} : Narrow F having a
fibre V with a foliation \Delta_{V} which is a representative of \Delta_{F} .

(ii) The structural group of the bundle is the group of isomorphisms
of \Delta_{V} and the foliation of N determined by a local product of the
one leaf foliation of F and \Delta_{V} is the restriction \mathscr{D}_{N} of \mathscr{D} to N .

We will show that if all singular leaf of \mathscr{D} is tractable, then an (alge-
braic) holonomy groupoid G(\mathscr{D}) of D is defined and we have

THEOREM 2. 2 If each singular leaf of \mathscr{D} is tractable, then G(\mathscr{D}) is
a topological groupoid.

The part of G(\mathscr{D}) outside singular leaves is a (non-Hausdorff) C^{\infty} -

manifold by the usual theory of regular foliations (see, e. g., [P], [Wi]),

but G(\mathscr{D}) itself is not a manifold in general. We take examples of the
foliations from those of symplectic leaves of Poisson structures and from
some constructions of fibre bundles. In his construction of a singular
foliation C^{*} -algebra, A. Sheu [Sh] uses the notion of holonomy of a
locally simple foliation due to C. Ehresmann [E], but there are some
foliations which are not locally simple. Our definition of holonomy can be
applied to these.

In Section 1, we explain properties of a (generalized) foliation \mathscr{D} . In
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Section 2, we construct the holonomy groupoid G(\mathscr{D}) of \mathscr{D} and prove
THEOREM 2. 2. In Section 3, we show examples of holonomy groupoids
from Poisson structures. The last section is devoted to constructing
examples of holonomy groupoids for generalized foliations with nontrivial
holonomy maps.

The author thanks Prof. A. Weinstein for his valuable comments on
the definition of holonomy and examples, and also thanks Prof. A. Sheu
for conversations on the singularities of a foliation.

1. Generalized foliations

Here we review basic facts about foliations with singularities from P.
Dazord’s work [D]. Let M be a paracompact Hausdorff C^{\infty}

-manifold and
T_{x}M the tangent space of M at a point x\in M . Let C^{\infty}(M) be the algebra
of real valued C^{\infty}-functions on M .

A distribution D of tangent subspaces of M is a collection of sub-
space :

D=\{D_{x}\subset T_{x}M|x\in M\} .

Let \rho(x) denote the dimension of D_{x} and C^{\infty}(D) denote the C^{\infty}(M) -

module of C^{\infty}-vector fields on M , the value of which belongs to D_{x} for
each x\in M.

D is called a C^{\infty} -distribution, if for each x\in M one can find a finite
number of elements of C^{\infty}(D) ,

X_{1},
\ldots . X_{k}

such that D_{x} is generated by \{X_{i}(x)|1\leqq i\leqq k\} where k=k(x) depends on x
(equivalently, each element of \mathscr{D} is a value of a local section). An inte-
gral manifold F of D is a connected immersed submanifold of M such
that for each x\in F,

T_{x}F=D_{x} .

A C^{\infty} -foliation of M (in a generalized sense) is a C^{\infty} distribution \mathscr{D} on M
with the condition that for each point x\in M , there exists an integral mani-
fold through x .

If f : Marrow N is a diffeomorphism of C^{\infty} manifold M and N , and X a
C^{\infty}-vector field on N. then a C^{\infty}-vector field f_{*}X on M is defined by

(f_{*}X)(y)=f_{*}(X(f^{-1}(y))) y\in N.

The integrability conditions are stated as follows in the formulation by P.
Dazord [D].
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THEOREM 1. 1 [Sus], [D]. Let D be a C^{\infty} -distrubution on a mani-
fold M. The following properties are equivalent.

(i) For each point x\in M, there exists an integral manifold through
x.

(ii) For each point x\in M, there exists a unique maximal integral
manifold through x.

(iii) D is invariant by the flow of each vector field of C^{\infty}(D) .
(iv) There is a Lie subalgebra \mathscr{H} contained in the Lie algebra of

C^{\infty} -vector fields of M such that
a) at each point x, D_{x} is equal to the values at x of the fields in

\mathscr{H} .
b) for each X\in \mathscr{H} with a flow germ \varphi_{t} and for each Y\in \mathscr{H},

(_{\varphi_{t}})_{*}Y is a germ of vector field of \mathscr{H} .

Let \mathscr{D} be a C^{\infty}-foliation of M . By THEOREM 1. 1, (ii), for each point
x\in M , there exists a unique maximal integral manifold through x, which
we call a leaf of \mathscr{D} . Local structures of \mathscr{D} are examined on the basis of
THEOREM 1. 1.

THEOREM 1. 2 [D]. For every point m of M with a C^{\infty} foliation \mathscr{D} ,

there is an open neighborhood U of x and a local coordinate map \psi :
Uarrow^{\cong}W\cross V as follows: W and V are neighborhoods of origins in \bm{R}^{p}

and \bm{R}^{q} respectively for
p=\rho(m) , p+q=\dim M,

a^{1}r_{\iota}d\psi carries the foliation induced on U to the product foliation,
\bm{R}^{p}\cross\Delta_{V},

where \Delta_{V} is a foliation on V with a point leaf at the origin of \bm{R}^{q} and \bm{R}^{p}

is the one leaf foliation.
PROOF: From the condition of THEOREM 1. 1 (iv), a) it follows

that if \rho(m)=p>0 , there exist pC^{\infty}-vector fields,

\{X_{i}|1\leq i\leq p\} ,

belonging to \mathscr{H} such that X_{1}(m),
\ldots,

X_{p}(m) form a base of D_{m} . Let V_{0} be
a submanifold of M through m such that

D_{m}\oplus T_{m}V_{0}\cong T_{m}M.

Let W denote a neighborhood of the origin O in \bm{R}^{p} , V a neighbor-
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hood of m in V_{0} and \psi a map,
\psi:W\cross Varrow M ,

defined by

\psi(x, y)=\psi_{Xp}^{(p)}\circ\cdots\circ\psi_{x_{1}}^{(1)}(y) ,

where \psi_{x_{i}}^{(i)} is the flow of X_{i} for the parameter x_{i}, x= (x_{1},\ldots, x_{p})\in W and
y\in V Since the differential map of \psi at (0, m) is an isomorphism, one
can assume by restricting eventually W and V that \psi is a
diffeomorphism,

\psi
:W\cross Varrow^{\cong}U\subset M ,

where U is an open set of M containing m .
Let \mathscr{D}_{U} denote the restriction of \mathscr{D} to U and \tilde{\mathscr{D}}_{U} the foliation \psi^{*}\mathscr{D}_{U} ,

that is, the pullback of \mathscr{D}_{U} by \psi . The vector fields \partial/\partial x_{i} , 1\leqq i\leqq p are
C^{\infty}-vector fields of \tilde{\mathscr{D}}_{U} which are invariant by the translation parallel to
W. Thus we have,

\tilde{\mathscr{D}}_{U}(x, y)=\bm{R}^{p}\cross\Delta(y) ,

where \Delta is a distribution on V which admits an integral manifold through
any point of V. Obviously \Delta is generated by \pi_{*}X(0, y) where X are
C^{\infty}-vector fields of \tilde{\mathscr{D}}_{U} and \pi:W\cross Varrow V is the projection. By THEOREM
1. 1, ( i ), \Delta is C^{\infty} foliation on V.q. e. d.

We call U a foliation coordinate neighborhood and \psi a local foliation
coordinate system (or chart). Also we call a leaf of \mathscr{D}_{U} a plaque. Folia-
tion coordinate neighborhoods of a point form a fundamental system of
neighborhoods. \mathscr{D}_{U} is the pullback of \Delta_{V} by the submersion \pi_{U}=\pi\cdot\psi:U

arrow V.
In general, plaques other than the leaf of m are not (locally closed)

submanifolds of M . This is a difference from the regular case. From
THEOREM 1. 2, it follows that each plaque of U is diffeomorphic to the
product of the plaque of m and a leaf of \Delta_{V} . In particular, \rho=\dim \mathscr{D} is
lower semi-continuous.

Let M’ be an immersed submanifold of M transverse to the foliation
\mathscr{D} and U an open foliation coordinate neighborhood of m\in M’ The sub-
mersion \pi_{U} : Uarrow V associated with a local foliation chart \psi induces a
submersion \pi_{U}’ of the neighborhood M_{U}’=U\cap M’ of m in V and the restric-
tion \mathscr{D}|M_{U}’ is the pullback \pi_{U}^{\prime*}\Delta_{V} . This shows from the definition of folia-
tion that the restriction \mathscr{D}_{M’} is a foliation.
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COROLLARY 1. 3 [D]. Let M_{1} and M_{2} be two submanifolds of M
passing through m and being transverse to \mathscr{D} at m. If we have

\dim M_{2}=\dim M_{1}+r (r\geq 0) ,

then the foliation \mathscr{D}_{M_{2}} of M_{2} is locally isomorphic, on a neighborhood of m,

to the product foliation \bm{R}^{r}\cross \mathscr{D}_{M_{1}} of \bm{R}^{r}\cross M_{1} .

PROOF: Let \pi_{U}^{(i)} : U\cap M_{i}arrow V denote the submersion induced by \pi_{U} :
Uarrow V. Then we have obviously

(\pi_{U}^{(2)})^{-1}V\cong \bm{R}^{r}\cross(\pi_{U}^{(1)})^{-1}V .

and as in the above argument, \mathscr{D}_{M_{i}} is locally a pullback \pi_{U}^{(i)*}\Delta_{V} . q. e. d.
In particular, if r=0, then \mathscr{D}_{M_{1}} and \mathscr{D}_{M_{2}} are locally isomorphic. If

M’ is the image of V in the local foliation chart \psi , then \mathscr{D}_{M’} is isomor-
phic to \Delta_{V} . This yields that the germ at the origin O in \bm{R}^{q} , defined by \Delta_{V}

depends, up to a diffeomorphism, on the point m and it is called the germ
of transverse structure of \mathscr{D} at m. If \rho(m)=0 , then \Delta_{V} defines just the
germ of \mathscr{D} at m.

2. Holonomy groupoids

Let M be a manifold with a C^{\infty}
- foliation \mathscr{D} . Since every point of the

leaf F of m\in M is attained starting from m by a product of flows tangent
to \mathscr{D} , germs of transverse structures at all points of F are isomorphic,
and therefore there is a unique germ \Delta_{F} of transverse structure. It is
called the germ of transverse structure of the leaf F.

A leaf F is called regular if its germ of transverse structure is trivial,
and it is called singular otherwise. A leaf is regular if and only if it has
a neighborhood on which \mathscr{D} induces a regular foliation, or equivalently, \rho

is constant. A point is called regular if it belongs to a regular leaf. We
say that a singular leaf F is tractable if F has a saturated neighborhood
N in M with following properties:
(i) N is isomorphic to a fibre bundle over F , \pi_{F} : Narrow F having a

fibre V with a foliation \Delta_{V} which is a representative of \Delta_{F} .
(ii) The structural group of the bundle is the group of isomorphisms

of \Delta_{V} and the foliation of N determined by a local product of one
leaf foliation of F and \Delta_{V} is the restriction \mathscr{D}_{N} of \mathscr{D} to N.

In the following, we consider a foliation \mathscr{D} whose singular leaves are all
tractable.

EXAMPLE 2. 1: We mention some simple examples of foliations with
tractable singular leaves.
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(1) Let \bm{R}^{p} denote a p -dimensional coordinate space. The set of all
concentric spheres S_{r}^{p-1} with radii r around the origin O makes a folia-
tion. Its only singular leaf is the origin, which is obviously tractable.
We denote this foliation by \mathscr{L} .

(2) We denote the one leaf foliation of \bm{R}^{q} by the same symbol and
the point foliation of \bm{R}^{k} by \{\bm{R}^{k}\} . The product foliation \mathscr{L}\cross \bm{R}^{q}\cross\{\bm{R}^{k}\} has
the set of singular leaves \{O\}\cross \bm{R}^{q}\cross\{\bm{R}^{k}\} .

A tractable singular leaf F of a foliation \mathscr{D} has a saturated neighbor-
hood which is isomorphic to a bundle with a fibre which is a foliated
manifold V. We take the associated V/\Delta_{V}-bundle. Then any continuous
curve of F obviously determines an isomorphism from the leaf space of
the source point to that of the target point. Hence one can define the
holonomy map with respect to the germ of V/\Delta_{V} , associated with a curve
on F by that isomorphism. By the elementary theory of fibre bundles this
map is determined up to homotopy of the curves fixing end points. Under
the assumption that each singular leaf of C^{\infty}-foliation \mathscr{D} is tractable, one
can construct a holonomy groupoid G(\mathscr{D}) by quite a similar way to the
regular case.

For a leaf L of \mathscr{D} , let
\lambda : [0, 1]arrow L

be a continuous curve with end points \lambda(0)=x and \lambda (1)=y. Let V_{m}

denote a sufficiently small manifold of dimension dim M-dim L trans-
verse to L at m\in L and H_{x,y}^{\lambda} : V_{X}/\Delta_{V_{X}}arrow V_{\mathcal{Y}}/\Delta_{Vy} the holonomy map germ
associated with \lambda , which depends only on the homotopy class \overline{\lambda} relative to
{0, 1}.

Let \mu : [0, 1]arrow L be another curve with \mu(0)=x and \mu(1)=y , and \mu^{-1}

its inverse curve. We define a relation \lambda\sim\mu by the equation,

H_{x,x}^{\lambda\cdot\mu-1}=id.

This is an equivalence relation; the equivalence class of \lambda is denoted by
[\lambda] .

Let G(\mathscr{D}) be the set of triples,

g=(x, y, [\lambda]) ,

where x, y\in L, L is a leaf of \mathscr{D} , and \lambda : [0, 1]arrow L is a continuous curve
with \lambda(0)=x and \lambda(1)=y . The maps s, r:G(\mathscr{D}) \rightarrow M are defined by

s((x, y, [\lambda]))=x, r((x, y, [\lambda]))=y
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and are called source and target map respectively. G(\mathscr{D}) is a groupoid
over M by the usual composition and inverse operations obtained from
those of curves :

(y, z, [\lambda_{1}])\cdot(x, y, [\lambda_{2}])=(x, z, [\lambda_{1}\cdot\lambda_{2}])) ,
(x, y, [\lambda])^{-1}=(y, x, [\lambda^{-1}])) ,

where \lambda^{-1} is the inverse curve of \lambda .
We will introduce a topology in G(\mathscr{D}) by defining fundamental sys-

tems of neighborhoods of points. For a point belonging to a regular leaf,
its neighborhoods are the same as in the case of a regular foliation: For
g=(x, y, [\lambda]) , there exists a sequence of foliation coordinate neighbor-
hoods \{ U_{i}|0\leq i\leq k\} and a partition of [0, 1] , 0=t_{0}<\cdots<t_{k+1}=1 such that if
U_{i}\cap U_{j}\neq\phi then U_{i}\cup U_{j} is contained in a foliation coordinate neighborhood
and \lambda([t_{i}, t_{i+1}])\subset U_{i} for all 0\leq i<k+1 . We call the sequence \{ U_{i}|0\leqq i\leq k\}

a chain subordinated to \lambda . A neighborhood of g is the set U_{g,\lambda} of (x’,y’,
[\nu]) such that x’\in U_{0} , y’\in U_{k} and \{ U_{i}|0\leq i\leq k\} is a chain subordinated to
\nu .

Let a=(u, v, [\lambda]) be a point of G(\mathscr{D}) such that \lambda([0,1]) is
contained in a singular leaf F , which is, of course, tractable by our
assumption. Let \{U_{i}’|0\leq i\leq k\} be a sequence of open sets in F , which is a
chain subordinated to \lambda for one leaf foliation. Let \Delta_{V} be a representative
of \Delta_{F} in a transverse submanifold V of dimension, dim M-dim F in M .
We note that \pi_{F}^{-1}( U_{i}’)\cong U_{i}’\cross V and the sequence \{\pi_{F}^{-1}( U_{i}’)|0\leq i\leq k\} is a
chain subordinated to \lambda for \mathscr{D} in a generalized sense. We define a neigh-
borhood of a in G(\mathscr{D}) by the set U_{a,\lambda} of (u’. v’-[\nu]) such that u’\in

\pi_{F}^{-1}( U_{0}’) , v’\in\pi_{F}^{-1}( U_{k}’) and \{\pi_{F}^{-1}( U_{i}’)|0\leq i\leq k\} is a chain subordinated to \nu .

THEOREM 2. 2 If \mathscr{D} is a C^{\infty} -foliation of M and each singular leaf
of \mathscr{D} is tractable, then G(\mathscr{D}) is a topological groupoid.

PROOF: For a regular leaf, holonomy maps are defined without any
restriction to them, but for a singular leaf, holonomy maps are not defined
in general. In fact, we can not define a notion of germs of leaf spaces of
transverse structures in a usual way for points of a singular leaf of a folia-
tion which is not locally simple (see EXAMPLE 4. 1). For a tractable sin-
gular leaf F. there is a neighborhood N of F, isomorphic to a bundle
with a fibre V which has a saturated foliation \Delta_{V} . The germ of a leaf
space of the transverse structure \Delta_{F} is defined to be the germ of V/\Delta_{V} and
holonomy maps for F are defined by the flat structure of the associated
V/\Delta_{V} -bundle.

Let U_{a_{1},\lambda_{1}} and U_{a_{2},\lambda_{2}} be neighborhoods of a_{1}=(u_{1}, v_{1}, [\lambda_{1}]) and a_{2}=(u_{2},
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v_{2},
[\lambda_{2}]) in G(\mathscr{D}) . Let \{ U_{1,i}|0\leq i\leq h\} and \{ U_{2,i}|0\leq i\leq h\} be chains subor-

dinated to \lambda_{1} and \lambda_{2} in the definitions of U_{a_{1},\lambda_{1}} and U_{a_{2},\lambda_{2}} respectively. If
b=(x, y, [\mu]) is a point of U_{a_{1},\lambda_{1}}\cap U_{a_{2},\lambda_{2}} , one can define a chain \{ W_{i}|0\leq i\leq

k\} subordinated to \mu such that W_{i} is an open set of M contained in some
U_{1,j_{1}} and in some U_{2,j_{2}} .

The neighborhood U_{b,\lambda} of b obtained from the chain \{ W_{i}|0\leq i\leq h\}is
contained in U_{a_{1},\lambda_{1}} and U_{a_{2},\lambda_{2}} . Thus the family \mathscr{D}=\{U_{a,\lambda}\} satisfies condi-
tions of a fundamental system of neighborhoods and defines a topology of
G(\mathscr{D}) .

It is obvious that the source and target maps r, s:G(\mathscr{D})arrow M=G^{0}(\mathscr{D})

are continuous with respect to this topology of G(\mathscr{D}) . The continuity of
the groupoid multiplication map,

G^{(2)}(\mathscr{D})=\{(a_{1}, a_{2})\in G(\mathscr{D})\cross G(\mathscr{D})|r(a_{1})=s(a_{2})\}arrow G(\mathscr{D})

defined by (a_{1}, a_{2})\mapsto a_{1}\cdot a_{2} follows from the construction of a chain of coor-
dinate neighborhoods subordinated to a composite curves. The continuity
of the map to the inverse element,

G(\mathscr{D})arrow G(\mathscr{D}) , a\mapsto a^{-1}

is checked more easily. q. e. d.

3. Examples from Poisson structures

Important examples of generalized foliations are those of symplectic
leaves in Poisson manifolds. Let M be a C^{\infty}

- manifold and C^{\infty}(M) an
algebra of real valued C^{\infty}-function on M. A Poisson structure on M is
defined as a Lie algebra structure \{,\} on C^{\infty}(M) satisfying the Leibnitz
identity,

\{fg, h\}=f\{g, h\}+\{f, h\}g .

The manifold M equipped with such a structure is called a Poisson mani-
fold.

For f, g\in C^{\infty}(M, \bm{R}) , we have

\{f, g\}=\Lambda(df, dg) ,

where \Lambda is the Poisson tensor field. Let T^{*}M denote the cotangent bun-
dle of M. For x\in M and \alpha\in T_{x}^{*}M , we define \#\alpha\in T_{x}M by the relation,

<\beta, \#\alpha>=\Lambda_{X}(\alpha, \beta)

for all \beta\in T_{x}^{*}M. This correspondence determines a vector bundle mor-
phism,
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\#:T^{*}Marrow TM.

The subset D=\#(T^{*}M) is a C^{\infty}-distribution and according to A. Kirillov
[K1], D defines a C^{\infty} foliation \mathscr{D} and each leaf of \mathscr{D} with its Poisson
structure is a symplectic immersed submanifold. (See, e. g., C. M. Marle
[M].)

Let G be a Lie group with Lie algebra \mathfrak{g} and \mathfrak{g}^{*} the dual of \mathfrak{g} . For f, g
\in C^{\infty}(\mathfrak{g}^{*}, \bm{R}) , we set

\{f, g\}(x)=<x, [df(x), dg(x)]> .

This gives a Poisson structure on \mathfrak{g}^{*} , which was defined by S. Lie and F.
A. Berezin. Each leaf of the C^{\infty}-foliation of \mathfrak{g}^{*} associated with this Pois-
son structure is a coadjoint orbit of G. (See, e. g., [K2], [Ko], [M] and
[So].)

We will examine our holonomy groupoids of foliations of \mathfrak{g}^{*} by coad-
joint orbits of G for some Lie groups mentioned in A. Weinstein [We].

It is noted that the holonomy groupoid of the foliation outside singular
leaves is a (non-Hausdorff) manifold.

Let \{X_{i}|1\leq i\leq n\} be a basis of \mathfrak{g} with n=\dim \mathfrak{g} and x_{1},\ldots, x_{n} the li-
near functions corresponding to these basis elements.

EXAMPLE 3. 1: G=SO(3) . One can take a basis \{X_{1}, X_{2}, X_{3}\} of the
Lie algebra \mathfrak{g}=\mathfrak{s}0(3) such that Poisson brackets of x_{i} are given by

\{x_{1}, x_{2}\}=x_{3} , \{x_{2}, x_{3}\}=x_{1} , \{x_{3}, x_{1}\}=x_{2} .

The manifold M is \mathfrak{s}0(3)^{*}\cong \bm{R}^{3} . Leaves of \mathscr{D} are coadjoint orbits of
SO (3) in \mathfrak{s}0(3)^{*} which are concentric spheres:

x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=c>0 , c\in \bm{R} .

The origin O= (0,0,0)\in \bm{R}^{3} is the only singular leaf which is obviously
tractable and all holonomy maps are trivial.

The holonomy groupoid G(\mathscr{D}) of the foliation \mathscr{D} is described as fol-
lows: The holonomy groupoid of the regular part of \mathscr{D} is

S^{2}\cross S^{2}\cross(\bm{R}_{+}\backslash \{0\})

and hence G(\mathscr{D}) is the cone over S^{2}\cross S^{2} .

C(S^{2}\cross S^{2})\cong(S^{2}\cross S^{2}\cross \bm{R}_{+})/(S^{2}\cross S^{2}\cross\{0\}) .

EXAMPLE 3. 2: SL(2, \bm{R}) . One can take a basis \{X_{1}, X_{2}, X_{3}\} of
the Lie algebra \mathfrak{g}=\mathfrak{s}\mathfrak{l}(2, \bm{R}) such that Poisson brackets of x_{i} are given by
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\{x_{1}, x_{2}\}=-x_{3} , \{x_{2}, x_{3}\}=x_{1} , \{x_{3}, x_{1}\}=x_{2} .

The manifold M is \mathfrak{s}\mathfrak{l}(2, \bm{R})^{*}\cong \bm{R}^{3} . Leaves of \mathscr{D} are coadjoint orbits of
SL(2, \bm{R}) in \mathfrak{s}\mathfrak{l}(2, \bm{R})^{*} which are the origin, one sheet hyperboloids, two
sheet hyperboloids and circular cones:

\{(0,0,0)\} ,
x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=c\neq 0 , c\in \bm{R} ,
x_{1}^{2}+x_{z}^{2}-x_{3}^{2}=0 , x_{3}\neq 0 .

The origin O=(0,0,0) is the only singular leaf, which is obviously trac-
table, and all holonomy maps are trivial.

The holonomy groupoid G(\mathscr{D}) of the foliation \mathscr{D} is described as fol-
lows: The holonomy groupoid of the regular part of \mathscr{D} is the disjoint
union with an appropriate topology,

(S^{1}\cross \bm{R}\cross S^{1}\cross \bm{R}\cross \bm{R})\cup(B^{2}\cross B^{2}\cross \bm{R}^{+})\cup(B^{2}\cross B^{2}\cross \bm{R}^{-})

\cup(S^{1}\cross \bm{R}^{+}\cross S^{1}\cross \bm{R}^{+})\cup(S^{1}\cross \bm{R}^{-}\cross S^{1}\cross \bm{R}^{-}) ,

where B^{2} is the open 2-disk and \bm{R}^{\pm}=\bm{R}_{\pm}\backslash \{0\} . The holonomy groupoid
G(\mathscr{D}) is the disjoint union with an appropriate topology,

(S^{1}\cross \bm{R}\cross S^{1}\cross \bm{R}\cross \bm{R}\bm{)}\cup(B^{2}\cross B^{2}\cross \bm{R}^{+})\cup(B^{2}\cross B^{2}\cross \bm{R}^{-})

\cup(S^{1}\cross \bm{R}^{+}\cross S^{1}\cross \bm{R}^{+})\cup(S^{1}\cross \bm{R}^{-}\cross S^{1}\cross \bm{R}^{-})\cup* ,

where * is the only element of G(\mathscr{D}) obtained from the leaf O.

4. Various examples

First of all, we mention one more example of a generalized foliation
with trivial holonomy maps, which is not locally simple.

EXAMPLE 4. 1: Let S_{\lambda,\mu} be a circle in \bm{R}^{2} :
\lambda(x_{1}^{2}+x_{2^{2}}-2x_{2})+\mu x_{2}=0

The set \{S_{\lambda,\mu}|\lambda, \mu\in \bm{R}\} defines a generalized foliation \mathscr{D} of \bm{R}^{2} with D_{0}=\{0\} .
\mathscr{D} has the only singular leaf \{O\} .

A foliation of a manifold M is locally simple by definition (see [E]),
if each point x of M has an open neighborhood V such that for the funda-
mental system of open neighborhoods U of x in V , the maps of the leaf
spaces \tilde{U} of U to the leaf space \tilde{V} of V . induced by inclusion maps, are
homeomorphisms onto open sets of \tilde{V}. In our foliation \mathscr{D} , it is obvious
that the origin O\in \bm{R}^{2}=M does not satisfy the condition of local simplic-
ity. In fact, any funndamental system of neighborhoods of O contains
open sets U, V such that U\subsetneqq V and the map \tilde{U}arrow\tilde{V} is not injective.
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The holonomy groupoid G(\mathscr{D}|_{\bm{R}^{2}\backslash \{O\}}) of the regular part of \mathscr{D} is
diffeomorphic to the manifold

((S^{1}\backslash \{q\})\cross(S^{1}\backslash \{q\})\cross(S^{1}\backslash \{q, -q\}))\cup((S^{1}\backslash \{q, -q\})

\cross(S^{1}\backslash \{q, -q\})\cross\{-q\})\subset S^{1}\cross S^{1}\cross S^{1} ,

where S^{1} is the unit circle and q=(0,1)\in S^{1} . In the quotient space Q=
(S^{1}\cross S^{1}\cross S^{1})/((S^{1}\cross S^{1}\cross\{q\})\cup(\{q\}\cross\{q\}\cross S^{1})) , we denote the point [\{q\}\cross

\{q\}\cross\{q\}]by* . Then G(\mathscr{D}) is the disjoint union
G(\mathscr{D}|_{\bm{R}^{2}\backslash \{O\}})\cup*

and * is the element represented by the point leaf \{O\} .
Examples in Section 3 obtained from foliations of coadjoint orbits of

Lie groups in the dual of its Lie algebra, have all trivial holonomy maps.
However, some generalized foliations with nontrivial holonomy maps are
constructed as follows:

EXAMPLE 4. 2: Let \mathscr{D} be the foliation of EXAMPLE 3. 2 and E an
\bm{R}^{3}-bundle associated with the nontrivial \bm{Z}_{2} -bundle over S^{1}

, where the
nontrivial element of \bm{Z}_{2} acts on \bm{R}^{3} as a symmetry with respect to x_{1}x_{2} -

plane. Let \mathscr{D}_{E} denote the foliation of E obtained from \mathscr{D} by taking a
local product with \bm{R} . The zero-section F\cong S^{1} of E is a singular leaf.
The associated \bm{R}^{3}/\mathscr{D} -bundle over F is flat, that is, it has the discrete
structural group \bm{Z}_{2} and hence the holonomy group of F is \bm{Z}_{2} from the
definition of holonomy maps in Section 2. Thus F has a nontrivial
holonomy map.

Let \alpha , \beta be generators of the first and the second factor of \bm{Z}^{2}\cong

\pi_{1}(S^{1}\cross S^{1}) . We define a homomorphism h:\pi_{1}(S^{1}\cross S^{1})arrow \bm{Z}_{2} by

h(\alpha)=h(\beta)=1\in \bm{Z}_{2}

Let K be the set of continuous curves \gamma:[0,1]arrow S^{1} and \overline{K} the space of
equivalence classes in K by the holonomy of curves, fixing end points. \overline{K}

is regarded as the quotient space of \bm{R}^{2} by the h^{-1}(0) -action, which is
diffeomorphic to a torus. Since \bm{Z}_{2} is a group of diffeomorphisms of \bm{R}^{3}

preserving the foliation \mathscr{D} , it acts on the manifold G(\mathscr{D}|_{\bm{R}^{3}\backslash \{O\}}) and hence
\pi_{1}(S^{1}\cross S^{1})\cong \bm{Z}^{2} acts on G(\mathscr{D}|_{\bm{R}^{3}\backslash \{O\}}) through the homomorphism h. The
holonomy groupoid of the regular part \mathscr{D}|_{E\backslash F} is the bundle associated with
the covering map \bm{R}^{2}arrow \bm{R}^{2}/h^{-1}(0)\cong\overline{K} :

G(\mathscr{D}|_{E\backslash F})=G(\mathscr{D}|_{\bm{R}^{3}\backslash \{0\}})\cross_{h^{-1}(0)}\bm{R}^{2}

\cong G(\mathscr{D}|_{\bm{R}^{3}\backslash \{0\}})\cross\overline{K}.
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The holonomy groupoid G(\mathscr{D}_{E}) is of the form of disjoint union
G(\mathscr{D}|_{E\backslash F})\cup\overline{K}

which is homeomorphic to G(\mathscr{D})\cross\overline{K}.
A similar construction is made with the foliation \mathscr{D} of EXAMPLE 3. 1

and a holonomy groupoid of a locally nonsimple foliation is obtained.

EXAMPLE 4. 3: Let \mathscr{D} be the same foliations of \bm{R}^{3} as in EXAMPLE 3. 1

and 3. 2. We define a C^{\infty} -diffeomorphism f : \bm{R}^{3}arrow \bm{R}^{3}\cong by

f(x_{1}, x_{2}, x_{3})=e(x_{1}, x_{2}, x_{3}) .

where e>1 . We identify points of \bm{R}^{3}\cross\{0\} in \bm{R}^{3}\cross[0,1] to points of \bm{R}^{3}\cross

\{1\} by the diffeomorphism

(x_{1}, x_{2}, x_{3}, 0)\mapsto(f(x_{1}, x_{2}, x_{3}), 1) .

Since f preserves the foliation \mathscr{D} , one obtains a foliation \mathscr{D}_{S} on S=
\bm{R}^{3}\cross S^{1} from \mathscr{D} by taking a local product with the one leaf foliation of \bm{R} .
The identification image F_{S} of \{O\}\cross[0,1] is the only singular leaf of \mathscr{D}s .
The associated \bm{R}^{\bm{3}}/\mathscr{D} -bundle over F_{S} is flat and its holonomy group is \bm{Z}

which is again nontrivial.
We define a homomorphism h_{S} : \pi_{1}(S^{1}\cross S^{1})arrow Z by

h_{S}(\alpha)=-h_{S}(\beta)=1\in \bm{Z}

and an equivalence relation in K by making use of h_{S} in a similar way to
that of EXAMPLE 4. 2. We denote the resulting quotient space by \overline{K}_{S}

which is diffeomorphic to an open cylinder.
Since \bm{Z} is a group of diffeomorphisms of \bm{R}^{3} preserving the foliation

\mathscr{D} , it acts on the manifold G(\mathscr{D}|_{\bm{R}^{3}\backslash \{O\}}) and hence \pi_{1}(S_{1}\cross S_{1})\cong \bm{Z}^{2} acts on
G(\mathscr{D}|_{\bm{R}^{3}\backslash \{O\}}) through the homomorphism h_{S} , the holonomy groupoid of the
regular part \mathscr{D}|_{s\backslash Fs} is the bundle associated with the covering map \bm{R}^{2}arrow

\bm{R}^{2}/h_{S}^{1}(0)\cong\overline{K}_{S} :
G(\mathscr{D}_{S}|_{S\backslash Fs})=G(\mathscr{D}|_{\bm{R}^{3}\backslash \{O\}})\cross_{h_{S}^{-1}(0)}\bm{R}^{2}

\cong G(\mathscr{D}|_{\bm{R}^{3}\backslash \{O\}})\cross\overline{K}_{S} .

The holonomy groupoid G(\mathscr{D}_{S}) is of the form of disjoint union
G(\mathscr{D}_{S}|_{S\backslash Fs})\cup\overline{K}_{S}

which is homeomorphic to G(\mathscr{D})\cross\overline{K}_{S} .
A similar construction is made with the foliation \mathscr{D} of EXAMPLE 4. 1
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and a holonomy groupoid of locally non-simple foliation is obtained.
References

[D]. P. DAZORD, Feuilletages \‘a singularit\’es, Proc. Koninklijke Nederlandse Akademie van
Wetenschappen Ser. A 88(1) (1985), 21-39.

[E]. C. EHRESMANN, Structures feuillet\’ees, Proc. 5 th Canad. Math. Congress (1961), 109-
172.

[K1]. A. KIRILLOV, Local Lie algebras, Russian Math. Surveys 31 (1976), 55-57.
[K2]. A. KIRILLOV, “El\’ements de la th\’eorie des repr\’esentations,’’ Editions Mir, Moscou,

1974.
[Ko]. B. KOSTANT, Quantization and unitary representations, I : Prequantization, in C. T.

Taam (ed.), Lectures in modern analysis and applications III, Lecture Notes in
Mathematics 170 Springer-Verlag, Berlin (1970), 87-208.

[M]. C. M. MARLE, Poisson manifolds in mechanics, Bifurcation theory, Mechanics and
Physics (C. P. Bruter, A. Arognol and A. Lichnerowicz ed.) D. Reidel, Dordre-
cht (1983), 47-76.

[P]. J. PRADINES, Th\’eorie de Lie pour les groupoides differentiables, Relations entre pro-
priet\’es locales et globales, C. R. Acad. Sci. Paris S\’er. A-B 263 (1966), A907-
A910.

[Sh]. A. J.-L. SHEU, Singular foliation c* -algebras, Proc. Amer. Math. Soc. 104 (1988),
1197-1203.

[So]. J.-M. SOURIAU, “ Structure des Syst\‘emes dynamiques,” Dunod, Paris, 1969.
[St]. P. STEFAN, Accessibility and foliations with sidgularities, Bull. Amer. Math. Soc. 80

(1974), 1142-1145.
[Sus]. H. SUSSMANN, Orbits of families of vector fields and integrability of distributions,

Trans. Amer. Math. Soc. 180 (1973), 171-188.
[We]. A. WEINSTEIN, “The geometry of Poisson brackets,” Surveys in Geometry, Univ. of

Tokyo, 1987.
[wi]. H. E. WINKELNKEMPER, The graph of a foliation, Ann. Glob. Analysis and Geometry

1 (1983), 51-75.

Department of Mathematics
Hokkaido University
Sapporo 060, Japan


	Introduction
	THEOREM 2. ...

	1. Generalized foliations
	THEOREM 1. ...
	THEOREM 1. ...

	2. Holonomy groupoids
	THEOREM 2. ...

	3. Examples from Poisson ...
	4. Various examples
	References

