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On metamorphosis of Kummer surfaces
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Introduction

One method of introducing K3 surfaces with large Picard number is to
create degenerate elements having at most rational double points in some
fixed category of K3 surfaces (e. g . quartic surfaces in P^{3} . sextic double
planes etc. See Brieskorn [2][3]) . Then we are sometimes led to a situa-
tion such that, for a surface obtained in this way, a lattice isomorphic to
L(E_{8})\oplus N is primitively imbedded into its N\’eron-Severi group. Under the
algebraicity assumption, D. Morrison proved that such a surface is a Kum-
mer surface and vice versa [6]. ( L(E_{8}) denotes the root lattice of the sim-
ple group E_{8} , and N denotes the Nikulin lattice. N is given by the canon-
ical Q-basis { e_{1} , e2, ... . e_{8}} such that (e_{i}, e_{j})=-2\delta_{ij} and that e_{1} , \ldots

e_{8} ,
\Sigma_{i=1}^{\infty}e_{i}/2 generate N over Z) However, Morrison’s proof is number-
theoretic and it is in general an extremely difficult problem to find sixteen
disjoint non-singular rational curves which should exist on the surface. In
this note we will give a solution to this problem in the case when the
N\’eron-Severi lattice is of rank 17 and of determinant 2^{6}i . e . in the case
corresponding to (generic) Kummer quartics. We will namely describe
the inverse process explicitly by finding a lattice isomorphic to L(E_{8})\oplus N

in the N\’eron-Severi group of the Kummer quartic. The lattice to be
found should be effective in the sense that it has the canonical base \{r_{1} , r_{2} ,
... . r_{8} , e_{1} , e_{2} , \ldots . e_{8}}, represented by non-singular rational curves such that
r_{1} , r_{2} , \ldots

r_{8} form a Dynkin base of L(E_{8}) , and that { e_{1} , e2,\ldots r.e_{8}} is the
canonical Q-base of N. (The genericity assumption is imposed exactly to
guarantee this effectiveness.) It is now clear how to recover the classes of
sixteen exceptional curves from the canonical basis \{r_{i}, e_{i}\} when the latter
is known in the geometric context. This is of great importance since it
enables us to describe the parameter space of the K3 surface, which is
theoretically known to be a Kummer quartic, by the theta constants; they
are in principle calculated from the Kummer configuration in P^{3}(C) con-
sisting of sixteen singular points and sixteen singular planes by the classi-
cal works of Borchardt [1], Cayley [4], Weber [8] and Humbert [5]. But
we will not be concerned with such a detailed computation in this note;
we will only show the equivalence between the Kummer quartics and some
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special kind of sextic double planes to clarify this phenomenology about
Kummer surfaces.

\S 1. Kummer configuration

In this section we will briefly study the classical Kummer
configuration as a preliminary to the construction of the lattice L(E_{8})\oplus N .
Suppose that S is a quartic surface in P^{3}(C) with sixteen ordinary double
points. The argument in this section is not completely intrinsic, but it
only depends on one double point on S chosen as the source of projection;
we denote it by q_{0} . To be precise with the notion of the projection

through \#0 , we form the blowing up P^{\hat{3}}(C) of P^{3}(C) with center q_{0} , by
which the partial desingularization at q_{0} is the proper transform of S to
P^{\hat{3}}(C) . We denote this by S_{0} : S_{0}Larrow P^{3}\hat{(C} ). P^{\hat{3}}(C) is a P^{1}(C) -bundle
over the exceptional set (in the space) which is isomorphic to P^{2}(C) . By
restricting the canonical projection to S_{0} we regard S_{0} as a double cover
of this P^{2}(C) . The branch locus in sextic curve with fifteen nodes corre-
sponding to the remaining double points. Such a sextic is automatically
decomposed into 6 lines intersecting transversally. We index the lines to
be l_{1} , l_{2} , \ldots

l_{6} . The image on P^{2}(C) of the exceptional curve of the par-
tial desingularization S_{0}arrow S is a conic and each l_{i} is tangent to the conic.
By p_{jk}(1\leq j<k\leq 6) we denote the intersection point of l_{j} and l_{k} , and by
Qjk the singular point of S_{0} (and of S) lying over p_{jk} . We have the singu-
lar locus:

\Sigma(S)=\{q_{0}, q_{12}, q_{13}, \ldots.q_{56}\} .

The inverse image of l_{i} in P^{\hat{3}}(C) is a proper transform of a plane in
P^{3}(C) , which we will denote by H_{i} . The intersection H_{i}\cap S is a (doubly
counted) conic in H_{i} ; it is naturally isomorphic to the line l_{i} by the pr0-
jection S_{0}arrow P^{2}(C) when lifted to S_{0} . H_{i} is a special plane for S on which
exactly six singular points lie; those are Qo , q_{1i} , ... , q_{(i-1)i} , q_{i(i+1)} , ... q_{i6} .
Such a plane is called a singular plane of the Kummer quartic S . Since q_{0}

is not a special double point, we have seen that, for each double point,
there are six singular planes passing through it. We have therefore six-
teen singular planes to sum up. Now the question arises: How can the
remaining ten be described by the geometry of the double plane S_{0}arrow

P^{2}(C) ? On each of them there are six singular points and they lie on the
conic which is the intersection with S_{0} . Thus, by the projection with
source q_{0} , they are in a one-t0-0ne correspondence with the conconical
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sixtuplets out of the set of points p_{jk} , L\leq j<k\leq 6 . These ten sixtuplets
are listed in the following way: Suppose we are given a (3, 3) partition of
the index set {1, 2, \ldots , 6}, say \{i<j<k, l<m<n\} . Then \{p_{ij} , p_{ik} , p_{jk} , p_{lm} ,
p_{ln} , p_{mn}\} is such a sixtuplet. Since there are ten (3, 3) -partions of the in-
dices, we have counted all the ten remaining singular planes. For brevity
of notation we denote by H_{jk}(2\leq j<k\leq 6) the singular plane correspond-
ing to the partition into \{1, j, k\} and the complement. Thus we have the
sixteen singular planes H_{i} , 1\leq i\leq 6 ; H_{jk} , 2\leq j<k\leq 6 . In accordance with
the notation for the singular points, we fix the first index as reference and
put

H_{0} :=H_{1} H_{1j} :=H_{j} , 2\leq j\leq 6 .

Then the correspondence q_{0}rightarrow H_{0} , q_{jk}rightarrow H_{jk}(l\leq j<k\leq 6) preserves the inci-
dence relation between points and planes. It is thus a duality of what we
call the Kummer configuration of S : that is the set of singular points and
planes:

\mathscr{K}(S):=\{q_{0}, q_{jk} ; H_{0}, H_{jk}\} .

To introduce the homological counterpart of \mathscr{K}(S) we observe the
minimal desingularization of S, denoted by \tilde{S} . It is obtained to be the
double cover of the blowing up of P^{2}(C) with center p_{jk}(l\leq j<k\leq 6)

branched over the proper transforms of l_{i}(1\leq i\leq 6) , so we have the natu-
ral commutative diagram:

\tilde{S}-P^{\hat{3}}(C)

(1) \downarrow
\downarrow

S_{0}-P^{2}(C)

where P^{\hat{3}}(C) denotes the blowing up. We denote by E_{0} , E_{jk} the excep-
tional divisors on \tilde{S} associated with q_{0} , qjk . We denote further the proper
transforms to \tilde{S} of the conies H_{0}\cap S , H_{jk}\cap S by C_{0} , C_{jk} . By the same
letters we also mean the homology classes of these curves, as far as the
confusion is avoidable. We let L stand for the class of plane sections of
S i . e . the natural polarization class of the quartic. The intersection
behavior and the linear dependence among these classes are now summar-
ized in the following theorem:

THEOREM 1. E_{0} , E_{jk} are mutually orthogonal with respect to the
intersection pairing (, ) . We have also
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(i) \{

(L, L)=4 , (L, E)=(L, E_{jk})=0
(R, E_{0})=(E_{jk}, E_{jk})=-2 .

The expression for G, C_{jk} is :

(ii) \{

G=(L-B-\Sigma_{k=2}^{6}E_{1k})/2

C_{1j}=(L-R-\Sigma_{i=1}^{j-1}E_{ij}-\Sigma_{k=j+1}^{6}E_{jk})/2 2\leq j\leq 6

C_{jk}=(L-E_{1j}-E_{1k}-E_{jk}-E_{tm}-E_{\iota n}-E_{mn})/2 2\leq j<k\leq 6

where \{l<m<n\} is the complementary index set to \{1, j, k\} . G, C_{jk} are
mutually orthogonal and we obtain the dual version of ( i ) , ( ii) by the
transposition C_{0}rightarrow E_{0} , C_{jk}rightarrow E_{jk}, Lrightarrow L^{*} where L^{*}=3L-E_{0}-\Sigma_{1\leq j<k\leq 6}E_{jk} .
Since G, C_{jk} are conics, we have

(iii) (L, G)=(L, C_{jk})=2 .

The covering automorphism of \tilde{S}arrow P^{2}\hat{(C} ) induces an automorphism
of the N\’eron-Severi lattice of \tilde{S} . We denote these automorphism by the
same letter \alpha . The homology classes C_{0} , C_{1j}(2\leq j\leq 6) , E_{jk}(1\leq j<k\leq 6)

are invariant under \alpha , while the curves E_{0} , C_{jk}(2\leq j<k\leq 6) are mapped
to some other curves. If we consider L, E_{0} , E_{jk} as a Q -base of the
N\’eron-Severi group, the action \alpha is given simply by

(iv) \{

\alpha(L)=3L-4E_{0}

\alpha(E_{0})=2L-3E_{0}

and consequently we have

(iv’) \{\begin{array}{l}\alpha(C_{jk})=C_{jk}+L-2E_{0} 2\leq j<k\leq 6(E_{0},\alpha(E_{0}))=0(C_{jk},\alpha(C_{jk}))=0 2\leq j<k\leq 6.\end{array}

Note that L-E_{0} is stable under \alpha ; it is the degree 2 polarization, induced
from P^{2}(C) by S_{0}arrow P^{2}(C) .

\S 2. Construction of L(E_{8})\oplus N

By the intersection behavior of rational curves described in the previ-
ous section, we can, for example, extract the following E_{8}-configuration:

(2) C_{14}-E_{14}-C_{0}-E_{16}-C_{16}-E_{26}-C_{12}|

E_{15}

In this diagram two curves are connected as usual by an edge if and only
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if their intersection number is equal to one; other wise they are orth-
ogonal. We put

r_{1} :=C_{14} r_{2} :=E_{14} r_{3}:=E_{15} r_{4} :=C_{0}

r_{5} :=E_{16} r_{6}:=C_{16} r_{7} :=E_{26} r_{8} :=C_{12}

to be the Dynkin base for the lattice

L(E_{8}):= \sum_{i=1}^{8}Zr_{i} .

In order to obtain a suitable complementary Nikulin lattice to L(E_{8}) , we
now extend (2) to the following:

C_{23}|

(3)
r_{1}-r_{2}-r_{4}C_{15}E_{5}C_{13}r_{3}|||-r_{5}-r_{6}-r_{7}-r_{8}-E_{23}-\alpha(C_{23})

and denote by M the lattice generated by r_{1} , r_{2} , \ldots
r_{8} , E_{23} , C_{23} and \alpha(C_{23}) .

M is of rank 11, and it contains L(E_{8}) , C_{23} , \alpha(C_{23}) which are mutually
orthogonal; these together generate a sublattice M’ of rank 10, so the
orthogonal complement of M’ in M is of rank 1, and we can choose
uniquely an effective generator for it:

P:=16(L-E_{0})-9E_{12}-7E_{13}-E_{23}-4E_{24}

-2E_{25}-2E_{34}-4E_{36}-3E_{45}-7E_{46}-5E_{56} .

We can immediately check that (P, P)=4 and that the image of the Z-
linear form

U\ni D\mapsto l_{P}(D) :=(P, D)\in Z

is exactly 2Z, where we denote by U the lattice generated by the classes
L, E_{0} , C_{0} , E_{jk} and C_{jk}(1\leq 5<k\leq 6) . By Diagram (3) we see that the
curve E_{35} is orthogonal to L(E_{8}) , C_{23} , \alpha(C_{23}) , P, E_{35} in U. By checking
directly we see that this is generated (over Z) by the following five
(-2)-classes:

e_{1} :=(L-E_{0})-(E_{12}+E_{46})

e2: =2(L-E_{0})-(E_{12}+E_{13}+E_{24}+E_{46}+E_{56})

e_{3}:=3(L-E_{0})-2E_{12}-(E_{13}+E_{24}+E_{36}+E_{45}+E_{46}+E_{56})

e_{4}:=4(L-E_{0})-2(E_{12}+E_{13}+E_{46})-(E_{24}+E_{25}+E_{36}+E_{45}+E_{56})



412 I. Namki

e_{5} :=5(L-E_{0})-3E_{12}-2(E_{13}+E_{46}+E_{56})

-(E_{24}+E_{25}+E_{34}+E_{36}+E_{45}) .

These are orthogonal to each other. They are so chosen that their inter-
section numbers with L, E_{0} , E_{jk} etc. are non-negative. By setting

e_{6}:=C_{23} e_{7} :=\alpha(C_{23}) e_{8} :=E_{35}

we have obtained eight orthogonal (-2)-classes e_{i}(1\leq i\leq 8) which are
orthogonal to the lattice L(E_{8}) . By using the expressions for C_{jk} in
terms of L, E_{0} , E_{jk} we obtain the equality

\sum_{i=1}^{8}e_{i}=2C_{13}+2\{8(L-E_{8})

-(5E_{12}+3E_{13}+2E_{24}+E_{25}+E_{36}+2E_{45}+4E_{46}+3E_{36})\}

which shows that \Sigma_{i=1}^{8}e_{8} is divisible by 2 in the N\’eron-Severi group of \tilde{S} .
We denote the lattice generated by e_{1} , e2, ... . e_{8} , \Sigma_{i=1}^{8}e_{i}/2 by N. The
question is now whether or not N is primitive in the N\’eron-Severi group
(or equivalently in H^{2} ( \tilde{S} , Z)). To answer this question we recall the lat-
tice U generated by L, E_{0} , E_{jk} , C_{0} , C_{jk} . U is of determinant 2^{6}

If the Kummer quartic S is generic, then U coincides with the N\’eron-

Severi lattice. In particular U is primitive in that case. Since any Kum-
mer quartic is in a smooth deformation with the generic Kummer quartic,
U is always primitive. Thus, if N is primitive in U, then it is primitive
in H^{2}(\tilde{S}, Z) . Now, to show that N is primitive in U, we denote its prim-
itive hull in U by \hat{N} . Recall also that the image of the Z-linear form l_{P}

over U is 1Z. We compare the two lattices L(E_{8})\oplus\overline{N}\oplus ZP\subseteq U where
L(E_{8})\oplus\overline{N} is exactly the kernel of l_{P} . Since the image of the restriction of
l_{P} to the former lattice is 4Z((P, P)=4) and l_{P}(U)=2Z , L(E_{8})\oplus\overline{N}\oplus ZP

is of index 2 in U which proves that

determinant of \hat{N}=2^{6}\cross 2^{2}/4=2^{6}=determinant of N.

Thus we have \overline{N}=N , showing the primitiveness of N. We have con-
structed an explicit primitive sublattice L(E_{8})\oplus N in the N\’eron-Severi

group of \tilde{S} ; the existence of such a sublattice is guaranteed by [6]. But
what is non-trivial is the following:

THEOREM 2. The sixteen (-2)-classes r_{1} , r_{2} , \ldots . r_{8} ; e_{1} , e_{2} , \ldots
e_{8} ,

which give the above L(E_{8})\oplus N, are represented by non-singular rational
curves on the minimal desingularization \tilde{S} if S is a generic Kummer quar-
tic.
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The representability is evident for r_{1} , r_{2} , ... - r_{8} , e_{6} , e_{7} , e_{8} . We know
that the (-2)-cycles e_{1} , \ldots . e_{5} are effective, up to sign by, Riemann-Roch.
But they themselves are effective, since they have positive intersection
numbers with the nef cycle L. The uniqueness and irreducibility of the
curves representing them is then a generic condition. We now explain the
geometric description of the classes e_{1} , \ldots

e_{5} , which gives an alternative
proof of the theorem. From the expression of e_{1} we see that it is re-
presented by the proper inverse image of the line passing through p_{12} and
p_{26} under the covering map \tilde{S}arrow P^{2}(C) . The class e_{2} is represented by the
proper inverse image of the conic passing through the five points p_{12} , p_{13} ,
p_{24} , p_{46} , p_{56} among which no three are collinear. Under the genericity
assumption we see that e_{3} is represented by the proper inverse image of
the cubic passing through p_{13} , p_{24} , p_{36} , p_{45} , p_{46} , p_{56} and having a double point
at p_{12} . The class e_{4} is represented by the proper inverse image of the
uartic passing through p_{24} , p_{25} , p_{36} , p_{45} , p_{56} and having double points at p_{12} ,

p_{13} , p_{46} . The class e_{5} is represented by the proper inverse image of the
quintic passing through p_{24} , p_{25} , p_{34} , p_{36} , p_{45} , having double points at p_{13} , p_{46} ,
p_{56} and a triple point at p_{12} . By counting the number of parameters for
curves of the corresponding degree and the number of linear conditions
which they should satisfy, we see that, for each case, there is at least one
curve which fulfills the above requirements. The genericity of S is needed
only for the uniqueness and irreducibility of those curves and the smooth-
ness of their proper transforms. (This should be regarded as the definition
of genericity.)

\S 3. A birational geometry

Recall that P^{2}\hat{(C} ) is the blowing up of P^{2}(C) whose center consists
of the fifteen intersection points p_{jk}(1\leq j<k\leq 6) of the six lines l_{i}(1\leq i\leq

6) . The minimal desingularization \tilde{S} is described as the double cover of
P^{\hat{2}}(C) branched over the proper transforms \hat{l}_{i} of l_{i}(1\leq i\leq 6) . S was
assumed to be so generic that the five (-2)-classes e_{1} , e_{2} , \ldots . e_{5} are re-
presented by non-singular rational curves on \tilde{S} , which we denote now by
D_{1} , D_{2} , ... 7

D_{5} . Each D_{i} is the proper inverse image of some exceptional

curve of the first kind on P^{2}\hat{(C} ). We denote this curve by D_{i}’ . For E_{jk}

(1\leq j<k\leq 6) their images on P^{\hat{2}}(C) , which we denote similarly by E_{jk}’ ,
are also exceptional curves of the first kind; they are the exceptional sets
associated with p_{jk} . The curves C_{0} , C_{1j}(2\leq j\leq 6) are exactly the branch-
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ing locus on \tilde{S} : they are identified with the (-4)-curves \hat{l}_{1},\hat{l}_{2,\ldots-}\hat{l}_{6} .
The ten curves C_{jk}(2\leq j<k\leq 6) are disjoint from the branching locus, so
C_{jk} and \alpha(C_{jk}) are disjoint, and they form the proper inverse image of the

image C_{jk}’ on P^{2}\hat{(C} ) : C_{jk}’ is the proper transform of the conic passing
through p_{1j} , p_{1k} , p_{jk} , p_{lm} , p_{ln} , p_{mn} (\{1<j<k, l<m<n\}=\{1,2, \ldots, 6\}) . The ten

curves C_{jk}’ are 2)-curves. Thus, by applying the map \tilde{S}arrow P^{2}\hat{(C} ) to
Diagram (3) and adding D_{\acute{i}}(1\leq i\leq 5) we obtain

(3)’

where the number in a parenthesis denotes the self-intersection number of
the corresponding curve. We see now that we can step by step blow
down the fifteen curves E_{14}’ , E_{\acute{1}5} , E_{16}’ , E_{\acute{2}6} , E_{\acute{2}3} , E_{\acute{3}5} , D_{\acute{1}} , \ldots , D_{\acute{5}},\hat{l}_{1},\hat{l}_{4},\hat{l}_{6} , C_{\acute{2}3} to
reach a non-singular rational surface of the Euler number 3. This is
therefore another projective plane, which we denote by P^{2}(C)’ to distin-
guish it from the original P^{2}(C) . The images on P^{2}(C)’ of the curves \hat{l}_{5} ,

\hat{l}_{2},\hat{l}_{3} are now a cubic with a cusp, the line intersecting the cubic only at
the cusp and a conic touching the line at one point. These three curves
form a reducible sextic whose singular points are the cusp, the contact
point of the line and the conic, and the six intersection points of the conic
and the cubic. The cusp is a rational double point of Type E_{7} and the
contact point is of Type A_{3} ; the other six singular points are of Type A_{1}

(nodes in the classical terminology). We see the corresponding E7-
configuration formed by r_{1} , r_{2} , \ldots . r_{7} and the A_{3}- confifiguration formed by
C_{23}=e_{6} , E_{23} and \alpha(C_{23})=e_{7} . The six 2)-curves are naturally D_{i}=e_{i}(1

\leq i\leq 5) and E_{35}=e_{8} . Thus we can easily read up the primitive lattice
L(E_{8})\oplus N on this sextic double plane. We know that this is a Kummer
surface theoretically, as was mentioned several times. In fact, the moti-
vation to this work came out of the attempt to find sixteen disjoint non-
singular curves on this sextic double plane.

To close this note, we remark that there is an interesting theoretical
Kummer surface for which sixteen disjoint (-2)-curves have not been



On metamorphosis of Kummer surfaces 415

found yet. The N\’eron-Severi lattice is of rank 18 and of determinant -80
for it. It contains N and a lattice of rank 10 described by a double hexag-
onal diagram; the second lattice is orthogonal to N and it contains L(E_{8}) .
See [7] for the detailed description of the surface.

Acknowledgment. I thank the referee for the revision of the proof of
Theorem 2.
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