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1. Introduction

Let G be a nonsolvable subgroup of the linear translation complement
of a translation plane I of order ¢? with kernel GF(gq) where ¢ is a
power of a prime p, and let G, be a minimal nonsolvable normal subgroup
of G. In Ostrom pointed out the following theorem which is proved
by using a work of Suprunenko and Zalesskii [71

THEOREM A. If G,/ Z(Gy) is simple and if p>5, then G/Z(Gy)
must be PSL(2,5), PSL(2,9), or PSL(2, p°) for some positive integer s.

If G,/Z(G,) is isomorphic to PSL(2, p®), Il is a Desarguesian plane, a
Hall plane, a Hering plane or a Schaffer plane(Walker [8], [9] and
Schaffer [6]). At the case that G,/Z(G) is isomorphic to PSL(2,9),
Mason proved the following theorem in [4].

THEOREM B. If Gy/Z(Gy) is isomorphic to As, there are exactly two
isomorophic classes of planes Il with kernel GF (7). If H is the translation
complement of 1l and D the kernel of 11, then in one case we have H/D =
As, while in the second we have H/D =S;.

We have studied about the case that the kernel of II is GF(11). Our
result will be described by a following theorem which is proved at the end
after much preparation.

THEOREM C. Let 11 be a tramslation plane of dimension 2 over ifs
kernel and the linear translation complement C has a normal subgroup G
such that G/Z(G)=Ss. Then there are exactly three isomorphism classes
of planes Tl with kernel GF(11). If D is the kernel of 11, then C=DG.

Notation is standard, and follows that of [2]. For a permutation
group M on Q, we put M,={gE M | xg=x} where x is an element of Q,
and for a group H, we put Cly(x)={g 'xg| g=H} where x is an element
of H We write S and A® for a symmetric and alternative group on (.
In Section 2 we shall study the group G, its representations and spreads
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on which G acts, while Section 3 and 4 will be devoted to existence of the
planes II in question.

2. The spreads

We use the following notations throughout the paper, K =SL(2,9) is
a 2-fold cover of As. The group G is K{f), where f is induced by the
Frobenius automorphism of GF(9). J=SL(2,3) is a subgroup of K. Let
6 be an element of GF(9) such that §?=—1, and v=6+1. Then v is a
generator of the multiplicative group GF (9)*. We define six matrices as

follows :
3
¢ [ 0o -1 Tl 1) =l 1)
[-6 -6 . [ 66 1 1
b—[l—a 1]’ p‘[—a 0]’ q‘[1 —1]’

where the order of 2, ¢ d b, p and q are 2,3, 3,5, 8 and 4, respectively.

LEMMA 2.1. K has exactly two inequivalent complex irreducble char-
acters of degree 4, which are denoted by x and . Moreover,

(i) x and ¢ are rational and faithful
(ii) x and ¢ differ only on 3-singular elements, and we may take
x©=-2 x(d=1and y(©)=1, yd)=-2

FROOF. See (Lemma 2.3 of [4]).

LEMMA 2.2. G has exactly four inequivalent complex irreducible
characters of degree 4. We may denote them by x, x', ¥, y, where X
and x'(resp. Yy and ") both extend the character x (vesp. ) of Lemma 2. 1.
Movreover, the following hold ;

(i) x and x’ are Galois conjugate, and also ¥ and ¢’ are Galois con-
jugate.

x lies in GF(11), that is, by reduction modulo 11, the representa-
tion which affords x gives an irreducible representation of degree
4 on GF(11).

(iii) ¥ does not lie in GF(11).

ProoF. See (Lemma 2.4 and of [4]).

We now specialize to the case p=11. So let V be 4-dimensional
GF (11)-space. After we may take GEGL(V), and we may
take V to be the GF (11) G-module which affords the character y.
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LEMMA 2.3.  The following hold :
(i) x@=—4, x@®=0, x(@=0, x(zb)=1, x(B=—1,

and x vanishes on G\K except on the elements of orvder 12, and we may
take x(x)=—5 and x(x*)=5. Here, x is an element in G\K which
satisfies x*=d.

Cy(d) is 2-dimensional.
(i) Cv(f) is 2-dimensional. |
(Giv) If y is not contained in Clz(d) U Cl;(f) and y+1, then Cy(y)=0.

ProOF. From the character table of G(See [1], pp.228-238), the
lemma is verified.

el n aell 2]
o0 o aly 3 ae

We define a mapping ¢ from G to S as follows:

p()=02), p(L)=023), e(f)=34), p(f)=U5), (L) =(56).
Then it is readily verified that the following hold :

LEMMA 2.4. @ is well defined and a homomorphism from G to Ss.
Movreover, Ker (@)=<2), p(K)=As, and ¢ (J)=AN%34,

We write @(x)=x for each element x&G, and @(M)=M for each
subgroup M of G. Then we get ¢=(123), d =(123)(465), b= (12345),
p=(1324)(56) and ¢q =(14)(23). Throughout Section 2 we suppose that a
spread .# preserved by G exists. Here & consists of 2-dimentional sub-
spaces of V, and |«|=122. Set &,={Cy(d")| d’'€Ci;(d)}. Then we
have the following Lemma.

LEMMA 2.5. &, is a partial spread of & with 20 components and d
acts as homology on the tanslation plane corvesponding to <.

PROOF. Let R be a 3-Sylow subgroup of K, so that R=ZXxZ,. We
may take R=<c¢ d). Since |¥|=2(mod 3) there is certainly an R-
invariant component, say W. Of course, W is a 2-dimensional GF (11)
R-module, while |GL(W)| is not divisible by 9. Hence R is not faithful
on W. By Lemma 2.3 the kernel of the action of R on W must be <{d)
or {cd>, here cdeCl;(d). Since Gw=N;(d)) and |G: N;(Kd>)|=20,
the lemma is proved.
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Let S be a 2-Sylow subgroup of G. We may take S=<p, ¢, f>. Here pt=
¢'=r*=1, p'=q¢"=z q'pg=p", f'pf =p°, af =fg. Next we put T=<(p,
gf> and L=<, b, then |S: T|=2, and [L=A"2345

LEMMA 2.6.  The following hold :

Ci) xu=2xs, where xys<Irr(J).

Gi) xux<r>=Qs XD+ (s X (=1)), where xsx1, xsX(—1)€E Irr (J X
M.

(ii1) Xi<pr>=Xs1 X Xs2, Wheve Xs1, Xs:ELrr (J<pf>) and X517 Xs2-

(iv) xr=6+6., where 6,lrr(T) for i=1, 2 and 6,%+6,.

(V) xe=m+mn, where g.€Irr (L) for i=1, 2 and m+n,.

Moreover, by reduction modulo 11, the representations which afford xs, xs:,
Xs2, O, O, m and n, give irreducible representations of degree 2 om
GF (11), respectively.

PROOF. We can get character tables of J, J x<f>, J<pf>, T, and L
by the method in Chapter 6 of [3], and by using their character tables we
can verify this lemma.

LEMMA 2.7. ] fixes just twelve 2-dimensional subspaces of V.

ProOF. We may take V; and V, to be the GF (11)/-submodules in V
which afford the character xs of Lemma 2.6( i) where V=V.®V,. Let
® be a GF(11)/-isomorphism from V; to V,. Now for each element o=
Corivn), V(e)={xo+x® | x& V,} is a 2-subspace of V fixed by J, and
V(e)+V, for i=1, 2. Moreover if 6+0’ then V(¢)+V (¢’). Converse-
ly if U is a 2-subspace of V fixed by J and if U=+ V;(i=1,2), then there
is an element o of Cgv,y(J) such that U=V (o). On the other hand,
since Corvyy(J)={aE | ac GF (11)*} holds, the lemma follows.

Let W;(i=1,2,3) be the GF(11)(J x<f>), GF(11)(J<pf>) and
GF (11) T-submodules in V' which afford the characters ysx1, xs: and 6,
respectively. We put &, ={Wig | g€ G}={Cv(f") | f'€ Clc(f)}, Fn=
{Wag | g=G} and Fu={Wyg | g=G)}.

LEMMA 2.8. S has at least one orbit 5 of length 2 on <. Further-
more, one of the following holds.

(i) & is contained in &y, and &3 is a partial spread of & with 30
components.

(ii) & s contained in &, and &, is a partial spread of & with 30
components.
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(iii) & is contained in s, and 3 is a partial spread of & with 90
components.

PrOOF. Since |.#|#=0(mod 4) and |S|=32, S has an orbit of length 2
or length 1 on . Set T,=SNK, then x,=6%+6F where 6*cIrr(T))
and 6*(1)=2 for i=1, 2. But by reduction modulo 11, the representation
which affords 6* does not give an irreducible representation of degree 2 on
GF (1) for i=1, 2. Hence V is an irreducible 7;-module and also an
irreducible S-module. Therefore S has no orbit of length 1. Consequent-
ly S has an orbit .# of length 2 on .

Now for Ue.#, |S:Sy|=2. On the other hand, S has just seven sub-
grups of index 2, 7,;(:=1,2,3,4,5,6,7) say. T; is described by the gener-
ators as follows:

T,=SNK=<p, ¢» and T1=((1324)(56), (14)(23)>
T,=<p* ¢, /> and T,=<12)3D, 13)(2H)>X<(56)>
L=</, ¢ and T3=<(1324), (14)(23)>

T.=<p, > and Ty=<(1324)>x<(56))

T:=T=<p, ¢f> and Ts=<(1324)(56), (14)(23)(56)>
Ts=<p* gp, /> and Te=<12)(34), B4 (56)>x<(56)>
T:=<pf, qp> and Tr=<(1324), (34)(56)>

Since V is an irreducible 7;-module, we have Sy+7,. Suppose Sy=T7T,.
Since z inverts V, it is easy to see z¢& Cr,(U), which implies Cr,(U)N
K =1. On the other hand 7, does not normalize <f>. Thus it follows
that Cr,(U)=1 and T,<GL(U). But T, is not isomorphic to a 2-Sylow
subgroup of GL(2,11), which leads to a contradiction. Hence S,+7,.
Similarly it is shown that Sy+7; and Sy+7;. If Sy=7T,, then C,(U)=
> and U=Cy(f). Moreover Co(f)=]x<f)> and |G:Cs(f)|=30 hold.
Thus the case (i) of holds.

Now 7; and 7; are isomorphic to a 2-Sylow subgroup of GL(2,11).
If Sy=T;, then Cr,(U)=1. It is readily checked that T3=/J<pf> and
J<pF>=S"*2%4  If H is a subgroup of G such that J<{pf>=H, we have
three cases: H=S"2%%x<{(56)), H=8"2%*% and H=G. Then in any
case it follows that yx is irreducible and V is an irreducible H-module.
Hence Gu=J<pf>. On the other hand, | G:J<pf>|=30. Thus the case
(i1 ) of Lemma 2. 8 holds.

If Sy=7T;, then C;,(U)=1. Take a subgroup H of G such that T:x
H. If |H|=2%3%5, then H=K and V is H-irreducible and so Sy+H.
Next suppose |H|=2%+3+5, then we have two cases: H=Si*47 and H is
an image of S%7%4™ by an outer automorphism a of S; for some distinct
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numbers {z, j, &, [, m}C{1,2,3,4,5,6}. In both cases it follows that 7; is
not contained in H, a contradiction. If |H|=2%-3% then H =N,;(P) for a
3-Sylow subgroup P of G and it is checked that gy is irreducible. There-
fore Gy+H. Finally suppose |H|=2%-3. Then it is clear that O,(F)=1
and so O,(H)#1. Thus O,(H) is a normal subgroup of 7. Hence we
have <(12)B>=Z(Ts)< O,(H). Moreover TsN Cls,((12)(34)) =<(12)
(34)>. Therefore <(12)(34)>=Z(H). On the other hand Cs,((12)(34))
is a 2-group, a contradiction. Thus in the case that S,=T;, we get Gy =
T;. Since |G: T5|=90, the case (jii) of Lemma 2.8 holds. This com-
pletes the proof of the lemma.

Let W, and W, be the GF (11)L-submodules in V which afford the
characters 7 and 7, of Lemma 2.6(v), respectively. Set &;={W.g |g=
G}. Then we get

LEMMA 2.9. &3 is a partial spread of & with 12 components.

PrROOF. Let R=<b>. Then R is a 5-Sylow subgroup of G. Since
| #|=2(mod 5), there is certainly an R-invariant component, say U. By

Lemma 2.3(iv), R is faithful on U. If is clear that <R, z><G,. We
now define an outer automorphism « of S; as follows:

(12)a=(12)(36) (45), (23)a=(15)(26)(34), (34 a=(16)(23)(45)
(45)a=(12) (34 (56), (56)a=(13)(26) (45).

Then it is easy to see that (12345)a=(12345)"'. Take a subgroup H of
G such that (R, z><H. Since R=<(12345)), then one of the following
holds.

(i) H=DN;(R)=(<(12345)>)<(2354))
(i) H=(<(12345)>)<(25) (34)>

(iii) H=AW2345% and H=L

(iv) H =S1.23.45)

(v) H=(A%>349)g

(i) H=(S"**+Na

Let /i be a subgroup of G such that J,=(J)a. Then V is an irreducible
(not absolutely irreducible) GF (11)/;-module. Since /i <H for H satisfy-
ing either (v) or [(vi), we get Gy+H. Moreover, for H satisfying
either (i) or [(iv), it can be shown that x5 is irreducible and that G, =+
H.

Suppose Gy=H for H satisfying (ii). Then |H|=20, H<L and H
NCle(f)=¢. Let & & and & be the characters of H which are afforded
by the H-modules U, W, and W/, respectively. It is seen easily that & &
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and & are all irreducible, and that &=+¢&. If UNW,=0 and UN W/=0,
then we obtain that V=U@W,=UPW, and xy=E+&=E+E which
contradicts & +¢&. Therefore we may assume U N W,#0. Since H acts
on UN W, faithfully, we get dim(U N W,)=2. Consequently U= W,, that
is a contradiction. Thus it follows that Gy,+H for H satisfying (ii).
Thus Gy=L. We get U=W, or U=W, and |G : Gy|=12, which complete
the proof of the lemma.

In Lemma 2.8 if the case (jii) holds, then &= ¢, U %2 U.%; can be
shown. Let A be the set of 2-subspaces of V fixed by J. |A|=12 holds by
Lemma 2.7 On the other hand /<L and J<L’ where L[’'=A®"%34%8
Since L and L’ are conjugate in G, then |AN &;|=4 by (v).
Moreover, since J <J X<f> and J<J<pf>, it is observed that |AN &u|=2
and |[AN.%5|=2 by Lemma 2.6(ii) and (iii). Set A,=A\((AN.¥21)U(A
N.F22) UAN 3)). Then |A;]=4, and N;(J) acts transitively on A,. Let
W; be an element of A, and put .#,={W,g | gG}. We prove the follow-
ing lemma.

LEMMA 2.10.  Suppose that the case (i) or (ii) of Lemma 2.8
holds. Then <, is a partial spread of & with 60 components.

ProoF. We concentrate the cases (i) or (ii) of and
set #4:,=A\(71U 72:U¥s) for i=1, 2. Suppose that G is intransitive on
#4:- Then G has an orbit .~ whose length is less than 30, since | ¥,:|=60.
Take a component X in 7. Then we get |G: Gx|<30. Therefore |Gx|=
48 and |Gx|=24. If we set H =Gy, then |H|=120, 72, 60, 48, 36, or 24,
since S; has no subgroup of order 30, 40 and 45. If |H| is either 120 or 72,
then yxy is irreducible, which is a contradiction. Suppose that |H|=60.
Then we may assume H=L or H=(L)a. The former case gives X €.,
by the definition of &5, a contradiction. The latter case gives the result
that V' is an H-irreducible module, since /; <H, which is also a contradic-
tion. Suppose |H|=48, then H=N;(J) or Ng;(J.). In any case, V is an
H-irreducible module, a contradiction. Suppose |H|=36, then we may
assume H =N;(c)) or N;(Kd»). In the former case, xy is irrducible, a
contradiction. In the latter case, it follows that X & ¢,, which is also a
contradiction.

Finally suppose |H|=24, then we have four cases: Ji<H, H=] xX<{f>,
H=J<pf> and H=J<{p>. Since J; and J<p) act irreducibly on V, we
have < H and H=+J<p)>. If H=] X<{f), then X&€ &,,, and if H=J<pf>,
then X & ¢,,. In any case of these four cases we have a contradiction.

Thus G is transitive on ¢,;, and also |G : Gx|=60 holds for a compo-
nent X in ¢,;. Since |Gx|=24, we may assume Gxy=J or Gx=J,. But Gx
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#+/, can be shown, as seen in the middle of the proof of Lemma 2. 9
Hence it is reasonable to assume Gxy=J and X =W,. Therefore #,,=.5,
for 1=1,2. The lemma is proved.

PROPOSITION 1.  Suppose that & is a spread in V, and that G acts
the translation plane corresponding to . Then one of the following holds.

(1) =1U 70U 73U o4
(i) =%UF»nUrsU.7,
(i) = 71U U 75

PROOF. The present proposition follows from consequences of
2.5, Lemma 2.8 [Lemma 2.9 and [Lemma 2. 10.

3. Existence of the spread I

Setyi“=%Umey3Uy4, F3=1U FpU 73U 7, yék:yﬂJS/zsU
3 for the &,;(i=1,3,4) and ,;(j=1,2,3) in Section 2. Then we have
the following proposition.

PROPOSITION 2. ¥ and ¥ are spreads in V.

In order to prove [Proposition 2, we shall follow a long series of lem-
mas.

LEMMA 3.1.  Let Vi=Cv(x), Vo=Cy(y) for elements x, y in G. If
therve is a non-trivial element s in {x,y> such that SEClL(fHUCl(d),
then ViN V,=0.

PROOF. It is obvious from Lemma 2.3(iv) that C,(s)=0. More-
over, <x, ¥> centralizes V,NV,. Therefore VN V,=(0. The lemma fol-
lows.

Now we note the following property of G.

LEMMA 3. 2.
(i) Let x€G, then <d,d*>=Z, Z;x7Z,, SL(2,3) or SL(2,5).
(ii) Let x€G, then {f, =2, ZyxZ, Ds, Dy or D,,, where D, is a
dihedral group of order n. Moreover if {f f*>=D, holds, then there is
an element ¢’ in {f, f*> such that ¢’'€Cl;(c).

LEMMA 3.3. & and &, are partial spread in V.
PrOOF. The present Lemma follows from Lemma 3. 1 and [Cemma 3. 2.
LEMMA 3.4. If U &, and W .7, hold, then UNW =J.
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ProoF. For each element f'eCl;(f), it is easy to see that {d, f")
contains an element s such that s& (Cl;(f)UCIl;(d)). Hence we have the
desired result by [Lemma 3. 1.

LEMMA 3.5. (i) If Ue . and W e &, hold, then UN W =9.
(ii) If U %, and W e 7, hold, then UN W =0.

PrROOF. Suppose UNW =D=+(0. We may assume U =C,(x) where
x=d or f in the case (i) or (ii), respectively. Then it follows that
Gy=C:;({x>). Let H be the stabilizer of D in the action of N;(Kx)>) on
the set T" of 1-subspaces of U. Then it follows from Lemma 2. 3(iv) that
H =<z, x> and that |N;(Kx>)/H|=12. Thus Gy is transitive on I". Hence
from the cardinality of {Dg | g€ G} is 12X20 or 12X 30 corre-
sponding to the respective case of x=d or x=1.

If we set Gy=L’, then L’ is conjugate to L in G. For an element &’
of order 5 in L', we have x<y>=p+p.+ps+p:, where p;(:=1,2,3,4) are
distinct four non-principal characters of (4’>. Obviously, p;(d)EGF (11)
for 1=1, 2, 3, 4. Accordingly we may assume that <b")> fixes D and that
L'p=<z, b, because L'N Clc(f)=¢ and L'N Clc(d)=¢. Therefore
|L": L'p|=12 and L’ is transitive on 1-spaces of W. Hence |{Dg | g=G}|<
12x12. This contradiction proves the lemma.

LEMMA 3.6. &5 is a partial spread of V.

PrROOF. Assume that there are W & ¢; and g& G such that W N
W=D is a 1-space. We claim that without loss of generality we may
take Gw=L. Since L is transitive on 1-spaces of W, we get D9"'=D* for
some t&L that implies tg=G,. Moreover, Gp=L, by [Lemma 3.5
Therefore we have tg= L which gives gL and W= W, this is a contra-
diction. The lemma is proved.

LEmMA 3.7. If Uev, and W E o, hold, then UNW =(.

Proor. Without loss of generality we may take Gy=N;(d)).
This shows that Gy =/’ is conjugate to J in G. Hence J’'=At/i%4 holds
for some elements {3, 7, &, [}C{1, 2,3, 4,5,6}. Since Nk ({d)>)=(<(123),
(456)>)<(12)(45)>, it can be seen that J'NNx({d>)+1 and that there is
an element ye (J'NNx(dX)\{1, z}. If UNW =D is a 1-space, then U=
D@®D>*= W, which is a contradiction. The lemma is proved.

LEMMA 3.8. IF U& %, and W€ o, hold, then UN W =0.

PrROOF. Suppose UNW =D is a 1-space. We may take U=C,(f)
and Gy=Cs(f)=J x<{f>. On the other hand, Gy =]’ is conjugate to J in
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G. Let » be the number of elements in ¢, which contain D. Then by
counting in two different ways the number of pairs (D’, X) such that X&
&4 and D’ is a 1-space of X, the equality 60x12=30X12X » is obtained,
since Gy is transitive on 1-spaces of U and also .&,; is a partial spread in
V. This equality gives »=2. Therefore it follows that {Xev, | UNnX
+#0}|=24 and {Xe.7, | UNX =0}|=36.

Take a subset {7, j, & {} of {1,2,3,4,5,6} such that |{7, j, &, [}]=4 and
set J”"=AUik0 Tt follows that J NJ”%(<z)) if and only if the condition
A238 N Akl is satisfied. On the other hand there are exactly 9
subsets {7, j, &, [} satisfying the condition mentioned above. Moreover
there are exactly 4 elements in ., which are fixed J”. If we set Gy=J,
for an element X of ,, and if ,NJ = ((z)) is satisfied, then UNX =0 by
the argument in the latter half of the proof of Lemma 3.7, since J <C.(f).
After all we have the conclusion that U N X =0 if and only if L,NJZ(z)).
Similarly it can be shown that Cy(zf)NX =0 if and only if J,NJ % (z)),
since Co(f)=Cs(2f). Hence the statement that C,(/))NW =D is a 1-
space implies the statement that C,(zf)N W =D’ is a 1-space. Therefore
we have D=D’=C,(f)NW”' and D'=D'*=C,(zf)NW’. On the other
hand, since C,(f)NCy(2f) =0, it is easy to see D+=D’. Thus we get W =
D@®D’'=W’ which gives feGy=J’. This is a contradiction. The
lemma is proved.

LEMMA 3.9. If Ue9; and W E o, holds, then UN W =).

PROOF. Suppose UN W =D is a 1-space. We may take Gy=L. By
the same argument as the proof in [Lemma 3.8, each 1-space of U is
contained in exactly 5 elements of &,. Hence UN W'+( holds for every
element W’ of &,. Especially UNW,=F is a 1-space. Then we have
U=EPE>=W; for some element y&/, since J<L. This contradiction
proves the lemma.

LemMMA 3.10. &, is a partial spread of V.

ProOOF. Let W be an element of &, and D be a 1-space of W. We
may take Gw=/. Then it can easily be shown that G,=<z)> or |Gp|=10
from Lemma 2.3(iv), and Lemma 3.8 Suppose |Gp|=10,
then Gp <L’ where L’ is a conjugate subgroup to L in G. Hence G, fixes
U for some element U of &; such that Gy,=L" and D<U holds by the
argument in the latter half of the proof of Lemma 3.5. This contradicts
Lemma 3.9. Therefore Gp=<{z>.

Suppose that W N W¥9=D is a 1-subspace for an element gG. Then
D cC W and D¥¢9'C W. Since J is transitive on 1-spaces of W, we get
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D?'=D" for some t<J. Hence D=D% and tg=G,=<z) holds. There-
fore g/ and W =W?. This contradiction proves the lemma.

PROOF OF PROPOSITION 2.

¥ is a spread in V by using from [Lemma 3.3 to Lemma 3.10. Let
W be an element of &,, such that Gy=/J<{pf)>. Since J{pf) is transitive
on 1-spaces of W, it follows that |(J<{pf>)p|=4 for every 1-space D of W.
Hence D is centralized by an involution f’ in J<{pf)> which is conjugate to
f. This yields WCf U Cv(f’):XU X, which implies U X= U X

'eCle(H) En XES XEw,

and V=(U XHUu(U XHUu(CU XOouClU X). This means that ¥ is
Xe » XE v, Xe o Xe v,

a spread in V. The proposition is proved.

4. Existence of the spread Il
We shall show that &% is a spread in V in this section.
LEMMA 4.1. <55 is a partial spread in V.

PROOF. Let W be an element of &,; fixed by T =<{p, q¢f >, where
T =<(1324)(56), (14)(23)(56)>. Morerover let A(W) be the set of 1-
spaces of W. T has exactly two orbits A, (W), A, (W) on A(W), where
|A;(W)|=4 and |A,(W)|=8. It is readily verified that f,=pqf and A€ T
N Cl:(f) hold, and that £, centralizes an element D, of A,(W). Suppose
g€ Gand W N W9=D is a 1-space. Then we get D, D"'Cc W. If D,
D9 'eA, (W) holds, then there is an element t=7T such that D9 '=D¢,
which implies tg& G,. Moreover we have |Tp|=4. It follows that |Gp|=4
and Gp=Tp, because G, N Clz(d)=¢ holds from Lemma 3.4 and there is
no element of order 5 in Ng({f>). Therefore g& T, which shows that
We=W. This is a contradiction. Thus it follows that D € A,(W) or
D'eA,(W). Hence without loss of generality we may assume DE
A,(W), which implies Tp=<2>.

Now we shall prove Gp,=<z). If not, then there are three cases to
consider : |Gp|=4, |Gp|=6 and |Gp|=10. We shall lead contradictions in
all of the cases, as seen below.

Assume first that |Gp|=4 holds, then it can easily be shown that G,=
Kz, f’> for some f'eCl;(f). Set #={E| U€ 9,5, E is a 1-space of U}.
Since Gp=<{z, f’) holds, we get DCCy(f’). On the other hand there is an
element W’ of &,; such that f'Gy . It follows that f’ centralizes an
element D’ of A,(W’), which implies D’CCy(f’). Moreover C¢(f") is
transitive on 1-spaces of Cy(f’). Therefore it follows that D’'=D*° for
some element s € C¢(f). Hence G is transitive on # and the equality
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|#|=360 is obtaind. Hence each element of .# is contained in exactly
three elements of ¢,;. Therefore there is an element U of &,;, where D,
C U and U+ W. We put Gy=T". It is readily checked that T'N
Css((12))#*1. Hence there is an element g& T'\{1, z} such that gfig =4/
or zf;. If DP=D, holds, then g=f, or g=zf;. This shows that A€ T". If
DFf+D, holds, then U=D,®D¢. This shows that (U)"'=(D@DS"'=U.
We also have A€ Gy=T’. Thus it follows that D,€ A,(U)and D€
A (W) for some element x&G such that U*=W. Hence D{”=D, holds
for an element y& 7. Therefore we have xyE Gp,. Thus it follows that x
€T, which implies U= W. This is a contradiction. Therefore we have
|GD|#:4.

Next assume that |Gp|=6 holds. Then G,=<z, d’) holds for an ele-
ment d'€Cl;(d). We get DCCy(Kd?D). If N;Kd>»)NT=+<z) holds,
then we have W =D@®D>=C,({d’y) for an element y& (N;(Kd>) NTH\{1,
z}. This is a contradiction. Hence N;(Kd>))NT =<{z> holds. Let <x>
be a subgroup satisfying the following conditions: N;(Kx>)N T =<z> and
x&Cls(d). Then there are exactly eight subgroups satisfying these condi-
tions, and each of them centralizes exactly one element of A,(W). Since
N¢((d>) N T =<z) holds, without loss of generality we may assume d’'=d.
Set D=<v), (v)fi=w, (v)f=v, (w)f=w’ and d’=d*. Then it follows
that W =<w)®<w), W =< >P<w’> and V=WPW’. Moreover we
have W’'=W’. Since fildfi=(d*)? holds, we get w=()A€Cr{d))' =
Cy(Kd*»). Similarly it follows that v’eC,(d*>) and weC,(Kd)).
Hence Cv({d))=<v>P<w’> and Cv(d *>)=<wd>P<v’> holds. Since
Cy(d*))4=Cv(Kd*)), we may put (w)d=aw+pLv and (v)d=yw+ v’
for some elements «, 8, y, d&GF (11), which give 1=x(d)=tr(d)=2+
a+J. Hence we have the following equality.

a+pB=-—1 (1)

It can easily be shown that (v)fi=)ffff =(v)zff =—w’. Hence
we have (v)d *=(w)fid *=(w)d*i=Caw+pv)df,=(a?+By)v—(af +
BHw” and (v)d*=w)fd*ff =) df =yw’'+ dv, which give a?*+Ly=4 and
af+pB5=—y. Hence from (1) we have the following two equalities.

B=vy (2)
a*+p2=4¢ (3)

Now, p€T implies W?=W and W’?=W’. Hence we may put
(V)p=Av+uw and (w)p=wvv+yw for some elements A, u, v, nEGF(1D).
Hence (v)p=w)fpff =(wzpf=—Av'—uw’ and (w)p=—w'—zw’ hold.
Moreover we have (w)p=(v)fipfifi=w)p*f/i. Hence (v)p*=vw+nv
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holds. Similarly (w)p*=Aw+uv, (w)p*=—Aw' —puv’ and (v)p®=
—wvw’—nv” hold. Therefore it follows that —v=(v)p*=CGw +yv)p= G2+
nA)v+ (wp+agu)w. This yields (v+u)=0 and v*+xA=—1. If =0,
then we get (Kw))?=<v>=w))’*, which implies pfiE Ti<w>). Since D=
{v>E A, (W), we also have <w>E A, (W), which implies T(<w>)=<£2>.
Hence we have pfi=1 or pfi=2z, a contradiction. Therefore »+0. Simi-
larly v+0, 1#0 and x+0 are obtained. Thus we have the following two
equalities.

v=—u and v’+71=—1 (4)

Moreover it follows that (v)p*=wvw+yv=—puw+217'(—1—u*»v from
(4). On the other hand we have (v)p*=QAv+uw)p*={A2+uv)1+
wA+plo+H{AH w)u+un(A+9)}w. Hence A2+ uv)+n(A+7p)=-1
holds. Thus it can be shown from (4) that A?—pu’—1—u’+x*=-—1.
Therefore we have the following equality.

A2+ p2=2u? (5)

Set ’=dp~'dp. Then it is easy to see that 5'=(13524) and |4’|=10.
When we put (w)b'=A,v+Bw+Cov'+Dw’, (w)b'=A,v+Bw+Cv'+
D', (W)b'=A;v+Baw+Cov'+Dyw’ and (w)bd'=A,v+Buw+C,o'+Dw’,
we get A, =—via—nA, B,=—Aa’n—au’+Bn’y, GG=yA%8—dov:—nd*A and
D,=—2An—pu?6. Hence it follows from (2) and (4) that A,=—pula+u’+
1, Bo=a?(u?+1) —au®+8%9% CG=p°A22—0u’+02(u%+1) and D,=pu?+1—
128 hold. Therefore we obtain 1=x (b)) =tr(b’)=A,+B,+C+D,=2+4
wi+(a?+ 0% (u*+1)+82(A%+%> from (1). We also obtain a?+6%2=2
a’+2a+1 from (1), Bf=d0—a’*=—1—a—a? from (1) and (3) and A%+
n?=2u? from (5). Hence we have the followig equality.

0=2+3u*+2a’+2a (6)

Since 8?=—1—a—a? is a square number, it follows that a={+3, +4,
2, —5}. Thus we have 2a®’+2a=1, 2 or —4. The application of these
values into (6) gives u?=—1, —5 or —3, respectively. This is a contra-
diction. Therefore we have |Gp|#6.

Finally assume that |Gp|=10 holds. Set Gp,=<(z, &> for some element
b, of G such that |b|=5. If Ne(<b))NT %{z> holds, then we have W =
D®D~* for an element x&€ (N;Kb))NT)H\{1, 2z} and W is fixed by <&,
that is a contradiction. Hence N;(Kb&)) N T =<z) holds. Set M={x)> | x
€Clz(b) and N;(<x>) N T =<z)}. Then it can easily be shown that |M|=
32 and the number of orbits of the action of <7, f> on M is exactly three.
We denote their orbits by M,, M, and M,;. It is easy to see that |M,;|=8,
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|M,|=8 and |M;|=16. We may take b= M,, b"<M, and b= M, as repre-
sentatives, where 5 =(12345), b”=(12536), b”=(12356), respectively.
There are three cases to consider: (i) b, is an element of M,, (ii) b, is
an element of M,, (jii) &, is an element of ;.

Case (i). We may assume b =0. It follows that pgf=f£<T,
p'¢f =HLET and p*=fL,ET. We put p2bp*=b,, fibfi=0b; and f,b.fz=
b,. It is readily verified that D, D?*, D”* and D’® are fixed by <b,), <b,
<bs? and <b,», respectively. It is observed to be b,L for i=1, 2, 3, 4.
Moreover L fixes exactly two 2-spaces of V, say V; and V,. For each ¢
€{1,2,3,4,}, <b> fixes exactly four 1-spaces of V, and two of them are
contained in V; and the remaining two are contained in V,. Hence we
may assume DC V; and D*C V; for some element x<{f,, £, p?}. Then we
have W =D@®D*=V,, a contradiction. Thus we get b & M,, which
shows that Case (i) does not occur.

Case (ii). We may assume b,=5b". Set D=<v) and fibfi=0bs. Itis
easy to see that ps=(15362). Let L, be a subgroup which is conjugate to
L in G such that L,=A%"%%58_ Then it follows that &, 5<L,. Since
(b fixes D and Cp(b)=0 from Lemma 2.3(iv), moreover 3 is a primi-
tive fifth root of unity in GF(11), we may assume that (v)b,=3v. As
well as in the case |Gp|=6, we put (v)fi=w, (W)f=v, wW)f=w’, (V)p=
Av+puw and (w)p=vv+nw. We have already known that (v")fi=—w’,
(Wp=—Av"—uw’, (W)p=—vv'—qw’, (V)P =vw+yv, (W)P>=Aw+ uv,
(WDHP*=—wvw'—yv’ and (w)p*=—Aw’—uv’. Then the equality (4) and
(5) being derived in the case |Gp|=6 also hold here and are used again.
It is readily checked that fb,f =b;'. It follows that (w)bs=(w)fib.fi=3w,
(WDbs'=)fbf =3v" and (w)bi'=(w)fbsf =3w’. Hence we have
(v)bs=4v" and (w)b,=4w’. It can be shown that L, fixes exactly two
2-subspaces of V, say U, and U,. Moreover since b, fixes <v> and <{w">,
and since & fixes <w) and <{v">, each element of {<v>, <w), <{v">, <w"} is
contained in U, or U, with the same argument as the proof in the case
(i). Obviously it follows that <v>@<w> =+ U; and <v">@P<w" >+ U; for i=
1, 2. On the other hand, since f¥ L, holds, we obtain <v>@<v’>+ U; and
{wYPBw >+ U; for i=1, 2. Hence we may assume <v>P<w’>=U; and
w>@Pv>=U,. Set (w)b,=pw+nv, W)b=Rw+y,v, where B, B,
v, E€GFA1). Then —1=yx(b)=tr(b)=—4+p+y, hold. Therefore
we have the following equality.

,61+Yz:3 (7)

Next it follows that (v) b%2=—2v, (W) b*= B2+ nB)w+ B+ ny) v,
() b’= (BBt 12:) w + (Beyi +9.») v/, and (w”) b>=5w’. Hence —1=
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x (0.2 =34+ B2+2B7.+ 7.2 holds. Therefore from (7) we have the follow-
ing equality.

Pive—Peri=1 (8>

Now we put ¢, =b7'£,b,f, then it is seen that ¢,=(265), which implies
a€ Cls(c). Since (w)b,=pw+yv" holds, we have w=(Bw)bi'+
(o) br'. Similarly we have v'=(Bw)bi'+ (v )bi'. Therefore y,w—
yv'=(w)b;' holds from (8). Similarly g,0'—gw=(v)br* holds. Hence
it can be shown that (v)c, =) b fbSf =) fibf =4B8w +4pv, (W)=
(w) b hbf = ('}’zw ~— 7 Ul)fl b.f =3y.v' +4y,w, ("), =WHbihbf =
B = Bw)fibif = — 48w —3B.v", (w)e,=WHbi'Abf=(=3v )b f=
—3B,w'—3y,v. Therefore it follows that —2=x(c,)=tr(c,)=—3y+58.
Thus we have the following equality.

—dn+36.=1 (9)

Moreover we put a =bpbp~!, then it follows that a,=(1243)(56),
which implies @€ Clc(p). If we put (wWa=A,v+Bw+Cv' +Duw’,
(w)aa=A,v+B,w+Cov'+D,w’, (v)a,=As;v+Bsw—+Csv'+D;w’ and
(wH)a=A,v+Bw+ Cuov'+Dw’, then A,, B,, C; and D, can be written as
A, =20n—=3u’B, B,==3B’—B’An+ A2y B, C=Beyin®— v’ An—4dyu?
and D,=—4v?*y,—5A7n. Hence from (4), (5), (7), (8) and (9) we have
the following equality.

0=x (@) =2B*+Qu*+5)6+1—3u? 10

Finally we put t=b&.bf, then it follows that ¢ =(23)(56), which
implies t€Cl:(q¢). Moreover we have (v)t=38v—3pnw’, (w)t=38w+
dpv', (WDt=3Bw+4y,v" and (w)it=—4B,v+4y,w’. Tence 0=y ()=
tr(¢) =68, +8y, holds. Thus we have the following equality.

3ﬁ1+4’)’2:0 (11)

Therefore from (7) and (11) we have 8,=1. Hence from it fol-
lows that u?=—3, which is a contradiction. Thus we get b & M,, which
shows that Case (ii) does not occur.

Case (iii). We may assume b, =5". As well as in Case (ii), we put
D=<vy, wWh=w, Wf=v, (wf=w', (Wp=Av+uw, (w)p=wvv+nw,
W =<v>&<w) and W’ =<’ >P<{w’>. We have already known that V=W
eW’, Gw=Gw=T, (W)p=—Av"—puw’, (W)p=—vv'—yw’ and u +0.
We may also assume (v)b,=3v, because b, fixes D and C,(b)=0 from
Lemma 2.3(jv), moreover 3 is a primitive fifth root of unity in GF(11).
Then we have (w)fibfi=3w, (v)fbf=3v" and (w)ff.bff=3w’. It fol-
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lows that &, fibfi, /bf and ffbff are elements of L,, which satisfies
L,=A"*%%%  Hence by the same argument as the proof in Case (ii),
we may assume <{v>®<w>="U, and <w)P<v">=U,. Then we have Gy,=
Gv,=L. Set (wb=aiw+p{v, W)b=aiw+Biv, and (wW)b=aiv+
Bsw’, where ai, B, as, 5, a3, BFEGF(11). If =0, then <b,)> fixes W.
This is a contradiction. Hence we get g/=0. If £=0, then it follows that
4v=_v)bi'€<{w’>, which is a contradiction. Hence we also get B5+0.
Since p5,=(15)(24), we have pb,eCl;(q), which shows that (pb)2=2.
Therefore we have (v)(pb)?=—v. On the other hand it follows that
(W)pby=3Av+pu(aiw+B{v), (Wpb,=3vv+y(aiw+8{v) and (v")pb, =
—Alasw+B:v) —pu(aiv+Liw’). These yield (W) (Pb)*=BAv+u(a{w+
,6’1'1)')}(171)1):(—2/12+3)uva1'—;12,31'a3')v+y(3/1af1'+vafz—lﬁ{az')w-i-(3/1,31'-1-
unai Bi— AuBips)v'+ (—u?Bifi)w’. Therefore —pu28{8;=0, which is in
contradiction to /#0, 0 and x+0. Thus we get & & M,, which shows
that Case (iii) also does not occur. Hence we have |Gp|=10.

We have concluded that |Gp|=2 and Gp,=<z).. From our assumption,
WNW?=D is a 1-space. Therefore we get D, DS'C W. Since Gp,=<{z>
holds, we have also Gw-=<z>. Thus D, D9'eA,(W) holds, and hence
it follows that D?'=D~* for some element x € T. Therefore we have
D*=D, which implies xg€Gp,=<z)>. Hence g T holds. Thus we get
Wé¢=W, a contradiction. The lemma is proved.

PROPOSITION 3. ¥ is a spread in V.

PROOF OF PROPOSITION 3.

Suppose that Wie ., and W,€9,; hold, and that W,N W,=D is a
1-space of V. Since W€ ¢, holds, we have |Gp|=6. On the other hand
since W, .23 holds, we have |Gp|=4 if DEA,(W,) and we have |G,|=2
if DeA,(W,). This is a contradiction. Therefore &, U &, is a partial
spread in V. If W€ 9 holds and D is a 1-space of Wi, then |Gp|=10
holds. Hence similarly &;U.7,; is a partial spread is V. Thus &¥= &,
U%2U s is a spread in V. The proposition is proved.

Proor oF THEOREM C.

From [Proposition 1, Proposition 2 and [Proposition 3, there are exact-
ly three isomorphism classes of planes II with kernel GF(11) on which G
acts. From our assumption, G is a normal subgroup of the linear transla-
tion complement C of II. Let D be the kernel of . We put C=C/Z
(G), H=HZ(G)/Z(G) and x =xZ(G) for a subgroup H and an element
x of C. Then we have G=S; and G<C. Let x be any element of C and
% be any element of { ¥, 9%, #¥}. Since {W*| We.v}=.9 holds, we
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have W*c ¢, for each W&, which implies C,(d*)=C/(d)*€ 4.
Consequently it follows that d*=Cls(d). Therefore (x)'dx is conju-
gate to 4 in G. Hence x induces an inner automorphism of G(=S;) by
conjugation. Thus xy~' centralizes G for some element y&G. Hence
we have [xy~!, G]CZ(G). When we put hZ=xy~!, we get h~'gh=g or
h~'gh=gz for each element g G. Hence it is easy to see that Cv(d)*=
Cv(d"™) and that Cy(d") equal to Cv(d) or Cv(dz). However since it can
be shown that Cv(dz)€ ¢, it follows that Cv(d)"=Cy(d) and that
h='dh=d. Similarly. we have h™'d’h=d’ for every element d'€Cl:(d).
Hence % centralizes K.

Set W=Cy(d)=<v>P<w) and W’'=C,(d")=<v">P<{w’>. Then we
have V=W@W’. If follows that ke Cew)(Nx((d>)) and Cerw)(Nk
KdY))={aE| acGF (11)*). Hence there is an element « in GF (11) such
that (#)h=au for each element = W. Similarly there is an element £ in
GF (11) such that (#)h=pu for each element #’=W’. On the other
hand there is an element ¢’ in K such that (v)c’'=Av+uw+ v’ 4w,
where A, u, v, 7 € GF(1) and (v, #)#(0,0). Then it follows that
(wc'h=21av+paw+vBv' + 78w’ and (v)hc'=alv+auw+ avv’+ anw’.
Since ¢’h=hc’ holds, we get a=p, which implies 2&€D. Hence we get
x€DG. Thus C=DG holds. Theorem C is proved.
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