Hokkaido Mathematical Journal Vol 20(1991) p. 609-620

Nevanlinna and Smirnov classes
on the upper half plane
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1. Introduction and notations

The Nevanlinna and Smirnov classes defined on the unit disk U in C
will be denoted by N(U) and Nx(U), respectively. In this paper, we
shall define the Nevanlinna class, No(D), and the Smirnov class, N«(D),
on D:={z€C|Im z>0}. Yanagihara and Nakamura [10, 8. (3)] posed a
problem to introduce the Smirnov class on D ; our treatment will be an
answer. We let No(D) consist of all holomorphic functions f on D such
that

d(f,0): = sygg)/l;log (1+|f(x+ )| dx < + o0,

and we let N«(D) consist of f such that log (1+]|/(2)|)< P[¢](2) (2 D)
for some ¢=L(R), $=0, where the right side means the Poisson integral.
No(D) is an algebra over C and N«(D) is its subalgebra. First we prove
a factorization theorem for functions in No(D), as Krylov does for
functions in the class N. M is defined by L'-boundedness of log™|f(x+iy)|
and, since 1EN and 2&N, this is not a vector space. N(U) and N«(U)
have remarkable topological properties, as shown by Shapiro and Shields
[6] and Roberts [5]. We shall show that our classes have very similar
properties. On the other hand, it will be proved that No(D) and N«(D)
cannot be linearly isometric to N(U) and N«(U), respectively, in contrast
to the fact that H?(D) are linearly isometric to H?(U) for all p, 0<p=
+ o0,

We denote by o the normalized Lebesgue measure on 7, the unit cir-
cle in C. Let ¥(2)=(z—1i)(z+i)'(z€D). Let v be a real measure on
T. Then there corresponds a finite real measure ¢ on R such that

JHBdut)= [ (e )an(n) (heCe(B)),

where T*=T\J{1}. Denoting the kernel (p+w)(p—w)* by H(w, )
((w, )€U X T), we can write
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WD [ aun)= [ H), navn)
~ [H((2), n)dv(n)~iaz (2€D),
where a=—v({1}). We write Poisson integrals as follows :
Plu)(z)= R%mdu(t) (z=x+iyED),

Q[u](w)=/ﬂlﬂ__l‘%l|zzdz/(77) (we ).

Taking the real parts in (1.1), we have
(1.2) Plz(1+)du(t)](2)=Q[v](¥(z))+a-Im z (zED).

2. A factorization theorem

Let fENy(D). Then the subharmonic function log (1+]f]) has the fol-
lowing properties, by [7, Chap.II, Theorem 4.6]:

(A) log (1+|f]) has the least harmonic majorant P[z], where r is a
finite real measure on R.

(B) |I=d(f, 0).

(C) sup {log (1+|f(2))|zEDs}=A67'd(f,0), with a constant A, in-
dependent of f and &, where Ds= {z€ C|Im z>§8}, §>0.

(D) log (1+|f(2)]) =0 as |z]| @+ (z€ D»), for each 6 >0.

The property (A) implies that fo¥'€N(U), hence the nontangential
limit f*(x) exists for a.e. x€R. Since log |(fo ¥ )*|€LY(T), we have
log |f*|€L'(R, (1+¢*)7'dt), and Fatou’s lemma shows that log (1+|f*)e
L'(R). Let d(f,g)=d(f—g,0) for f,g=EN«(D). Then (No(D), d) is seen
to be a complete metric space.

THEOREM 2.1.  Let fENWKD), f#0. Then f is expressed, uniquely, in
the form

2.1 f(z)=ae™b(2)d(2)g(z) (2€D),

with the following properties.
(i) asC, |a|=1; aER, a=0.

(ii) b(z) is the Blaschke product formed from the zevos of f.

(iii) a’(z)=exp< 711' th-ttzz 1—&t2 log 4(t) dt),

where h(t)=20, log he LN(R, (1+t2)7'dt), and log (1+h)ELYR).
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(iv) g(2)=exp(% A 1;3’: du(t)),

where 1 is a finite rveal measure on R, singular with respect to Lebesgue
measure, and such that

/I;(l+t2)a’ﬂ+(t)< +oo,

If 1 is expressed in the form (2.1), then f<Ny«(D).

PROOF. Suppose fEN)(D), f+0. Then the canonical factorization
theorem for N(U) shows that (fo¥™) (w)=aB(w)F(w)Si(w)S:w)™" (we
U), where a€ C with |a|=1, B(w) is the Blaschke product formed from
the zeros of fe¥™!, and

Fw)=exp( | Hw, nlogl(=¢)*(pldo(7)),
Sj(W)=exp(—£H(w, 77)6:%(77)) (7=1,2).

Here v; are positive singular measures on 7 and, moreover, mutually sin-
gular. In the factorization f(z2)=aB(¥(2))F(¥(2))S1(¥(2))S(¥(z))",
b(z) : =B(¥(z)) is the Blaschke product with respect to the zeros of f,
and the change of variables 7=¥(¢) (t&R) shows that d(z):=F(¥(z))
is of the form (iii). Let u be the singular measure on R corresponding to
v:—vi. Then, by (1.1), we can write Si(¥(2))S:(¥(2)) '=g(2)e*, where
g is of the form (iv). Since f belongs to the class % of Krylov, [4, Theo-
rem XVII] implies that @=0 and that (1+#*)dur*(¢) is a finite measure.
Suppose, conversely, that f is expressed in the form (2.1). Then

f(2)|=|e**|b(2)lexp(Pllog A+ (14 t2)du(t)](2)).

Let v be the measure on T concentrated on {1} and w({1}))=—a. Then,
by letting z=¥'(w), we have |exp(iaz)|=exp(Q[w](w)). 1 determines a
singular measure v on T7%* for which we have P[x(1+)du(t)](z)=
Qlvl(w), by (1.2). Thus,

|(fow~)(w)|=|B(w)lexp(Q[log (k¥ )+ v+ w)(w)) (weU).

From log*|(fo¥ ) (w)| =< Q[log* (2T )+ v*](w), we see that fe¥eN(U)
and, letting y—0" in |f(x+:y)|, we have |f*(x)|=h(x) for a.e. xER.
Hence, by the canonical factorization of fo¥™! we get

|(fow~)(w)|=|B(w)lexp(Q[log (he¥™)+ 12— ul(w)) (weU).

These two expressions of |fo¥™!| show that v*—(v"—w)=1.— v and this
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implies that v.=v*. Now log (14|f>¥7!|) has the least harmonic majo-

rant v'=Q[log (1+|(fo¥")*))+1:], as shown in [6, Proof of Theorem
3.1]. The function v:=v">¥ is the least harmonic majorant of log (1
+|f]), and we have

2.2) v=~Pllog A+|/*)+xQ+t)dut(t)].

This shows that fENy(D). Finally, suppose that f has another factoriza-
tion of the form (2.1). Then

|(fowNw)|=|B(w)lexp(Q[log (A¥ )+ +u)(w)) (weU)
for some V" and v, and it follows that v=v" and vo=s.

COROLLARY 2.2. Let fENJD), f+0. Then

d(f, 0)=£ig}£elog (1+f(x+ay))ax

— [log (1+1/* () dx+ [ 2(1+x0)du* ().

PROOF. The integral of log (1+|f(x+2y)|) is increasing as y—07, as
seen from the property (D) and [1, Theorem 1]. Thus the first equality
holds. In the second equality, the left side does not exceed the right, by
(2.2), Finally, the property (B) implies that

llog (1+|/*(x)ldx +x(1+x®)dut ()= d(f, 0).

COROLLARY 2.3. Let fENy(D), f#0. Then
: _ 2 +
lim d(cf, 0)= A 11+ 20 du (x).

PrRoOOF. If ceC, c¢+#0, the measure occurring in the factorization
(2.1) of c¢f is the same as that of f, hence [Corollary 2.2 shows this.

COROLLARY 2.4. Let fENo(D), f+0. Then the following are mutu-
ally equivalent. (i) fEN«(D). (i) fo¥l'eNL(U). (i) p=0, in the
factorization (2.1).

(iv) }Jtror}_/lelog (1+|f(x+z'y)|dx=fklog(1+|f*(x)|)a’x.

PROOF. If f&Nx(D), then log (1+|(fo ¥ N w))EL Q¥ ' (w) (weE
U), where ¢o¥ 'L (T). Hence foV¥'&N4«(U). Suppose f-¥ &
N«(U). Then v.=0 in the factorization of fe¥™! hence v*=0, as in the
proof of Theorem 2. 1. This implies that #*=0. If #<0, then fEN«(D)
by (2.2). Finally, Corollary 2.2 shows that part (iii) is equivalent to
part (iv).
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COROLLARY 2.5. The space (N«(D), d) is an F-algebra, that is, a
complete linear wmetric space with multiplication continuous. Moreover,
N «(D) is the largest topological linear subspace of No(D).

PROOF. First, we show the completeness. Difine an operator A by
Af=Fow"! for holomorphic functions f on D. Clearly, A(No(D))CN(U).
Let

o(g,0)=sup [ log (1+lg(m))do(n) (gEN(U)).

Then, as in [Corollary 2.2, we can see that

o(g,0)= [ log (1+1g*(n)Dda(n)+1(T),
if g#0. Hence, for f&€Ny(D), we have
o(Af, 0)=_/I;10g (A+AADa A+ de + 1 (R) £ d (£, 0).

Thus A : No(D)—N(U) is continuous. Since N«(D)=No(D)NA(N«(U))
by part (ii) of Corollary 2.4, N«(D) is complete. The second statement
is an easy consequence of [Corollary 2.3 and part (iii) of [Corollary 2.4.

3. Topological properties

For f=f+N«D), §=g+N«(D)END)/N«(D), the metric d is
defined by letting d(f, §)=inf {d(f—g, h)|hE N«(D)}.

THEOREM 3.1. (i) No(D) is disconnected. (ii) Every finite dimen-
sional linear subspace of No(D)/N«(D) has the discrete topology. (iii)
No(D)/N«(D) is not discrete.

PrROOF. (i) For xR, we define a functional Ax by

A(f)=lim sup y log*|f(x +iy)| (FEN(D)).

The existence of Ax(f) is guaranteed by the property (C). Ax is subad-
ditive and continuous. Moreover, if A:(f)<Ax(g), then A(f+g)=2«(g).
From these properties it can be proved that f and g belong to different
components of No(D), whenever A«(f)#Ax(g) for some xER, just as in [6,
Theorem 2. 1]. Now, for ¢>0, we define /& No(D) as follows :

(1 (1t 1 1 i
fa(z)—exp( e s T3P 10g1+t2 a’t)exp< z) (z€D),

where iaz7! is the function defined by the measure p. which is concen-
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trated on {0} with #({0})=a. Since

_ NTZ a1 flog(Q+y%? ,  a
Pl—log 1+ t)](iy) +ay = ﬁfR 1132 ds-i—y%O (0<y=9)

for some 6>0, we can see that A(f.)=a. Thus the functions f. (@>0)
belong to different components of No(D). (ii) Corollaries 2.2 and 2.3 can
be used to prove this, in precisely the same way as in [6, Corollary 2, p.
926]. (iii) Put g«=af., f. being the function defined above. Then g.#0.
By [Corollary 2.2, we have

0< d (e, 0)=d(ga, 0)=Llog <1+ﬁ“x2>dx+7m,

hence g.—0 as a —0.
4. The component of the origin in No(D)

The component of the origin can be determined in the same way as in
[5] Let fEN(D), f+0. Then, by (2.1), f is expressed in the form (2
=fo(2)gu(2) (2€D), where

fo(z)=ae™b(z)d (Z)exp<——llr R%éf— du“(t)>,
gw(Z)Zt%Xb(% R%df(t)).

Note that //EN«(D). Let v be the measure on T* determined by g, and
v2— 1 be the measure occurring in the factorization of Af, where Af=
fo¥! as in the proof of [Corollary 2.5, Then v,=v*, y=y —y1,, from
the proof of Theorem 2.1, and we have (Af)(w)=(Af)(w)S.,(w)? (we
U), where

(AR)w)=aB(w) F(wlexo( — [[Hlw, )d (= w)n)),
Sw(w):exp(—/;H(w, 77)a’1/+(77)>.

We denote by K, the set of functions in No(D) for which g are con-
tinuous measures, where we let 0 K.

THEOREM 4.1. Ky is the component of the origin in No(D).

PROOF. The component of the origin in N(U), K, consists of the
origin and of functions in N(U) such that v, are continuous. Let K be
the component of the origin in No(D). Then, since A(K;)CK, the corres-
pondence of measures shows that KsC K,. Therefore, it is sufficient to



Nevanlinna and Smirnov classes on the upper half plane 615

prove that K, is connected. The proofs of Lemma 3.2 and Theorem 3.3
of are valid in the setting of Ny(D), because Ko=No(D)NAYK), a
complete metric space. Hence we need only show that every open ball in
Ko is e-chainable, for any €>0. Let B be the open ball in K, centered at
0 and of radius ». Take f&B, f#0. Then f=/fog.-. Since the measure
7(1+x?)dp*(x) is finite and continuous on R, we can choose open intervals
I; and closed intervals J: (1=i<#), where [={xER| |x|>M} and Ji={xE

n

R| |x|=M+1} for some M >0, such that J:CL (1<i<n), Ul]i:R, and

=

[ 2+)du'(x)<ef2 (1isn)

Let u; denote the measure p* restricted to I;. Then g* corresponds to v*
and y: corresponds to v:;, where v; is the measure v* restricted to ¥(/;).
Hence we have A(gu-u+)=S.,+—,. By the corona theorem, we can take s;

€H>(U) (1=i<n) such that ;s%su+_ui=1. Letting s;=A7's:, we get

n n
Z‘.lsigm_w:l on D, hence Z}lsifog#,._,n:ﬁ). Since #;—¢"=0 and s;€ H*(D),

we see that sfogu-+EN«(D). Let L be the linear subspace of Nx(D)
generated by {sifogu,-x+/1=7=n} and let

Bo={¢=L|d(g,0)< r— L 21+ x3)du* (x)).

Then fo&B,. There exist functions K;(1<;<m) such that K,=
€;SifoQui—u+, €, C, for some 7 and such that

(a) d(K;,0)0<e/2(1=i<m), (b)) Ki+ 4+ KBy (1=p<m), and (c)
Ki++Kn=f. If we put =g and fi=e¢;s:fo, where K;=¢;5:foGui—u-,
then K;=figu-»+ and d(K;, 0)=d(f;,0). Now we can see that

() Rfigw=hge=1,

p D
(i) d(;fjgr,, 0>§d<J§Kj, 0>+/R7r(1+x2)d,u.+(x)< 7, and
G d(fige, 0)=d(f, 0)+ L 2(1+x2) dudx) < e.

b
Since Z‘.lKjEN*(D) and since p* is continuous, the minimum propery of
F=
p
the Jordan decomposition of measures implies that Z‘lf,-gr,eKo. Hence
~

p p
Z‘ifjgr,EB. Thus we have an e-chain {glfjgnllé p=m} from 0 to f.
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5. Isometries

We prove two theorems. For 0<p<+oo, HP(D) is defined by
L?-boundedness of f(x+17y), where f is holomorphic on D.

THEOREM 5.1. (i) There does not exist a linear isometry of N(U)

onto No(D). (ii) There does not exist a linear isometry of Nsx(U) onto
N«(D).

PROOF. Suppose fEH?(D), 0<p<1. Then |f|??< P[¢] for some ¢
€L*R). Hence fEN«(D), by log (1+x)<p™'x? (x=0) ; thus H?(D)C
N«(D) (0<p=1). Now we prove part (i), part (ii) being very similar.
Suppose that an operator A is a linear isometry of N(U) onto No(D). We
show that A transforms H'(U) onto H'(D) as an H'-isometry, following
[8, Theorem 2.1]. Take a sequence {v;} such that y;>v,>+-, y,—0 as Jj
—o0 and, for g€ HY(U), put

_ 1 Y 10 ...
anj-ﬁlog<1+nl(Ag)(xﬂyJ)I) dx (m,j=1,2,).

Then {an} is increasing in both % and ; and, since nd(n'Ag, 0)=no(n"'g,
0) for each #, we have

limanjszlo_g <1+%Ig*(77)|>nda(77) (n=1,2,).

Jj—oo

Here the integrand tends to |g*(7)| increasingly as # —, hence lim lim

n-o jooo

an;=|lglui1vy. We can interchange the limits, and the integral of |(Ag)(x
+7y)| with respect to dx is increasing as y —0%, as seen from the property
(D) and [1, Theorem 1]. We have thus |Aglsioy=Igllzv). The same
argument for A~' shows that A transforms H'(U) onto H'(D). Next we
define A, by

(5.1 (Alf)(W)=7rf(‘I"1(w))<T%%>z (weU)

for fEH'(D). Since A: is a linear isometry of H'(D) onto H*(U), A;cA
becomes a linear isometry of H'(U) onto H*(U). Hence, by [2, Theorem
2], we can write A;°A in the form

(A (w)=c F— 25 g(p(w)) (weD)

for g€ H'(U), where ¢ C with |c|=1 and ¢ a conformal map of U onto
U with ¢(a)=0. Letting f=Ag in (5.1) and w=%¥(z), we obtain
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(Agi =Sl Lo o(v-w)e) (D)

Put ¢g=1 and let y —0* in z=x+17y. Then

_1—|af 1 1
(AN = =9 Te P
2 1

= r(1—lal) x*+1 (xER).

Hence, for 0=¢=<47'7(1—]al), we have ¢|(A1)(x)|=(2(x*+1))' (x€R). By
o(t,0)=d(At,0) and by the dominated convergence theorem, we obtain

2= B0 flan@rd)e
This must imply that
5.2 [lAD@rd=1 (n=12 ),
But, since |(A1)(x)| is continuous on R, it must follow that |(A1)(x)|=<1 (x
€R). Hence (5.2) is impossible.
REMARK. We note that
HP(D)TNo(D) (1<p<+0),

For 1<p< +oco, take @ such that p7'<a<1. Then (z+:)*€H*(D). But
(z+1)"*&ENKD), by log (1+x)=27'x (0£x=<1). The usual Nevanlinna
class consists of holomorphic functions f on D such that log*|f| have har-
monic majorants ([3, p.69]). Compared with this, No(D) is considerably
small.

Our final result shows that every linear isometry of N«(D) onto
N«(D) is induced by a translation along the real axis. We notice that, in
the case of U, a linear isometry A of N«(U) onto Nx(U) is of the form

(AN (w)=af(bw) (wEU) for fENK(U),

where a, b€ C with |a|=|b|=1 ([8, Corollary 2.3]); namely, A is induced
by a rotation.

THEOREM 5.2. Let A be a linear isometry of Nx«(D) outo Nx(D).
Then there exist c€C, |c|=1, and aER such that

(Af)(2)=cf(z+a) (z€D) for fEN«(D).
LEMMA 5.3. Let A be a linear isometry of H?(D) onto H?(D), 0<p
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<400, px2. Then A is written in the form
(5.3)  (AN(2)=

@) (=) (69 (D)

for fEHP(D), where c=C, |c|=1, ¢ a conformal map of U onto U, and
¢’ the derivative of ¢. If we put ¢=¥"'odo¥, then

6.4 (AN2)=c(¢'(2)"*f($(2)) (2€D).
PROOF. Define A, by

(5.5 (Ahw)=x"h( @ w)(12) " (weD)

for h€H?(D). Then A, is a linear isometry of H?(D) onto H?(U).
Since ApoA°A;! is a linear isometry of H?(U) onto H?(U), there exist ¢
eC, |c|=1, and a conformal map ¢ of U onto U such that

(5.6)  ((ApeAc AN g)w)=c(¢"(w))?g(¢(w)) (wEU)

for g€ H?(U). Take f€H?(D) and let Apf=g. Then (A,(Af))(w)=
((ApeA°ApY)g)w). By (5.5) and (5.6), we get

(AP w)=en#(¢ () (T2) " o))

1—w
By (5.5) again and by letting w=%¥(z), we obtain (5.3).

LEMMA 5.4. Let V be the family of holomorphic functions f on D
such that |f(2)||z+:? are bounded. Then V is a linear subspace of H?(D)
(1< p< +o), for which the following hold : (i) V is dense in H?(D).
(ii) V is dense in N«(D).

PROOF. We prove part (ii). Let fEN«(D). For s>0, we define fs
by fs(z2)=f(z+1is) (z€D). Clearly, fsSNo(D), and fs satisfies part (iv) of
Corollary 2.4. Hence fs&N«(D). By using a generalized form of the
dominated convergence theorem, as in [9, Theorem 2], we can conclude
that d(fs, f) —0 as s —0*. Now there exists a sequence {g;} of continuous
functions on D which are holomorphic on D and such that |g;(z)|=1(z€
D), lg;(2)| |z+i]*—0 as |zl =+ in D, and gi(z)—1 as j— (z€D).
Indeed, following [3, Chap.Il, Corollary 3.3], it suffices to put g;(z)=
hi(a;¥(2))(z€ D), where 0< ;<1 with a; —1, and

hi(w)=(EZ2) (we ),

J
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For fEN«(D) and s>0, we have |fs(z)|<M (z€D), by the property (C).
If we let f;=/fsg;, then ,€V, and d(f;, fs) —0 as j —o.

LEMMA 5.5. Let A be a linear isometry of Nx(D) onto Nx«(D).
Then A transforms V onto V as an H*(D)-isometry.

PROOF. First note that A transforms HYD) onto HYD) as an
H'-isometry. Hence Af is written in the form (5.3) for f€ HY(D), with p
=1. Let f€V, |f(2)llz+i*’<M (z€D). Then, since 2i(1—(¢o¥)(2)) ‘=
(W logoW¥)(2)+ 7, we have

s [ gen@is .

Moreover, ¢ is of the form: ¢(w)=b(a—w)(1—aw)* (wE U), with |b|=1
and a< U, hence |¢(w)|=2(1—|al)™*. From these we see that [(Af)(2)|<
2M(1—|al) Y|z+1i|"? (z€ D), which implies that Af€V. The same argu-
ment for A™! shows that A transforms V onto V. Now from

4, (AR gy ER)
for 0=¢<¢ and from d(#f, 0)=d(A(#f), 0), we can conclude that
Jlan*@lar= [ 1Pz,

just as in the proof of [[Theorem 5.1

PROOF OF THEOREM 5.2.  Since V is dense in H (D), there is a linear
isometry A of H*D) onto H*(D) such that A=A on V. Thus Af is of
the form (5.4), with p=3. Now let f€ V. Then (5.4) is valid for both
p=1 and p=3; namely,

(AF)(2)=c1¢1(2)f($1(2))=cs(p3(2)*f(¢3(2)) (zED).

Here ¢; (=1, 3) are conformal maps of D onto D, hence

_ a2t B;
¢j(2)— 7j2+ 8_;‘

where a;, Bi, 7i, 6;R and D;: =a;6;— B;7;>0. Thus we have

Ds | f($5(2)) I° |r1z+61°
Di | f(¢u(2) | |ysz+ 85

Suppose 71+#0, and put f(z)=(z+:¢). Then, by letting |z|—+ o0, we
would have a contradiction. Therefore, Af must be of the form (Af)(z)

(z€D),

=1 (z€D).
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=cf(Bz+a) (z€D) for fEV, where ceC, >0, and e=R. But ||Aflla-
=|fllz» (p=1, 3), hence |c|=B8=1. Finally, since V is dense in N«(D), we
conclude that (Af)(z2)=cf(z+a) (z€D) for feN«(D).
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