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The Bochner type curvature tensor
of contact Riemannian structure

Shukichi TANNO
(Received August 9, 1988)

§ 0. Introduction.

Let (M, 7) be a contact manifold with a contact form 7. A contact
manifold (M, 7) with a Riemannian metric g associated with 7 is called a
contact Riemannian manifold. The notion of contact Riemannian struc-
ture is wider than the notion of strongly pseudo-convex, integrable CR-
structure, because the former satisfying the integrability condition =0
(cf. (2.1)) corresponds to the latter. One of the important problems in the
study of contact manifolds (M, 7) is to find differential geometric prop-
erties which are independent of the choice of contact forms f7, f being
positive functions on M. So, we study gauge transformations of contact
Riemannian structure.

The Bochner curvature tensor of a Kaehlerian manifold is related to
the pseudo-conformal invariant of the 4-th order of nondegenerate, integra-
ble CR-structure (Chern-Moser [2], Tanaka [5], Webster [7]). Sakamoto
and Takemura [3] also discussed the curvature invariant by the method of
almost contact structure tensors (¢, & 7). In the case of contact Rieman-
nian manifolds we can also define the Bochner type curvature tensor (By)
for the subspace Px of the tangent space 7xM to M at each point x,
where Px is defined by 7=0 (cf. (5.10)). The purpose of this paper is to
prove the following. ‘

THEOREM. The Bochner type curvature temsor (B¥y) of a contact
Riemannian manifold (M, 7, 9) is invariant by gauge transformations (7-
7=o0n) of contact Riemannian structure, if and only if the CR-structure
corresponding to (n, ¢) is integrable.

After preliminaries in § 1~§4, in §5 we define (B%y) for P so that
its change by gauge transformations is natural and it has a generalized
form of the Chern-Moser-Tanaka invariant. As a matter of fact the

expression of (B%,) contains @. In some steps we follow the paper
by Sakamoto and Takemura.
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§1. Contact Riemannian manifolds.

An m-dimensional manifold M is a contact manifold if it admits a
l-form 7" such that 7’ A(dyp’)"#+0 everywhere on M, where m=2n+1.
By a function or tensor field on M we mean a smooth one. We fix a
1-form 7 among {f7’: f being positive functions on M}, which is called a
contact form associated with the contact structure. Then we have a
unique vector field € such that

77(5):1, Len=0,

where L. denotes the Lie derivation by &. It is well known that there is
a Riemannian metric g and a (1, 1)-tensor field ¢ such that

9(&, X)=n(X), 2¢(X,¢Y)=dnp(X,Y),
pp X =—X+n(X)§,

where X and Y are vector fields on M. g is called a Riemannian metric
associated with 7. The next relations follow from the above :

¢=0, 7(¢X)=0,
9(X, V)=g(¢X, ¢Y)+n(X)n(Y),
dn(X, Y)=—dn(¢X, Y).

Concerning the Riemannian connection V with respect to g, the fol-
lowing hold :

Ve77=0, V55=0, V5¢=Oy
V£ =0, V.pj=—2ny;, & Vui,=0,
Vr7]s¢{¢18‘: _'Vﬂ?i.

The last equality implies that V.7:¢] and V7,¢} are symmetric with
respect to 7z and ;. Here the indices 7,7, &, +**, 7, s run from 1 to m=2n
+1.

We define p=(p:;) by 2p:;;=V.n;+V;n;=Leg:;;, Then

Vig;=pu+ ¢y
holds. It is also verified that ¢ipl=— pié! holds.
§2. Contact Riemannian structure and CR-structure.

The notion of strongly pseudo-convex, pseudo-hermitian structure is
equivalent to the notion of contact Riemannian structure (cf. for example,
Tanaka [5], Tanno [6]). In [6] we defined a (1,2)-tensor field @ on a
contact Riemannian manifold by
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2.D Qir=V 1+ EP NV + 6V E;.

Let (M, 7, g) be a contact Riemannian manifold. We define J by J=
#| P, where P denotes the subbundle of the tangent bundle TM defined by
7=0. Then (M, 7,J) is a strongly pseudo-convex, integrable CR mani-
fold, if and only if @=0.

Generalizing the canonical affine connection (due to Tanaka [5]) on a
nondegenerate integrable CR manifold, we defined in the generalized
Tanaka connection *V on a contact Riemannian manifold (M, 7,9) by

(2.2) *To=T+7;0:—V,E Qs+ EV 7,

where T denote the coefficients of the Riemannian connection V. The
connection *V on a contact Riemannian manifold (M, 7, ¢) is a unique lin-
ear connection satisfying the following :

(i) *Vp=0, *V&E=0, *Vg=0,
(i) *T(X, Y)=dpn(X, Y)é X, YET(P),
(i) *T(& ¢Y)=—¢*T(£,Y) YEI(P) or YET(TM),
(v) *Vx¢-Y=Q(Y,X) X, YET(TM),
where T'(P) denotes the space of all sections of the bundle P.
LEMMA 2.1.  The following holds :
(2.3> *Vi¢jk+*vj¢ki+*vk¢ij=0.
PrROOF. By (2.2) we get
*Vibin=V it 0;0IV 77+ $5rV i€ .
Since Vi +Vipri+Ved;=0 and ¢iV.7, is symmetric with respect to &
and 7, we obtain (2.3).
LEMMA 2.2.  The following holds :
2.4) JPR*V pi= —*V;i.
PrROOF.  Using (2.3), we calculate the following :

¢Jr¢i(*Vr¢81 + *Vs¢rl) - ¢Z*vr¢z. ¢sl - *Vsqbf-- ¢‘Z¢rl

=PI (*Vetir +*Vidrs) + $41*V rss +*Vsr)

= ;¢?*v8¢kr - ¢;*vk¢?. ¢rs - *V7¢2' ¢{¢js - ¢‘Z*V]¢{. ¢sr

=—*Vdii—*V,Pu,

; z(*vr¢sl - *vs¢r1) = ¢;¢z*vl¢rs

=7V ipi drs
=*V.iix
=*Viji—*Vidu.
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Then adding the two results, we get (2.4).
LEMMA 2.3. @ satisfies the following :

7rQix= anr Qrk‘fr =0,
Qrk Q;r Qrsgrs_o
Q]‘S ¢s_ st ¢s_ Qrs ¢rs = 0,
e =—9"9;sQ%%,
¢Zerk =— ¢5Q;k,
PROOF. is easy. The last identity follows from (2.4).
§ 3. Gauge transformations of contact Riemannian structure.

Let (M, 7, g) be a contact Riemannian manifold and let 6=exp(2a) be
a positive function on M. Corresponding to 7=o07 we define a gauge
transformation of contact Riemannian structure by

~i(5f+§f>, = gio =i’

¢J_¢J+ ((7 _EG 5 )771 ¢JZ+ &i”j,
g~z’j:0'(gij 77,-§j 7;8)+o(a—1+¢l?) 7:,

where 0:=V.0, @;=V.¢ and ad'=a'—¢&a-£. The geometric object with
respect to 7 corresponding to the geometric object K with respect to 7 is
denoted by K. Then the inverse matrix (§’*) and ¢, are given by

B.1)  o(g*—EEN=g"—&¢,
(3.2) 2¢ij:0z’77j—0'j77z'+20'¢ij.

LEMMA 3.1.  The difference (Wi) of (Ti) and (i) is given by
(3.3)  Wi=6lar+ 8ha;+ EBu+ Cha,
where we have put

2Bj=—201—(V;8+ V&) +2(a;8u+ ;) —2Ea* gin
+ (1/2)(le| §||277k ‘*‘Vk”ﬂ‘z??j) - 2” C"z(a’ﬂ?k + akm‘)
+ 7{(Vele +Venn+Ve8n) + 0u(Veli +Vin; + VL)
+[2(1 4¢P éa— Vel EIF =Vl 1P 7578,
2C=2&"psn+2(iCk+ ¢:8)—2a g
—2(0 =1+ ¢ binn+ dims) +2a (7:6e+ 70E5)
+ 05 (V &=Vl )0+ —Enr) + 7u(V7E—V,87 (03— Ey)
+[2(1=20—(¢IP) @ — VI EIP+ Vel §17E 1 2,7
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PrROOF.  We calculate the following :
W= (VG an+Vedai—Vadn).
For example we obtain

G'V;Garn=2a;84+EV e+ (0 =1+ E|DV,E 7,
_ijigk — V&7 (87— Enr) 1
+ & =Vine—V,8—V7.8°8+(0;+ 1/ 2V E12) 7%
+(o+1¢1%) & Vinana].

Then (3.3) is verified.

LEMMA 3.2.  Bjx and Cj. are symmetric with respect to j, k and sat-
sty the following :

Bjrgr:(), Urcfrk:pjlg
=0 (and hence, Wjr=(m+1)a;).

LEMMA 3.3.  The defference (*Wi) of (*Tix) and (*Ti) is given by

3.4 W= Slan+ Sha; + Cihint @iCu+ Prli— @'gse
— 1§12 Bine+ pins) — Ea- 8inn+(E'+ EN2ama— axn;)
—Vi& = E Nl bir +(1/2) (V76— VL) (03— E'nr) 75
+ @' (7:8e+29:8) + 1/ DIVl EIPE = V7| &2
+4(1=2[¢1") @'+ 2Ven, L E +2(VE 4V L+ Ve E) i,

PROOF. First we notice the following :

3.5  20C; &7 =21~ 0)$i~ V0, E;+ E (Ve —VeLy)
VG-V =/ VL= Vel EP e n—2a'¢
—[2(6=[EP) @'+ V& + Vel + Vel ],

where we have used the following :

Ujvigrér:_ ngrvi”r. .
—— (V. +20)
=—;V&+2a'y;.

Now we calculate *W,=*I"i,—*T'% by
*Th=Th+ 7,04~ V:E at EV, 7

(*Ti, resp.) using Lemma 3.2, (3.5) and
V,E1=V,E + Wi,

etc. and obtain (3.4).
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A (local) frame {e:;}={ev=E¢, e.} is called P-related, if e.€P, 1Su=
2n. From now on, the indices «, v, w, x, v, and z run from 1 to 2#, and
the components of tensors are ones with respect to a P-related frame.

COROLLARY 3.4. *Wo=*W&=0 and

(3.6) *V?xyz Oxay+ 0yax+ § Gyt 038+ D58 — a¥gry,
B. 1) *Wh=¢Ea 65+ &Ha*—EIP 5 — ay&* — (1/2)(*V,§* —*V¥E,).

Proor. (3.6) follows from (3.4). To prove (3.7) it suffices to
notice that *V.& =V« holds.
The next relation is necessary in the following :

(38) *an’y_*Vya’x: —2561/’ ¢xy.
COROLLARY 3.5. Q%L=Q% holds.
PROOF. By (3.6) we obtain

@chly —Qn= *?ngﬁ‘c—— *Vy¢§‘c

§ 4. The curvature tensors of the generalized Tanaka connection.
Since *V&=*Vyp=0, with respect to a P-related frame we have
4.1 *Rix="*Rj.=0.
If we write *Rirn=¢:r*Rjx, then *Vg=0 implies
*Rijm+*Riin=0.
By (2.2) the torsion *T of *V satisfies the following :
(4.2) *To=2¢x, *TH=0% ¥}TH5=*Te=0.
The first Bianchi identity is
SI*R(X, V)Z]=C[*T(*T(X,Y), Z)+(*Vx*T )Y, Z)]

where © denotes the cyclic sum with respect to X, Y and Z. So we
obtain the following :

(4 . 3) *Rgxy + *R)chyz + *Rngzx = 2( ¢xypg+ ¢yzp%+ ¢zxpg)
(4 . 4) *RgOy + *R;lzo =- *vypg+ *Vng

By the Ricci identity :
*Vk*Vl¢§'_*Vl*Vk¢§:*R;kl¢;_*R}kl¢£'_*Tkrl*vr¢§,
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we obtain
(4.5 *Riw¢:i— ¢ R2e="VQ% —*V,Qk%.
The second Bianchi identity :
Sl(*Vx*R)NY, Z)]=C[*R(Z,*T (X, Y))]
and (4.2) give
(4.6) Vi Ribye +*Vy* Ripax +*V Ry = — 2y *R 0.

- 2 ¢yz*Rzzzt)0x - 2 ¢zx*RzIf)0y,
4.7 *Vo*Rivz +*Vy Ritzo+*V 2 Ry = — *Ripvz p3+ *Ri vy 2.

We denote by (4.3)uzxy the identity obtained from (4.3) by lowering the

index u# by guw and calculate (4.3)wyex— (4.3) 2wy — (4.3) xayw + (4.3) yxwz to
get

(4 . 8) *szxy - *nywz = 2 ¢’xzpyw + 2 ¢xwpyz + 2 ¢yszw - 2 ¢ywpxz-

Similarly, we denote by (4.4)uz the identity obtained from (4.4) by
lowering the index # by guw. Then calculating (4.4)wzy+ (4.4) yuz —
(4.4>zyw. we Obtain

(4 . 9) *Rwy()z = *Vypwz - *pryz.

We apply (4.8) to *Ruzwd¥$3, apply (4.5) to the result, and again apply
(4.8) to the result. Then we obtain

(4.10) *szuv¢§¢§»} = *szxy — 2gxzDoudy+ ngwpvzd’g
1 2GyeDuwPsx— 29ywbuz P
+2 ¢le7yw —2Pxwbhyz—2 yeDxw+2 Pywhxz
+ *VZQ}c)w ¢vy - *va}c)z ¢vy.

The Ricci tensor (*R;) is defined by *R;;=*Rl. By (4.1) and (4.9) we
obtain *Roy=0 and *Rx.=*V,p% By (4.8) and ¢%py=@d%psx, we can ver-
ify that

(411) *nyz*Ryx
holds. As in the Kaehlerian geometry we define (*%x) by
(412 *hoy=5 5 RS,

LEMMA 4.1.  The relation between *kxy and *Ry is given by

(4 . 13) *kxy == *ny + (m - 3)pxu¢§f— ¢g*qu;x + ¢g*va§u
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PrOOF. By (4.3), (4.5) and (4.11) we obtain

*ny:*R;evx
= — PP Riux @5 + 0V o @3 — P¥V Q5
= P *Rixw + *Rituwn) §Y — 2P U oD%+ Poxdio) B
+¢2*VUQ}Z)IX_ z*Vngv
:Z*kxy‘l'*R)chwv ¢§”¢Z+ ¢$*VUQJI’IX_ ¢Z*va;‘v
Applying (4.10) to the second term of the last line we get (4.13). It fol-
lows from (4.12) that

(4.140)  *kuwdid)="kyx.
By (4.13) and (4.14) we get

(4.15) *Ruv¢?c¢y: *ny + 2( m— 3)qu¢g— ¢5*VuQ§y + ¢Zz§*VyQ}c)u

§ 5. Curvature tensor changes under gauge transformations.

By one of classical formulas, the difference of the curvature tensors
*R and *R is given by

*Rgxy = *Rgxy + *vx*VVyzé - *Vy*Wng + *Wykz* Wag‘k - *lefz*VV;gz + *T;}*Wk’fa.

Since *V acts naturally on P-related frames, Corollamy 3.4 is enough to
give the following :

(5 . 1) *ﬁgxy_*Rgxy:*anzag_*Vydzag
F*V 8 bye—*Vy§ e+ Vilepy —*V, L 9%
+ *VnyQSg_‘ *Vy§x¢g_ gyz*an/” + gxz*Vya”
+ 8% ava:— &8 — ” §||zgyZ) — 83 axtz— &l — " C”zgxz)
+ gu( — QxPyzt AyPxz— ExGyz T Cyng)
+ Py G+ EP byt @28y) — P axle+| P prat 28x)
— @*(&xpyz— Lo — gyt Aygxz)
— ¢u(2]§[P P2 +*VE* —*VHE,)
+ é‘ZQifx— CzQchly + Cngx'"’ nggy - Cu*vz‘ﬁxy-

We define (A,:) modifying one defined by Sakamoto-Takemura [3]:
(5.2) Ape=*Vya:— aya: + &8+ (1/2)” C”zgyz +&a- Py

By (3.8) we see that (A,.) is symmetric. Next we difine (Gy:) by Gy.=
Ayppr. Then we obtain

Gye=—*Vy&e+ a8+ a8+ (1/2)” §”2¢yz —&a* gve— avQzy.
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Then (5.1) is rewritten as

(5.3)  *Rby—*Réy=— Ap0i+ Ax:0i+ Grapi— Gl
- gyzAI)é+ gsz;‘_ ¢yszu + ¢szyu
- (ny - ny) ¢g+ ¢xy ( G — Guz)
+ a’ngy ¢%_ a'ngx ¢§f— ¢yzang;xguw + ¢xza’ng)yguw
— a( Qi — Q%) d3+ an(Qh— Q) g™ Py
+ §ZQ§IX_ Cngy + Cngx_ nggy - Cu*vz¢xy-

By a simple calculation we get

FVoay —*Vily=p¥(*V,ya, — 260 doy)— *Vily
= —*V, 6 —*V & — 20 Gry — 2w Q2
=—(Valy +Vyl) — 282" gy~ 2@

Consequently, Lemmas B.1 and imply

(5.4) 2(5xy_pxy):?x ﬁy+vy ﬁX""(vxmj'Vny)
=0[(Vany + V1) —2(&° By + C»)]— (Vs +Vsyx)
=V +Vylet+28a- gy — Z(G’xgy + aygx)
=— ¢ Voay + V& — 2(0’ny + a’yé’x) — Q.

Furthermore we get

Gyzt Goy= A3+ Avzd
= ¢y*Voa:—*V, &+ AayGet+ a:ly)— avQzy
- 2( iyz _?yz) - a’v( Q=+ ng),

Auwdydz— Ave=—2(Dyo— pyo) P2 — an( Qs+ Qhy) P%.

In particular, we see that 77(G)=¢*’G.,=0 holds. By Lemma 2.3, (5.3)
and the above relations, we obtain

(5.5) *f?yz —*Ry= _(WH' B)Ayz - TV(A)gyz + 6( Eyv _pyv)(bg

i +20( Qb+ Qi) B,
5.6)  0*S—*S=—4(n+1)Tr(A),

where *S=g¢g™*R,, is the (generalized) Tanaka-Webster scalar curvature.
By (4.13) and (5.5) we obtain

* =Ry +(m—3) oy — $5*VuQ5s+ 5V Q1
=* Ry — (~m +3)Ax— TT(Angy +(m+ N Dxw— Dxw) Py
- ¢g(*v?tQ3?x - *VuQJIJ)x - *vaJI’)u + *VxQ;'Ju)
+ 20’0( Q)zc)w + szzjzx) ¢JI€

By (2.3) and (3.6) we get
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— BUVuQsh —* Vi —* Vi ¥V _
= — UL Qi —* W Qbx — * Wit Qb — * Wik Qi+ * W Q3)
=2n8uQyx— zavﬁb?*vtﬂﬁyw
=2n8oQb T 2as( Qb — Qby) P

Therefore we obtain

G.7) *kxy *lxy— (m+3)Axy_TV(A)gxy+(m+3)(.5xw_pxw)¢§}
+(m+3) 2 P%Qsu.

Now we define (L) and (Nx) by

(5 . 8) ny kxy+

1 * »

and Nx=Lx¢;. Then we obtain
Axy = l:xy - ny + av¢ng§w)
ny = ny - ny - a’vQ;\szx.
Substituting the above into (5.3) we get
(59) *ﬁgxy_‘*]ggxy:_([‘:yz—li:vz)aazcl"l'(zxz*lzxz)ag
+(Nyi_Nyz)¢%_(Nxz_~Nx2)¢g -
- q yzL~ gl G xiL ol —‘vgszy” — P3Ny + PyaNx"
+ ?szzu_ ¢;‘53Nyu_(ny—Nyx)¢g+(_ny_Nyx)¢g
+ ¢xy(Nzu - uZ) - ¢xy(Nzu - UZ)
+ a’v( — §y Qzw0x T PX Q2w 0y — gyzfls?nggtu + ng¢g)wagtu
— P2 Qvt 2Q% — PR+ PR — ¢uUQ3lfzgxw)-
We define (B%y) by
(5 . 10) Bzxy *szy + Lyzax szé\;‘_ Nyz‘ﬁ%‘*’ Nxzﬁbg

+ gyel x* — GreLy* + ¢yelNx" — PNy
+ (ny - Nyx) ¢Z— ¢xy(Nzu - uz)-

(B%y) is not a tensor on M, but it has meaning only for P.

THEOREM. Let (M, 5, g) be a contact Riemannian manifold. Then,
for any gauge transformation (n— 7=o0n) of contact Riemannian structure,

B zZxy — B ZXy

holds with respect to a P-rvelated frame, if and only if the CR-structure
corresponding to (5, ¢) is integrable.

PROOF. Assume that B%=B%, holds. By (5.9) we o‘btainl
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— @Y Qzwbx+ PX Q2005 — GreP¥ Qg™ + Gy Qb g™
- ¢§Q§lx + ¢5Q§y - ¢;€ng + ¢§éng - ¢uUQ3%gxw =(.

Contracting the last equality with respect to # and x, and operating ¢J to
the result, we get

(2n—1)Q%~+ QL=0.

If n=1, =0 is a trivial consequence. So, we can assume that # is
greater than 1. Then the above implies =0, and the CR-structure corre-
sponding to (7, ¢) is integrable. The converse is clear.

REMARK. By (7.1), (8.1) and (8.2) of [6] we obtain

*Rgxy = Rgxy +2 ¢g¢xy + Vxéuvynz - Vy?fuvxﬂz,
"Ruy= Rxy+2gw+ Vebay,
*S:S—Rrs§r58+4n.

Therefore, noticing *V.Q% =V.Q%, etc., we can rewrite (5.10) as the
expression with respect to the Riemannian connection.
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