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0. Introduction

A real hypersurface of C^{n} or a non-degenerate integrable CR mani-
fold admits the pseud0-conformal invariant of type (1, 3) (Chern-Moser
[4], Tanaka [6], Webster [12] ) In this paper we define pseud0-conformal
invariants of type (1, 3) of contact Riemannian manifolds. A contact
Riemannian manifold is also called a strongly pseud0-convex pseudo
hermitian manifold or a strongly pseud0-convex CR manifold. The inte-
grability condition of the CR structure associated with contact Rieman-
nian structure is expressed by Q=0, where Q is a tensor field of type (1,
2). A contact Riemannian structure satisfying Q=0 is equivalent to a
strongly pseud0-convex, integrable, pseudo hermitian structure in the
sense of Webster [12].

Let (M, \eta, g) be a contact Riemannian manifold with a contact form
\eta and a Riemannian metric g associated with \eta . The dimension of M is
denoted by m=2n+1 . By P we denote the subbundle of the tangent bun-
dle TM of M defined by \eta=0 . By P^{*} we denote the dual of P. P admits
an almost complex structure J which is the restriction of the (1, 1) tensor
field \phi . By the relation d\eta(X, Y)=2g(X, \phi Y) for X, Y\in TM , a contact
Riemannian structure \{\eta, g\} is related to a pseud0-hermitian structure
\{\eta, J\} . B\in\Gamma(P\otimes P^{*3}) is called a pseud0-conformal invariant of type
(1, 3) , if B for CM,\eta ,J) is identical with \tilde{B} for (M,\overline{\eta}, J) for the change
\etaarrow\tilde{\eta}=\sigma\eta by any positive smooth function \sigma . PseudO-conformal invar-
iants correspond to invariants by gauge transformations of contact
Riemannian structure.

In this paper we obtain the following (cf. Theorem 3. 1).

THEOREM A. A contact Riemannian manifold CM,\eta ,g) admits a
pseudO-conformal invariant 0B=^{0}B(\eta, g,\nabla 0) of type (1, 3) , which depends
on the choice of a linear connetion 0\nabla . Furthermore:

(i) If the CR structure associated with contact Riemannian struc-
ture is integrable, then 0B reduces to the Chern-Moser invariant.

(ii ) If 0B vanishes, then the CR structure associated with contact
Riemannian structure is integrable.
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If the invariant 0B vanishes, then the P-part (R_{zxy}^{u}) of the Riemannian
curvature tensor of (M, \eta, g) is expressed explicitly, and the \phi -

holomorphic sectional curvature is expressed by the Ricci curvature ten-
sor, the generalized Tanaka-Webster scalar curvature *S, and the torsion
tensor *T

1. Preliminaries

Let (M, \eta) be a contact manifold with a fixed contact form \eta . Then
we have a uniquely determined vector field \xi such that \eta(\xi)=1 and L_{\xi}\eta=

0 , where L_{\xi} denotes the Lie derivation by \xi . Furthermore we have a
Riemannian metric g and a (1, 1) tensor field \phi such that g(\xi, X)=\eta(X)

and

\phi\phi X=-X+\eta(X)\xi , d\eta(X, Y)=2g(X, \phi Y)

for X, Y\in TM . g is called a Riemannian metric associated with \eta . By
\nabla we denote the Riemannian connection with respect to g. Then the next
relations hold (cf. [8]) :

\phi\xi=0 , \eta(\phi X)=0 ,
g(X, Y)=g(\phi X, \phi Y)+\eta(X)\eta( Y) ,

\nabla_{\xi}\eta=0 , \nabla_{\xi}\xi=0 , \nabla_{\xi}\phi=0 ,
(\nabla_{\phi X}\eta)(\phi Y)=-(\nabla_{Y}\eta)(X) ,

for X, Y\in TM . We define a (0, 2) -tensor field p by 2p=L_{\xi}g . Then

2 (\nabla_{X}\eta) ( Y)=d\eta(X, Y)+2p(X, Y)

holds for X, Y\in TM . Let P be the subbundle of TM defined by \eta=0 .
By J we denote the restriction of \phi to P, i . e. , JX=\phi X for X\in P . J
satisfies J^{2}=-id , where id denotes the identity. The Levi form L is
given by L(X, Y)=g(X, Y)=(-1/2)d\eta(X, JY) for X, Y\in P . The pair
\{\eta, J\} is a strongly pseud0-convex pseud0-hermitian structure. Conversely,
for a strongly pseud0-convex pseud0-hermitian structure \{\eta, J\} , we extend
the Levi form L to a (0, 2) -tensor field on M by putting L(\xi, Y)=0 for Y
\in TM . Then g=L+\eta\otimes\eta is a Riemannian metric associated with \eta .
Therefore, through the relation d\eta(X, Y)=2g(X, \phi Y) for X, Y\in TM ,

the pair \{\eta, J\} is equivalent to the pair \{\eta, g\} and hence the set of all
Riemannian metrics associated with \eta is equal to the set of all almost
complex structures J for P such that (-1/2)d\mbox{\boldmath $\eta$}(X, JY) defines a positive
definite hermitian form.

If one changes \eta to \tilde{\eta}=\sigma\eta by a positive smooth function \sigma , then the
change \{\eta, J\}arrow\{\tilde{\eta}, J\} corresponds to a gauge transformation of contact
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Riemannian structure \{\eta, g\}arrow\{\tilde{\eta},\tilde{g}\} (cf. [8]) :
\tilde{\eta}=\sigma\eta , \overline{\xi}=(1/\sigma)(\xi+\zeta) ,
\tilde{\phi}=\phi+(grad\alpha-\xi\alpha\cdot\xi)\otimes\eta ,
\tilde{g}=\sigma(g-\eta\otimes\zeta-\zeta\otimes\eta)+\sigma(\sigma-1+||\zeta||^{2})\eta\otimes\eta ,

where we have put \sigma=e^{2a} . \zeta=\phi grad \alpha , and the same letter \zeta also denotes
the dual of \zeta with respect to g;\zeta(X)=g(\zeta, X) for X\in TM .

The integrability of the CR structure associated with contact Rieman-
nian structure is given by

[JX, JY]-[X, Y]\in\Gamma(P) X, Y\in\Gamma(P) ,
[JX, JY]-[X, Y])+[JX, Y]+[X, JY]=0 X, Y\in\Gamma(P) .

The first one is satisfied by d\eta(X, Y)=2g(X, \phi Y) and the property of g
and \phi . The second one is equivalent to Q=0, where Q is a tensor field of
type (1, 2) defined by (cf. [8])

Q(X, Y)=(\nabla_{Y}\phi)(X)+(\nabla_{Y}\eta)(\phi X)\xi+\eta(X)\phi\nabla_{Y}\xi X, Y\in TM .

It is easy to see that Q(\xi, Y)=Q(X, \xi)=g(\xi, Q(X, Y))=0 holds for X,
Y\in TM . So we can consider Q as Q\in\Gamma(P\otimes P^{*2}) . Under gauge trans-
formations of contact Riemannian structure, \tilde{Q}(X, Y)=Q(X, Y) holds
for X, Y\in P ([9], Corollary 3. 5).

Generalizing the canonical connection due to Tanaka \lfloor 6\rfloor on a non-
degenerate integrable CR manifold, in [8] we defifined*\nabla on (M, \eta, g) by

*\nabla_{X}Y=\nabla_{X}Y+\eta(X)\phi Y-\eta ( Y)\nabla_{X}\xi+(\nabla_{X}\eta) ( Y) \xi X, Y\in TM .

Then*\nabla is a unique linear connection satisfying the following:

(i) *\nabla\eta=0 , *\nabla\xi=0 , *\nabla g=0 ,
(ii ) *T(X, Y)=d\eta(X, Y)\xi X, Y\in P ,
(iii) *T(\xi, \phi Y)=-\phi*T(\xi, Y) Y\in P ,
(iv) (^{*}\nabla_{X}\phi)Y=Q(Y, X) X, Y\in TM ,

where *T denotes the torsion tensor of*\nabla .
By a P-related frame we mean a frame \{e_{j}\}=\{e_{0}=\xi, e_{u} ; 1\leqq u\leqq 2n\}

such that e_{u}\in P . From now on we use the following range of indices:
1\leqq u , v , w , x , y , z, s , t\leqq 2n .

2. The Bochner type curvature tensor

We give a brief explanation of the Bochner type curvature tensor B
defined in [9], and give a modified curvature tensor B’ In this section,
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tensors are expressed with respect to a P-related frame. *R_{xy} and *R_{zxy}^{u}

denote the components of the Ricci curvature tensor and the curvature
tensor of *\nabla , respectively. *S denotes the generalized Tanaka-Webster
scalar curvature. Q satisfies the following (cf. [9]) :

Q_{xv}^{x}=Q_{vx}^{x}=Q_{xy}^{z}g^{xy}=0 , Q_{vx}^{y}\phi_{y}^{x}=Q_{xv}^{y}\phi_{y}^{x}=Q_{xy}^{z}\phi^{xy}=0 ,
Q_{uv}^{z}=-g^{zx}g_{uy}Q_{xv}^{y} , \phi_{x}^{z}Q_{uv}^{x}=-\phi_{u}^{x}Q_{xv}^{z}=-\phi_{v}^{x}Q_{ux}^{z} .

In [9] we defined *k, L, N\in\Gamma(P^{*2}) by

(2. 1) *k_{xy}=R_{xy}*+(m-3)p_{xu}\phi_{y}^{u}-\phi_{v}^{u*}\nabla_{u}Q_{yx}^{v}+\phi_{v}^{u*}\nabla_{x}Q_{yu}^{v} ,
(2.2) L_{xy}=-\{1/(m+3)\}^{*}k_{xy}+\{1/2(m+1)(m+3)\}^{*}Sg_{xy}+p_{xu}\phi_{y}^{u},

and N_{xy}=L_{xu}\phi_{y}^{u} . Using L and N, we defined B\in\Gamma(P\otimes P^{*3}) by

B_{zxy}u=R_{zxy}^{\mathcal{U}}*+L_{yz}\delta_{x}^{\mathcal{U}}-L_{xz}\delta_{y}^{u}-N_{yz}\phi_{x}^{u}+N_{xz}\phi_{y}^{u}

+g_{yz}L_{x}^{u}-g_{xz}L_{y}^{u}+\phi_{yz}N_{x}^{u}-\phi_{xz}N_{y}^{u}

+(N_{xy}-N_{yx})\phi_{z}^{u}-\phi_{xy}(N_{z}^{u}-N_{z}^{u}) ,

where L_{x}^{\mathcal{U}}=L_{xw}gwu and N_{z}^{\mathcal{U}}=gN_{wz}uw . By a gauge transformation of con-
tact Riemannian structure, B changes as follows (cf. [9], (5. 9)) :

\tilde{B}_{zxy}^{u}-B_{zxy}^{u}=\alpha_{v}U_{zxy}^{vu} ,

where
U_{zxy}^{vu}=-\phi_{y}^{w}Q_{zw}^{v}\delta_{x}^{u}+\phi_{x}^{w}Q_{zw}^{v}\delta_{y}^{u}-g_{yz}\phi_{x}^{w}Q_{tw}^{v}g^{tu}+g_{xz}\phi_{y}^{w}Q_{tw}^{v}g^{tu}

-\phi_{z}^{v}Q_{yx}^{u}+\phi_{z}^{v}Q_{xy}^{u}-\phi_{y}^{v}Q_{zx}^{u}+\phi_{x}^{v}Q_{zy}^{u}-\phi^{uv}Q_{yz}^{w}g_{xw} .

Definition (2. 1) of *k_{xy} has an effect that the difference term \alpha_{v}U_{zxy}^{vu} is
rather simple. However, *k_{xy} and hence B_{zxy}^{u} contain terms consisting of
covariant derivatives of Q (cf. Remark (ii) of \S 4). Although difference
term becomes more complicated, here we give another definition of *k_{xy} to
eliminate the terms consisting of covariant derivatives of Q from B_{zxy}^{u} .
Namely, we defifine*k_{xy}’ by

(2.3) *k_{xy}’=R_{xy}*+(m-3)p_{xu}\phi_{y}^{u}.

Furthermore, we define L_{xy}’ and N_{xy}’ by replacing *k_{xy} by *k_{xy}’ , and B_{zxy}^{\prime y}

by replacing L, N by L’ , N’ :

B_{zxy}\prime u=R_{zxy}^{\mathcal{U}}*+L_{yz}’\delta_{x}^{u}-L_{xz}’\delta_{y}^{u}-N_{yz}’\phi_{x}^{u}+N_{xz}’\phi_{y}^{u}

+g_{yz}L_{x}^{\prime u}-g_{xz}L_{y}^{\prime u}+\phi_{yz}N_{x}^{\prime u}-\phi_{xz}N_{y}^{\prime u}

+(N_{xy}’-N_{yx}’)\phi_{z}^{u}-\phi_{xy}(N_{z}^{\prime u}-N_{z}^{ru}) .
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Since the change of the Ricci curvature tensor *R_{xy} by a gauge transfor-
mation of contact Riemannian structure is given by (cf. [9], (5. 5)) :

*\overline{R}_{xy}-*R_{xy}=-(m+3)A_{xy}-Tr(A)g_{xy}+6(\overline{p}_{xv}-p_{xv})\phi_{y}^{v}

+2 \alpha_{v}(Q_{xw}^{v}+Q_{wx}^{v})\phi_{y}^{w},

we obtain

*\tilde{k}_{xy}’=k_{xy}’*-(m+3)A_{xy}-Tr(A)g_{xy}+(m+3) (\tilde{p}_{xw}-p_{xw})\phi_{y}^{w}

+2 \alpha_{v}(Q_{xw}^{v}+Q_{wx}^{v})\phi_{y}^{w} ,

where A_{xy} is defined by

(2. 4) A_{xy}=\nabla_{x}*\alpha_{\mathcal{Y}}-\alpha_{x}\alpha_{\mathcal{Y}}+\zeta_{x}\zeta_{y}+(1/2)||\zeta||^{2}g_{xy}+\xi\alpha\cdot\phi_{xy} .

Further, G_{xy} is defined by G_{xy}=A_{xv}\phi_{y}^{v} . Since the change of the scalar cur-
vature *S is given by \sigma^{*}\tilde{S}=S*-2(m+1)Tr(A) (cf. [9], (5. 6)), we obtain

(2.5) A_{xy}=\overline{L}_{xy}’-L_{xy}’+\{2/(m+3)\}\alpha_{v}(Q_{xw}^{v}+Q_{wx}^{v})\phi_{y}^{w},
(2.6) G_{xy}=\tilde{N}_{xy}’-N_{xy}’-\{2/(m+3)\}\alpha_{v}(Q_{xy}^{v}+Q_{yx}^{v}) .

The change of the curvature tensor by a gauge transformation of contact
Riemannian structure is given by (cf. [9], (5. 3))

(2.7) *\tilde{R}_{zxy}u-*R_{zxy}^{y}=-A_{yz}\delta_{x}^{u}+A_{xz}\delta_{\mathcal{Y}}^{u}+G_{yz}\phi_{x}^{u}-G_{xz}\phi_{y}^{u}-g_{yz}A_{x}^{u}+g_{xz}A_{y}^{u}

-\phi_{yz}G_{x}^{u}+\phi_{xz}G_{y}^{u}-(G_{xy}-G_{yx})\phi_{z}^{u}+\phi_{xy}(G_{z}^{u}-G_{z}^{u})

+\alpha_{v}[Q_{zy}^{v}\phi_{x}^{u}-Q_{zx}^{v}\phi_{y}^{u}-(\phi_{yz}Q_{wx}^{v}-\phi_{xz}Q_{wy}^{v})g^{uw}

-(Q_{yx}^{v}-Q_{xy}^{v})\phi_{z}^{u}+(Q_{wz}^{v}-Q_{zw}^{v})g^{wu}\phi_{xy}]

+\zeta_{z}(Q_{yx}^{\mathcal{U}}-Q_{xy}^{u})+\zeta_{y}Q_{zx}^{u}-\zeta_{x}Q_{zy}u-*\nabla_{z}\phi_{xy}\zeta^{\mathcal{U}} .

Replacing A_{xy} and G_{xy} in (2. 7) by (2. 5) and (2. 6), we obtain

(2.8) \overline{B}_{zxy}^{\prime u}-B_{zxy}^{ru}=\alpha_{v}U_{zxy}^{\prime vu} ,

where

(2.9) U_{zxy}^{\prime vu}=\{2/(m+3)\}[-\delta_{x}^{u}(Q_{yw}^{v}+Q_{wy}^{v})\phi_{z}^{w}+\delta_{y}^{u}(Q_{xw}^{v}+Q_{wx}^{v})\phi_{z}^{w}

+\phi_{y}^{u}(Q_{zx}^{v}+Q_{xz}^{v})-\phi_{z}^{u}(Q_{zy}^{v}+Q_{yz}^{v})-g_{yz}(Q_{xw}^{v}+Q_{wx}^{v})\phi^{wu}

+g_{xz}(Q_{yw}^{v}+Q_{wy}^{v})\phi^{wu}+\phi_{yz}(Q_{xw}^{v}+Q_{wx}^{v})g^{wu}

-\phi_{xz}(Q_{yw}^{v}+Q_{wy}^{v})g^{wu}]

+Q_{zy}^{v}\phi_{x}^{u}-Q_{zx}^{v}\phi_{y}^{u}-(\phi_{yz}Q_{wx}^{v}-\phi_{xz}Q_{wy}^{v})g^{uw}

-(Q_{yx}^{v}-Q_{xy}^{v})\phi_{z}^{u}+(Q_{wz}^{v}-Q_{zw}^{v})g^{wu}\phi_{xy}

-\phi_{z}^{v}(Q_{yx}^{u}-Q_{xy}^{u})-\phi_{y}^{v}Q_{zx}^{u}+\phi_{x}^{v}Q_{zy}^{u}-\phi^{uv}Q_{yz}^{w}g_{xw} .

3. Pseudo-conformal invariants of type (1, 3)

Let (\Gamma_{jk}^{i}) be the coefficients of the Riemannian connection \nabla with
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respect to g in a local coordinate neighborhood (\Omega, x^{i}) . Now we choose
and fix a linear connection 0\nabla with coefficients (^{0}\Gamma_{jk}^{i}) . Then the difference
(\Gamma_{jk}^{i}-^{0}\Gamma_{jk}^{i}) defines a tensor field of type (1, 2) and \theta=(\theta_{k})=(\Gamma_{rk}^{r}-^{0}\Gamma_{rk}^{r})

defines a 1-form on M. We need the following classical identity: 2\Gamma_{rk}^{r}=

\partial\log (det g) /\partial\chi_{-}^{k}

Now again in the following, tensors are expressed with respect to a
P-related frame.

THEOREM 3. 1. Let (M, \eta, g) be a contact Riemannian manifold
and let 0\nabla be a linear connection. Then 0B\in\Gamma(P\otimes P^{*3}) defined by

0B_{zxy}^{u}=B_{zxy}^{\prime u}-\{1/(m+1)\}\theta_{v}U_{zxy}^{rvu}

is a pseudO-conformal invariant of type (1, 3) .

PROOF. First we see that

(3. 1) 2 (\tilde{\theta}_{v}-\theta_{v})= {d log (det \tilde{g})-d log (det g) } (e_{v})

holds. Since the volume element dM of (M, g) is equal to ( -1)^{n}(1/2^{n}n!)

\eta\wedge(d\eta)^{n} , the volume element of (M,\tilde{g}) is equal to \sigma^{n+1}dM . Therefore
det \overline{g}=e^{2(m+1)a} det g, and hence, \tilde{\theta}_{v}-\theta_{\nu}=(m+1)\alpha_{v} holds. Since \tilde{U}_{zxy}^{rvu}=

U_{zxy}^{rvu} holds, we obtain
\{1/(m+1)\}[\tilde{\theta}_{v}\tilde{U}_{zxy}^{rvu}-\theta_{v}U_{zxy}^{rvu}]=\alpha_{v}U_{zxy}^{rvu} .

Hence, (2. 8) implies that 0\tilde{B}_{zxy}^{u}=^{0}B_{zxy}^{u} holds. Q. E. D.

Next we show the following relation:

(3.2) \phi_{u}^{z0}B_{z}^{u}\chi y\phi^{xy}=2Q_{vx}^{u}Q_{yy}^{v}g^{xy} .

By (4. 12) and (4. 13) of [9] we obtain the following:

\phi_{u}^{z*}R_{zxy}^{u}\phi^{\chi y}=-2*k_{xy}g^{xy}

=-2*S-2\phi_{v}^{u*}\nabla_{x}Q_{yu}^{v}g^{xy}

=-2*S+2Q_{vx}^{u}Q_{yu}^{v}g^{xy} .

Each of the following four terms;

\phi_{u}^{z}(L_{yz}’\delta_{x}^{u}-L_{xz}’\delta_{\mathcal{Y}}^{u})\phi^{xy} . -\phi_{u}^{z}(N_{yz}’\phi_{x}^{u}-N_{xz}’\phi_{y}^{u})\phi^{xy} ,
\phi_{u}^{z}(g_{yy}L_{x}^{\prime u}-g_{xz}L_{y}^{ru})\phi^{xy} , \phi_{u}^{z}(\phi_{yz}N_{x}^{ru}-\phi_{xz}N_{y}^{ru})\phi^{xy} .

is verified to be equal to *S/(m+1) , and each of the two terms;

\phi_{u}^{z}(N_{xy}’-N_{yx}’)\phi_{z}^{u}\phi^{xy} . -\phi_{u}^{z}\phi_{xy}(N_{z}^{ru}-N_{z}^{\prime y})\phi^{xy}

is verified to be equal to 2 n^{*}S/(m+1) . Finally we can verify that \phi_{u}^{z}\theta_{v}
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U_{zxy}^{rvu}\phi^{X\mathcal{Y}} vanishes. This proves (3. 2).

Therefore, if we assume 0B=0, then Q=0 follows from Lemma 2. 1 in
[9] and (3. 2). This proves (ii) of Theorem A.

Let (M, \eta, g) be a contact Riemannian manifold and let g_{0} be another
Riemannian metric associated with \eta . Then det g=\det g_{0} holds. So, if
we use this Riemannian connection 0\nabla to define 0B then \theta_{v}=0 holds and
0B=(^{0}B_{zxy}^{u}) is identical with B’=(B_{zxy}^{ru}) itself for \{\eta, g\} . Of course, this
is not the case if one changes \eta to \sigma\eta for some \sigma if U’\neq 0 . We call B’ the
canonical part of 0B.

4. The expression of 0B

In this section we give the expression of the canonical part B’ of our
pseud0-conformal invariant 0B of type (1, 3) in terms of curvature tensors
and p of (M, \eta, g) .

LEMMA 4. 1. The relations between curvature tensors with respect
to *\nabla and \nabla are given by

(i) *R_{zxy}^{u}=R_{zxy}^{u}+\phi_{xz}\phi_{y}^{u}-\phi_{yz}\phi_{x}^{u}+2\phi_{z}^{u}\phi_{xy}

-\phi_{x}^{u}p_{yz}+\phi_{y}^{u}p_{xz}+p_{x}^{u}\phi_{yz}-p_{y}^{u}\phi_{xz}+p_{x}^{u}p_{yz}-p_{y}^{u}p_{xz} ,
(ii ) *R_{xy}=R_{xy}+2g_{xy}+\nabla_{\xi}p_{xy} ,
(iii) *S=S-R_{o0}+4n .

PROOF. The following is known (cf. [8], (8. 1)) :
*R_{zxy}^{u}=R_{zxy}^{u}+2\phi_{z}^{u}\phi_{xy}+\nabla_{x}\xi^{u}\nabla_{y}\eta_{z}-\nabla_{y}\xi^{u}\nabla_{x}\eta_{z} .

Replacing \nabla_{y}\eta_{z} , etc. by p_{yz}+\phi_{yz} , etc. we obtain (i). SinceR_{x0y}^{0}*=0

(cf. [9], (4. 1)), we obtain
*R_{xy^{=R_{xuy}^{u}=R_{xuy}^{u}+3g_{xy}-p_{x}^{u}p_{yu}}}^{*}

=R_{xy}-R_{x0y}^{0}+3g_{xy}-p_{x}^{u}p_{yu} .

It is known that R_{x0y}^{0}=-\nabla_{\xi}p_{\chi y}-\nabla_{x}\eta_{u}\nabla^{u}\eta_{y} holds ([8], (7. 1)), and hence
using \phi_{x}^{u}p_{uy}=\phi_{y}^{u}p_{ux} we get (ii). (iii) is obtained by *S=R_{xyg}^{xy}* and (ii).

Q. E. D.
By definition of L_{xy}’ and Lemma 4. 1 we obtain

L_{xy}’=\{-1/(m+3)\}[R_{xy}+2g_{xy}+\nabla_{\xi}p_{xy}]+\{6/(m+3)\}p_{xu}\phi_{y}^{u}

+\{1/2(m+1)(m+3)\}^{*}Sg_{xy} ,

and hence we get the following.

PROPOSITION 4. 2. The canonical part of the pseudO-conformal
invariant 0B of type (1, 3) is given by



202 S. Tanno

(m+3)B_{zxy}^{\prime y}=(m+3)R_{zxy}^{u}+R_{xz}\delta_{y}^{u}-R_{yz}\delta_{x}^{u}+g_{xz}R_{y}^{u}-g_{yz}R_{x}^{u}

-\phi_{z}^{w}(R_{xw}\phi_{y}^{u}-R_{yw}\phi_{x}^{u})-(R_{xw}\phi_{y}^{w}-R_{yw}\phi_{x}^{w})\phi_{z}^{u}

-\phi_{xy}(R_{z}^{w}\phi_{w}^{u}+R_{w}^{u}\phi_{z}^{w})-(\phi_{xz}R_{y}^{w}-\phi_{yz}R_{x}^{w})\phi_{w}^{u}

+\{^{*}S/(m+1)-4\}[\delta_{x}^{u}g_{yz}-\delta_{y}^{u}g_{xz}]

+\{^{*}S/(m+1)+(m-1)\}[\phi_{xz}\phi_{y}^{u}-\phi_{yz}\phi_{x}^{u}+2\phi_{xy}\phi_{z}^{u}]

+(m-3)[p_{x}^{u}\phi_{yz}-p_{y}^{u}\phi_{xz}+\phi_{y}^{u}p_{xz}-\phi_{x}^{u}p_{yz}]

+6 [\phi_{z}^{w}(p_{yw}\delta_{x}^{u}-p_{xw}\delta_{\mathcal{Y}}^{u})-(g_{yz}p_{x}^{w}-g_{xz}p_{y}^{w})\phi_{w}^{u}]

+(m+3)[p_{x}^{u}p_{yz}-p_{y}^{u}p_{xz}]

+\delta_{y}^{u}\nabla_{\xi}p_{xz}-\delta_{x}^{u}\nabla_{\xi}p_{yz}+g_{xz}\nabla_{\xi}p_{y}^{u}-g_{yz}\nabla_{\xi}p_{x}^{u}

+\phi_{w}^{u}(\phi_{yz}\nabla_{\xi}p_{x}^{w}-\phi_{xz}\nabla_{\xi}p_{y}^{w})+\phi_{z}^{w}(\phi_{x}^{u}\nabla_{\xi}p_{yw}-\phi_{y}^{u}\nabla_{\xi}p_{xw}) .

B’ by Proposition 4. 2, U’ by (2. 9) and \theta give the complete expres-
sion of the invariant 0B in terms of contact Riemannian structure. Since
0B=0 implies B’=0 and U’=0, if 0B=0 holds, then the expression of
(R_{zxy}^{u}) is obtained from Proposition 4. 2.

Let \{e_{j}\} be a P-related (local) frame field satisfying e_{\overline{a}}=\phi e_{a}(\overline{\alpha}=\alpha

+n;1\leqq\alpha , \beta , \ldots
\leqq n} and \{w^{j}\} be its dual. We define the complex c0-

frame field associated with \{w^{j}\} by

\theta=-\eta , \theta^{a}=w^{a}+iw^{\overline{a}} , \theta^{\overline{a}}=\overline{\theta^{a}} .

Then d\theta=-\Sigma i\theta^{a}\Lambda\theta^{\overline{a}} holds. Assume that Q=0 holds and let S_{\beta\rho}^{a} - be the
components of the Chern-Moser pseud0-conformal curvature tensor with
respect to the above complex frame field (cf. [12], (3. 8)). Then the rela-
tion between S_{\beta\rho}^{a} - and our real components B_{zxy}^{ru} is given by

S_{\beta\rho\overline{\sigma}}^{a}= \frac{1}{2}(B_{\beta\rho\sigma}^{\prime a}+B_{\beta\overline{\rho}\sigma}^{\prime\overline{a}})+\frac{i}{2}(B_{\beta\rho\sigma}^{\prime\overline{a}}-B_{\acute{\beta}\overline{\rho}\sigma}^{a}) .

This proves (i) of Theorem A.

REMARK, (i) Operating \phi_{z}^{y} to (4. 15) of [9] and using (ii) of
Lemma 4. 1, we obtain

R_{wz}\phi_{x}^{w}+R_{xw}\phi_{z}^{w}=2(m-3)p_{xz}-2\nabla_{\xi}p_{xw}\phi_{z}^{w}-*\nabla_{u}Q_{vw}^{u}(\phi_{x}^{v}\phi_{z}^{w}+\phi_{z}^{v}\phi_{x}^{w}) ,

where we have used \phi_{v}^{u*}\nabla_{u}Q_{xw}v=\nabla_{u}*(\phi_{v}^{y}Q_{xw}^{u})=\nabla_{u}*(-Q_{vw}^{\mathcal{U}}\phi_{x}^{v}) . Operating
\phi_{s}^{x}\phi_{t}^{z} to the last equality, we obtain

R_{xw}\phi_{y}^{w}+R_{wy}\phi_{x}^{w}=2(m-3)p_{xy}-2\nabla_{\xi}p_{xw}\phi_{y}^{w}+*\nabla_{w}Q_{xy}^{w}+*\nabla_{w}Q_{yx}^{w} .

Using the last equality we get

\mathfrak{S}(m+3)B_{zxy}^{\prime y}=-\mathfrak{S}\phi_{xy}g^{uv}(^{*}\nabla_{w}Q_{vz}^{w}+*\nabla_{w}Q_{zv}^{w}) ,
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where \mathfrak{S} denotes the cyclic sum with respect tc (x, y, z) . Furthermore,

(m+3)B_{zuy}^{ru}=-3(^{*}\nabla_{w}Q_{vy}^{w}+*\nabla_{w}Q_{yv}^{w})\phi_{z}^{v} .

(ii) One can define PseudO-conformal invariants of type (1,3) by
using (B_{zxy}^{u}) instead of (B_{zxy}^{\prime y}) . The difference -(m+3)(B_{zxy}^{u}-B_{zxy}^{ru})

is given by

(\delta_{x}^{u*}\nabla_{w}Q_{vy}^{w}-\delta_{y}^{u*}\nabla_{w}Q_{vx}^{w})\phi_{z}^{v}+\phi_{x}^{u*}\nabla_{w}Q_{zy}^{w}-\phi_{y}^{u*}\nabla_{w}Q_{zx}^{w}

+(g_{yz^{*}}\nabla_{w}Q_{vx}^{w}-g_{xz^{*}}\nabla_{w}Q_{vy}^{w})\phi^{vu}+(\phi_{xz}^{*}\nabla_{w}Q_{vy}^{w}-\phi_{yz}^{*}\nabla_{w}Q_{vx}^{w})g^{vu}

+(^{*}\nabla_{w}Q_{xy}w-*\nabla_{w}Q_{yx}^{w})\phi_{z}^{u}+\phi_{xy}(^{*}\nabla_{w}Q_{vz}^{w*}-\nabla_{w}Q_{zv}^{w})g^{uv}-

In this case we obtain
\mathfrak{S}(m+3)B_{zxy}^{u}=-\mathfrak{S}(\delta_{x}^{u*}\nabla_{w}Q_{vy}^{w}-\delta_{\mathcal{Y}}^{u*}\nabla_{w}Q_{vx}^{w})\phi_{z}^{u}.

(iii) Assume that 0B=0 holds and let X be a unit vector in P. Then
the sectional curvature K(X, \phi X) is given by

K(X, \phi X)=\{4/(m+3)\}[Ric(X, Y)+Ric(\phi X, \phi X)]

-4^{*}S/(m+1)(m+3)
-(3m-7)/(m+3)+p(X, X)^{2}+p(X, \phi X)^{2} .

Since the relation between p and the torsion tensor *T of *\nabla is given by
p(X, Y)=g(^{*}T(\xi, X), Y) (cf. [8], \S 6), p(X, X) and p(X, \phi X) may be
replaced by the expression using the torsion tensor.

(iv) In [8] we defined a global real valued invariant of a compact
contact Riemannian manifold. Burns and Epstein [2] defined a global real
valued invariant of a compact strongly pseud0-convex 3-dimensional CR
manifold whose holomorphic tangent bundle is trivial. It may be noted
that each 3-dimensional CR structure is integrable. Cheng and Lee [3]
extended the definition of the Burns-Epstein invariant to arbitrary oriented
compact 3-dimensional CR manifolds. They reinterpreted it as an invar-
iant of a pair of CR structures.
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