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Timelike surfaces in Lorentz 3-space with prescribed
mean curvature and Gauss map

Martin A. MAGID
(Received January 4, 1990)

A timelike surface M? in Lorentz 3-space L} is a surface which
inherits a non-degenerate indefinite metric from the standard metric in L’
A Gauss map can be defined on M? with values in the unit sphere STCL>.

We will prove in [Theorem 3.1 that the Gauss map and mean curva-
ture of a timelike surface satisfies a system of partial differential equa-
tions. As a corollary the Gauss map of a timelike minimal surface is
shown to satisfy a simple hyperbolic system. This is the precise analogue
of the theorem that the Gauss map of a minimal surface in Euclidean
space is a holomorphic map into the Riemann sphere. In the latter case
the Cauchy-Riemann equations should be thought of as a simple elliptic
system of partial differential equations.

In section 4 we find representations for a timelike surface in terms of
its Gauss map and mean curvature. The integrability condition for this
formula is a pair of partial differential equations (5.2a,b). In
6.1 we show that given functions defined on a simply connected surface
which satisfy the integrability conditions we can find an isometric immer-
sion with these functions as Gauss map and mean curvature.

Let us also note that in [Theorem 4.3 we give a Weierstrass represen-
tation for timelike minimal surfaces without flat points. Timelike mini-
mal surfaces have recently been the subjects of several papers [Ma2],

Mi2], and [Mi4].

All of these results are timelike versions of the work of K. Kenmotsu
for a surface in Euclidean 3-space and K. Akutagawa and S. Nishik-
awa for a spacelike surface in L®, and our debt to these authors is
clear. They consider M? as a Riemann surface, introducing a complex
variable via isothermal coordinates. Thus their results are cast in the
language of complex analysis. In the timelike case there is no such natu-
ral complex structure on M? It is somewhat surprising that the same
types of results can still be proven, but this really shows that complex
analysis is, for the most part, a useful calculational device in and
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and not involved in the essence of the problems.
1. Notation and preliminaries

L® denotes the vector space R® with the metric ((x, y, 2), (x, ¥, 2))=
—x?+y?*+ 2% X : M*>L? will denote an immersion from a surface M? on
which the induced metric, g, is timelike. A timelike metric is non-degen-
erate but not definite. We will always use local isothermal coordinates
(¢,s), so that the metric g has the form

a1.D g=A(—dt*+ds?).
Such coordinates can always be found ([Mi2], [Ku)).

[f X is written in coordinate form X=(X* X? X?®), we can start to
form an orthonormal frame {ei, e, es} by setting
1 1 1

81:7Xt:7< b %,X‘?) and ezz-}sz=7( s ‘Z,Xﬁ)

1
Here, for example, Xi= 855 . To complete the frame, set es=e1 X ez, the

Lorentzian cross product of e; and e.. Thus,

1.2 e=p (X3XI- XAX3, X3X4— XIXY, XX XiXD),

Occasionally we write this as ea=%(C’, C?, C*=(el, €3, e3) where C is

meant to stand for the cross product.
Next set hi;=(D.e;, es)=(Ae;, e;), 1<i,j<2 where A is the shape
operator of the immersion and D is covariant differentiation in L®. With

respect to the basis {ei1, e:} the matrix representing A has the form

[‘—hu —hi2
h12 h22
fact that the off-diagonal elements are additive inverses.
Given the metric in 1.1 we can calculate the Christoffel symbols for
{0/0t,3/3s}). ldentifying ¢ with the index 1 and s with the index 2, Th=

] The symmetry of A with respect to ¢ is reflected in the

Flzzl—‘éz:% and FEZZF}2=F%1:%§—. Thus,
1.3 Xe=ltx,+28 x4+ 220
. tt— /1 t /1 S 11€3
XstZ%Xt+A/{f‘Xs+A2h12€3
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A
A

As

Xss= A

Xt+ Xs‘l‘/izhzzes

and

(A.4a) e,=huX:i—hi2Xs
(1.4b) ess:hIZXt_hZZXs-

One of the keys to the calculations is defining various functions of the
hi. As usual the mean curvature is defined to be h=Y%(lhyx—hi1). We
also define the functions a=— iz and 6=%(hi+ hs2). Thus 1.4a and 1. 4b
become

(153> eat=—hXt+bXt+aXs
(1.5b) e, =—hXs—aX:—bXs.

The sectional curvature of M? is hi2— huhe=n"*—b*+4*>. We say that M?
is minimal iff #=0. It follows from 1. 3 that Xss— X»=0 iff M? is mini-
mal.

2. The Gauss map

The classical Gauss map of a surface in E*(Euclidean 3-space) is the
map which assigns to each point on the surface its unit normal, translated
to the origin. This gives a point on S® In the case of a timelike surface
we take the same definition, where the appropriate sphere Si={x&L®:
(x, x)=1} is used. The Gauss map G: M?*—S? is defined by G(p)=es(p).

¢, a hyperboloid of one sheet, has constant sectional curvature 1.
Stereographic projection can be defined from S} to L? Lorentzian 2
—space. Let Uy=S?—{z=—1} and U,=Si—{z=1}. Define

mix, v, z)= [liz’%] for (x, v, z)€ U; and

m(x, v, z2)= [lfz’ I—sz] for (x,y, 2)€ U-.
This is the intersection of the plane z=0 with the line joining (x, y, 2) to
the appropriate pole.

If L? has the metric ((«, v), (u, v))=—u*+¢* then each m, i=1,2 is
conformal. Most of the formulas which follow will be in terms of m:°G.
We write

2
3

1 —
@D meG=, b= 1515

1 2
(2.2) 7T2°G:(/J1, )U-z): [1 = gs J

—e3’ 1—¢éd

] and
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Note that the image of m(x, v, z) for (x, v, 2)€ U; does not intersect the
set {(u, v)€L?:1+v*—u*=0}. We use the symbol [(u, v)|=v*—u?to
denote a “norm” in L? This is simply a notational convenience, since it
can obviously take negative values. By a further abuse of notation we set
|¢|?= g2 — % and |p>= 12— % In this notation 1+|¢|? and 1+|gf* are non
-zero. For simplicity all formulas will be given in terms of (¢1, ¢.) in the
body of the paper, while the versions with 4 and e will be saved for an
appendix. Thus we are always assuming that z=—1 is not in the image
of the Gauss map.

3. Lemmas comparing the partial derivatives of X and ¢

The basis for all the theorems are the relationships between the par-
tial derivatives of X and ¢. Each equation found in or usu-
ally will have two counterparts. Roughly speaking this is because their
complex equations have a real and an imaginary part while we have only
real equations.

LEMMA 3.1. If X : M*—>L? is a timelike isometric immersion then

3.12) Xi—gXi=Xi+dhXE
(31b> X%+ ¢2X%:X}s_ ¢’1X3

PROOF: This is essentially a verification. We will give the calcula-
tion only for 3.1a. Examine

1 2
Xi= X0 X4+ Xi=X1— Xi— 7 i3e§ X+ f—aeg X3,

Using 1.2 this equals (124 C?) (A4 CH)( Xi— X3 — C' X3+ C2 X3).

Writing A* as either —(X3)?+(X3%)?+(X3)? or (X)*—(X%*—(X3)* this

becomes |

(A+ C) M ((— (XD H( XD H( XD X — (X — (XD — (X)) X%+
(XEXE - XX (X1 — X9 — (XEX3— XX X+ (XX — XX XD)
= (224 C*) (X4 XD(— XA X+ XEX 3+ X3XY))=0.

Note that (X5, X:)=0 is the last factor above. QED

LEMMA 3.2. If X : M*>L® is a timelike isometric immersion then

(3.2a) Xi=d(Xi+ X2+ X+ X
(3.2b) Xi=+¢(Xi+ XD+ q(Xi+ X3).

PROOF: We will only verify 3. 2a.
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DX+ X0+ ¢ X5+ XD — Xi=
(B+ CH(CHX i+ X5 — CH X+ X9 — (X + C) XD).

After substituting for C', C? C® and using A= —(X1)2+(X2%)?+(X?3)?
this equals

P+ CH)UXUXIXE - X3XE— X3X3)=0. QED
LEMMA 3.3. If X : M*>L? is a timelike isometric immersion
then
M: 14 X2y X3( X114 X2
3.3a) (1_+_|¢|2)2 (X X5 — XA X5+ X5

4% raryn 2 3¢ 31 2
(3.3b) D (X s+ X9+ XA X+ X5).

Before this lemma can be proved note that we have an identity which
is easily established using —(e3)®+(e3)*+(e3)*=1.

(3.4 (1+|¢)A+ed)=2.
PROOF of 3.3b: Using 3. 4 the left-hand side of 3.3b is

3 1v2_ v2 vl
Rey(1+e)=C (145 | =(axi- i1+ XXX )
Then
2
—(—154+—’1|—g—|2§§2—+X3(X§+X%)—X3(X¥+X§) is easily seen to be zero.
QED

The next lemma gives expressions for ¢i,—¢», and ¢1,— ¢z, in terms of
{and X1i, for 7, j=1,2,3.

LEMMA 3.4. If X : M*>L? is a timelike isometric immersion then

(3.5a)  ¢1,— o, =—(R/2)(1+|¢A X+ X?)
(3.5b)  ¢ro—¢o=—(/2)1+|¢DH X+ XD).

PROOF of 3.5a:
[ es e%]
2z ¢28_[1+e§]t+[1+e§ .

=(1+€§)_1(e§t—¢1e§t+e§s+¢ze§s).
Using 1.5 and 3.4, we have
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dr.— 2. =V(1+[g)(= hX i+ bX i+ aXs— ¢i(— h X3+ b X3+ aX3)

—hX5—aXi—bX5+ o — hXi—aX3— bX3))

= LBA+|¢)(h(—Xi+ 9 X3— X2— ¢ X3)) by 3.1a, b.

Using 3.2, this becomes

=—Lh(1+]¢)A X+ X%. QED

The next lemma in this sequence gives expressions for ¢+ ¢.. and ¢,

+ ¢1s.

LEMMA 3.5. If X : M*>L? is a timelike isometric immersion then

(1+1P

_2_]_ (6(Xi+ XY+ a( X1+ X))

—| 1+l
2

(3.62) ¢t o=

(3.6b) it o= ] [a(X1t+X§)+b(Xé+X2t)]

PROOF: First we prove 3.6a. As above
et o= 1/2(1 + | ‘/’lz)(eét - ¢1€§t —e5s— ¢ze§s).
Using 1.5, 3.1 and then 3.2, this becomes

B+ a(Xi+ XD+ b(Xi+ X2). QED
For later use we record

COROLLARY 3.1. If X :M?*—>L? is a timelike isometric
then

1+[gf?

(3.6d) bX3+ axi—[—z]-z— (1 Pre+ ¢2s) — do( 1+ ¢2.)).

1+|gf*

(3.6¢) aXi+ inz[—zT— (= du(dra+ do) + ol et ¢22)

1mmersion

PROOF: This follows from substituting 3.6a,b in 3.2a,b. QED

COROLLARY 3.2. If X :M*>L?® is a timelike isometric
then

422 2 (vl 2\2
3.7 W—(XH—X%) (Xi+ X%

(3.82) (1= ¢2)* = (1= o)’ =A*N*(1+|¢")?
(3.8b) (gt ¢a)* = (fus+ g2 =A%(b"— a*) (1 +[¢?).

PROOF: To prove 3.7 we note that from 3.3a and 3.2

Immersion



Timelike surfaces in Lorentz 3-space with prescribed mean curvature and Gauss map 453

T = (X XY= (X XPP).

2
In the same way we also have %:¢2((X1t+ X5 —( X1+ X2?), if we
W

begin with 3.3b. If ¢i(p) or ¢(p)*#0 then 3.7 holds at p. If ¢u(p)=0 and
¢2(p)=0 then 3.1 implies that Xup)=X3%(p) and X¥p)=X«p). Because
{¢, s} is an isothermal coordinate system, X3%(p)=0=X3(p) and A*(p)=
(XY)*—(X%% At p, then, 3.7 reduces to showing that 4((X})?— (X% =
(2X%)?—(2X%)?, which is true.

To prove 3.8a we first use 3.5a,b to obtain

(f1e= ¢20)* = ($1,— d2)* = (R/2) (1 + (X4 X)* — (Xs+ XD)°).

This equals #*(1+|¢[?)?A* by equation 3.7.

3.8b follows in the same way if we begin with 3.6a,b. QED

At this point we can see that the Gauss map satisfies a system of
partial differential equations.

THEOREM 3.1.  The Gauss map of a timelike isometvic immersion X :
M?*— L? satisfies

(B.92) = (gt ¢2)=b(¢r.— as) + ald1s— ¢22)
(3.9b) (st d2)=aldr.— P25) + b(d1s— ¢2.).

The proof is immediate from 3.5 and 3.6.

COROLLARY 3.3. If X:M*>L? is a timelike isometric immersion
then

1. h(p)=0 iff $1(D)—os(0)=0= 1 (D)~ ¢2(D)

2. a(p)=0=0b(p) iff ¢1(D)+¢2(p)=0 and $1.(p)+ ¢2p)=0.

PROOF: By 3.8a, if ¢1(p)—¢2(p)=0 and ¢1,(p)—¢2(p)=0 then ~=0.
The converse of 1. follows from 3.5.

Now suppose that a=b=0. By 3.6 we find that ¢i(p)+ ¢2(p)=0 and
Ga(D)+ ¢1(p)=0. On the other hand, if ¢1(p)+ ¢2(p)=0 and ¢1.(p)+ dal(p)
=( then 3.8b implies that a*=06% If a and b were nonzero, 3.6 would
imply that X3+ X%=+(Xi+ X?%. But from 3.7 it would follow that A*=0,
a contradiction. QED

Theorem 3.1 and Corollary 3.3 are the analogues of the positive
definite results which state that the Gauss map is holomorphic iff the sur-
face is minimal and the Gauss map is anti-holomorphic iff the surface is
umbilical. In the timelike setting M? is minimal or umbilical is equivalent
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to the requirement that the Gauss map satisfy a simple hyperbolic system,
rather than, for example, the elliptic Cauchy-Riemann equations.

L. M. Berard’s thesis contains many examples of timelike mini-
mal surfaces obtained by rotation of plane curves.

4. Representation theorems

In this section we will find representations for X¢ and X% in terms of
the Gauss map and % or @ and b. The representation in terms of A+0
will eventually allow us to construct surfaces of prescribed mean curva-
ture, while those in terms of ¢ and & will enable us to find a Weierstrass
-type representation formula for minimal surfaces.

THEOREM 4.1. If X : M*>L? is a timelike isometric immersion with
coordinates (X', X?, XB), mean curvature h and Gauss map ¢1, ¢» then

4.1 hXi=a——a 2} —(1+ ¢+ ¢3)(h1.— Pas) — 21 o rs— o))
hXé— lz]z (=2¢1¢2(gr,— ¢2) — (1 + G2+ 93) (1 — ¢20)
hX%= <5 Q1 ¢a(d1.— P20) + (P2 + $3—1) (1 — ¢22))

1+|¢I2]
hX:= _2 (L3 + 5= 1)(1.— d2s) + 21 da2 (d1.— ¢n,))
[ 1+14F |
thzr—g—\z(—¢1(¢}1t_¢'2s)_¢'2((/)1s—¢2t))
[ 1+1¢l
X3 = (= g d2)— iy — ).
(1+1gl

PROOF: In 3.la, written as X%— Xi= — ¢ X3— ¢ X3, substitute using
3.2 to arrive at:

Xi— Xi= — (2 + ¢D)( X+ X2 — 2 o X5+ X3).
With 3.5 this can be transformed to |
—Bh(1+|¢P( X~ X0 = — (¢ + 02 (hr.— dae) — 261 o 1y — da).

Combining this with 3.5a we can find the expressions for X% and X2
If we had begun with 3.1b and used 3.5b we would have gotten the
representations for X% and X2.
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To find the expressions for X% and X% we use 3.2a,b with 3.5a,b.
QED
In order to state the next theorem efficiently, set

_ b(drt do) +alds + d2)
F= —d((/h,’l' ¢2s)—b(¢ls+ ‘/}2:)
: (1+]¢?)? ‘

THEOREM 4.2. If X :M*—>L? is a timelike isometric immersion with
coordinates (X', X%, X®); Gauss map ¢1, ¢»; a=—he and b=Ys(hu+ hi)
then

(4.3) (BPP—a)Xi= A+ ¢’ + D) Fi+2¢1 e F
(bz—az)Xéz 2¢1¢2F1+(1+ ¢12‘|‘ g[}zz)Fz
(b’—a®) X5= —2¢1¢2F1+(1— o2 — ¢22)Fz
(B — ) Xe=(1— 2= D)L — 201 o F>
(bz— CZZ)XSZ 2¢1F1+2¢2F2
(bz— az)Xg=2¢zF1+2¢1F2.

PROOF: As in the proof of Theorem 4.1 we have
(%) X2—Xi= — (2 + o) X3+ XY — 21 o X5+ X5
(k%) Xi—X%=201¢( X3+ X5+ (2 + ) ( X5+ X5,

At the same time we can use equations 3.6 to solve for Xi+ X% and X
+ X% in terms of ¢1,+ ¢2, and ¢i+ ¢, :

(b*— )X+ XD=2F
(b*—a*)( X5+ XY =2F:.

Plugging these values into (*) and (% *) yields

(b2 — a®)(X2— XD =— (2 + )2 F1— 21422 F>)
(b2 — a®)(Xi— X2 =2¢1¢2(2 ) + (2 + ¢2°)2 Fo.

From the last four equations we get the expressions for X%, Xs, X% and
X2,
The formulas for X2 and X3 follow from 3.2. QED

THEOREM 4.3. (Weierstrass formulas for timelike minimal surfaces.)
Assume X : M* = L? is a minimal timelike isometvic immersion with no flat
points. In a coordinate neighborhood which contains only segments of s+t
and t—s, there exist functions P(s+1t), p(s+t), Q(t—s), and q(t—s) such
that PQ(pqg—1)=0 and
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(4.4) =1+ )P+(1+¢)Q
Xi=1+pP)P-(1+¢)Q
=1-PHP-(1-¢H)Q
Xi=(1-pP)P+(1—-¢)Q
X4=2pP+2¢Q
X3=2pP—24Q.

Conversely, given any P, p, Q and q with PQ(pq—1)+0, the above system
defines a timelike minimal immersion on such an open set in L.

NOTES: 1. Xj(p)=’/:(Xf§, D(dt, ds) for any pe.

2. Xpss=2P(1+%1—1%2p) and Xis=2Q(1+¢%—(1—¢%, 29).

These are null curves. It is known that every minimal surface is locally
the sum of two such curves [B]. This shows that the null curves can be
put into a canonical form.

3. In a neighborhood of flat points the geometry of X(M?) is well un-
derstood [G], [Mal]. What occurs when the set of flat points has no
interior is not known.

PROOF: Since M? is minimally immersed, the assumption that there
are no flat points is equivalent to b*—a?*#+0. Setting
G;=F;/(b*—a?), we can rewrite 4.3 as

(45) lt: (1‘+‘(/’12+ ¢22)G1+2</J1¢'2G2
X\ls: 2¢1¢2G1+(1+ ¢’12+ ¢22)G2
i= =201 Gi+(1— > — %) G
X.zg: (1— ¢12_ ¢22)G1—‘2¢1¢2GZ
%: 2¢1G1+2¢262
Xi=2¢:Gi+ 201G

Thus, X+ X2=2G: and X+ X3=2G.. As noted after equation 1.5,
X‘és:XJz;t, so that Glt_stzo and G1S_Gzt—_-0. Set P:1/2(G1+G2) and Q
=14(G1—Gz). Then P,—Ps=0 and Qs+ Q:=0. We can conclude that P
is a function of s+¢ and @ is a function of t—s. Of course Gi=P+®
and G:=P—Q.

Similarly, by Cemma 3.4, ¢1.—¢2.=0 and ¢1,— ¢2,=0, which yields ¢
=15(p+q) and ¢.=Y%(p—q) for some p(s+¢) and q(¢—s).

Substituting these expressions into 4.5 yields 4.4.

To prove the converse we need only check that equations 4.4 satisfy

Xis=X1?, and Xis=Xi. for j=1,2,3 and that the metric induced on M is
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non-degenerate. The first two facts are easily verified and for the last we
note that (Xs+:, Xe-s)=—8PQ(pg—1)>. QED

5. Integrability conditions

In this section it is shown that the mean curvature % and the Gauss
map (¢, ¢2) satisfy a pair of partial differential equations. As in the pos-
itive definite cases, these equations are the integrability conditions for the
system 4.1.

NOTATION: If f: M?> >R set Af=/fss— fu.

LEMMA 5.1. If X : M*>L? is a timelike isometric immersion then

L A,
(G.1a) AX'= 1147

. —A4A%h¢,
(5.1b) AX =11l

PROOF: To prove 5.1b use 1.3 to calculate
?gs—tht=A2hzze§—/12hue§=2%2he§

o €82 —4Xhd
"1+ 1+|¢7 1+]|¢f -

QED

To state the next theorem, which gives a pair of partial differential
equations which the Gauss map must satisfy, we introduce some additional
abbreviations. Set

SII¢)1£— ‘/’23
Se=1,— ¢z,
T1:¢1,+ ¢2s
T,= ¢1s + ¢2¢

THEOREM 5.1. Let X :M*—>L® be a timelike isometric immersion.
Then the mean curvature h and the Gauss map (¢1, ¢2) satisfy :

(5.2a) hAQ=—hS1+heSo+—=—FTT7712 1+l¢|2 (S1(¢1T1 ¢2T2)+Sz(¢’2T1—</’1T2))

(5.2b)  hAP2=hS2— hsS: —T_E]@W (So(h Th— ¢ T2) + Si(e Th — 1 T)).

PROOF of 5.2b: Fix pEM?% We may assume that %4(p)#0, since if
h(p)=0 then S;(p)=0 and the equation holds. By definition A¢, =(¢,
—¢n)e—(dr.— ¢2)s. Using 3.4 and 3.5, the right hand side of this equation
is
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| e (X X0 = [ g (i),

We now differentiate each summand as a product with 3 terms. Thus,

st vy (XHX%] i [(1+ i (X1 0

1
(l_f_h 3)2 (Xst+X SS) 4h(‘(>§j_:_e{}()3)ess
4( X+ X5)eél,

1+ed)?

e (= g+ (= o)+ L+ gPPAX?

—Zh(1+|¢|2)(—()§f%)- 3, +2n(1+]| ¢ )%%7)— 3

_|._

Via 5.1b and 3.5, we have

Ago=le (g~ o)+ (1. o) — 202X+ |94
+(1+[¢P)es(dr— ¢o) —(1+ 9 el hrs— )

— e 5yt R s, o 21+ 9P) - (LH PPN Sech— Sich)

—%S1+%Sz—2h2/12(1+|¢|2)¢2
— (1 +[g|P)(So( = B X3+ bXE+ aX3) — Si(— h X3 — aX3— bXD)).
By 3.8a, this becomes

A go= =T St S (S-S ga— (1419 (S, X3 = hSaXY—(1

+1¢)(SAbX i+ aX?¥)+ Si(aXi+ bX3)).

Using 3.6¢C, 3.6d and 4.1, we arrive at the final equation. QED

Next we assume that 2+0 on M and write the system 4.1 with some
additional abbreviations. Set R=7~1"'(1+|¢|>)"?2 and Q,=RS,, j=1,2.
Then 4.1 can be rewritten as

(5.3) = —(1+¢°+ 42" Q1 — 24142 Q2
X5= =20102Qi— 1+ 9>+ ) Qs
=201+ (9°+ " —1)Q:
=( 2+ ¢’ —1) Q1 +2¢1 Q>
3t: _2¢1Q1—2¢2Q2
ng —2¢2Q1_2‘/’1Q2.
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THEOREM 5.2. Let h, ¢1, and ¢= be functions on M? such that h#0
and 1+|9*=+0. If h, ¢ and ¢. satisfy 5.2 then the functions Xi and Xi
defined by 5.3 satisfy Xi:=X’s, for j=1, 2.

PrROOF: Note that

hz(l + | ¢|2)2Q1x: h(¢1tx—' ¢23x) - (hx"*'—l—fli‘blf (2 ¢2¢2x_2¢1¢1x»81

and

R+ 19 Qox= bl rox— duee) = (st 15 (adu— 261 1)S5,

where x stands for s or £. Also, #*(1+|¢?)?Q,=hS;, for j=1, 2.
We now compute

PE(L+ |9 X5 — Xis)

=1+ |¢P(—2¢1¢2(Qr— Qo) +(1+ ¢1* + ) ( Q1 — Q2) +
Qi(—2¢1¢2— 2021+ 29101, +2¢2¢,) — Qe(2 1 ra 22 e, — 21 o
_2¢’2¢ls>)-

Using 5.2, we see that

h2(1+|¢|2)2(Q1t_st) 1+|¢|2 (Sl SZ )¢1 and

Zh(

L+ 9P — Qe) =TT (S =S¢

Thus, #*(1+]|¢))*( X5 — X}s) reduces to

. —2¢,° 1+t g ) _
2h¢’2(Sl SZ ) { 1_|_¢} 2 ¢12 + 1+¢zz_¢12 1} —O

The proofs that X% =X% and X3 = X% are sirmilar. QED

COROLLARY 5.1. [Mil]  The mean curvature of an isometrically im-
mersed timelike surface X : M*—>L? is constant iff G: M*—S3% is harmonic.

PROOF : ? can be parametrized using inverse stereographic projec-
tion :

. _ (2x1, —2x2, x3—x5+1)
1 (X1, xz)— (1+x%_x%) .

If the induced metric on S? is denoted by ¢ then 61,=— 1%, 022=1* and o12=

Tx1

0, where r=(1+—ng_x?)-. In addition, we see that T'l1=T%=T%= . and

T
I'%=T%=T1= )ZC_Z ;
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A straightforward calculation shows that G is harmonic iff

(5.4a) A¢1:T;L2|¢,—|2(Sl(¢1Tl_¢2T2)+SZ(¢2TI“¢’1TZ))
<54b> A(/lzz 1_:@)‘2 (Sz(¢’1T1*¢2T2)+Sl(¢’2T1_¢1T2)).

Note that the Laplacian of ¢; is %Agbj.

If 2 is constant then these last equations hold by 5.2. Conversely if
5.4 holds — &S+ hsS2=0=h:S2+ hsS1, so that 7.=hs=0. QED

6. Applications

As a first application, we prove a converse to [l heorem 4.1|, that is, if
equations 4.1 hold for 20 we can find an immersion with precisely the
given mean curvature and Gauss map. In the theorem below we require
(1= ¢os)* —(rs— ¢2,)* >0, that is, that the surface is regular everywhere.
We also assume that we have chosen a conformal class of timelike metrics
on M? and that (¢, s) are isothermal coordinates for this class.

THEOREM 6.1. Let M? be a simply connected surface as above, h:
M*—R a non-vanishing C* function and G : M?*—S? a function whose pro-
jection satisfies (Pr,.— ¢2s)?—(hrs— ¢2)?>0. If h, ¢ and . satisfy 5.2 then
there exists an immersion X : M*—L? such that

1. (s, t) are isothermal coordinates for the induced metric g,
2. the mean curvatuve of X is h and its Gauss map is G, and

, b . .
3. X’(p)=fp (X%, X1)(dt, ds) where Xi, and Xi are given by
5.3, 7=1, 2, 3.
PROOF: Given %, ¢ and ¢», we define X%, X% by 5.3. We know
that X% = X, so that X=(X", X2 X?) exists. We can then see that (X,
Xs):}lz(l+if/)|2)2 <(¢1t_¢25)2_(¢ls_¢2t)2>’ (Xs, X:)=0 and (X:, X¢)=—(X,

Xs).
From 1.3, AX=Xs— Xu=2A%hes, so the Laplacian of X, [ JX=2hes,

2

and X has mean curvature %. From 1.2, we see that e3= [TW’

—2¢>  1-|d] that the G i isely G
1+|¢|2 y 1+|¢l2 , SO a e 4UuSsS map 1S precisely .

Note that, from 3.8, the sectional curvature of M? can be written as
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2 T3—T31 .
h 1+m . in terms of Si, Sz, 71 and 7. QED
Thus, given h, ¢1, and ¢», satisfying 5.2a and 5.2b, [[heorem 6.1
allows us to construct examples of isometric immersions with the given %
and G. We now do this for certain surfaces with constant mean curva-

ture.

EXAMPLE 6.1. Let z=—1, ¢1i=¢ and ¢»=—s. We see that ¢ and
¢, satisfy 5.2a and 5.2b. The timelike immersion X defined by 5.3 is

_ (2t 2s t2—52+1]
X(t9)= [1+sz—t2’ 1+s*—t* 1+s* =)

This is the standard immersion of S? into L’.

sinh ¢

EXAMPLE 6.2.  Set h=—1/2, =" "1~

isfy 5.2a and 5.2b. The X obtained is
X(t, s)=(sinht¢, s, cosht).

and ¢.=0. These sat-

This is a hyperbolic cylinder in L* on which the induced metric is timelike.

EXAMPLE 6.3. The other type of cylinder in L® can be generated by

setting h=—1/2, $1=0 and ¢.= llcgiss. Here the immersion we obtain is

X(t,s)=(t, coss, sins).

THEOREM 6.2. Let X, X be isometric immersions from a simply con-
nected timelike surface (M?, g) into L* with h, h=+0 and Gauss maps G
and G. Then the following statements are equivalent.

1. There is a conformal diffeomorphism ¢ . M—M and an orien-
tation preserving isometry t: L*—L® such that for all pEM

6.1) o X(p)=Xeo(p).

2. There is a conformal diffeomorphism ¢ : M—M and an ovien-
tation preserving isometry o: Si—Si such that for pEM

(6.2a) 0°G()=Geoe(p)
(6.2b)  h(p)=heoo(p).

PROOF: First assume 1. is true. We have
Jory0x X, 0x Y)=0%(p)gs(X, Y), for some non-zero function o on M.
Choose coordinates (¢, s) which are isothermal with respect to the metric
g. It is easy to see that X«(¢«(8/0t)) and X«(p«(d/0s)) are perpendicular
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and Q(X_*(¢’*(a/3t), X*(qo*(é’/at))+g(X*(q0*(8/83), X*(GD*(a/aS)):O-
Because r4(Xx(9/0t))=X«(0x(3/0t) and t+(Xx(3/0s))=X«(0«(3/3s) and
r is an isometry r«(es(p))=és(@(p)). If we set 6=r« we have 6.2a.

Since 2h=%g(AX, es) and A(r°X)=r1+(AX) we have h(p(p))

=h(p).
Now we assume 2. Extend o to an orientation preserving isometry of
L?. We may assume that ¢ is the identity, so that G(p)= G(¢(p)) or ¢;(p)
= ¢;(¢(p)) for j=1,2,3. From equations 5.3, we find that Xi(p)
— X¥e(p))=0 and Xi(p)— Xi(e(p))=0, for j=1,2,3. Therefore, X(p)=X
cp(p)+C or e X=Xep+C. It follows that we can find an orientation
preserving isometry r so that reX=Xcp. QED

APPENDIX.
In this appendix we give a sampling of the equations in terms of the
other coordinate representation of the Gauss map (14, ().
(3.12) Xi+mXi+Xi+ 1X3=0.
(3.1b) X%+ X3+ X+ X3=0.
(3.22) Xi=—m(Xi— XY+ m(Xi— X))
(3.2b) Xi=—1u(Xi— XY+ m(X2— X))
B4 A+|ePA—-ed=2; |plP=p?— w2

(3.32) 4m = — XY X1— X?)— XY X2— XY
. (1+|/l|2)2 t t S, s t s/.
(3.3b) Ak YX2— XD — XY X— X?)
. (1+|[l|2)2 t t S S t S/

(3.5a) #u—#zs:—%(lﬂulz)z(Xi— 2.

(3.5b) o= = —HLH] (X3~ X,

(3.6a) mt+u28=i|2”|i(b(Xa—X§)—a(X%— 5))-
3.60) st =TT (o1 X9+ 5(x3— x1).
(3.6¢C) aXi+ bX§=(1+—|2#|2)—2— (— et 12) + (g + p222)).

(3.6d) bX3+ an:(l—-klzle)z (— (gt prs) + pr(prs + 122,)).
422 1_ w2\ (v2_ v1\2

3.7 W_(Xt X4 —(X3— XY

(3.8a) (1= p2)* — (o, — P =W2A%(1 + | 1?2

(3.8b) (a1t 12,)* — (o p11)* = (62— @®) A%(1 + | ?)*.
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(3.9a)  —h(m,+ pae)=b(p1,— t12) — alpt2.— t15).
(3.9b)  —hpus+ o) = — alpme— t125) + b2, — tac).

4.1 hXi= W (= (U o+ 1) (11— p125) + 2 12 20— 1))
hXé:TH—tzW (— 2 pa 1= pt2) + (1 pa® + 12°)(ptze— 116).
hX5= W (=24 o pr1e— p125) — (L — pu® — ") (12— 11,)).
hX5= ﬁw (1= p® = )= pr25) + 2 11 22— 11).
hXi= Q—Jjﬂlz)—z (et — pr2e) — 12120 — p115)).
hX EZ(IT?MW (e ptre— 125) — 1 p2e — 115)).

Setting

_ b ps) Falpns+ 112) _a(p, T pas) + 0+ 12)
R (T2 77 N (R Ok

we have

(43) (bz_dz)Xlz(1+#12+ﬂ22)Hl_2ﬂ1#sz.
(bz— dz)X.lsz 2/11,[12H1_(1 +#12+ ﬂzZ)Hz.
(bz_ dz)Xzz 2#1/12H1 +(1 _ﬂlz“‘#zz)Hz.
(6= a®) X5=(w*+ p” — D H\ =21 p12 .
(bz_ az)XSZ —2ﬂ1H1 +2,leH2.
(b*— ¥ X3= — 2 Hy +2u1 H,.

1_4A2hﬂ1
(5.1a) AX_1+|/112'
2:4/12}”12

Set Ur=,— s, U= pa,— thrs, V1= 1.+ thas and Ve=pu,+ 12,
(5.2a) Au1=—h—};U2—% U1+41¢2W(U2<mvz—_uzvl)+Ul(plvl—mvz))

(5.2]3) A/lzz—hht Uz_llzs

U+ #Iz(Ul(,Ule—#z W)+ U s Vi— 2 Va)).

2
1+|
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