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1. Introduction and notations

The Nevanlinna and Smirnov classes defined on the unit disk U in C
will be denoted by N(U) and N_{*}(U) , respectively. In this paper, we
shall define the Nevanlinna class, N_{0}(D) , and the Smirnov class, N_{*}(D) ,

on D:=\{z\in C|{\rm Im} z>0\} . Yanagihara and Nakamura [10, 8. (3)] posed a
problem to introduce the Smirnov class on D ; our treatment will be an
answer. We let N_{0}(D) consist of all holomorphic functions f on D such
that

d(f, 0):= s_{y}u_{>}p\int_{R}\log(1+|f(x+iy)|)dx<+\infty ,

and we let N_{*}(D) consist of f such that log (1+|f(z)|)\leqq P[\phi](z)(z\in D)

for some \phi\in L^{1}(R) , \phi\geqq 0 , where the right side means the Poisson integral.
N_{0}(D) is an algebra over C and N_{*}(D) is its subalgebra. First we prove
a factorization theorem for functions in N_{0}(D) , as Krylov [4] does for
functions in the class \mathfrak{R} . \mathfrak{R} is defined by L^{1}-boundedness of \log^{+}|f(x+iy)|

and, since 1\in \mathfrak{R} and 2\not\in \mathfrak{R} , this is not a vector space. N(U) and N_{*}(U)

have remarkable topological properties, as shown by Shapiro and Shields
[6] and Roberts [5]. We shall show that our classes have very similar
properties. On the other hand, it will be proved that N_{0}(D) and N_{*}(D)

cannot be linearly isometric to N(U) and N_{*}(U) , respectively, in contrast
to the fact that H^{p}(D) are linearly isometric to H^{p}(U) for all p, 0<p\leqq

+\infty .
We denote by \sigma the normalized Lebesgue measure on T_{-}. the unit cir-

cle in C . Let \Psi(z)=(z-i)(z+i)^{-1}(z\in\overline{D}) . Let l/ be a real measure on
T Then there corresponds a finite real measure \mu on R such that

\int_{R}h(t)d\mu(t)=\int_{T^{*}}(h\circ\Psi^{-1})(\eta)d\iota/(\eta) (h\in C_{C}(R)) ,

where T^{*}=T\backslash \{1\} . Denoting the
((w, \eta)\in U\cross T) , we can write

kernel (\eta+w)(\eta-w)^{-1} by H(w, \eta)
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(1. 1) \frac{1}{i}\int_{R}\frac{1+tz}{t-z}d\mu(t)=\int_{T^{*}}H(\Psi(z)_{ },\eta)d_{1\nearrow}(\eta)

= \int_{T}H(\Psi(z), \eta)d_{1\nearrow}(\eta)-i\alpha z (z\in D) ,

where \alpha=-\nu(\{1\}) . We write Poisson integrals as follows:

P[ \mu](z)=\int_{R}\frac{1}{\pi}\frac{y}{(x-t)^{2}+y^{2}}d\mu(t) (z=x+iy\in D) ,

Q[_{1/}](w)= \int_{T}\frac{1-|w|^{2}}{|\eta-w|^{2}}d\nu(\eta) (w\in U) .

Taking the real parts in (1.1), we have

(1.2) P[\pi(1+t^{2})d\mu(t)](z)=Q[\nu](\Psi(z))+\alpha\cdot{\rm Im} z (z\in D) .

2. A factorization theorem

Let f\in N_{0}(D) . Then the subharmonic function log (1+|f|) has the fol-
lowing properties, by [7, Chap. II , Theorem 4.6] :
(A) log (1+|f|) has the least harmonic majorant P[\tau] , where \tau is a
finite real measure on R.
(B) ||\tau||\leqq d(f, 0) .
(C) sup {log (1+|f(z)|)|z\in\overline{D}_{\delta} } \leqq A_{0}\delta^{-1}d(f, 0) , with a constant A_{0} in-
dependent of f and \delta , where D_{8}=\{z\in C|{\rm Im} z>\delta\} , \delta>0 .
(D) log (1+|f(z)|) -arrow 0 as |z| -arrow+\infty(z\in\overline{D}_{8}) , for each \delta>0 .

The property (A) implies that f\circ\Psi^{-1}\in N(U) , hence the nontangential
limit f^{*}(x) exists for a . e . x\in R . Since log |(f\circ\Psi^{-1})^{*}|\in L^{1}(T) , we have
log |f^{*}|\in L^{1}(R, (1+t^{2})^{-1}dt) , and Fatou’s lemma shows that log (1+|f^{*}|)\in

L^{1}(R) . Let d(f, g)=d(f-g, 0) for f, g\in N_{0}(D) . Then (N_{0}(D), d) is seen
to be a complete metric space.

THEOREM 2. 1. Let f\in N_{0}(D) , f\neq 0 . Then f is expressed, uniquely, in
the form
(2. 1) f(z)=ae^{iaz}b(z)d(z)g(z) (z\in D) ,

with the following properties.
(i) a\in C, |a|=1;\alpha\in R, \alpha\geqq 0 .

(ii) b(z) is the Blaschke product formed from the zeros of f.
(iii) d(z)= \exp(\frac{1}{\pi i}\int_{R}\frac{1+tz}{t-z}\frac{1}{1+t^{2}}\log h(t)dt) ,

where h(t)\geqq 0 , log h\in L^{1}(R, (1+t^{2})^{-1}dt) , and log (1+h)\in L^{1}(R) .
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(iv) g(z)= \exp(\frac{1}{i}\int_{R}\frac{1+tz}{t-z}d\mu(t)) ,

where \mu is a finite real measure on R, singular with respect to Lebesgue
measure, and such that

\int_{R}(1+t^{2})d\mu(+t)<+\infty .

If f is expressed in the form (2.1), th_{1}nf\in N_{0}(D) .

PROOF. Suppose f\in N_{0}(D) , f\neq 0 . Then the canonical factorization
theorem for N(U) shows that (f\circ\Psi^{-1})(w)=aB(w)F(w)S_{1}(w)S_{2}(w)^{-1}(w\in

U) , where a\in C with |a|=1 , B(w) is the Blaschke product formed from
the zeros of f\circ\Psi^{-1} , and

F(w)= \exp(\int_{T}H(w, \eta)\log|(f\circ\Psi^{-1})^{*}(\eta)|d\sigma(\eta)) ,

S_{j}(w)= \exp(-\int_{T}H(w, \eta)d\nu_{j}(\eta)) (j=1,2) .

Here JJ_{j} are positive singular measures on T and, moreover, mutually sin-
gular. In the factorization f(z)=aB(\Psi(z))F(\Psi(z))S_{1}(\Psi(z))S_{2}(\Psi(z))^{-1} .
b(z) :=B(\Psi(z)) is the Blaschke product with respect to the zeros of f,
and the change of variables \eta=\Psi(t)(t\in R) shows that d(z):=F(\Psi(z))
is of the form (iii). Let \mu be the singular measure on R corresponding to
1_{J_{2}}-1/_{1} . Then, by (1. 1), we can write S_{1}(\Psi(z))S_{2}(\Psi(z))^{-1}=g(z)e^{iaz} . where
g is of the form (iv). Since f belongs to the class \mathfrak{R} of Krylov, [4, TheO-
rem XVII] implies that \alpha\geqq 0 and that (1+t^{2})d\mu(+t) is a finite measure.
Suppose, conversely, that f is expressed in the form (2.1). Then

|f(z)|=|e^{iaz}||b(z)|\exp(P[\log h+\pi(1+t^{2})d\mu(t)](z)) .

Let 1/0 be the measure on T concentrated on {1} and \iota_{J_{0}}(\{1\})=-\alpha . Then,
by letting z=\Psi^{-1}(w) , we have |\exp(i\alpha z)|=\exp(Q[\nu_{0}](w)) . \mu determines a
singular measure 11 on T^{*} . for which we have P[\pi(1+t^{2})d\mu(t)](z)=

Q[\nu](w) , by (1.2). Thus,

|(f\circ\Psi^{-1})(w)|=|B(w)|\exp(Q[\log(h\circ\Psi^{-1})+_{1J}+\nu_{0}](w)) (w\in U) .

From \log^{+}|(f\circ\Psi^{-1})(w)|\leqq Q[\log^{+}(h\circ\Psi^{-1})+\nu^{+}](w) , we see that f\circ\Psi^{-1}\in N(U)

and, letting yarrow 0^{+} in |f(x+iy)| , we have |f^{*}(x)|=h(x) for a . e . x\in R .
Hence, by the canonical factorization of f\circ\Psi^{-1} , we get

|(f\circ\Psi^{-1})(w)|=|B(w)|\exp(Q[\log(h\circ\Psi^{-1})+\nu_{2}-\nu_{1}](w)) (w\in U) .

These two expressions of |f\circ\Psi^{-1}| show that \nu^{+}-(\nu^{-}-\nu_{0})=\nu_{2}-\nu_{1} and this
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implies that \iota\nearrow_{2}=\iota_{J^{+}} . Now log (1+|f\circ\Psi^{-1}|) has the least harmonic maj0-
rant v’=Q[\log(1+|(f\circ\Psi^{-1})^{*}|)+\nu_{2}] , as shown in [6, Proof of Theorem
3.1]. The function v :=v’\circ\Psi is the least harmonic majorant of log (1
+|f|) , and we have

(2.2) v=P[\log(1+|f^{*}|)+\pi(1+t^{2})d\mu(+t)] .

This shows that f\in N_{0}(D) . Finally, suppose that f has another factoriza-
tion of the form (2.1). Then

|(f\circ\Psi^{-1})(w)|=|B(w)|\exp(Q[\log(h\circ\Psi^{-1})+\nu’+_{1/\acute{0}}](w)) (w\in U)

for some \nu’ and \nu_{\acute{0}} , and it follows that \iota/=\nu’ and \nu_{0}=_{1J\acute{0}} .

COROLLARY 2. 2. Let f\in N_{0}(D) , f\neq 0 . Then

d(f, 0)= \lim_{yarrow 0^{+}}\int_{R}\log(1+\psi(x+iy)|)dx

= \int_{R}\log(1+|f^{*}(x)|)dx+\int_{R}\pi(1+x^{2})d\mu(+x) .

PROOF. The integral of log (1+|f(x+iy)|) is increasing as yarrow 0^{+} . as
seen from the property (D) and [1, Theorem 1]. Thus the first equality
holds. In the second equality, the left side does not exceed the right, by
(2.2), Finally, the property (B) implies that

||\log(1+|f^{*}(x)|dx+\pi(1+x^{2})d\mu(+x)||\leqq d(f, 0) .

COROLLARY 2. 3. Let f\in N_{0}(D) , f\neq 0 . Then

\lim_{carrow 0}d(cf, 0)=\int_{R}\pi(1+x^{2})d^{+}\mu(x) .

PROOF. If c\in C , c\neq 0 , the measure occurring in the factorization
(2.1) of cf is the same as that of f, hence Corollary 2.2 shows this.

COROLLARY 2. 4. Let f\in N_{0}(D) , f\neq 0 . Then the following are mutu-
ally equivalent, ( i) f\in N_{*}(D) . ( ii)f\circ\Psi^{-1}\in N_{*}(U) . (iii) \mu\leqq 0 , in the
factorization (2. 1).

(iv) \lim_{yarrow 0^{+}}\int_{R}\log(1+|f(x+iy)|dx=\int_{R}\log(1+|f^{*}(x)|)dx.

PROOF. If f\in N_{*}(D) , then log (1+|(f\circ\Psi^{-1})(w)|)\leqq Q[\phi\circ\Psi^{-1}](w)(w\in

U) , where \phi\circ\Psi^{-1}\in L^{1}(T) . Hence f\circ\Psi^{-1}\in N_{*}(U) . Suppose f\circ\Psi^{-1}\in

N_{*}(U) . Then \nu_{2}=0 in the factorization of f\circ\Psi^{-1} . hence \nu^{+}=0 , as in the
proof of Theorem 2. 1. This implies that \mu^{+}=0 . If \mu\leqq 0 , then f\in N_{*}(D)

by (2.2). Finally, Corollary 2. 2 shows that part (iii) is equivalent to
part (iv) .
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COROLLARY 2. 5. The space (N_{*}(D), d) is an F-algebra, that is, a

complete linear metric space with multiplication continuous. Moreover,
N_{*}(D) is the largest topological linear subspace of N_{0}(D) .

PROOF. First, we show the completeness. Difine an operator A by
Af=f\circ\Psi^{-1} for holomorphic functions f on D. Clearly, A(N_{0}(D))\subset N(U) .
Let

\rho(g, 0)=\sup_{0<r<1}\int_{T} log (1+|g(r\eta)|)d\sigma(\eta) (g\in N(U)) .

Then, as in Corollary 2.2, we can see that

\rho(g, 0)=\int_{T} log (1+|g^{*}(\eta)|)d\sigma(\eta)+_{1J_{2}}(T) ,

if g\neq 0 . Hence, for f\in N_{0}(D) , we have

\rho(Af, 0)=\int_{R}\log(1+|f^{*}(x)|)\pi^{-1}(1+x^{2})^{-1}dx+\mu^{+}(R)\leqq d(f, 0) .

Thus A:N_{0}(D) -arrow N(U) is continuous. Since N_{*}(D)=N_{0}(D)\cap A^{-1}(N_{*}(U))

by part ( ii) of Corollary 2.4, N_{*}(D) is complete. The second statement
is an easy consequence of Corollary 2.3 and part (iii) of Corollary 2.4.

3. Topological properties

For \overline{f}=f+N_{*}(D),\overline{g}=g+N_{*}(D)\in N_{0}(D)/N_{*}(D) , the metric \overline{d} is
defined by letting \overline{d}(\overline{f}.\overline{g})=\inf\{d(f-g, h)|h\in N_{*}(D)\} .

THEOREM 3. 1. ( i) N_{0}(D) is disconnected, ( ii) Every finite dimen-
sional linear subspace of N_{0}(D)/N_{*}(D) has the discrete topology, (iii)

N_{0}(D)/N_{*}(D) is not discrete.

PROOF. ( i) For x\in R , we define a functional \lambda_{X} by

\lambda_{x}(f)=\lim_{yarrow}\sup_{0^{+}}y\log^{+}|f(x+iy)| (f\in N_{0}(D)) .

The existence of \lambda_{x}(f) is guaranteed by the property (C). \lambda_{X} is subad-
ditive and continuous. Moreover, if \lambda_{x}(f)<\lambda_{x}(g) , then \lambda_{x}(f+g)=\lambda_{x}(g) .
From these properties it can be proved that f and g belong to different
components of N_{0}(D) , whenever \lambda_{x}(f)\neq\lambda_{x}(g) for some x\in R , just as in [6,

Theorem 2. 1]. Now, for \alpha>0 , we define f_{a}\in N_{0}(D) as follows:

f_{a}(z)= \exp(\frac{1}{\pi i}\int_{R}\frac{1+tz}{t-z}\frac{1}{1+t^{2}}\log\frac{1}{1+t^{2}}dt)\exp(\frac{i\alpha}{z}) (z\in D) ,

where i\alpha z^{-1} is the function defined by the measure \mu_{a} which is concen-
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trated on {0} with \mu_{a}(\{0\})=\alpha . Since

P[- \log(1+t^{2})](iy)+\alpha y^{-1}=-\frac{1}{\pi}\int_{R}\frac{\log(1+y^{2}s^{2})}{1+s^{2}}ds+\frac{\alpha}{y}\geqq 0 (0<y\leqq\delta)

for some \delta>0 , we can see that \lambda_{0}(f_{a})=\alpha . Thus the functions f_{a}(\alpha>0)

belong to different components of N_{0}(D) . ( ii) Corollaries 2.2 and 2.3 can
be used to prove this, in precisely the same way as in [6, Corollary 2, p .
926]. (iii) Put g_{a}=\alpha f_{a} , f_{a} being the function defined above. Then \overline{g}_{a}\neq\overline{0} .
By Corollary 2.2, we have

0< \overline{d}(\overline{g}_{a},\overline{0})\leqq d(g_{a}, 0)=\int_{R}\log(1+\frac{\alpha}{1+x^{2}})dx+\pi\alpha ,

hence \overline{g}_{a}arrow\overline{0} as \alphaarrow 0 .

4. The component of the origin in N_{0}(D)

The component of the origin can be determined in the same way as in
[5]. Let f\in N_{0}(D) , f\neq 0 . Then, by (2.1), f is expressed in the form f(z)
=f_{0}(z)g_{\mu+}(z)(z\in D) , where

f_{0}(z)=ae^{iaz}b(z)d(z) \exp(-\frac{1}{i}\int_{R}\frac{1+tz}{t-z}d\mu^{-}(t)) ,

g_{\mu+}(z)= \exp(\frac{1}{i}\int_{R}\frac{1+tz}{t-z}d\mu(+t)) .

Note that f_{0}\in N_{*}(D) . Let \nu be the measure on T^{*} determined by \mu , and
\iota_{J_{2}}-1_{J1} be the measure occurring in the factorization of Af, where Af=

f\circ\Psi^{-1} . as in the proof of Corollary 2.5. Then \nu_{2^{=}}J_{J}^{+} . 1/_{1}=\nu^{-}-1/0 , from
the proof of Theorem 2.1, and we have (Af)(w)=(Af_{0})(w)S_{y+}(w)^{-1} (w\in

U) , where

(Af_{0})(w)=aB(w)F(w) \exp(-\int_{T}H(w, \eta)d(\nu^{-}-1/0)(\eta)) ,

S_{\nu}+(w)= \exp(-\int_{T}H(w, \eta)d_{1/}^{+}(\eta)) .

We denote by K_{0} the set of functions in N_{0}(D) for which \mu^{+} are con-
tinuous measures, where we let 0\in K_{0} .

THEOREM 4. 1. K_{0} is the component of the origin in N_{0}(D) .

PROOF. The component of the origin in N(U) , K, consists of the
origin and of functions in N(U) such that 1/_{2} are continuous. Let K_{\acute{0}} be
the component of the origin in N_{0}(D) . Then, since A(K_{\acute{0}})\subset K , the corres-
pondence of measures shows that K_{\acute{0}}\subset K_{0} . Therefore, it is sufficient to
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prove that K_{0} is connected. The proofs of Lemma 3.2 and Theorem 3. 3
of [5] are valid in the setting of N_{0}(D) , because K_{0}=N_{0}(D)\cap A^{-1}(K) , a
complete metric space. Hence we need only show that every open ball in
K_{0} is \epsilon^{-}chainable, for any \epsilon>0 . Let B be the open ball in K_{0} , centered at
0 and of radius r . Take f\in B , f\neq 0 . Then f=f_{0}g_{\mu+} . Since the measure
\pi(1+x^{2})d\mu(+x) is finite and continuous on R, we can choose open intervals
I_{i} and closed intervals J_{i}(1\leqq i\leqq n) , where I_{1}=\{x\in R||x|>M\} and J_{1}=\{x\in

R||x|\geqq M+1\} for some M>0 , such that J_{i} \subset I_{i}(1\leqq i\leqq n),\bigcup_{i=1}^{n}J_{i}=R , and

\int_{I_{i}}\pi(1+x^{2})d^{+}\mu(x)<\epsilon/2 (1 \leqq i\leqq n) .

Let \mu_{i} denote the measure \mu^{+} restricted to I_{i} . Then \mu^{+} corresponds to 1/+

and \mu_{i} corresponds to \nu_{i} , where \nu_{i} is the measure fJ^{+} restricted to \Psi(I_{i}) .
Hence we have A(g_{\mu_{i}-\mu+})=S_{\nu-1J_{i}}+ . By the corona theorem, we can take s_{\acute{i}}

\in H^{\infty}(U)(1\leqq i\leqq n) such that \sum_{i=1}^{n}s_{\acute{i}S_{y+-\nu i}=1} . Letting s_{i}=A^{-1}s_{\acute{i}} , we get

\sum_{i=1}^{n}s_{i}g\mu_{i}-\mu+=1 on D, hence \sum_{i=1}^{n}s_{i}fog_{\mu i}-\mu+=f_{0} . Since \mu_{i}-\mu^{+}\leqq 0 and s_{i}\in H^{\infty}(D) ,

we see that s_{i}f_{0}g\mu_{i}-\mu+\in N_{*}(D) . Let L be the linear subspace of N_{*}(D)

generated by \{s_{i}f_{0}g_{\mu_{i}-\mu+}|1\leqq i\leqq n\} and let

B_{0}= \{g\in L|d(g, O)<r-\int_{R}\pi(1+x^{2})d^{+}\mu(x)\} .

Then f_{0}\in B_{0} . There exist functions K_{j}(1\leqq j\leqq m) such that K_{j}=

\epsilon_{j}s_{i}f_{0}g_{\mu_{i}-\mu+} , \epsilon_{j}\in C , for some i and such that
(a) d(K_{j}, 0)<\epsilon/2(1\leqq i\leqq m) , ( b) K_{1}+\cdots+K_{p}\in B_{0}(1\leqq p\leqq m) , and ( c)
K_{1}+\cdots+K_{m}=f_{0} . If we put \tau_{j}=\mu_{i} and f_{j}=\epsilon_{j}s_{i}f_{0} , where K_{j}=\epsilon_{j}s_{i}f_{0}g_{\mu\iota-\mu+} ,
then K_{j}=f_{j}g_{\mu_{i}-\mu+} and d(K_{j}, 0)=d(f_{j}, 0) . Now we can see that

(i) j \sum_{=1}^{m}f_{j}g_{\tau_{j}}=f_{0}g_{\mu+}=f ,

(ii) d( \sum_{j=1}^{p}f_{j}g_{\tau_{j}}, 0) \leqq d(\sum_{j=1}^{p}K_{j} , 0)+ \int_{R}\pi(1+x^{2})d^{+}\mu(x)<r , and

(iii) d(f_{j}g_{\tau_{j}}, O)\leqq d(f_{j}, 0)+\int_{R}\pi(1+x^{2})d\mu_{i}(x)<\epsilon .

Since \sum_{j=1}^{p}K_{j}\in N_{*}(D) and since \mu^{+} is continuous, the minimum propery of

the Jordan decomposition of measures implies that \sum_{j=1}^{p}f_{j}g_{\tau_{j}}\in K_{0} . Hence

\sum_{j=1}^{p}f_{j}g_{\tau_{j}}\in B . Thus we have an \epsilon-c a n \{\sum_{j=1}^{p}f_{j}g_{\tau_{j}}|1\leqq p\leqq m\} from 0 to f.
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5. Isometries

We prove two theorems. For 0<p<+\infty , H^{p}(D) is defined by
L^{p_{-}}boundedness of f(x+iy) , where f is holomorphic on D.

THEOREM 5. 1. ( i) There does not exist a linear isometry of N(U)
onto N_{0}(D) . ( ii) There does not exist a linear isometry of N_{*}(U) onto
N_{*}(D) .

PROOF. Suppose f\in H^{p}(D) , 0<p\leqq 1 . Then |f|^{p/2}\leqq P[\phi] for some \phi

\in L^{2}(R) . Hence f\in N_{*}(D) , by log (1+x)\leqq p^{-1}x^{p}(x\geqq 0) ; thus H^{p}(D)\subset

N_{*}(D)(0<p\leqq 1) . Now we prove part ( i ) , part ( ii) being very similar.
Suppose that an operator A is a linear isometry of N(U) onto N_{0}(D) . We
show that A transforms H^{1}(U) onto H^{1}(D) as an H^{1_{-}} isometry, following
[8, Theorem 2.1]. Take a sequence \{y_{j}\} such that y_{1}>y_{2}>\cdots , y_{j}arrow 0 as j
arrow\infty and, for g\in H^{1}(U) , put

a_{nj}= \int_{R}\log(1+\frac{1}{n}|(Ag)(x+iy_{j})|)^{n}dx (n, j=1,2, \cdots) .

Then \{a_{nj}\} is increasing in both n and j and, since nd(n^{-1}Ag, 0)=n\rho(n^{-1}g ,
0) for each n , we have

\lim_{jarrow\infty}a_{nj}=\int_{T} log (1+ \frac{1}{n}|g^{*}(\eta)|)^{n}d\sigma(\eta) (n=1,2, \cdots) .

Here the integrand tends to |g^{*}(\eta)| increasingly as narrow\infty , Hence \lim_{narrow\infty}\lim_{jarrow\infty}

a_{nj}=||g||_{H^{1}(U)} . We can interchange the limits, and the integral of |(Ag)(x

+iy)| with respect to dx is increasing as yarrow 0^{+} as seen from the property
(D) and [1, Theorem 1]. We have thus ||Ag||_{H^{1}(D)}=||g||_{H^{1}(U)} . The same
argument for A^{-1} shows that A transforms H^{1}(U) onto H^{1}(D) . Next we
define A_{1} by

(5. 1) (A_{1}f)(w)= \pi f(\Psi^{-1}(w))(\frac{2i}{1-w})^{2} (w\in U)

for f\in H^{1}(D) . Since A_{1} is a linear isometry of H^{1}(D) onto H^{1}(U) , A_{1}\circ A

becomes a linear isometry of H^{1}(U) onto H^{1}(U) . Hence, by [2, Theorem
2], we can write A_{1}\circ A in the form

((A_{1} \circ A)g)(w)=c\frac{1-|a|^{2}}{(1-\overline{a}w)^{2}}g(\phi(w)) (w\in U)

for g\in H^{1}(U) , where c\in C with |c|=1 and \emptyset a conformal map of U onto
U with \phi(a)=0 . Letting f=Ag in (5.1) and w=\Psi(z) , we obtain
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(Ag)(z)= \frac{c}{\pi}\frac{1-|a|^{2}}{(1-\overline{a}\phi(z))^{2}}\frac{1}{(z+i)^{2}}g((\phi\circ\Psi)(z)) (z\in D) .

Put g=1 and let yarrow 0^{+} in z=x+iy. Then

|(A1)(x)|= \frac{1-|a|^{2}}{\pi}\frac{1}{|1-\overline{a}\Psi(x)|^{2}}\frac{1}{|x+i|^{2}}

\leqq\frac{2}{\pi(1-|a|)}\frac{1}{x^{2}+1} (x\in R) .

Hence, for 0\leqq t\leqq 4^{-1}\pi(1-|a|) , we have t|(A1)(x)|\leqq(2(x^{2}+1))^{-1}(x\in R) . By
\rho(t, O)=d(At, 0) and by the dominated convergence theorem, we obtain

\sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n}t^{n}=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n}(\int_{R}|(A1)(x)|^{n}dx)t^{n} .

This must imply that

(5.2) \int_{R}|(A1)(x)|^{n}dx=1 (n=1,2, \cdots) .

But, since |(A1)(x)| is continuous on R, it must follow that |(A1)(x)|\leqq 1(x

\in R) . Hence (5.2) is impossible.

REMARK. We note that

H^{p}(D)TN_{0}(D) (1 <p\leqq+\infty) .

For 1<p<+\infty , take \alpha such that p^{-1}<\alpha<1 . Then (z+i)^{-a}\in H^{p}(D) . But
(z+i)^{-a}\not\in N_{0}(D) , by log (1+x)\geqq 2^{-1}x(0\leqq x\leqq 1) . The usual Nevanlinna
class consists of holomorphic functions f on D such that \log^{+}|f| have har-
monic majorants ([3, p. 69]). Compared with this, N_{0}(D) is considerably
small.

Our final result shows that every linear isometry of N_{*}(D) onto
N_{*}(D) is induced by a translation along the real axis. We notice that, in
the case of U, a linear isometry A of N_{*}(U) onto N_{*}(U) is of the form

(Af)(w)=af(bw)(w\in U) for f\in N_{*}(U) ,

where a , b\in C with |a|=|b|=1 ([8, Corollary 2.3]): namely, A is induced
by a rotation.

THEOREM 5. 2. Let A be a linear isometry of N_{*}(D) outo N_{*}(D) .
Then there exist c\in C, |c|=1 , and \alpha\in R such that

(Af)(z)=cf(z+\alpha)(z\in D) for f\in N_{*}(D) .

LEMMA 5. 3. Let A be a linear isometry of H^{p}(D) onto H^{p}(D) , 0<p
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<+\infty , p\neq 2 . Then A is written in the form
(5.3) (Af)(z)=

c( \psi’(\Psi(z)))^{1/p}(\frac{1}{z+i})^{2/p}(\frac{2i}{1-(\phi\circ\Psi)(z)})^{2/p}f((\Psi^{-1}\circ\psi\circ\Psi)(z))(z\in D)

for f\in H^{p}(D) , where c\in C, |c|=1 , \emptyset a conformal map of U onto U, and
\phi’ the derivative of \emptyset . If we put \phi=\Psi^{-1}\circ\phi\circ\Psi , then

(5.4) (Af)(z)=c(\phi’(z))^{1/p}f(\phi(z)) (z\in D) .

PROOF. Define A_{p} by

(5.5) (A_{p}h)(w)= \pi^{1/p}h(\Psi^{-1}(w))(\frac{2i}{1-w})^{2/p}(w\in U)

for h\in H^{p}(D) . Then A_{p} is a linear isometry of H^{p}(D) onto H^{p}(U) .
Since A_{p}\circ A\circ A_{\overline{p}}^{1} is a linear isometry of H^{p}(U) onto H^{p}(U) , there exist c
\in C , |c|=1 , and a conformal map \emptyset of U onto U such that

(5. 6) ((A_{p}\circ A\circ A_{\overline{p}}^{1})g)(w)=c(\phi’(w))^{1/p}g(\phi(w)) (w\in U)

for g\in H^{p}(U) . Take f\in H^{p}(D) and let A_{p}f=g . Then (A_{p}(Af))(w)=

((A_{p}\circ A\circ A_{\overline{p}}^{1})g)(w) . By (5.5) and (5.6), we get

(Af)( \Psi^{-1}(w))=c\pi^{-1/p}(\phi’(w))^{1/p}(\frac{2i}{1-w})^{-2/p}g(\phi(w)) .

By (5.5) again and by letting w=\Psi(z) , we obtain (5.3).

LEMMA 5. 4. Let V be the family of holomorphic functions f on D
such that |f(z)||z+i|^{2} are bounded. Then V is a linear subspace of H^{p}(D)

(1\leqq p<+\infty) , far which the following hold: ( i) V is dense in H^{p}(D) .
(ii) V is dense in N_{*}(D) .

PROOF. We prove part ( ii) . Let f\in N_{*}(D) . For s>0 , we define f_{s}

by f_{s}(z)=f(z+is)(z\in D) . Clearly, f_{s}\in N_{0}(D) , and f_{s} satisfies part (iv) of
Corollary 2.4. Hence f_{s}\in N_{*}(D) . By using a generalized form of the
dominated convergence theorem, as in [9, Theorem 2], we can conclude
that d(f_{s}, f)arrow 0 as sarrow 0^{+} . Now there exists a sequence \{g_{j}\} of continuous
functions on \overline{D} which are holomorphic on D and such that |g_{j}(z)|\leqq 1(z\in

\overline{D}) , |g_{j}(z)||z+i|^{2}arrow 0 as |z|arrow+\infty in \overline{D} , and g_{j}(z)arrow 1 as jarrow\infty(z\in\overline{D}) .
Indeed, following [3, Chap. II , Corollary 3.3], it suffices to put g_{j}(z)=

h_{j}(\alpha_{j}\Psi(z))(z\in D) , where 0<\alpha_{j}<1 with \alpha_{j}arrow 1 , and

h_{j}(w)=( \frac{\alpha_{j}-w}{1-\alpha_{j}w})^{3} (w\in U) .
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For f\in N_{*}(D) and s>0 , we have |f_{s}(z)|\leqq M(z\in D) , by the property ( C) .
If we let f_{j}=f_{s}g_{j} , then f_{j}\in V\tau and d(f_{j}, f_{s}) -0 as jarrow\infty .

LEMMA 5. 5. Let A be a linear isometry of N_{*}(D) onto N_{*}(D) .
Then A transforms V onto V as an H^{3}(D)- isometry.

PROOF. First note that A transforms H^{1}(D) onto H^{1}(D) as an
H^{1}- isometry. Hence Af is written in the form (5.3) for f\in H^{1}(D) , with p
=1 . Let f\in V . |f(z)||z+i|^{2}\leqq M(z\in D) . Then, since 2 i(1-(\psi\circ\Psi)(z))^{-1}=

(\Psi^{-1}\circ\phi\circ\Psi)(z)+i , we have

| \frac{2i}{1-(\phi\circ\Psi)(z)}|^{2}|f((\Psi^{-1}\circ\phi\circ\Psi)(z))|\leqq M .

Moreover, \emptyset is of the form: \phi(w)=b(a-w)(1-\overline{a}w)^{-1} (w\in U) , with |b|=1

and a\in U , Hence |\phi’(w)|\leqq 2(1-|a|)^{-1} . From these we see that |(Af)(z)|\leqq

2M(1-|a|)^{-1}|z+i|^{-2}(z\in D) , which implies that Af\in V . The same argu-
ment for A^{-1} shows that A transforms V onto V. Now from

|tf^{*}(x)| , |t(Af)^{*}(x)| \leqq\frac{1}{2(x^{2}+1)}(x\in R)

for 0\leqq t\leqq\delta and from d(tf, O)=d(A(tf), 0) , we can conclude that

\int_{R}|(Af)^{*}(x)|^{3}dx=\int_{R}|f^{*}(x)|^{3}dx ,

just as in the proof of Theorem 5.1.

PROOF OF THEOREM 5. 2. Since V is dense in H^{3}(D) , there is a linear
isometry \tilde{A} of H^{3}(D) onto H^{3}(D) such that \tilde{A}=A on V. Thus \tilde{A}f is of
the form (5.4), with p=3 . Now let f\in V . Then (5.4) is valid for both
p=1 and p=3 ; namely,

(Af)(z)=c_{1}\phi_{\acute{1}}(z)f(\phi_{1}(z))=c_{3}(\phi_{\acute{3}}(z))^{1/3}f(\phi_{3}(z)) (z\in D) .

Here \phi_{j}(j=1,3) are conformal maps of D onto D, hence

\phi_{j}(z)=\frac{\alpha_{j}z+\beta_{j}}{\gamma_{j}z+\delta_{j}} (z\in D) ,

where \alpha_{j} , \beta_{j} , \gamma j , \delta_{j}\in R and D_{j} :=\alpha_{j}\delta_{j}-\beta_{j}\gamma_{j}>0 . Thus we have

\frac{D_{3}}{D_{1}^{3}}|\frac{f(\phi_{3}(z))}{f(\phi_{1}(z))}|^{3}\frac{|\gamma_{1}z+\delta_{1}|^{6}}{|\gamma_{3}z+\delta_{3}|^{2}}=1 (z\in D) .

Suppose \gamma_{1}\neq 0 , and put f(z)=(z+i)^{-3} . Then, by letting |z|arrow+\infty , we
would have a contradiction. Therefore, Af must be of the form (Af)(z)
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=cf(\beta z+\alpha)(z\in D) for f\in V . where c\in C , \beta>0 , and \alpha\in R . But ||Af||_{H^{p}}

=||f||_{H^{\rho}}(p=1,3) , hence |c|=\beta=1 . Finally, since V is dense in N_{*}(D) , we
conclude that (Af)(z)=cf(z+\alpha)(z\in D) for f\in N_{*}(D) .
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