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0. Introduction

A real hypersurface of C” or a non-degenerate integrable CR mani-
fold admits the pseudo-conformal invariant of type (1,3) (Chern-Moser
[4], Tanaka [6], Webster [12]) . In this paper we define pseudo-conformal
invariants of type (1,3) of contact Riemannian manifolds. A contact
Riemannian manifold is also called a strongly pseudo-convex pseudo-
hermitian manifold or a strongly pseudo-convex CR manifold. The inte-
grability condition of the CR structure associated with contact Rieman-
nian structure is expressed by =0, where @ is a tensor field of type (1,
2). A contact Riemannian structure satisfying @=0 is equivalent to a
strongly pseudo-convex, integrable, pseudo hermitian structure in the
sense of Webster [12].

Let (M, 7, g) be a contact Riemannian manifold with a contact form
7 and a Riemannian metric ¢ associated with ». The dimension of M is
denoted by m=2xn+1. By P we denote the subbundle of the tangent bun-
dle TM of M defined by =0. By P* we denote the dual of P. P admits
an almost complex structure J which is the restriction of the (1, 1)-tensor
field ¢. By the relation dp(X, Y)=2¢9(X, ¢Y) for X, YETM, a contact
Riemannian structure {7, g} is related to a pseudo-hermitian structure
{n,J}. BET(PQP*) is called a pseudo-conformal invariant of type
,3), if B for (M, 5, ]) is identical with B for (M, 7,]) for the change
n— 7=o0n by any positive smooth function ¢. Pseudo-conformal invar-

iants correspond to invariants by gauge transformations of contact
Riemannian structure.

In this paper we obtain the following (cf. [Theorem 3. 1)).

THEOREM A. A contact Riemannian wmanifold (M, 7, g) admits a
pseudo-conformal invaviant *B="B (7, g,°V) of type (1,3), which depends
on the choice of a linear connetion °V. Furthermove ;

(i) If the CR structure associated with contact Riemannian struc-
ture is integrable, then °B reduces to the Chern-Moser invariant.

Cii ) If °B vanishes, then the CR structure associated with contact
Riemannian structure is integrable.
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If the invariant °B vanishes, then the P-part (R%y) of the Riemannian
curvature tensor of (M, 7n, g) is expressed explicitly, and the ¢-
holomorphic sectional curvature is expressed by the Ricci curvature ten-
sor, the generalized Tanaka-Webster scalar curvature *S, and the torsion
tensor *7T.

1. Preliminaries

Let (M, ») be a contact manifold with a fixed contact form 7. Then
we have a uniquely determined vector field £ such that 7(£)=1 and L¢yp=
0, where L. denotes the Lie derivation by &. Furthermore we have a
Riemannian metric ¢ and a (1, 1)-tensor field ¢ such that g(&, X)=7n(X)
and

PppX=—X+n(X)E, dn(X, Y)=2¢9(X, ¢Y)

for X, YETM. g is called a Riemannian metric associated with 7. By

V we denote the Riemannian connection with respect to g. Then the next
relations hold (cf. [8]:

ps=0, 7(X)=0,

9(X, Y)=9(¢X, ¢Y)+ (XD 7(Y),
Ven=0, Ve£=0, V=0,
<V¢x7l)<¢Y):—(Vy7]>(X>,

for X, YETM. We define a (0, 2)-tensor field p by 2p=L.g. Then
20Vx)(Y)=dn(X, Y)+2p(X, Y)

holds for X, Y& TM. Let P be the subbundle of TM defined by 7=0.
By J we denote the restriction of ¢ to P,i.e, JX=¢X for XEP. |
satisfies J*=—1id, where id denotes the identity. The Levi form L is
given by L(X, Y)=¢(X, Y)=(-1/2)dn(X,]JY) for X, YEP. The pair
{n, J} is a strongly pseudo-convex pseudo-hermitian structure. Conversely,
for a strongly pseudo-convex pseudo-hermitian structure {7, J}, we extend
the Levi form L to a (0, 2)-tensor field on M by putting L(&, Y)=0 for Y
&TM. Then g=L+7Q®7n is a Riemannian metric associated with 7.
Therefore, through the relation d7(X, Y)=2¢9(X, ¢Y) for X, YETM,
the pair {7, J} is equivalent to the pair {7, g} and hence the set of all
Riemannian metrics associated with 7 is equal to the set of all almost
complex structures J for P such that (—1/2)dp(X,JY) defines a positive
definite hermitian form.

If one changes 7 to 7 =07 by a positive smooth function o, then the
change {7, /}-{7,J} corresponds to a gauge transformation of contact
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Riemannian structure {7, g}~{7, g} (cf. [8D:

7=on,  E=/o) (E+D),
¢p=¢+ (grad a—éa-£)X7,
G=0(g—7Q&— (@) +0(a—1+[&]» &7,

where we have put 6=¢%*, {=¢ grad e, and the same letter ¢ also denotes
the dual of ¢ with respect to g; {(X)=g(¢, X) for X&TM.

The integrability of the CR structure associated with contact Rieman-
nian structure is given by

[JX,JY]-[X, Y]erP) X, Yerp),
JAJX, JY]-[X, YD+[JX, Y]+[X, JY]=0 X, Yer(p).

The first one is satisfied by dy(X, Y)=29(X, ¢Y) and the property of ¢
and ¢. The second one is equivalent to @ =0, where @ is a tensor field of
type (1,2) defined by (cf. [8D

RX, Y)=yd) (XD+Vyp (XD E+n(X) @V X, YETM.

It is easy to see that Q(&, Y)=Q(X, &)=g(&, Q(X, Y))=0 holds for X,
YETM. So we can consider @ as QET(PRP*?). Under gauge trans-
formations of contact Riemannian structure, Q(X, Y)=Q(X, Y) holds
for X, YeP ([9], Corollary 3.5).

Generalizing the canonical connection due to Tanaka |6] on a non-
degenerate integrable CR manifold, in we defined *V on (M, 5, g) by

*VXYZVXY+77<X>¢Y—77<Y)V)(€+(Vxﬁ)(Y)E X, YeTM.

Then *V is a unique linear connection satisfying the following :

(i) *V =0, *VE=0, *Vg=0,
Cii) *T(X, Y)=dpn(X, )¢ X, YeP,
YT ¢Y)=—¢ *T(, YD YEP,
Civ) (Vi) Y=Q(Y, XD X, YeTM,

where *T denotes the torsion tensor of *V.
By a P-related frame we mean a frame {e¢;}={e=¢&, e,; 1= u<2n}
such that e,€P. From now on we use the following range of indices :

1=su,v,w,x,y,2 5 t<2n.
2. The Bochner type curvature tensor

We give a brief explanation of the Bochner type curvature tensor B
defined in [9], and give a modified curvature tensor B’. In this section,
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tensors are expressed with respect to a P-related frame. *Rx and *Riy
denote the components of the Ricci curvature tensor and the curvature
tensor of *V, respectively. *S denotes the generalized Tanaka-Webster
scalar curvature. @ satisfies the following (cf. [9]) :

Q= va: Qiygxy:(), 2 Py= Qrv 3= Qi ™ =0,
Qiv=—9"guyQ%, Qi = — 9105 = — P Qix.
In [9] we defined *k, L, NET'(P*®) by

2.D *kxy:*ny+<m_3>pxu¢g_ bv *VuQ;l)x'i" ov *VxQ;)u,
(22) ny: _{1/<m+3>}*kxy+{1/2<7n+1> (7’}’Z+3>}*S gxy+pxu¢§";

and No=Lxw¢¥ Using L and N, we defined BET (PQP**) by

gxy == *Rgxy + Lyzayzcl_ sz5§‘— Nyz¢%+ Nxz¢;zvl
+ gzl s — gzl y* + Py2Nx" — PxzN*
+ (ny - Nyx) ¢g_ ¢xy (Nzu - uz) y

where L.*=Lxwg”* and N*;=g““Nu... By a gauge transformation of con-
tact Riemannian structure, B changes as follows (cf. [9], (5.9)):

ngy - ngy = Qv zvxzéf,
where

= — P Q2w 0%+ P Qw05 — Gre% Qb g™ + gray Qb g™
— Pt P2Q% — py Qi+ PR — P Q52 gxw.

Definition (2.1) of *kx has an effect that the difference term a,U%%; is
rather simple. However, *kx and hence B, contain terms consisting of
covariant derivatives of @ (cf. Remark (ii) of §4). Although difference
term becomes more complicated, here we give another definition of *£x to
eliminate the terms consisting of covariant derivatives of @ from Bzy.
Namely, we define *£& x by

(23) *k’xy:*ny‘*‘(m_S)qufﬁg-

Furthermore, we define L' and N’x by replacing *kxy by *£'x, and B'%x
by replacing L, N by L', N":

B”zlxy = *Rgxy + L/yz(%cl'— L,xzag_ N,yz¢)z€+ N/xz¢;zvl
+ Gyl 3" — gzl ' + PyaN' " — PN 5"
+ (N/xy - N/yx> (]5?— ¢xy (N,zu _N,uz>.
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Since the change of the Ricci curvature tensor *Rx by a gauge transfor-
mation of contact Riemannian structure is given by (cf. [9], (5.5)):

*Exy_*ny: - <m+3>Axy_ Tr <A>gxy+6<5xv_va> ¢§»}

120, (Q%w + Qiox) Y,
we obtain
*E,xy:*k,xy_<M+3)Axy_T7’<A)gxy+(m+3> (5xw“ﬁxw>¢§f
+2a0 (Q%w+ Qux) Y,

where Axy is defined by
2.4 Axy="*Viay— axay+ 8+ <1/2> ” §||zgxy +&a dx.

Further, Gx is defined by~ Gxw=Axw$y. Since the change of the scalar cur-
vature *S is given by ¢*S=*S—2(m+1) Tr(A) (cf.[9], (5.6)), we obtain

(2.5)  Aw=L'n—Lw»+{2/(m+3)}a(Qiu+ Q) 8},
(2.6) ny:N/xy"‘N/xy_{Z/<m+3>}a’v<Q§y+Qfx)-

The change of the curvature tensor by a gauge transformation of contact
Riemannian structure is given by (cf. [9], (5.3))

(2.7 *Riy—*Riy=— Apb¥+ Ax0i+ Gredi— Gredpli— grzAk+ gAY
- ¢yszu + ¢szyu - (ny_ ny) ¢g+ ¢xy<qu - uz)
+ a’v[Q"gyd)%_ Q3 P5— (P3zQix — PxzQiry) g%
—(Q5%x— Q%) 5+ (Quz— ng>gwu¢xy]
+ é’z(ng _ ng} + é,ngx - Cngy - *Vz¢xy§u-

Replacing Axy and Gy in (2.7) by (2.5) and (2.6), we obtain
(28) B,gxy_B,gxy:av ,gJZCty;
where

2.9 "2 ={2/(m+DH — 0¥ Qs+ Q%) p¥+ 05 (Qw+ Qo) ¥
+ ¢5(Qx+ Q%) — ¢ (Q5 + Q32) — gz (Qrw + Qi) ™
+ gxz (Q5w + Qiy) ¢ + bz (Qw + Qux) g
— Pz (0 + Qz%y>gwu]
+ Qo Pr— Qex s — (¢y2Qux — PxaQiry) g%
— (Q3x— Q%) P2+ (Qioz— Q2w) g Py
— ¢2(Q3x— Q%) — Py Q%+ $2Q% — ™ Q329w

3. Pseudo-conformal invariants of type (1,3)

Let (I'iz) be the coefficients of the Riemannian connection V with
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respect to g in a local coordinate neighborhood (Q, x?). Now we choose
and fix a linear connection °V with coefficients (°T'x). Then the difference
(Ti%—°T%) defines a tensor field of type (1,2) and 0=(6.)=T7—"T7)
defines a 1-form on M. We need the following classical identity : 2T'7.=
dlog(det g) /ox*.

Now again in the following, tensors are expressed with respect to a
P-related frame.

THEOREM 3. 1. Let (M, n,g9) be a contact Riemannian wmanifold
and let °V be a linear connection. Then °BET (PQP*®) defined by

*Biy=B'%—{1/(m+D}0,U"%%
is a pseudo-conformal invariant of type (1,3).
PROOF. First we see that
3.1)  2(8,—6,)={d log(det §)—d log(det ¢)} (e,)

holds. Since the volume element dM of (M, g) is equal to (—1)"(1/2"n!)
7\ (dp)", the volume element of (M, §) is equal to o™ dM. Therefore,
det G=e*™V¢ det g, and hence, 8,—6,=(m+1) e, holds. Since U'%=

rou

2%y holds, we obtain
{1/m+DY 8,02 — 0,U' %)= anU'%,.
Hence, (2.8) implies that °B%y="B%, holds. Q.E.D.

Next we show the following relation :

(3.2 P5’ Bty =205 Qyug™.
By (4.12) and (4.13) of [9] we obtain the following :

(Iﬁ *Rgxy ¢xy= -2 *kxygxy
=—2*S—2¢3*V1Q5ug”
=—2*S+2Q5Qng".

Each of the following four terms;

i(L,yzaalc‘_ L/xz&zo ¢xy’ - ft(N’yz(ﬁyc_N,szbg) ¢xy,
Pi(gwul " — gx=L's*) ¢, (PeN'5" — hxaN'Y") 7,

is verified to be equal to *S/(m+1), and each of the two terms;
W{(N'xy—N'yx) P5™, — iy (N'*—N'*) ™
is verified to be equal to 2#*S/(m+1). Finally we can verify that ¢%0,
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rou

2% @™ vanishes. This proves (3.2).

Therefore, if we assume °B=0, then =0 follows from Lemma 2.1 in
[9] and (3.2). This proves (ii) of Theorem A.

Let (M, 5, g) be a contact Riemannian manifold and let go be another
Riemannian metric associated with 7. Then det g=det ¢ holds. So, if
we use this Riemannian connection °V to define °B then 6,=0 holds and
'B=("B%,) is identical with B'=(B'%y) itself for {7, g}. Of course, this
is not the case if one changes 7 to o7 for some o if U'#0. We call B’ the
canonical part of °B.

4. The expression of °B

In this section we give the expression of the canonical part B’ of our
pseudo-conformal invariant °B of type (1,3) in terms of curvature tensors
and p of (M, 7, 9.

LEMMA 4.1. The velations between curvature temsors with respect
to *V and V are given by
Ci) *RgxyzRgxy+ PxzPy— PrzPxtT 2Pz Py
- ¢§pyz + ‘ﬁgpxz + Pg¢yz o pfvt ¢xz + pzpyz o pgpxz,
Cii) *ny:ny+29xy+vepxy,
(il ) *S=S—Ru+4n.

PROOF. The following is known (cf. [8], (8.1)) :
*Rgxy = Rgxy +2 ¢g¢xy + Vxéuvyﬁz - VyEquUz.

Replacing V,7:, etc. by pyz+ éyz, etc. we obtain (i). Since *R%,=0
(cf. [9], 4.1)), we obtain

*ny= *R.;cluy = Rgcluy + 39— ﬁ%pyu
= ny - Rchy + 3gxy - ﬁgﬁyu.

It is known that RY%y=—Vepw—Van.V¥p, holds ([8], (7.1)), and hence
using P¥puy=Pypux we get (ii). is obtained by *S=*R.g™ and (i).

By definition of L'y and we obtain wED
L' ={~1/m+3DHRey+2gx+Vepry] +{6/ (m+3)} pruth}
+{1/2(m+1) (m+3)}*S gx,
and hence we get the following.
PROPOSITION 4. 2. The canonical part of the pseudo-conformal

invariant °B of type (1,3) is given by
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(m~+3) B'%y=(m+3) R¥xy+ Rxz03 — Ryz20%+ gxzRy— gyzRRx
- ?(Rxw¢;rl— Ryw¢§tc> - (Rxw¢y Ryw¢ >¢Z
- ¢xy<Rg)¢%+ RZI¢?) - <¢szy ¢yz ) ¢u
+ {*S/ (m+1)— 4}[5216193&2 - &ngxz]
+ {*S/ (m~+1)+ (Wl— 1)}[¢xz¢g- ¢yz¢%+ 2¢xy¢g]
+(m—3) [P%QSyz — D5Pxzt P3Pz — ¢§tcpyz]
+6[ % (Dyuwdi— pxwby) — (Gyed¥ — guady) Bl
+ (m+3) [ pxpye— bipxz]
+ agvepxz— 6”Vepyz+ gszePy gszep%
+ @4 (ByVeps — dxeVeps) + 97 (3V epyw — 3V ebxw).

B’ by [Proposition 4.2, U’ by (2.9) and & give the complete expres-
sion of the invariant °B in terms of contact Riemannian structure. Since
'B=0 implies B'=0 and U’=0, if °B=0 holds, then the expression of
(R%y) is obtained from [Proposition 4.2,

Let {¢;} be a P-related (local) frame field satisfying ez=¢e. (@=a
+n; 1=, 8, ... £n} and {w’} be its dual. We define the complex co-
frame field associated with {w’} by

6=—n9, G°=w’+iu", 67=6°.

Then d8=-3 6% 6% holds. Assume that @=0 holds and let S§,; be the
components of the Chern-Moser pseudo-conformal curvature tensor with
respect to the above complex frame field (cf. [12], (3.8)). Then the rela-
tion between Sj,; and our real components B’z is given by

Sﬂpﬁ = <B Bpa Bpo) T <B Boo ™ ﬂpa)

This proves (i) of Theorem A.

REMARK. (1) Operating ¢2 to (4.15) of [9] and using (i) of
Lemma 4.1, we obtain

szqbﬁ"i‘ Rxw¢?:2<m—3)pxz_ ZvepwaS?_ *Vquw<¢g¢?+ ¢g¢?),

where we have used ¢%*V.Q % =*V.($5Q %) =*V.(— Qv $2. Operating
Pid? to the last equality, we obtain

Rxw¢§)+ Rwy¢§)=2(m—S)ny—ZVej)qubﬁf’-F*VwQ%+*VwQJZf§c
Using the last equality we get
S <m+3)B,zxy_ © ¢xyguv<*Vszlfz+*vag;)>,
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where © denotes the cyclic sum with respect t¢ (x, v, 2). Furthermore,

(ii) One can define pseudo-conformal invariants of type (1,3) by
using (B%,) instead of (B’%y). The difference —(m+3) (B%y— B'%y)
is given by

(0% *VuQn — 65 *VuQi) ¢2+ 0% *V Qs — ¢35 *VWuQi
+ (gyz*VszIfx_ gxz*vaz%) ¢vu + (¢xz*vazﬁz - ¢yz*vag)x)gvu
+ (V@b —*Vu@yx) ¢%+ ¢ *VuQi: —*Vui) g°.

In this case we obtain

Assume that °B=0 holds and let X be a unit vector in P. Then
the sectional curvature K(X, ¢X) is given by

K(X, $X)={4/ (m+3)}[Ric(X, V) +Ric(¢X, $X)]
—4*S/(m+1) (m+3)
—@Bm—7/m+3)+p(X, X)*+p(X, ¢X)2

Since the relation between p and the torsion tensor *7T of *V is given by
p(X, Y)=gC(*T(§X), Y) (cf. [8] §6), p(X, XD and p(X, $X) may be
replaced by the expression using the torsion tensor.

(Gv) In we defined a global real valued invariant of a compact
contact Riemannian manifold. Burns and Epstein defined a global real
valued invariant of a compact strongly pseudo-convex 3-dimensional CR
manifold whose holomorphic tangent bundle is trivial. It may be noted
that each 3-dimensional CR structure is integrable. Cheng and Lee
extended the definition of the Burns-Epstein invariant to arbitrary oriented
compact 3-dimensional CR manifolds. They reinterpreted it as an invar-
iant of a pair of CR structures.
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