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On the asymptotic equivalence between the Enskog and the
Boltzmann equations in the presence of an external force field
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Abstract. The paper deals with the asymptotic equivalence between the
Enskog and the Boltzmann equations in the presence of an external force
field, when the scale of the hard-sphere diameter in the Enskog model
tends to 0. The asymptotic equivalence is presented when a global exis-
tence theorem for the Boltzmann equation in all space holds, and for the
force field integrable in time. For example, the force field can be large in
modulus and with arbitrary direction as far as it acts for a finite, although
large, time interval.

1.) Introduction

It is well known that the Boltzmann equation in the kinetic theory of
gases [6] is valid for rarefied gases where gas particles can be considered
as point masses undergoing binary collisions. In other words, in the Bolt-
zmann model the overall dimensions of particles are neglected. In the
case of dense gases the mass-point Boltzmann model has to be replaced by
a model which can take into account the overall dimensions of particles.
An interesting class of such models is based on the original Enskog idea:
the models are reviwed and classified in [2]. The same paper [2] also
presents the existence and uniqueness theorems for the initial-value prob-
lem.

This paper deals with the asymptotic behaviour of the solutions of the
Enskog equation in the presence of an external force field when the scale
of the particle radius tends to zero. The asymptotic equivalence between
the Enskog and the Boltzmann equations in that case is proven when a
global existence theorem for the Boltzmann equation in all space holds (i .
e . when initial datum satisfies the smallness condition-see [5] ) , and for
the force field integrable in time.

The paper can be considered as a continuation of papers [3] and [8],

where the asymptotic result was proved in the case without a force term
[3] and the existence and uniqueness theorem was proposed [8].
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2.) The mathematical models

Both the Boltzmann and the Enskog equations describe the evolution
of one-particle distribution functions

f_{B} , f_{E} : [0, +\infty[\cross R^{3}\cross R^{3}arrow[0, +\infty [:
f_{B}=f_{B}(t, x, v) ; f_{E}=f_{E}(t, x, v) .

All variables are considered to be dimensionless, i . e . they are
obtained by referring the dimension variables to suitable characteristic
quantities (for details see [3]). Then f_{B} and f_{E} are the dimensionless dis-
tribution functions, t\in[0, +\infty [, x\in R^{3} and v\in R^{3} are the dimensionless
time, space, and velocity variables, respectively. Moreover, B is the
dimensionless radius of the particles. If we consider the initial value
problem with the same initial data for the hard-spheres Boltzmann equa-
tion and for the Enskog equation, we should expect two different solu-
tions. On the other hand, when B tends to zero, then the solution of the
Enskog equation should tend to that of the Boltzmann equation. The
mathematical proof of this equivalence can be regarded as an important
step in the understanding of nonlinear kinetic theory. It can also be con-
sidered as an indirect validation of the Enskog type models.

The dimensionless forms of the Boltzmann and the Enskog equations
in the pressence of (dimensionless) external force field F read

\frac{\partial f_{B}}{\partial t}+v\cdot grad_{x}f_{B}+F\cdot grad_{v}f_{B}=\frac{1}{Kn}J(f_{B}, f_{B}) , (2. 1)

\frac{\partial f_{E}}{\partial t}+v\cdot gradJ_{E}+F\cdot grad_{l}f_{E}=\frac{1}{Kn}E ( \frac{1}{Kn}f _{;} _{f f},) (2. 2)

with initial data

f_{B}|_{t=0}=f_{E}|_{t=0}=f_{0} . (2. 3)

In Eqs. (2. 1) and (2. 2) Kn in the Knudsen number defined by the
ratio between the mean free path and the characteristic length. Consider-
ing that we deal with Knudsen numbers fixed and larger than zero, we put
Kn=1 for simplicity in what follows.

The Boltzmann and the Enskog collision operators read:

J(f_{1}, f_{2})(x, v)= \int_{R^{3}\cross S^{2}}\{f_{1}(x, v_{\acute{1}})f_{2}(x, v’)

-f_{1}(x, v_{1})f_{2}(x, v)\}|(v_{1}-v)n|_{+}dndv_{1}

and
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E_{E}(f_{1} ; f_{2}, f_{3})(x, v)= \int_{R^{3}\cross S^{2}}\{Y^{+} (f_{1} : E) (x, n)\cdot f_{2}(x+Bn, v_{1}’)f_{3}(x, v)

-Y^{-}(f_{1}jB)(x, n)\cdot f_{2} (x-Bn,v_{1} )f_{3}(x, v)\}

|(v_{1}-v)n|_{+}dndv_{1}

where

S^{2}=\{n\in R^{3} : |n|=1\} ,
|y|_{+}= \max\{0, y\}

and Y^{\pm} are the pair correlation functions.
v, v_{1} are the precollisional (dimensionless) velocities and v_{j}’v_{1}’ the post-
collisional velocities.

On the external force field F the following hypothesis is needed

HYPOTHESIS2.1.
The external force term F=F(t, x, v) is such that

1. )
x \in R^{3}\sup_{v\in R^{3}}|m(\cdot)F(\cdot, x, v)|\in L_{1}(0, +\infty)

where m(t)=1+t

2. ) For all (/, x, v)\in[0, +\infty[\cross R^{3}\cross R^{3} there exists a unique solution
(X, V)=(X(t, x, v), V(t, x, v)) ,
(X, V)\in(C^{0}([0, +\infty[\cross R^{3}\cross R^{3}))^{2}

of the following initial-value problem

\frac{dX}{dt}=V ; X|_{t=0}=x (2. 4 a)

\frac{dV}{dt}=F(t, X, V) ; V|_{t=0}=v (2. 4 b)

The solution is such that for all

(t, x, v)\in[0 , +\infty[\cross R^{3}\cross R^{3} there exist x^{*}\in R^{3} and v^{*}\in R^{3} such
that X(t,\cdot x^{*}, v^{*})=x;V(t;x^{*}, v^{*})=v .

Now we can introduce the following operators

U(-t)f(x, v)=f(X(t, x, v), V(t, x, v)) (2. 5 a)

and the integral form ( mild form ”) of Eqs. (2. 1) and (2. 2) with initial
data (2. 3)
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f_{B}(t)=U(t)f_{0}+ \int_{0}^{t}U(t-s)J(f_{B}, f_{B})(s)ds (2. 6)

f_{E}(t)=U(t)f_{0}+ \int_{0}^{t}U(t-s)E_{E}(f_{E} ; f_{E}, f_{E})(s)ds. (2. 7)

Denote f^{\#}(t)=U(-t)f(t) . (2. 5 b)

Now let us define

h_{\mathscr{L}}(y)=\exp(\mathscr{L}y^{2}) , \mathscr{L}>0 (2. 8 a)

and

m_{k}(y)=(1+y^{2})^{\frac{k}{2}}, k>3 . (2. 8 b)

We need the following Banach spaces

B_{\mathscr{L},k}=\{f\in L_{\infty}(R^{3}\cross R^{3}) :
es_{Xs}_{\in R^{3}} ,\sup_{v\in R^{3}}(\psi(x, v)|h_{\mathscr{L}}(|x|)m_{k}(|v|))<+\infty\}

equipped with the norm

| \psi||_{\infty,\mathscr{L}.k}=esx s_{\in R^{3}}\sup_{v\in R^{3}’}(V(x, v)|h_{\mathscr{L}}(|x|)m_{k}(|v|))
;

C_{\mathscr{L},k}=\{f\in C_{b}^{0}(R^{3}\cross R^{3}) :
x \in R^{3}\sup_{v\in R^{3}}(\psi(x, v)|h_{\mathscr{L}}(|x|)m_{k}(|v|))<+\infty\}

equipped with the norm

| \psi||_{\mathscr{L},k}=_{x}\sup_{\in R^{3}} v\in R^{3}’(\psi(x, v)|h_{\mathscr{L}}(|x|)m_{k}(|v|))
;

\mathscr{B}_{\mathscr{L},k}=\{f^{\#}\in L_{\infty}(]0, +\infty[\cross R^{3}\cross R^{3}) :
ess\sup_{t>0}|\psi^{\#}(t)||_{\infty,\mathscr{L},k}<+\infty\}

equipped with the norm

|| \psi|||_{\infty,\mathscr{L},k}=ess\sup_{t>0}|\psi^{\#}(t)||_{\infty,\mathscr{L},k}

and

\mathscr{C}_{\mathscr{L},k}=\{f^{\#}\in C_{b}^{0}([0, +\infty[\cross R^{3}\cross R^{3}) :
\sup_{t\geq 0}|\psi^{\#}(t)||_{\mathscr{L},k}<+\infty\}

equipped with the norm

|| \psi|||_{\mathscr{L},k}=\sup_{t\geq 0}|\psi^{\#}(t)||_{\mathscr{L},k} .
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In the end of this Section we propose the hypothesis on the factors
Y^{\pm} . They are correction terms due to the overall dimensions of the gas
particles and become infinite when the local density approaches a critical
value corresponding to the condensation density. Thus the Enskog
description can be justified only for moderate dense gases. The set of
distribution functions corresponding to moderate densities can be defined
as follows

\mathscr{D}_{-}^{*}= {f : esx \in R^{3}s,\sup_{t\geq 0}\int\psi
( t, x, v ) |dv\leq\prime \mathscr{H}_{E}}

where \mathscr{H}_{E} is a given constant such that \mathscr{H}_{E} increases to^{t}\infty as B decreases
to 0.

Using the representation (3. 8) from [8] we can show that there
exists a constant c_{0} (depending on k and on the force term F) such that
the set

\mathscr{D}_{\mathscr{L},k}^{*}=\{f\in \mathscr{B}_{\mathscr{L}}.k:||\psi|||_{\infty,\mathscr{L},k}\leq c_{0}\mathscr{H}_{E}\}

is a subset of \mathscr{D}^{*}\cap \mathscr{B}_{\mathscr{L},k} . To be sure that a function in \mathscr{B}_{\mathscr{L},k} is permis-
sible in the Enskog description we will guarantee that it is in the set \mathscr{D}_{\mathscr{L}^{k}}^{*},\cdot

Now we can formulate the relevant properties of the factors Y^{\pm} .

HYPOTHESIS 2. 2.
1. ) Y^{\pm}(0;B)\equiv 1 for all B\in[0,1]

2. ) \forall B\in[0,1] , \forall f\in \mathscr{D}_{\mathscr{L}_{1}k}^{*}\cap \mathscr{C}_{\mathscr{L},k} , \forall n\in S^{2} :
Y^{\pm}(f’. B)(\cdot, \cdot, n)\in C^{0}([0, +\infty[\cross R^{3}) .

3. ) \forall B\in[0,1] , \forall f_{1} , f_{2}\in\overline{\mathscr{D}}_{\mathscr{L},k}^{*} :
ess \sup|Y^{\pm}(f_{1}.\cdot B)-Y^{\pm}(f_{2} ; B)|\leq

x\in R^{3}n\in S^{2}t>0

{?}(|B) esx \in R^{3}s\sup_{t>0},\int\psi_{1}-f_{2}|dv ,

where \Psi^{\neg} is a bounded function of B\in[0,1] such
that {?}(B) –0 as B –0.

The proposed hypothesis is physically consistent with a large class of
the Enskog-type models (Standard Enskog Theory as well as Revised Ens-
kog Theory-see [2] ) .

Point 3 is formulated in a way more general than in [3] where
\pi(B)=0(B) is assumed in order to obtain the 0 (B)-rate of convergence
of f_{E} to f_{B} as B -arrow 0 .
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3.) The existence theorems for the Boltzmann
and the Enskog equations

In [5] the following theorem has been proposed:

THEOREM3.1.
Let \mathscr{L}>0 , k>3 and Hypothesis 2. 1 be satisfied. Then the following in-
equality holds

|||\mathscr{A}_{B}(f_{1}, f_{2})|||_{\infty,\mathscr{L},k}\leq c_{1}||\psi_{1}|||_{\infty,\mathscr{L},k}\cdot||\psi_{2}|||_{\infty,\mathscr{L},k} (3. 1)

for all f_{1} , f_{2}\in \mathscr{B}_{\mathscr{L},k} , where

\mathscr{A}_{B}(f_{1}, f_{2})(t)=\int_{0}^{t}U(t-s)J(f_{1}, f_{2})(s)ds

and c_{1} is a positive constant. Moreover if the initial datum f_{0} is such that
|\psi_{0}||_{\infty,\mathscr{L},k}\leq c_{2} , (3. 2)

where c_{2}<(4c_{1})^{-1} , then the problem (2. 6) has a unique solution f_{B} in \mathscr{B}_{\mathscr{L},k}

and

||\psi_{B}|||_{\infty,\mathscr{L},k}\leq 2|\psi_{0}||_{\infty.\mathscr{L},k} . (3. 3)

REMARK3.1.
By (3. 3) it follows that if B\geq 0 is so small that

c_{2} \leq\frac{c_{0}\mathscr{H}_{E}}{2} (3. 4)

then

f_{B}\in \mathscr{D}_{\mathscr{L},k}^{*} . (3. 5)

Note that in [5] Theorem 3.1 has been proved under a slightly more
general assumption than Hypothesis 2.1 (see Hypothesis F in [5]).

The corresponding theorem for the Enskog equation has been
proposed in [8] :

THEOREM3.2.
Let B\in ]0, 1], \mathscr{L}>0 and k>3 be fixed. Let Hypotheses 2.1 and 2.2 be
satisfied. Then the following inequalilies hold

|||\mathscr{A}_{E}(f_{1} ; f_{3}, f_{4})-\mathscr{A}_{E}(f_{2} ; f_{3}, f_{4})|||_{\infty,\mathscr{L},k}\leq

\leq c_{3}\pi(B)||\psi_{1}-f_{2}|||_{\infty,\mathscr{L},k}\cdot||\psi_{3}|||_{\infty,\mathscr{L},k}\cdot||\psi_{4}|||_{\infty,\mathscr{L},k} (3. 6)

for all f_{1} , f_{2}\in \mathscr{D}_{\mathscr{L},k}^{*} ; f_{3} , f_{4}\in \mathscr{B}_{\mathscr{L}}

, k
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and
|||\mathscr{A}_{E}(f_{1} ; f_{3}, f_{4})|||_{\infty,\mathscr{L},k}\leq

\leq c_{1}(1+c_{3}\cdot \mathscr{V}(B)||\psi_{1}|||_{\infty,\mathscr{L},k})\cdot||\psi_{3}|||_{\infty,\mathscr{L},k}\cdot||\psi_{4}|||_{\infty,\mathscr{L},k} (3. 7)

for all f_{1}\in \mathscr{D}_{\mathscr{L},k}^{*} , f_{3} , f_{4}\in_{\mathscr{L},k} ,

where

\mathscr{A}_{E}-(f_{1} _{;} f_{2}, f_{3})(t)=\int_{0}^{t}U(t-s)E_{E}(f_{1} ; f_{3}, f_{4})(s)ds

and c_{3} is a positive constant.
Moreover, if the initial datum f_{0} is such that

|\psi_{0}||_{\infty,\mathscr{L},k}\leq c_{4} (3. 8)

where

C_{4}< \min\{C_{5} ,C^{\frac{1}{\not\in}}

and

c_{5}=(13c_{1} \cdot\max(1, c_{3}\sup_{E}{?}(B)))^{-1}

then the problem (2. 7) has a unique solution f_{E} in \mathscr{D}_{\mathscr{L},k}^{*} and

|||f_{E}|||_{\infty,\mathscr{L},k}\leq 2|\psi_{0}||_{\infty,\mathscr{L},k} . (3. 9)

The aim of the present paper is to prove the following theorem on the
asymptotic equivalence:

THEOREM 3. 3.
Let \mathscr{L}>0 , k>4 and initial datum f_{0}\in C_{\mathscr{L},k} satisfy the smallness condition
(3. 2). Let Hypothesis 2.1 and 2.2 be satisfied. If B>0 is sufficientty small
then the problem (2. 7) has a unique solution f_{E} in \mathscr{C}_{\mathscr{L}’,k’} and f_{E}\in \mathscr{D}\mathscr{L}’.k’ ,

where \mathscr{L}^{r} and k’ are numbers such that 0<\mathscr{L}’<\mathscr{L} and 0<k’<k . More-
over

|||f_{E}-f_{B}|||_{\mathscr{L}’,k}-0 as Barrow 0, (3. 10)

where f_{B} is the solution of the problem (2. 6) and is given by Theorem 3.1.
Theorem 3.3 refers to the solution to the Enskog equation under the

smallness assumption guaranteeing the existence of a solution to the Boltz-
mann equation in the case when the scale of the radius of particles is
below a critical value. Moreover, it shows that the Enskog equation is a
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small perturbation of the Boltzmann equation with the perturbation
parameter characterized by a well defined physical meaning.
4.) Proof of Theorem 3. 3

We propose the following lemmas
L_{EMMA}4.1 .

If f\in \mathscr{C}_{\mathscr{L},k}\cap \mathscr{D}_{\mathscr{L},k}^{*} for \mathscr{L}>0 and k>4 then
\mathscr{A}_{B}(f, f)\in \mathscr{C}_{\mathscr{L},k} (4. 1)

and

\mathscr{A}_{E}(f;f, f)\in \mathscr{C}_{\mathscr{L},k} (4. 2)

PROOF.
First of all note that from (3. 1) and (3. 7) it follows that if f\in \mathscr{C}_{\mathscr{L},k}\cap \mathscr{D}_{\mathscr{L},k}^{*}

then

\mathscr{A}_{B}(f, f)\in \mathscr{B}_{\mathscr{L},k}

and

\mathscr{A}_{E}(fjf, f)\in \mathscr{B}_{\mathscr{L}k},\cdot

Thus, it remains to prove that \mathscr{A}_{B}^{\#}(f, f) and \mathscr{A}_{B}^{\#}\sigma ; f, f) are continuous.
Let us study \mathscr{A}_{B}^{\#}(f, f) . We have

\swarrow_{B}^{\#}(f, f)=\mathscr{A}_{B}^{+\#}(f, f)-\mathscr{A}_{B}^{-\#}(f, f) ,
\mathscr{A}_{B}^{+}(f, f)(t, x, v)=

\int_{0}^{t}\int_{R^{3}\cross S^{2}}f(s, X(s, x, v), V_{1}’)\cdot f(s, X(s, x, v), V_{1}) .
. |(v_{1}-V(n, x, v))\cdot n|_{+}dndv_{1}ds

where V_{1}’=v_{1}-n\cdot(n\cdot(v_{1}-V(s, x, v))) , V’=V(s, x, v)+n\cdot(n\cdot(v_{1}-V(s, x,
v)))
and

\mathscr{A}_{B}-\#(f, f)(t, x, v)=\int_{0}^{t}\int_{R^{3}\cross S^{2}}f(s, X(s, x, v), v_{1}) .
.f(s, X(s, x, v), V(s, x, v))\cdot|(v_{1}-V(s, x, v))\cdot n|_{+}\cdot dndv_{1}ds

Both terms \mathscr{A}_{B}^{+} , \mathscr{A}_{B}^{-} can be treated in the same way. Thus let us
focus our attention on the term \mathscr{A}_{B}^{+} .
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\mathscr{A}_{B}^{+\#}(f, f)(t, x, v)=\int_{0}^{t}\int_{R^{3}\cross S^{2}}f^{\#}(s, (X, V)(-s, X(s, x, v), V_{1}’)) .
. f^{\#}(s, (X, V)(-s, X(s, x, v), V’))\cdot|(v_{1}-V(s, x, v))\cdot n|_{+}dndv_{1}ds

The integrand can be estimated by

const \cdot ||\psi|||_{\mathscr{L},k}^{2}\cdot m_{k}^{-1}(|V_{1}’|)\cdot m_{k}^{-1}(|V’|)\cdot|(v_{1}-V(s, x, v))\cdot n|_{+} .

Note that ( V_{1}’)^{2}+(V’)^{2}=v_{1}^{2}+V^{2}(s, x, v) (cf. (1. 10b) in [6]) and

m_{k}^{-1}(|V_{1}’|)m_{k}^{-1}(|V’|)\leq(1+v_{1}^{2}+V^{2}(s, x, v))^{-\frac{k}{2}} .

Thus the integrand is estimated by

const \cdot ||\psi|||_{\mathscr{L},k}^{2}\cdot m_{k-1}^{-1}(|v_{1}|) .

Because of k>4 the dominatd convergence the theorem orem can be
applied to conclude that \mathscr{A}_{B}^{\#}(f, f) is continuous. In the same way, using
Hypothesis 2.2, the continuity of \mathscr{A}_{E}^{\#} (f ; f, f) follows.

This ends the proof.

Note that an analogous result has been proved for the Boltzmann
equation (the Enskog equation) with the force term equal to zero in the
paper [9] ([10]).

We propose now the following lemma

L_{EMMA} 4 . 2.
If f\in \mathscr{C}_{\mathscr{L},k} for \mathscr{L}>0 and k>4 then

|||\mathscr{A}_{E}(0;f, f)-\overline{\mathscr{A}}_{B}(f, f)|||_{\mathscr{L}’,k’}

tends to 0 as B –0, where \mathscr{L}’ and k’ are numbers such that 0<\mathscr{L}’<\mathscr{L}

and 0<k’<k .

PROOF.
We have

|||\mathscr{A}_{E}(0;f, f)-\mathscr{A}_{B}(f, f)|||_{\mathscr{L}’,k’}=

= \sup|h_{\mathscr{L}’}(|x|)m_{k’}(|v|)\int_{0}^{t}U(-s)\{E(0;f, f)-J(f, f)\}(s, x, v)ds|

x\in R^{3}v\in R^{3}t\geq 0

Again, as in Lemma 4.1, it is enough to consider the “ gain ” parts of
\mathscr{A}_{E} and \mathscr{A}_{B} , i . e . \mathscr{A}_{B}^{+} and \mathscr{A}_{B}^{+} . Thus we have to estimate the term
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\mathfrak{M}=\sup|h_{\mathscr{L}’}(|x|)m_{k’}(|v|)\int_{0}^{t}\int_{R^{3}\cross S^{Z}}\{f(s, X(s, x, v)+Bn, V_{1}’)-

x\in Rv\in Rt\geq 0 :
f(s, X(s, x, v), V_{1}’)\}\cdot f(s, X(s, x, v), V’)\cdot|(v_{1}-V(s, x, v))\cdot n|_{+}

dndv_{1}ds|= \sup|h_{\mathscr{L}’}(|x|)m_{k’}(|v|)\int_{0}^{t}\int_{R^{3}\cross S^{2}}\{f^{\#}(s, (X, V)(-s, X(s, x,
x\in R^{3}v\in R^{3}t\geq 0

v)+Bn, V_{1}’)-f^{\#}(s, (X, V)(-s, X(s, x, v), V_{1}’))\}\cdot f^{\#}(s, (X, V)
(-s, X(s, x, v), V’))\cdot |(v_{1}-V(s, x, v))\cdot n|_{+}dndv_{1}ds| .

Denote by

\mathfrak{R}(t, t_{0};_{x} \int_{S^{2}\cross R^{3}}\psi^{\#}(s, (X, Y)

(-s, X(s, x, v)+Bn, V_{1}’))-f^{\#}(s, (X, V)(-s, X(s, x, v), V_{1}’))| .
[f^{\#}(s, (X, V)(-s, X(s, x, v), V’))|\cdot|(v_{1}-V(s, x, v))\cdot n|_{+}dndv_{1}ds .

Thus

\mathfrak{M}\leq\sup|_{v}^{x}|_{\leq r_{2}}^{\leq r_{1}}\mathfrak{R}(T, 0;x, v)+\sup_{t\geq T}\mathfrak{R}(t, T,\cdot x, v)+\sup \mathfrak{R}(t, 0;x, v)+

|_{v}^{x}|_{\leq r_{2}}^{\leq r_{1}}

|v|\geq r_{2}x\in R^{3}t\leq 0

sup \mathfrak{R}(t, 0;x, v) (4. 3)
|x|\geq r_{1}v\in R^{3}t\geq 0

By (3. 1) and (3. 7) we have

\sup_{t\geq 0,|x|\geq r_{1}},\mathfrak{R}(t, 0v\in R^{3} ^{;} ^{X}, v)\leq const\cdot||\psi|||_{\mathscr{L},k}^{2}\cdot\sup_{|x|\geq r_{1}}\frac{h_{\mathscr{L}’}(|x|)}{h_{\mathscr{L}}(|x|)}=const\cdot||\psi|||_{\mathscr{L}}^{2}, k .
h_{\mathscr{L}-\mathscr{L}}^{-1},(r_{1})

In the same way

sup \mathfrak{R}(t, 0 ; x, v)\leq const\cdot||\psi|||_{\mathscr{L},k}^{2}\cdot m_{k-k’}^{-1}(r_{2})

|v|\geq r_{2}x\in R^{3}t\geq 0

Thus the fourth and third terms in the right-hand side of (4. 3) can be
made as small as we want by increasing r_{1} and r_{2} . Next, by the same
estimations as in the proof of Lemma 3.4 in [8], we have

sup \mathfrak{R}(t, T ; x, v)\leq const\cdot||\psi|||_{\mathscr{L},k}^{2} .
t\geq T

|_{v}^{x}|_{\leq r_{2}^{1}}^{\leq r}

\sup_{t\geq T}\{m_{k’}(|v|)\int_{T}^{t}\int_{R^{3}\cross S^{2}}m_{k}^{-1}(|v+n\cdot(n\cdot(\xi_{1}-v))|) .
|_{v}^{x}|_{\leq r_{2}}^{\leq r_{1}}
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m_{k}^{-1}(|\xi_{1}-n\cdot(n(\xi_{1}-v))|)\cdot|\xi_{1}-v| .
h^{-1}(|x-s(\xi_{1}-v)|)dnd\xi_{1}ds\}\leq

\leq const\cdot||V|||_{\mathscr{L},k}^{2}\cdot\sup\int_{\tau}^{t}t\geq,T\int_{R^{3}}|\xi_{1}-v|h^{-1}(||x|-s|\xi_{1}-v||)d\xi_{1}ds|_{v}^{x}|_{\leq r_{2}}^{\leq r,}

Changing the variables \xi_{1}- \frac{w}{s}\cdot\eta+v , where w\in[0, +\infty [ and \eta\in S^{2} ,

we obtain

\sup_{t\geq T}\mathfrak{R}(t, T ; x, v)\leq const\cdot|||f|||_{\mathscr{L}}^{2},k.\sup_{t\geq T}\int_{T}^{t}\int_{0}^{\infty}\frac{w^{3}}{s^{4}}h^{-1}(||x|-w|) dwds
|_{v}^{x}|_{\leq r_{2}}^{\leq r_{1}} |_{v}^{x}|_{\leq r_{2}}^{\leq r_{1}}

\leq const\cdot||\psi|||_{\mathscr{L},k}^{2}\cdot\int_{T}^{\infty}\frac{ds}{s^{4}}

Thus sup \mathfrak{R}(t, T ; x, v) can be made small enough by choosing T
t\geq T

|_{v}^{x}|_{\leq r_{2}}^{\leq r_{1}}

sufficiently large.
In the end note that the first term in the right-hand side of the inequal-

ity (4. 3) i . e . sup \mathfrak{R}(T, 0;x, v) tends to 0 as Barrow 0 by uniform continu-
|_{v}^{x}|_{\leq r_{2}}^{\leq r_{1}}

ity (cf. Lemma 4. 1). This ends the proof.

The methods of the proof of Theorem 3.1 and Lemma 4.1 can be used
to state

REMARK 4. 1.
Let the initial datum f_{0} satisfy (3. 2) and additionally f_{0}\in C_{\mathscr{L},k} . Then the
problem (2. 6) has a unique solution f_{B} in \mathscr{C}_{\mathscr{L},k} and

||\psi_{B}|||_{\mathscr{L},k}<(2c_{1})^{-1} (4. 4)

An approach similar to that of Ref. [3] can be applied to derive an
equation for the difference between the solutions of the Enskog and Boltz-
mann equations corresponding to the same initial datum. More precisely,
we look for a solution to the problem (2. 7) in the form

f_{E}=f_{B}+g (4. 5)

where f_{B} is a solution of the problem (2.6) and by Remark 4.1 it is
assumed to be given.

The equation for g reads

g=\mathscr{C}_{f_{B}}[g] (4. 6)
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where

\mathscr{C}_{f_{B}}[g]=\mathscr{A}_{E}(f_{B}+g;f_{B}+g, f_{B}+g)-\mathscr{A}_{B}(f_{B}, f_{B})

LEMMA4.3.
Let \mathscr{L}>0 , k>4;f_{B}\in \mathscr{C}_{\mathscr{L},k} satisfy (4. 4) and f_{B}+g\in \mathscr{C}_{\mathscr{L}’}

,
k’\cap \mathscr{D}_{\mathscr{L}’.k’}^{*} for \mathscr{L}’

and k’ such that 0<\mathscr{L}’<\mathscr{L} , 0<k’<k. Then

|||\mathscr{C}_{f_{B}}[g]|||_{\mathscr{L}^{k’}}’\leq\delta|’||g|||_{\mathscr{L}’}k’+c_{1}|||g|||_{\mathscr{L}’,k’}^{2}+

+c_{6}\pi(B)\cdot(|||g|||_{\mathscr{L}’,k’}^{3}+|||g|||_{\mathscr{L}’,k’}^{2}+|||g|||_{\mathscr{L}’,k’})+\eta(B) (4. 7)

where 0<\delta<1 , c_{6} is a positive constant, \eta is a bounded function of B\in

[0, 1] such that \eta(B) tends to 0 as B –0. Moreover if f_{B}+g_{1} , f_{B}+g_{2}\in

\mathscr{D}_{\mathscr{L}}^{*}\cdot.k’n_{\mathscr{C}_{\mathscr{L}’}}k’ then

|||\mathscr{C}_{f_{B}}[g_{1}]-\mathscr{C}_{f_{B}}[g_{2}]|||_{\mathscr{L}’,k’}\leq\{\delta+c_{1}(|||g_{1}|||_{\mathscr{L}’,k’}+|||g_{2}|||_{\mathscr{L}’},k’)+

+c_{7}\cdot{?}(B)\cdot(|||g_{1}|||_{\mathscr{L’,k’}+|||g_{2}|||_{\mathscr{L},k’})^{2}\}\cdot|||g_{1}-g_{2}|||_{\mathscr{L}’},k’ (4. 8)

where c_{7} is a constant.

Proof.
First of all note that if g and f_{B} are continuous then also \mathscr{C}_{f_{B}}[g] is continu-
ous.

In addition

\mathscr{C}_{f_{B}}[g]=\mathscr{A}_{E}(0;f_{B}, g)+\mathscr{A}_{E}(0 ; g, f_{B})+\mathscr{A}_{E}(0jg, g)+

+(\mathscr{A}_{E}(f_{B}+gjf_{B}, g)-\mathscr{A}_{E}(0 ; f_{B}, g))+

+(\mathscr{A}_{E}(f_{B}+g;g, f_{B})-\mathscr{A}_{E}(0;g, f_{B}))+

+(\mathscr{A}_{E}(f_{B}+g’. g, g)-\mathscr{A}_{B}(0;g, g))

+(\mathscr{A}_{E}(f_{B}+g;f_{B}, f_{B})-\mathscr{A}_{E}(0 ; f_{B}, f_{B}))+

+\mathscr{A}_{E}(0’.f_{B}, f_{B})-\mathscr{A}_{B}(f_{B}, f_{B}))

Now by (3. 6), (3. 7) and by Lemma 4.2 we obtain (4. 7). In the
same way (4. 8) follows.

Now by (4. 7) we can conclude that for all \epsilon\in ] 0 , \frac{1-\delta}{2c_{1}} [ we can
choose B_{0}>0 such that for all B\in ]0, B_{0} ] :

|||\mathscr{C}_{f_{B}}[g]|||_{\mathscr{L}\prime}.k’\leq\epsilon

provided that |||g|||_{\mathscr{L}k’}’,\leq\epsilon . Then by (4. 8) it follows that for sufficiently
small B the operator \mathscr{C}_{f_{B}} is contracting.

Thus there exists a unique solution g in \mathscr{C}_{\mathscr{L}’}, k’ of the problem (4. 6).

Moreover f_{B}+g\in \mathscr{D}_{\mathscr{L}’}^{*}

, k’ and the \mathscr{C}_{\mathscr{L}}\cdot , k’-norm of g can be made as small as
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we want by decreasing B>0 .
Eq. (4. 6) is equivalent to Eq. (2. 7) provided that f_{B} is the solution of

the problem (2. 6). Thus by Remark 4.1 the proof of Theorem 3.3 is com-
pleted.
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