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On oblique derivative problems for fully nonlinear
second-order elliptic PDE’s on domains with corners
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\S 1. Introduction

This note is a sequel to our study [4] of oblique derivative problems
for fully nonlinear elliptic PDE’s on nonsmooth domains.

Let f2 be a bounded open subset of R^{N} . We assume that \Omega may be
represented as
(1.1) \Omega=\bigcap_{i\in I}\Omega_{i} ,

where I is a finite index set and the \Omega_{i} ’s are domains of R^{N} with relatively
ly regular boundary. For x\in\partial\Omega we denote by I(x) the set of those in-
dices i which satisfy x\in\partial\Omega_{i} . Let \{\gamma_{i}\}_{i\in I} be a set of vector fields on R^{N}

and \{f_{i}\}_{i\in I} a set of real functions on \partial\Omega\cross R . We assume that each \gamma_{i} is
oblique to \Omega_{i} on \partial\Omega_{i} , i . e. , \langle\gamma_{i}(x), n_{i}(x)\rangle>0 for x\in\partial\Omega_{i} , where n_{i}(x)

denotes the outward unit normal vector of \Omega_{i} at x .
We consider the fully nonlinear elliptic PDE

(1.2) F(x , u , Du, D^{2}u ) =0 in \Omega ,

together with the oblique derivative conditions

(1.3) \frac{\partial u}{\partial\gamma_{i}}+f_{i}(x, u)=0 for x\in\partial\Omega and i\in I(x) .

Here u represents a real unknown function on \overline{\Omega}, F is a given real func-
tion on \overline{\Omega}\cross R\cross R^{N}\cross S^{N} . where S^{N} denotes the space of N\cross N real sym-
metric matrices with the usual ordering, and Du and D^{2}u denote the gra-
dient and Hessian matrix of u , respectively.

Our basic assumption on F is the degenerate ellipticity. That is, we
assume that
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(1.4) F(x, r, p, A)\leq F(x, r, p, B) if A\geq B

for all x\in\overline{\Omega}, r\in R , p\in R^{N} and A, B\in S^{N} . Because of this strong degen-
eracy, the problem (1.2)-(1.3) is generally not expected to have classical
solutions, and we will accordingly adapt the notion of viscosity solutions
(see, e.g. , Crandall-Lions [2], Lions [14, 15] and Ishii-Lions [10]). We
will recall the definition of viscosity solutions in the following section.

There is a great deal of literature concerned with the problem (1.2)-
(1. 3) (see, e . g. , Lions-Trudinger [16] and references therein). However,
there seem to be few general results on the existence and uniqueness of
solutions to (1.2)-(1.3) which apply under the degenerate ellipticity
hypothesis (1.4). Some results in this direction are obtained in [15] and
[10]. In a previous paper [4] we have shown that the ex\overline{l}stence and
uniqueness of viscosity solutions to (1.2)-(1.3) holds if \partial\Omega is Lipschitz, I
is a singleton, \gamma=\gamma_{i} is a C^{2} vector field and F satisfies appropriate
assumptions.

Our objective here is to generalize the results in [4] to the case when
\Omega has corners which are described as the intersection of a finite number of
regular domains and when more than one oblique derivative condit\overline{l}ons are
imposed at those corner points. The main results are stated in Section 2
and proved in Sections 3 and 4. The assumptions of the main results are
rather technically involved, and therefore we check the validity of one of
the assumptions in a typical case in Section 5 and give some of the conse-
quences of assumption (B. 8) in an appendix.

A special class of nonlinear oblique derivative problems defined on
domains with corners and having a connection with applications to queue-
ing theory was treated in a recent work [5]. One of our original motiva-
tions was to generalize the results in [5], However, the results given here
are not general enough to cover the results therein. Finally, we remark
that the results and methods in [6, 3] are also closely related to ours.

To conclude this section, we give a list of notation. M^{N} denotes the
set of all square real matrices of order N. Let U be a subset of R^{N} .

USC(U) and LSC(U) denote the spaces of upper semi-continuous real
functions and lower semi-continuous real functions on U, respectively.
For x\in U and a real function f on U, D^{+}f(x) and D^{-}f(x) denote the
superdifferential and the subdifferential of f at x , respectively, that is,

D^{+}f(x)=\{p\in R^{N} : f(x+h)\leq f(x)+\langle p, h\rangle+o(|h|)

for x+h\in U and as harrow 0},
and
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D^{-}f(x)=\{p\in R^{N} : f(x+h)\geq f(x)+\langle p, h\rangle+o(|h|)

for x+h\in U and as harrow 0}.

For x\in U the superdifferential D^{2,+}f(x) and the subdifferential D^{2,-}f(x)

of order 2 at x\in U are defined by

D^{2,+}f(x)=\{(p, A)\in R^{N}\cross S^{N} : f(x+h) \leq f(x)+\langle p, h\rangle+\frac{1}{2}\langle Ah, h\rangle

+o(|h|^{2}) for x+h\in U and as harrow 0}
and

D^{2,-}f(x)=\{(p, A)\in R^{N}\cross S^{N} : f(x+h) \geq f(x)+\langle p, h\rangle+\frac{1}{2}\langle Ah, h\rangle

+o(|h|^{2}) for x+h\in U and as harrow 0},

respectively. Let U be an open subset of R^{N} C^{1.+}(U) denotes the set of
all real functions f on U such that f\in C^{0.1}(U) and D^{+}f(x)\neq\emptyset for all x\in

U. C^{2,+}(U) denotes the set of all real functions f\in C^{0,1}(U) having the
property: for each compact K\subset U there is a constant C such that if x\in

K, then (p, CI)\in D^{2,+}f(x) for some p\in R^{N}- Note that C^{2,+}(U)\subset C^{1.+}(U)

and that f\in C^{2,+}(U) if and only if f is a real, (locally) sem\dot{l} -concave func-
tion on U. Let K be a nonempty closed convex subset of R^{N} For x\in

R^{N}\wedge. P_{K}(x) denotes the point \dot{1}n K closest to x . For x\in\partial K , N_{x}(K)

denotes the set of all outward normals to K at x , i . e. ,

N_{x}(K)= { n\in R^{N} : \langley-x, n\rangle\leq 0 for all y\in K}.

When k=1 or 2, U is an open subset of R^{N} . and when \{B(x):x\in U\} is a
family of nonempty convex subsets of R^{M} , the fam\overline{l}ly\{B(x):x\in U\} is
sa\overline{l}d to be of class C^{k,+} if the function

(x, \xi)arrow(dist(\xi, B(x)))^{2}

on UxR^{M} is of class C^{k,+}
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\S 2. The main results

We begin by recalling the definition of viscosity solutions of (1.2)-

(1.3). We will use the notation: \Gamma=\overline{\Omega}\cross R\cross R^{N}\cross S^{N} .

In association with (1.2)-(1.3) we define a mapping G:\Gammaarrow 2^{R} by
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(2. 1) G(x, r, p, A)=\{
\{F(x, r, p, A)\} if x\in\Omega ,
\{\langle\gamma_{i}(x), p\rangle+f_{i}(x, r):i\in I(x)\} if x\in\partial\Omega .

Moreover, setting \mathscr{B}(X, \epsilon)=\{Y\in\Gamma:||Y-X||\leq\epsilon\} for \epsilon>0 and X=(x, r ,
p, A)\in\Gamma . where ||Y-X|| denotes an appropriate norm of Y-X in the
space R^{N}\cross R\cross R^{N}\cross S^{N} . we define functions G^{*} and G_{*} on \overline{\Omega}\cross R\cross R^{N}\cross

S^{N} by

G^{*}(X)= \lim_{\epsilon\downarrow 0} sup \bigcup_{Y\in \mathscr{L}(X,\epsilon)}G(Y) ,

and
G_{*}(X)= \lim_{\epsilon\downarrow 0} sup \bigcup_{Y\in \mathscr{L}(X,\epsilon)}G(Y) .

Note that if G^{*} and G_{*} do not assume neither -\infty nor \infty as their val-
ues, then G^{*}\in USC(\Gamma) and G_{*}\in LSC(\Gamma) . We will be concerned exclu-
sively with the case when F\in C(\overline{\Omega}\cross R\cross R^{N}\cross S^{N}) , \gamma_{i}\in C(\partial\Omega, R^{N}) and f_{i}\in

C(\partial\Omega\cross R) for i\in I , and xarrow I(x) is upper semi-continuous on \partial\Omega as a
multi-valued function with values in I, where I is provided with the dis-
crete topology. If these conditions are satisfied, then

G^{*}(x, r, p, A)=G_{*}(x, r, p, A)=F(x, r, p, A) if x\in\Omega ,
G^{*}(x, r, p, A)=F(x, r, p, A) \vee\max\{\langle\gamma_{i}(x), p\rangle+f_{i}(x, r):i\in I(x)\}

if x\in\partial\Omega , and

G_{*}(x, r, p, A)=F(x, r, p, A) \Lambda\min\{\langle\gamma_{i}(x), p\rangle+f_{i}(x, r).\cdot i\in I(x)\}

if x\in\partial\Omega , for (x, r, p, A)\in\Gamma

Any function u\in USC(\overline{\Omega}) (resp., u\in LSC(\overline{\Omega}) ) is called a viscosity
subsolution (resp., supersolution) of (1. 2)-(1 . 3) if
(2.2) G_{*}(x, u(x), p, A)\leq 0 for x\in\overline{\Omega} and (p, A)\in D^{2,+}u(x)

(resp.,

(2.3) G^{*}(x, u(x), p, A)\geq 0 for x\in\overline{\Omega} and (p, A)\in D^{2,-}u(x)) .
Any function u\in C(\overline{\Omega}) is called a viscosity solution of (1.2)-(1.3) if it is
both a viscosity subsolution and supersolution of (1.2)-(1.3). Viscosity
sub-, super- and solutions of (1.2) are defined similarly for functions on
\Omega , where inequalities (2.2) and (2.3) are required to be satisfied only for
x\in\Omega . For a function u on \overline{\Omega} and x\in\overline{\Omega} we define \overline{D}^{2,+}u(x) (resp.,
\overline{D}^{2.-}u(x)) as the set of those points (r, p, A)\in R\cross R^{N}\cross S^{N} for which there
is a sequence \{(x_{n}, p_{n}, A_{n})\}_{n\in N}\subset\overline{\Omega}\cross R^{N}\cross S^{N} such that (p_{n}, A_{n})\in D^{2,+}u(x_{n})

(resp., (p_{n} , A_{n})\in D^{2,-}u(x_{n}) ) for n\in N and such that x_{n}arrow x , u(x_{n})arrow r , p_{n}arrow
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p and A_{n}arrow A as narrow\infty . Observe that the semi-continuity properties of
G_{*} and G^{*} imply that u\in USC(\overline{\Omega}) (resp., u\in LSC(\overline{\Omega}) ) is a viscosity
subsolution (resp., supersolution) of (1.2)-(1.3) if and only if

(2.4) G_{*}(x, r, p, A)\leq 0 for x\in\overline{\Omega} and (r, p, A)\in\overline{D}^{2,+}u(x)

(resp.,

(2.5) G^{*}(x, r, p, A)\geq 0 for x\in\overline{\Omega} and (r, p, A)\in\overline{D}^{2,-}u(x)) .

Since we mainly deal with viscosity solutions in this paper, we will
suppress “viscosity” and call viscosity sub-, super- and solutions just sub-,
super- and solutions, respectively.

To state our main results, we give a list of assumptions.

(F. 1) F\in C(\overline{\Omega}\cross R\cross R^{N}\cross S^{N}) .

(F. 2) For some \lambda>0 and each (x, p, A)\in\overline{\Omega}\cross R^{N}\cross S^{N} the function rarrow

F(x, r, p, A)-\mathcal{A}r is nondecreasing on R.

(F. 3) There is a function m_{1}\in C([0, \infty)) satisfying m_{1}(0)=0 such that
for all \alpha\geq 1 , x , y\in\overline{\Omega}, r\in R , p\in R^{N} and X, Y\in S^{N} .

F(y, r, p, - Y)-F(x, r, p, X)\leq m_{1}(|x-y|(|p|+1)+\alpha|x-y|^{2})

whenever -\alpha(\begin{array}{ll}I 00 I\end{array})\leq(\begin{array}{ll}X 00 Y\end{array}) \leq\alpha(\begin{array}{ll}I -I-I I\end{array}) ,

where I denotes the unit matrix of order N.

(F. 4) There is a neighborhood U of \partial\Omega in \overline{\Omega} and a function m_{2}\in

C([0, \infty)) satisfying m_{2}(0)=0 for which

|F(x, r, p, X)-F(x, r, q, Y)|\leq m_{2}(|p-q|+||X-Y||)

for x\in U , r\in R , p, q\in R^{N} and X, Y\in S^{N}

(B. 1) For each i\in I the boundary \partial\Omega_{i} is of class C^{1} .

(B. 2) f_{i}\in C(\partial\Omega\cross R) for i\in I .

(B. 3) For each x\in\partial\Omega and i\in I the function rarrow f_{i}(x, r) is nondecreas-
ing on R.

(B. 4) For each x\in\partial\Omega there is a neighborhood V of x in \partial\Omega such that
I(y)\subset I(x) for y\in V .

(B. 5) \gamma_{i}\in C^{0,1}(R^{N}\wedge. R^{N}) for i\in I .

(B. 6) For each x\in\partial\Omega the convex hull of the vectors \gamma_{i}(x) , with i\in I(x) ,
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does not contain the origin.

(B. 7) For each x\in\partial\Omega and r\in R there is a vector \nu\in R^{N} for which
\langle \gamma_{i}(x), \nu\rangle+f_{i}(x, r)=0 for i\in I(x) .

(B. 8) For each z\in\partial\Omega there is a family \{B(x):x\in W\} of compact con-
vex subsets of R^{N} with O\in B(x) for all x\in W , where W is an open neigh-
borhood of z, such that the family is of class C^{2,+} and such that for all x
\in W\cap\partial\Omega , p\in\partial B(x) , i\in I(x) and n\in N_{p}(B(x)) ,

(2.6) \langle\gamma_{i}(x), n\rangle\{

\geq 0 if \langle p, n_{i}(x)\rangle\geq-1 ,
\leq 0 if \langle p, n_{i}(x)\rangle\leq 1 .

We give here some remarks about the above assumptions. 1) It is
not trivial to show when condition (F. 3) is satisfied, for which we refer
to [10]. Indeed, a fairly wide class of second-0rder degenerate PDE’s (in-
cluding first-0rder PDE’s) sat\overline{l}sfifies (F. 3). 2) A simple sufficient condition
for (B. 8) is given in Section 5. 3) It should be remarked that (B. 6) and
(B. 8) imply that \langle\gamma_{i}(x), n_{i}(x)\rangle>0 for x\in\partial\Omega and i\in I(x) , i . e. , each \gamma_{i} is
oblique to \Omega_{i} on \partial\Omega\cap\partial\Omega_{i} . See Lemma A. 3 for this and Lemma 3. 3 for a
related observation. 4) Assumption (B. 4) is equivalent to saying that
the multi-valued function xarrow I(x) is upper semicontinuous (or closed) on
\partial\Omega , if we provide the set I with the discrete topology. 5) One may con-
ceive of (B. 7) as a sort of compatibility condition.

We will abuse notation, without further mention, by letting I denote
either the index set or the unit matrix.

THEOREM 2. 1. Assume (F. 1 ) -(F. 4) and (B. 1 ) -(B. 8) . Let u\in
USC(\overline{\Omega}) and v\in LSC(\overline{\Omega}) be, respectively, a subsolution and a supersolu-
tion of (1. 2)-(1.3) . Then u\leq v on \overline{\Omega}.

COROLLARY 2. 2. Assume (1.4), (F. 1 ) -(F. 4) and (B. 1 ) -(B. 8) .
Then there is a solution of (1.2)-(1 3).

REMARK 2. 3. If either u or v is assumed to be Lipschitz continuous
on \overline{\Omega}, then the assertion of Theorem 2. 1 still holds when (F. 3), (F. 4),
(B. 5) and (B. 8) are replaced, respectively, by the weaker assumptions
(F. 8)’. (F. 4)’ (B. 5)’ and (B. 8)

(F. 3)’ For each R>0 there is a function m_{R}\in C([0, \infty)) satisfying m_{R}(0)

=0 and a constant \theta>1 such that for \alpha\geq 1 , x , y\in\overline{\Omega}, r\in R , p\in B(0, R)

and X, Y\in S^{N} .
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F(y, r, p, - Y)-F(x, r, p, X)\leq m_{R}(|x-y|+\alpha|x-y|^{\theta})

whenever -\alpha(\begin{array}{ll}I 00 I\end{array})\leq(\begin{array}{ll}X 00 Y\end{array}) \leq\alpha(\begin{array}{ll}I -I-I I\end{array})

(F. 4)’ There is a neighborhood U of \partial\Omega in \overline{\Omega} and for each R>0 a func-
tion m_{R}\in C([0^{ },\infty)) satisfying m_{R}(0)=0 for which

|F(x, r, p, X)-F(x, r, q, Y)|\leq m_{R}(|p-q|+||X-Y||)

for x\in U , r\in R , p, q\in B(0, R) and X, Y\in S^{N} .

(B. 5)’ \dot{\gamma}_{i}\in C(R^{N}, R^{N}) for i\in I .

(B. 8)’ For each x\in\partial\Omega there is a compact convex subset B of R^{N} with
O\in B such that (2.6) holds for p\in\partial B , i\in I(x) and n\in N_{p}(B) .

REMARK 2. 4. If (1.2) is a first-0rder PDE, then we have the same
conclusions as in Theorem 2. 1 and Corollary 2. 2 even in the case when
(B. 8) is replaced by

(B. 8)” For each z\in\partial\Omega there is a neighborhood W of z and a family
\{B(x):x\in W\} of compact convex subsets of R^{N} with O\in B(x) for x\in Wr

such that the family is of class C^{1,+} and such that (2.6) holds for all x\in

W\cap\partial\Omega , p\in\partial B(x) , i\in I(x) and n\in N_{p}(B(x)) .

\S 3. Proof of the main results

In this section we prove the assertions stated in the previous section,
granting the existence of a test function which will be proved in Section 4.

We use the following observation due to Crandall [1] which conve-
niently summarizes uniqueness arguments developed recently in [11], [12],
[13], [9] and [10].

Lemma 3. 1. Let u\in USC(\overline{\Omega}) and v\in LSC(\overline{\Omega}) . Define w\in

USC(\overline{\Omega}\cross\overline{\Omega}) by w(x, y)=u(x)-v(y) . Let \alpha, \beta>0 , p, q\in R^{N} and x, y\in

\overline{\Omega}. Assume that

(p, q, \alpha(\begin{array}{ll}I -I-I I\end{array})+\beta(\begin{array}{ll}I 00 I\end{array}))\in D^{2,+}w(x, y) .

Then there are X, Y\in S^{N} for which

-C\alpha(\begin{array}{ll}I 00 I\end{array})\leq(\begin{array}{ll}X-\beta I 00 Y-\beta I\end{array}) \leq C\alpha(\begin{array}{ll}I -I-I I\end{array})

and
(u(x), p, X)\in\overline{D}^{2,+}u(x) and (v(y), - q, - Y)\in\overline{D}^{2,-}v(y) ,
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where C is a positive absolute constant.

We refer to Dupuis-Ishii [4] for the reduction of this lemma to [1,
Theorem 1].

LEMMA 3. 2. Under assumptions (B. 1), (B. 4), (B. 5), (B. 6) and
(B. 8), there is a function \varphi\in C^{2}(\overline{\Omega}) such that

\langle D\varphi(x), \gamma_{i}(x)\rangle>0 for x\in\partial\Omega and i\in I(x) .

In the above assertion we may replace (B. 5) by the weaker assump-
tion that \gamma_{i}\in C(R^{N}, R^{N}) , as the proof below shows.

PROOF. In view of the compactness of \overline{\Omega} we have only to show that
for each z\in\partial\Omega there is a C^{2} function \varphi on R^{N} such that

(3.1) \langle D\varphi(x), \gamma_{i}(x)\rangle>0 for x near z and i\in I(x) ,

and

(3.2) \langle D\varphi(x), \gamma_{i}(x)\rangle\geq 0 for x\in\partial\Omega and i\in I(x) .

To this end, we define a compact convex subset K of R^{N} by

K= \{\sum_{i\in I(z)}t_{i}\gamma_{i}(z):t_{i}\geq 0,\sum_{i\in I(z)}t_{i}=1\} .

Using Lemma A. 3, we see from (B. 8) and (B. 6) that

(3.3) \max_{i\in I(z)}\langle n_{i}(z), p\rangle>0 for all p\in K .

For \epsilon>0 we set

K_{\epsilon}= {p\in R^{N} : dist (p, K)\leq\epsilon} and L_{\epsilon}= \bigcup_{t\geq 0}tK_{\epsilon} .

Clearly, K_{\epsilon} is a compact convex subset of R^{N} and L_{\epsilon} is a closed convex
cone of R^{N} . By (3.3) we can choose \delta>0 so that

\max_{i\in I(z)}\langle n_{i}(z), p\rangle>0 for p\in K_{2\delta} .

Note that this inequality shows that 0\not\in K_{2\delta} and hence that L_{2\delta} has its
vertex at the origin. The inequality also guarantees that

(3.4) \max_{i\in I(z)}\langle n_{i}(z), p\rangle\geq\theta|p|

for all p\in L_{2\delta} and some constant \theta>0 .
We see by using (B. 4), (B. 5) and (B. 1) that there is a bounded

open neighborhood V of z such that
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(3.5) I(x)\subset I(z) for x\in V\cap\partial\Omega ,
(3.6) \gamma_{i}(x)\in K_{\delta} for i\in I(z) and x\in V .

and

(3.7) \Omega-i\cap\overline{V}\subset\{z+p:p\in R^{N}, \langle n_{i}(z), p\rangle\leq\frac{\theta}{2}|p|\} for i\in I(z) .

It follows from this inclusion that

\overline{\Omega}\cap\overline{V}\subset\{z+p:p\in R^{N}. \max_{i\in I(z)}\langle n_{i}(z), p\rangle\leq\frac{\theta}{2}|p|\} ,

which together with (3. 4) shows

(3.8) (z+L_{2\delta})\cap\overline{\Omega}\cap\overline{V}=\{z\} .

Thus, we can find an \epsilon>0 such that

(3.9) {x : dist(x, z+L_{2\delta})\leq 3\epsilon} \cap\overline{\Omega}\cap\partial V=\emptyset .

Fix q\in L_{2\delta}\cap\partial B(0, \epsilon) , and set M=z+q+L_{2\delta} . For \eta>0 we define M_{\eta}=

{x\in R^{N} : dist(x , M)\leq\eta }. Since M\subset z+L_{2\delta} and zGM, we see from (3. 8)

and (3.9) that

(3.10) M\cap\overline{\Omega}\cap\overline{V}=\emptyset and M_{3\epsilon}\cap\overline{\Omega}\cap\partial V=\emptyset .

Therefore, dist(M, \overline{\Omega}\cap\overline{V}) >0 and we can choose \eta>0 so that \eta<dist(M ,
\overline{\Omega}\cap\overline{V}) . Obviously, M_{\eta}\cap\overline{\Omega}\cap\overline{V}=\emptyset and also \eta<\epsilon since dist(z, M) \leq|q|\leq

\epsilon .
Now define g\in C(R^{N}) by g(x)=dist(x, M) . It is well-known that g\in

C^{1,1}(R^{N}\backslash M) and moreover

Dg(x)= \frac{x-y}{|x-y|} for x\in R^{N}\backslash M ,

where y=P_{M}(x) . (For instance, this can be seen to be true by observing
that the function x arrow g(x)^{2}=\min\{|x-\xi|^{2}-\cdot\xi\in M\} is convex and semi-

concave, and therefore differentiate in R^{N}- that \frac{x-y}{|x-y|}\in D^{+}g(x) for x\in

R^{N}\backslash M and that the map xarrow P_{M}(x) is Lipschitz continuous.) Next,
observe that

(3. 11) \langle Dg(x), p\rangle<0 for x\in R^{N}\backslash M and p\in K_{\delta} .

To check this, let x\in R^{N}\backslash M and note that \langle x-P_{M}(x), q-P_{M}(x)\rangle\leq 0 for q

\in M . Then, since P_{M}(x)+p\in M for p\in K_{2\delta} , we have \langle\chi-P_{M}(x), p\rangle\leq 0

for p\in K_{2\delta} . Therefore, \langle\chi-P_{M}(x), p\rangle<0 for p\in K_{\delta} , which proves (3. 11).
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Choose \zeta\in C^{1}(R^{N}) so that \zeta’(r)\leq 0 for r\in R , \zeta’(r)<0 for r\leq\epsilon , and
\zeta(r)=0 for r\geq 2\epsilon . Define g_{1}\in C(R^{N})\cap C^{1}(R^{N}\backslash M) by g_{1}(x)=\zeta(g(x)) .
Then it follows that

\langle Dg_{1}(x), p\rangle\geq 0 for x\in R^{N}\backslash M and p\in K_{\delta} ,
\langle Dg_{1}(z), p\rangle>0 for p\in K_{\delta} , and supp g_{1}\subset M_{2\epsilon} .

By standard approximation arguments, we find a C^{2} function g_{2}\in C^{2}(R^{N})

for which
\langle Dg_{2}(x), p\rangle\geq 0 for x\in V\backslash M_{\eta} and p\in K_{\delta} ,
\langle Dg_{2}(z), p\rangle>0 for p\in K_{\delta} , and supp g_{2}\subset M_{3\epsilon} .

Thus,

(3. 12) \langle Dg_{2}(x), \gamma_{i}(x)\rangle\geq 0 for x\in V\backslash M_{\eta} and i\in I(x) ,
(3. 13) \langle Dg_{2}(z), \gamma_{i}(z)\rangle>0 for i\in I(z) ,

and \overline{\Omega}\cap suppg_{2}\cap\partial V=\emptyset . Note that the last identity implies that \overline{\Omega}\cap supp

g_{2}\cap V is a compact subset of V.
Finally, choose h\in C^{2}(R^{N}) so that

h(x)=1 on \overline{\Omega}\cap suppg_{2}\cap V and supp h\subset V .

and define \varphi\in C^{2}(R^{N}) by \varphi(x)=g_{2}(x)h(x) . Then \overline{1}t is easy to conclude
from (3. 12) and (3. 13) that \varphi satisfies (3. 1) and (3. 2). \square

PROOF OF THEOREM 2. 1. Let u and v be as in Theorem 2. 1. Let \varphi

be a C^{2}funct\overline{l}on on \overline{\Omega} as \overline{1}n Lemma 3. 2. We may assume by adding a
constant and multiplying by a constant, if necessary, that

\varphi\geq 0 on \overline{\Omega} and \langle D\varphi(x), \gamma_{i}(x)\rangle\geq 1 for x\in\partial\Omega and i\in I(x) .

We may also assume that supp \varphi\subset U , where U is from (F. 4). For \alpha , \beta

>0 we define u_{a\rho}\in USC(\overline{\Omega}) and v_{a\beta}\in LSC(\overline{\Omega}) by

u_{a\rho}(x)=u(x)-\alpha\varphi(x)-\beta and v_{a\beta}(x)=v(x)+\alpha\varphi(x)+\beta .

If we use (F. 2) and (F. 4) and calculate formally, then we have
F(x, u_{a\beta}, Du_{a\beta}, D^{2}u_{a\beta})\leq F(x, u , Du, D^{2}u ) -\lambda\beta

+m_{2}(\alpha|D\varphi(x)|+\alpha||D^{2}\varphi(x)||)

and also (by (B. 3))

\frac{\partial u_{a\beta}}{\partial\gamma_{i}}+\alpha+f_{i}(x, u_{a\beta})\leq\frac{\partial u}{\partial\gamma_{i}}-\alpha\langle D\varphi(x), \gamma_{i}(x)\rangle+\alpha+f_{i}(x, u)\leq 0
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for x\in\partial\Omega and i\in I(x) . From this we infer that for any \beta>0 there is an
0<\alpha\leq\beta for which u_{a\beta} is a subsolution of (1.2)-(1.3) with the functions
(x, r)arrow\alpha+f_{i}(x, r) in place of f_{i} . It is indeed easy to ascertain that this is
true. For each \beta>0 we choose such an \alpha=\alpha(\beta) . Similar considerations
allow us to assume that v_{a\beta} with \alpha=\alpha(\beta) is a supersolution of (1.2)

-(1.3) with the function (x, r)arrow-\alpha+f_{i}(x, r) in place of f_{i} . Clearly, it is
enough to prove that

(3. 14) u_{a\rho}\leq v_{a\beta} on \overline{\Omega} for all \beta>0 and \alpha=\alpha(\beta)

In order to prove (3.14), we fix \beta>0 , suppose

\sigma\equiv m_{\frac{a}{\Omega}}x(u_{a\beta}-v_{a\rho})>0 , where \alpha=\alpha(\beta) ,

and will get a contradiction. For simplicity of notation we henceforth
write u and v for u_{a\beta} and v_{a\rho} with \alpha=\alpha(\beta) , respectively. Standard com-
parison results ([10], [12] and [1]) imply that \sigma=(u-v)(z) for some z\in

\partial\Omega . Fix such a z\in\partial\Omega . We want to utilize (B. 5) and (B. 8) in order to
find an open neighborhood V of z, a family \{w_{\epsilon}\}_{\epsilon>0} of continuous func-
tions on \overline{V}\cross\overline{V} . and a positive constant \theta having the property: for any
\epsilon>0 and x , y\in V there are p, q\in R^{N} such that for all i\in I(z) ,

(3. 15) w_{\epsilon}(x, x)=0 , w_{\epsilon}(x, y) \geq\theta\frac{|x-y|^{2}}{\epsilon} ,

(3. 16) \langle\gamma_{i}(x), p\rangle\geq-\frac{|x-y|^{2}}{\epsilon} if \langle x-y, n_{i}(z)\rangle\geq-\theta|x-y| ,

(3.17) \langle\gamma_{i}(y), q\rangle\geq-\frac{|x-y|^{2}}{\epsilon} if \langle x-y, n_{i}(z)\rangle\leq\theta|x-y| ,

(3.18) |p+q| \leq\frac{|x-y|^{2}}{\epsilon} , |q| \leq\frac{|x-y|}{\epsilon} ,

and

(3. 19) (p, q , \frac{1}{\epsilon}(\begin{array}{ll}I -I-I I\end{array})+ \frac{|x-y|^{2}}{\epsilon}(\begin{array}{ll}I 00 I\end{array})) \in D^{2,+}w_{\epsilon}(x, y) .

Indeed, using (B. 5), (B. 8) and Theorem 4. 1 below, we find a bounded
open neighborhood V of z, a real continuous function f on \overline{V}\cross\overline{V} and a
constant \theta>0 satisfying: for any x , y\in V there are p, q\in R^{N} such that
(3.15)-(3-19) with \epsilon=1 and with f in place of w_{\epsilon} hold for all i\in I(z) .

Setting w_{\epsilon}(x, y)= \frac{1}{\epsilon}f(x, y) for x , y\in V , we obtain a neighborhood V_{r} a

family \{w_{\epsilon}\} and a constant \theta with the desired properties. Fix such a V_{:}

a family \{w_{\epsilon}\} and a constant \theta henceforth.
Since we may choose V as small as we like, we may assume



146 P. Dupuis and H. Ishii

(3.20) I(x)\subset I(z) for x\in V\cap\partial\Omega by (B. 4), and V\cap\overline{\Omega}\subset U ,

where U is from (F. 4). Moreover, from (B. 1) we see that we may
assume
(3.21) \langle x-y, n_{i}(z)\rangle\leq\theta|x-y|

for i\in I(z) , x\in V\cap\overline{\Omega}_{i} and y\in V\cap\partial\Omega_{i} .
Now choose \nu\in R^{N} so that

\langle \gamma_{i}(z), \nu\rangle+f_{i}(z, u(z))=0 for i\in I(z) .
Fix \delta>0 . Define \tilde{u}\in USC(\overline{\Omega}) and \tilde{v}\in LSC(\overline{\Omega}) by

\tilde{u}(x)=u(x)-\langle\nu, x-z\rangle-\frac{\delta}{2}|x-z|^{2} .

and

\tilde{v}(x)=v(x)-\langle\nu, x-z\rangle .

Observe that z is a unique maximum point of \tilde{u}-\tilde{v} . Fix \epsilon>0 , and
define \phi\in USC([\overline{V}\cap\overline{\Omega}]\cross[\overline{V}\cap\overline{\Omega}]) by

\phi(x, y)=\tilde{u}(x)-\tilde{v}(y)-w_{\epsilon}(x, y) .

Let (\overline{x},\overline{y})=(\overline{x}(\epsilon),\overline{y}(\epsilon))\in\overline{V}\cap\overline{\Omega}\cross\overline{V}\cap\overline{\Omega} be a maximum point of \phi . We
have

(3.22) \sigma\leq\phi(z, z)\leq\phi(\overline{x},\overline{y})\leq\tilde{u}(\overline{x})-\tilde{v}(\overline{y})-\theta\frac{|\overline{x}-\overline{y}|^{2}}{\epsilon} .

This yields that, when \delta is fixed,

(3.23) \frac{|\overline{x}-\overline{y}|^{2}}{\epsilon}arrow 0,\overline{x},\overline{y}arrow z,\tilde{u}(\overline{x})arrow\tilde{u}(z) and \tilde{v}(\overline{y})arrow\tilde{v}(z)

as \epsilon\downarrow 0 . To see this, we let \{\epsilon_{j}\} be any sequence of positive numbers
such that \epsilon_{j}arrow 0 and \overline{x}=\overline{x}(\epsilon_{j})arrow\xi for some \xi\in\overline{\Omega} as jarrow\infty . For the time
be\overline{l}ng we restrict our attention to these \epsilon=\epsilon_{j} . From (3.22) we see that
|\overline{x}-\overline{y}|^{2}/\epsilon is bounded and hence \overline{x}-\overline{y}arrow 0 as jarrow\infty . Hence, \overline{y}arrow\xi as j
arrow\infty . From (3.22) we have

0 \leq\lim_{jarrow}\sup_{\infty}\theta\frac{|\overline{x}-\overline{y}|^{2}}{\epsilon}\leq\lim_{jarrow}\sup_{\infty}(\tilde{u}(\overline{x})-\tilde{v}(\overline{y}))-\sigma

\leq\tilde{u}(\xi)-\tilde{v}(\xi)-\sigma\leq 0 ,
and

0 \leq\lim_{jarrow\infty}\inf(\tilde{u}(\overline{x})-\tilde{v}(\overline{y}))-\sigma\leq\overline{u}(\xi)-\tilde{v}(\xi)-\sigma\leq 0 .
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We therefore have

\lim_{jarrow\infty}\frac{|\overline{x}-\overline{y}|^{2}}{\epsilon}=0 ,

and

\sigma=\tilde{u}(\xi)-\tilde{v}(\xi)=\lim_{jarrow\infty}(\tilde{u}(\overline{x})-\tilde{v}(\overline{y})) .

Since z is the strict maximum point of \tilde{u}-\tilde{v} , we see that \xi=z . Also,
we have

\tilde{u}(z)\geq\lim_{jarrow}\sup_{\infty}\overline{u}(\overline{x})\geq\lim_{jarrow\infty}\inf\tilde{u}(\overline{x})

= \lim_{jarrow\infty}\inf\tilde{v}(\overline{y})+\lim_{jarrow\infty}(\tilde{u}(\overline{x})-\tilde{v}(\overline{y}))\geq\tilde{v}(z)+\sigma=\tilde{u}(z) ,

and hence

\lim_{jarrow\infty}\tilde{u}(\overline{x})=\tilde{u}(z) .

Similarly, we have

\lim_{jarrow\infty}\tilde{v}(\overline{y})=\tilde{v}(z) .

These observations and the standard argument by contradiction now show
(3.23).

In what follows we assume \epsilon so small that \overline{x},\overline{y}\in Vr From (3.19)

we have

(p, q , \frac{1}{\epsilon}(\begin{array}{ll}I -I-I I\end{array})+ \frac{|\overline{x}-\overline{y}|^{2}}{\epsilon}(\begin{array}{ll}I 00 I\end{array})) \in D^{2,+}w_{\epsilon}(\overline{x},\overline{y})

for some p, q\in R^{N} . Fix such p, q\in R^{N} below. Since (\overline{x},\overline{y}) is a maxi-
mum point of \phi , it is easily seen that if we set w(x, y)=\tilde{u}(x)-\tilde{v}(y) for x ,
y\in\overline{\Omega}, then D^{2,+}w_{\epsilon}(\overline{x},\overline{y})\subset D^{2,+}w(\overline{x},\overline{y}) . For simpl\dot{l}city we write s for |\overline{x}

-\overline{y}|^{2}/\epsilon hereafter. By Lemma 3. 1, there are matrices X, Y\in S^{N} such
that

- \frac{C}{\epsilon}(\begin{array}{ll}I 00 I\end{array}) \leq(\begin{array}{ll}X 00 Y\end{array}) \leq\frac{C}{\epsilon}(\begin{array}{ll}I -I-I I\end{array})+Cs (\begin{array}{ll}I 00 I\end{array}) ,

(\tilde{u}(\overline{x}), p, X)\in\overline{D}^{2,+}\tilde{u}(\overline{x}) and ( \tilde{v}(\overline{y}), - q, - Y)\in\overline{D}^{2,-}\tilde{v}(\overline{y})

for some constant C\geq 1 independent of \epsilon>0 . It is easily seen that
(u(\overline{x}), p+\nu+\delta(\overline{x}-z) , X+\delta I)\in\overline{D}^{2.+}u(\overline{x}) ,

and
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(v(\overline{y}), - q+\nu, - Y)\in\overline{D}^{2,-}v(\overline{y}) .

Observe that

\langle \gamma_{i}(\overline{x}), p+\nu+\delta(\overline{x}-z)\rangle+\alpha+f_{i}(\overline{x}, u(\overline{x}))\geq\langle\gamma_{i}(\overline{x}), p\rangle+\frac{\alpha}{2} ,

and

\langle ^{\gamma_{i}(_{\overline{\mathcal{Y}}})}, - q+\nu\rangle-\alpha+f_{i}(\overline{y}, v(\overline{y}))\leq-\langle\gamma_{i}(\overline{y}), q\rangle-\frac{\alpha}{2}

for i\in I(z) and \epsilon>0 small enough. Here we have used (3.23). From
(3.16), (3.17) and (3.23) we have

\langle\gamma_{i}(\overline{x}), p\rangle+\frac{\alpha}{2}>0 if \overline{x}\in\partial\Omega_{i} ,

and

- \langle\gamma_{i}(\overline{y}), q\rangle-\frac{\alpha}{2}<0 if \overline{y}\in\partial\Omega_{i} ,

for i\in I(z) , provided \epsilon is sufficiently small. Since V\cap\partial\Omega\subset U_{i\in I(z)}\partial\Omega_{i} by
(3.20), we thus conclude that

\langle \gamma_{i}(\overline{x}), p+\nu+\delta(\overline{x}-z)\rangle+\alpha+f_{i}(\overline{x}, u(\overline{x}))>0

if \overline{x}\in\partial\Omega and i\in I(\overline{x}) , and
\langle\gamma_{i}(\overline{y}), - q+\nu\rangle-\alpha+f_{i}(\overline{y}, v(\overline{y}))<0

if \overline{y}\in\partial\Omega and i\in I(\overline{y}) , provided \epsilon is sufficiently small. Thus, by the
defifin\overline{l}tion of viscosity solutions, if \epsilon is small enough, say, 0<\epsilon<\epsilon_{\delta} , then
we get

F(\overline{x}, u(\overline{x}) , p+\nu+\delta(\overline{x}-z) , X+\delta I)\leq 0\leq F(\overline{y}, v(\overline{y}), -q+\nu, - Y).

Using (F. 2), (3. 18), (F. 3) and (F. 4), we calculate that if 0<\epsilon<\epsilon_{\delta} and
u(\overline{x})\geq v(\overline{y}) , then

0\geq F(\overline{x}, u(\overline{x}) , p+\nu\dagger\delta(\overline{x}-z) , X+\delta I)-F(\overline{y}, v(\overline{y}), -q+\nu, - Y)
\geq F(\overline{x}, u(\overline{x}), - q+\nu , X-CsI) -F(\overline{y}, u(\overline{x}), -q+\iota_{J}, - Y+CsI)
+\mathcal{A}(u(\overline{x})-v(\overline{y}))-m_{2}(s+\delta|\overline{x}-z|+\delta+Cs)-m_{2}(Cs)

\geq \mathcal{A}(u(\overline{x})-v(\overline{y}))-m_{1}(|\overline{x}-\overline{y}|+2Cs)

-m_{2}(s+\delta|\overline{x}-z|+\delta+Cs)-m_{2}(Cs) .

Finally, sending \epsilon\downarrow 0 and then \delta\downarrow 0 , we obtain a contradiction. \square

LEMMA 3. 3. Assume (1.4), (B. 4), (B. 6) and (B. 8). Let u\in
C^{2}(\overline{\Omega}) be a classical subsolution (resp., supersolution) of (1. 2)-(1.3) .
Then u is a v\dot{\iota s}cosity subsolution (resp., supersolution) of (1.2)-(1 8).
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PROOF. Let u be a classical subsolution of (1.2)-(1.3). Let z\in\overline{\Omega}

and (p, X)\in D^{2,+}u(z) . From the definition of D^{2,+}u(z) we see that if z\in

\Omega , then Du{z)=p and D^{2}u(z)\leq X , and hence by using (1.4) that

F(z, u(z) , p, X)\leq F(z, u(z) , u\{z) , D^{2}u(z))\leq 0\overline{1}fz\in\Omega .

We now consider the case when z\in\partial\Omega . Our argument below uses the
following two properties (see Lemmas A. 4 and A. 5):

(3.24) \max_{j\in I(z)}\langle\gamma_{j}(z),\sum_{i\in I(z)}t_{i}n_{i}(z)\rangle\geq 0 for all t_{i}\geq 0 , i\in I(z) .

(3.25) The convex hull of the n_{i}(z) , with i\in I(z) , does not contain the
origin.

Let K denote the convex cone generated by the n_{i}(z) , with i\in I(z) . Set
q=Du(z)-p. We claim that q\in K . To this end, define H=\{h\in R^{N}\cdot.
\langle h, k\rangle\leq 0 for all k\in K}. It is easily seen from (3.25) that H^{o}\neq\emptyset , and
hence that \overline{H^{o}}=H . Fix h\in H^{o}-. and observe that \langle h, n_{i}(z)\rangle<0 for all \dot{\iota}\in

I(z) . Since n_{i}(z) is the outward normal vector of \Omega_{i} at z, we see that if
t>0 is small enough, then z+th\in\overline{\Omega}_{i} for all i\in I(z) . Hence, in view of
(B. 4) we see that z+th\in\overline{\Omega} for t>0 small enough. Therefore, by the
definition of D^{2,+}u(z) , we have \langle q, th\rangle\leq o(t) as t\downarrow 0 . From this we
deduce that \langle q, h\rangle\leq 0 for h\in H , and conclude by applying Lemma A. 6
that q\in K . Thus we see that Du(z) -p=q=\Sigma_{i\in I(z)}t_{i}n_{i}(z) for some t_{i}\geq 0 ,
i\in I(z) . By virtue of (3.24) we can find a j\in I(z) so that \langle \gamma_{j}(z) , Du{z)
-p\rangle\geq 0 . Hence, we have

\langle \gamma_{j}(z), p\rangle+f_{j}(z, u(z))\leq\langle\gamma_{j}(z), Du(z)\rangle+f_{j}(z, u(z))\leq 0

for some j\in I(z) . Thus we conclude that u is a viscosity subsolution of
(1.2)-(1.3).

The proof of the remaining part is similar. \square

PROOF OF COROLLARY 2. 2. The existence of a solution of (1.2)-
(1.3) follows from Perron’s method together with Lemma 3. 3, provided
there is a supersolution and a subsolution of (1.2)-(1.3) (see [7, 8]).
Thus it remains to show the existence of a supersolution and a subsolution
of (1.2)-(1.3).

By Lemma 3. 2 there is a C^{2} function \varphi on \overline{\Omega} such that \varphi(x)=0 for x
\in\Omega\neg U , \varphi\geq 0 on \overline{\Omega} and \langle\gamma_{i}(x), D\varphi(x)\rangle\geq 1 for x\in\partial\Omega and i\in I(x) , where
U is from (F. 4). For any nonnegative constants A, B, we set

\overline{u}(x)=A\varphi(x)+B for x\in\overline{\Omega} .
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Then

\langle\gamma_{i}(x), D\overline{u}(x)\rangle+f_{i}(x,\overline{u}(x))\geq A+f_{i}(x, 0) for x\in\partial\Omega and i\in I(x) ,

and

F(x,\overline{u}(x) , D\overline{u}(x) , D^{2}\overline{u}(x))\geq F(x, 0,0,0)+\lambda B-m_{2}(AC)

where C= \max\{|D\varphi(x)|+||D^{2}\varphi(x)||\cdot.x\in\overline{\Omega}\} and \lambda and m_{2} are from (F. 2)

and (F. 4), respectively. Thus, fixing

A= \max_{x\in\partial\Omega,i\in I},|f_{i}(x, 0)| and B=( \max_{x\in\overline{\Omega}}|F(x, 0,0,0)|+m_{2}(AC))/\mathcal{A} ,

we see that \overline{u} is a classical supersolution of (1.2)-(1.3), and hence by
Lemma 3. 3 that \overline{u} is a viscosity supersolution of (1.2)-(1.3). We also
see that - \overline{u} is a subsolution of (1.2)-(1.3). Thus the proof is complete.

\square

OUTLINE OF proof OF REMARK 2. 3. As Proposition 4. 5 in the next
section and an argument in the above proof guarantee, there is a family
\{w_{\epsilon}\}_{\epsilon>0}\subset C^{1,1}(R^{N}\cross R^{N}) such that for all \epsilon>0 , x , y\in R^{N} . (p, q)\in D^{+}w_{\epsilon}(x, y)

and i\in I(z) ,

(3.26) w_{\epsilon}(x, x)=0 , w_{\epsilon}(x, y) \geq\theta\frac{|x-y|^{2}}{\epsilon} ,

(3.27) \langle\gamma_{i}(z), p\rangle\geq 0 if \langle x-y, n_{i}(z)\rangle\geq-\theta|x-y| .
(3.28) \langle\gamma_{i}(z), q\rangle\geq 0 if \langle x-y, n_{i}(z)\rangle\leq\theta|x-y| ,

(3.29) |p| \leq\frac{|x-y|}{\epsilon} , p+q=0,

and such that for any x , y\in R^{N} and for some p, q\in R^{N} .

(3.30) (p, q , \frac{1}{\epsilon}(\begin{array}{ll}I -I-I I\end{array})+ \frac{|x-y|^{2}}{\epsilon}(\begin{array}{ll}I 00 I\end{array})) \in D^{2,+}w_{\epsilon}(x, y) .

Observe that if (\overline{x},\overline{y}) is a maximum point of u(x)-v(y)-w_{\epsilon}(x, y)

over \overline{\Omega}\cross\overline{\Omega} and u is Lipschitz cont\dot{l}nuous on \overline{\Omega}, then
u(\overline{x})-v(\overline{y})-w_{\epsilon}(\overline{x}, \overline{y})\geq u(\overline{y})-v(\overline{y})-w_{\epsilon}(\overline{y},\overline{y}) ,

and hence

\theta\frac{|\overline{x}-\overline{y}|^{2}}{\epsilon}\leq w_{\epsilon}(\overline{x},\overline{y})\leq u(\overline{x})-u(\overline{y})\leq C|\overline{x}-\overline{y}|

for some constant C>0 . From this we get
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(3.31) | \overline{x}-\overline{y}|\leq\frac{C}{\theta}\epsilon .

Similarly, if (\overline{x},\overline{y}) is a maximum point of u(x)-v(y)-w_{\epsilon}(x, y) over \overline{\Omega}

\cross\overline{\Omega} and v is Lipschitz continuous on \overline{\Omega} , then we have (3.31) for some
constant C.

If we follow the proof of Theorem 2. 1 with the above choice of \{w_{\epsilon}\}

and with the help of the above estimate (3.31), then it is easy to conclude
that the assertion of Remark 2. 3 is true. \square

OUTLINE OF proof OF REMARK 2. 4. It is well-known and easy to
which that if (1.2) is first-0rder PDE, then u\in USC(\overline{\Omega}) (resp., u\in
LSC(\overline{\Omega})) is a subsolution (resp., supersolution) of (1.2)-(1.3) if and
only \overline{1}f

G_{*}(x, u(x) , p)\leq 0 for x\in\overline{\Omega} and p\in D^{+}u(x) ,

(resp.,

G^{*}(x, u(x) , p)\geq 0 for x\in\overline{\Omega} and p\in D^{-}u(x)) ,

where G, G_{*} and G^{*} are functions on \overline{\Omega}\cross R\cross R^{N} defined as in Section 2.
Taking into account the above observation, we follow the proof of

Theorem 2. 1 with the same choice of f as in the proof (see Remark 4. 4
below) and without using Lemma 3. 1, and conclude our assertion. \square

\S 4. Construction of the test function

In this section we will construct a function with appropriate prop-
erties, the existence of which is essential in establishing the main results
of this note.

Let W be a bounded open subset of R^{N}- Let m\in N . and for i\in

\{1, \ldots r. m\} let n_{i}\in R^{N} and

(4.1) .
\gamma_{i}\in C^{0,1}(W, R^{N}) .

Let \{B(x):x\in W\} be a family of compact convex subsets of R^{N} with 0\in

B(x) . Assume that for x\in W , 1\leq i\leq m , p\in\partial B(x) and n\in N_{p}(B(x)) ,

(4.2) \langle\gamma_{i}(x), n\rangle\geq 0 if \langle n_{i}, p\rangle\geq-1 ,

and

(4.3) \langle\gamma_{i}(x), n\rangle\leq 0 if \langle n_{i}, p\rangle\leq 1 .

and that

(4.4) the family \{B(x):x\in W\} is of class C^{2,+} .



152 P. Dupuis and H. Ishii

THEOREM 4. 1. Assume (4.1)-(4.4). Let V be an open subset of
W with \overline{V}\subset W. Then there is a function f\in C^{2,+}(V\cross V) and a positive
number \theta satisfying : (a) For any x, y\in V,

f(x, x)=0 and f(x, y)\geq\theta|x-y|^{2} .

(b) For all x, y\in V, (p, q)\in D^{+}f(x, y)\subset R^{N}\cross R^{N} and 1\leq i\leq m,

(4.5) |p+q|\leq|x-y|^{2} . |q|\leq|x-y| ,
(4.6) \langle\gamma_{i}(x), p\rangle\geq-|x-y|^{2} if \langle x-y, n_{i}\rangle\geq-\theta|x-y| ,

and

(4.7) \langle \gamma_{i}(y), q\rangle\geq-|x-y|^{2}\overline{1}f\langle x-y, n_{i}\rangle\leq\theta|x-y| .
(c) For any x, y\in V there is a(p, q)\in D^{+}f(x, y) such that

(4.8) (p, q , (\begin{array}{ll}I -I-I I\end{array})+|x-y|^{2}(\begin{array}{ll}I 00 I\end{array}))\in D^{2,+}f(x, y) .

The proof of this theorem will follow from three lemmas, which we
now present.

LEMMA 4. 2. Let U be an open subset of R^{m} . V an open interval of
R. Let H\in C^{2,+}(U\cross V) and f\in C^{0,1}(U) . Assume that f(x)\in V and
H(x, f(x))=0 for x\in U and that for each compact K\subset U there is a \delta>0

such that if x\in K and (p, q)\in D^{+}H(x, f(x))\subset R^{m}\cross R, then q\leq-\delta. Then
f\in C^{2,+}(U) .

PROOF. Now we assume that H\in C^{2,+}(U\cross V) . Fix any compact K
\subset U . We can choose constants \delta>0 and C with the property: for any x
\in K there is a (p, q)\in R^{m}\cross R such that

(p, q , C(\begin{array}{ll}I 00 I\end{array}))\in D^{2,+}H(x, f(x)) and q\leq-\delta .

We may assume that C is a L_{\dot{1}}pschitz constant for the function f
restricted to a small neighborhood of K. Fix x\in K , and choose (p, q) as
above. Then we have

0 \leq\langle p, h\rangle+q(f(x+h)-f(x))+\frac{C}{2}(|h|^{2}+|f(x+h)-f(x)|^{2})

+o(|h|^{2}) as harrow 0 ,

and hence

f(x+h)-f(x) \leq\langle|q|^{-1}p, h\rangle+\frac{C}{2\delta}(C+1)|h|^{2}+o(|h|^{2}) as harrow 0 .
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Thus we see that f\in C^{2,+}(U) . \square

LEMMA 4. 3. Let U and V be open subsets of R^{m} and R^{n} . respec-
tively. Let f\in C^{1,1}(U, V) and g\in C^{2,+}(V) . Then the composition g\circ f is
of class C^{2,+}(U) . Moreover, if x\in U, (q, Y)\in D^{2,+}g(f(x)) and (p, X)\in

D^{2,+}\langle q, f\rangle(x) , where \langle q, f\rangle denotes the function yarrow\langle q, f(y)\rangle , then

(4.9) (TDf(x)q, TDf(x) YDf(x)+X)\in D^{2,+}(g\circ f)(x) .

A lso, if x\in U and q\in D^{+}g(f(x)) , then TDf(x)q\in D^{+}(g\circ f)(x) .

Under the assumptions of the above lemma, if (p, X)\in D^{2,+}\langle q, f\rangle(x) ,

then p=D\langle q, f\rangle(x)=^{\tau}Df(x)q , and therefore (4. 9) is equivalent to the
inclusion

D^{2,+}\langle q, f\rangle(x)+(0^{ },TDf(x) YDf(x))\subset D^{2,+}(g\circ f)(x) .

PROOF. The last assert\dot{l}on of the lemma is standard and easy to
prove. Hence we omit proving it. Fix x\in U and h\in R^{m} so that x+h\in

U . Let (q, Y)\in D^{2,+}g(f(x)) and (p, X)\in D^{2,+}\langle q, f\rangle(x) . Setting k=
f(x+h)-f(x) and using the Lipschitz property of f, we have

g(f(x+h))-g(f(x)) \leq g(f(x))+\langle q, k\rangle+\frac{1}{2}\langle Yk, k\rangle+o(|k|^{2})

\leq g(f(x))+\langle p, h\rangle+\frac{1}{2}(\langle Xh, h\rangle+\langle^{T}Df(x)YDf(x)h, h\rangle)+o(|h|^{2})

as harrow 0 . Since p=^{\tau}Df(x)q , this completes the proof. \square

LEMMA 4. 4. Assume (4.2)-(4.4). Then there is a function g\in

C^{2,+}(W\cross R^{N}) and for each compact K\subset W positive constants \theta and C

having the properties: (a) For each x\in W the function \xiarrow g(x, \xi) is of
class C^{1}(R^{N}) . (b) For all (x, \xi)\in K\cross R^{N} . (p, q)\in D^{+}g(x, \xi)\subset R^{N}\cross R^{N}

and 1\leq i\leq m,

(4.10) g(x, 0)=0, g(x, \xi)\geq\theta|\xi|^{2}\wedge

(4.11) |p|\leq C|\xi|^{2},-|q|\leq C|\xi| ,

(4.12) \langle\gamma_{i}(x), q\rangle\geq 0 if \langle n_{i}, \xi\rangle\geq-\theta|\xi| ,

and

(4. 13) \langle\gamma_{i}(x), q\rangle\leq 0 if \langle n_{i}, \xi\rangle\leq\theta|\xi| .

(c) For any (x, \xi)\in K\cross R^{N} there is a(p, q)\in D^{+}g(x, \xi) such that

(4.14) (p, q, C(\begin{array}{ll}|\xi|^{2}I 00 I\end{array}))\in D^{2,+}g(x, \xi) .
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PROOF. Define d : W\cross R^{N}arrow R by d(x, \xi)=(dist(\xi, B(x)))^{2}- By
assumption (4.4) d\in C^{2,+}(W\cross R^{N}) . As we have already seen in the proof
of Lemma 3. 2, for each x\in W the function \xiarrow d(x, \xi) is of class C^{1,1}(R^{N})

and D_{\xi}d(x, \xi)=2(\xi-P_{B(\chi)}(\xi)) .
In what follows we write U for R^{N}\backslash \{0\} . Fix any 0<\delta<1 . Note that

d(x, 0)=0, d(x, r\xi)arrow\infty , as rarrow\infty , if \xi\neq 0 and

\frac{d}{dr}d(x, r\xi)|_{r=1}=\langle\xi, D_{\xi}d(x, \xi)\rangle=2\langle\xi, \xi-P_{B(x)}(\xi)\rangle

=2\langle P_{B(x)}(\xi), \xi-P_{B(x)}(\xi)\rangle+2d(x, \xi)\geq 2d(x, \xi) .
It follows from these that if x\in W and \xi\in U , then there is a unique posi-
tive number r for which d(x, r\xi)=\delta^{2}- For any x\in W and \xi\in U let
g(x, \xi) denote the unique solution r>0 of the equation d(x, r^{-1/2}\xi)=\delta^{2} .
The uniqueness implies that g is continuous on W\cross U .

We want to check that g\in C^{2,+}(W\cross U) . To this end, we define H :
W\cross U\cross(0, \infty)arrow R by H(x, \xi, r)=d(x, r^{-1/2}\xi)-\delta^{2}- Since d is of class
C^{2,+}(W\cross R^{N}) and the map (x, \xi, r)arrow(x,r^{-1/2}\xi) from W\cross U\cross(0, \infty) to W
\cross R^{N} is of class C^{\infty} according to Lemma 4. 3 the function H is of class
C^{2,+} on W\cross U\cross(0, \infty) . Observe that

\frac{\partial H}{\partial r}(x, \xi, r)=-\frac{s^{3}}{2}\langle\xi, D_{\xi}d(x, s\xi)\rangle\leq-s^{2}d(x, s\xi)

for x\in W_{-}. \xi\in U and r>0 , where s=r^{-1/2} . From this, taking into
account the monotonicity of the function sarrow s^{2}d(x, s\xi) , we see that

(4. 15) \frac{\partial H}{\partial r}(x, \xi, r)\leq-\frac{\delta^{2}}{g(x,\xi)}

for (x, \xi)\in W\cross U and 0<r\leq g(x, \xi) . Therefore, if we know that g\in
C^{0,1}(W\cross U) , then we can conclude by using Lemma 4. 2 that g\in C^{2,+}(W\cross

U) . Hence it remains to show that g\in C^{0,1}(W\cross U) . To do this, fix \overline{z}\in

W\cross U . Choose an \epsilon>0 so that

\frac{\delta^{2}}{g(z)}\geq\epsilon for all z\in B(\overline{z}, \epsilon) ,

and then a Lipschitz constant M for the function H restricted to B(\overline{z}, \epsilon)\cross

L, where L denotes the compact subset g(B(\overline{z}, \epsilon)) of (0, \infty) . Fix any y,
z\in B(\overline{z}, \epsilon) . Without loss of generality, we may assume that g(y)\geq g(z) .
Using (4. 15), we compute that
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0=H(y, g(y))-H(z, g(z))\leq M|y-z|+H(y, g(y))-H(y, g(z))

\leq M|y-z|+\frac{\partial H}{\partial r}(y,\overline{r})(g(y)-g(z))\leq M|y-z|-\epsilon|g(y)-g(z)|

for some \tilde{r}\in[g(z), g(y)] . It is immediate from this that g is Lipschitz
continuous on B(\overline{z}, \epsilon) and moreover that g\in C^{0,1}(W\cross U) .

Now we extend the domain of definition of g to W\cross R^{N} The trivial
identity d(x, (t^{2}r)^{-1/2}t\xi)=d(x, r^{-1/2}\xi) for t , r>0 , x\in W and \xi\in U shows
that g(x, t\xi)=t^{2}g(x, \xi) for t>0 , x\in W and \xi\in U . This observation
shows that sett\dot{l}ngg(x, 0)=0 for x\in W gives a continuous extension of g

to W\cross R^{N} which we denote again by g . It \overline{1}S now clear that

(4.16) g(x, t\xi)=t^{2}g(x, \xi) for t\geq 0 , x\in W and \xi\in R^{N}\wedge

Now we show that g satisfies (4.11) and (4.14) for some constant C.
To this end, fix any compact K\subset Wr We fix an open set V\subset W with \overline{V}

\subset W and a compact neighborhood L\subset U of B(0,1) , and choose a con-
stant C so that C is a Lipschitz constant for the function g restricted to
V\cross L , so that for any (x, \xi)\in V\cross L there is a (p, q)\in D^{+}g(x, \xi) for which

(4. 17) (p, q, C(\begin{array}{ll}I 00 I\end{array}))\in D^{2,+}g(x, \xi) ,

and so that g(x, \xi)\leq\frac{C}{2}|\xi|^{2} for all (x, \xi)\in V\cross B(0,1) . Fix (x, \xi)\in V\cross R^{N}-

We first consider the case when \xi\neq 0 . Set \eta=|\xi|^{-1}\xi , and fix any (p, q)\in

D^{+}g(x, \xi) . By the definition of D^{+}g(x, \xi) , for h , k\in R^{N} we have

g(x+h, \xi+|\xi|k)\leq g(x, \xi)+\langle p, h\rangle+\langle q, |\xi|k\rangle+o(|h|+|k|) ,

as |h|+|k|arrow 0 . Multiplying this by |\xi|^{-2} and using (4.16), we find that

g(x+h, \eta+k)\leq g(x, \eta)+\langle|\xi|^{-2}p, h\rangle+\langle|\xi|^{-1}q, k\rangle+o(|h|+|k|) ,

as |h|+|k|arrow 0 . This shows that (|\xi|^{-2}p, |\xi|^{-1}q)\in D^{+}g(x, \eta) , which together
with the Lipschitz continuity of g on V\cross L yields the estimates (4.11).

Inclusion (4.17) combined with the above observation ensures that for
some (p, q)\in D^{+}g(x, \xi) ,

g(x+h, \eta+k)\leq g(x, \eta)+\langle|\xi|^{-2}p, h\rangle+\langle|\xi|^{-1}q, k\rangle

+ \frac{C}{2}(|h|^{2}+|k|^{2})+o(|h|^{2}+|k|^{2}) as |h|+|k|arrow 0 .

Multiplying this by |\xi|^{2} yields that
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g(\chi ^{+} ^{h}

+o(|h|^{2}+|k|^{2}) as |h|+|k|arrow 0 .

which proves (4.14). We next consider the case when \xi=0 . Then we
have

0 \leq g(x+h, k)\leq\frac{C}{2}|k|^{2} .

for h, k\in R^{N} with |h|+|k| small enough. From this it is easily seen that
(4. 11) and (4. 14) hold. Thus (4. 11) and (4. 14) \dot{1}S proved. Since K in
(4.11) and (4.14) can be an arbitrary compact subset of W, we see that
g\in C^{0,1}(W\cross R^{N}) and hence that g\in C^{2,+}(W\cross R^{N}) .

In order to see conditions (4.12) and (4.13), we apply the implicit
function theorem to g and observe that \xiarrow g(x, \xi) is of class C^{1} for all x
\in W and that

D_{\xi}g(x, \xi)=\frac{2g(x,\xi)}{\langle\xi,D_{\xi}d(x,s\xi)\rangle}D_{\xi}d(x, s\xi) ,

where s=g(x, \xi)^{-1/2}-. for (x, \xi)\in W\cross U . Fix any compact K\subset W . In
view of the homogeneity and positivity of g on W\cross U , we can choose \alpha

>0 so that

(4. 18) g(x, \xi)\geq\alpha^{2}|\xi|^{2} for (x, \xi)\in W\cross R^{N}\wedge

Fix \beta>0 so that \beta\leq\alpha(1-\delta) . Let (x, \xi)\in K\cross U and i\in\{1, \ldots m\} , and
assume that \langle n_{i}, \xi\rangle\geq-\beta|\xi| . Then, setting s=g(x, \xi)^{-1/2} and using
(4.18), we have

\langle n_{i}, s\xi\rangle\geq-\beta|s\xi|\geq-\frac{\beta}{\alpha}\geq-1+\delta ,

and also |s\xi-P_{B(x)}(s\xi)|=\delta . Therefore, setting p=P_{B(x)}(s\xi) , we have
\langle n_{i}, p\rangle\geq\langle n_{i}, p-s\xi\rangle-1+\delta\geq-1 .

Note that p\in\partial B(x) and that D_{\xi}d(x, s\xi)=2(s\xi-p)\in N_{p}(B(x)) . By assump-
tion (4.2), we have

\langle\gamma_{i}(x), D_{\xi}d(x, s\xi)\rangle\geq 0 ,

and hence
\langle\gamma_{i}(x), D_{\xi}g(x, \xi)\rangle\geq 0 .

A similar argument shows that if \langle n_{i}, \xi\rangle\leq-\beta|\xi| , then
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\langle\gamma_{i}(x), D_{\xi}g(x, \xi)\rangle\leq 0 .

Finally, fixing 0< \theta\leq\min\{\alpha^{2}, \beta\} , we conclude that (4. 12), (4. 13) and the
inequality in (4.10) hold. Thus g has all the required properties. \square

PROOF OF THEOREM 4. 1. Let V be any open subset of W such that
\overline{V}\subset W . Let g be a funct\overline{l}on as in Lemma 4. 4. Choose positive constants

\theta and C so that conditions (b) and (c) of Lemma 4. 4 with K=\overline{V} are
satisfied. Replacing C by a larger number if necessary, in view of (4.1)

we may assume that C\geq 1 and that |\gamma_{i}(x)|\leq C and |\gamma_{i}(x)-\gamma_{i}(y)|\leq C|x-y|

for all 1\leq i\leq m and x , y\in V\tau Define f:V\cross Varrow R by f(x, y)=C^{-2}g(x, x
-y). In view of Lemma 4. 3, f\in C^{2,+}(V\cross V) .

We intend to prove that f satisfies (a), (b) and (c) with \overline{\theta}=\theta/C^{2} in
place of \theta . It is clear that f(x, x)=0 and f(x, y)\geq\overline{\theta}|x-y|^{2} for x , y\in Vr

Define \phi:R^{N}\cross R^{N}arrow R^{N}\cross R^{N} by \phi(x, y)=(x, x-y) . Note that D\phi(x, y)=

(\begin{array}{ll}I 0I -I\end{array}) for x , y\in R^{N} . that f(x, y)=C^{-2}g(\phi(x, y)) for x , y\in V and g(x, \xi)=

C^{2}f(\phi(x, \xi)) if x\in V , \xi\in R^{N} and x-\xi\in V . Fix (x, y)\in V\cross V . Observe
that if (p, q)\in D^{+}f(x, y) and \xi=x-y , then (p, q)\in D^{+}f(\phi(x, \xi)) . Using
Lemma 4. 3 and the above observations, we deduce that (p, q)\in D^{+}f(x, y)

if and only if C^{2}(p+q, - q)\in D^{+}g(x, x-y) . Therefore, it follows from
(4. 11) and (4. 14) that

(4. 19) |p+q|\leq C^{-1}|x-y|^{2} . |q|\leq C^{-1}|x-y|

for all (p, q)\in D^{+}f(x, y) , and that

(4.20) (C^{2}(p+q) , - C^{2}q , C(\begin{array}{ll}|x-y|^{2}I 00 I\end{array}))\in D^{2,+}g(x, x-y)

for some (p, q)\in D^{+}f(x, y) . Observing that

(\begin{array}{ll}I I0 -I\end{array})(\begin{array}{ll}|x-y|^{2}I 00 I\end{array})(\begin{array}{ll}I 0I -I\end{array})\leq C|x-y|^{2}(\begin{array}{ll}I 00 I\end{array})+C(\begin{array}{ll}I -I-I I\end{array})

and using Lemma 4. 3, we see from (4.20) that

(p, q , (\begin{array}{ll}I -I-I I\end{array})+|x-y|^{2}(\begin{array}{ll}I 00 I\end{array}))\in D^{2,+}f(x, y)

for some (p, q)\in D^{+}f(x, y) , and thus that condition (c) is satisfied. To
check (4.6), fix any (p, q)\in D^{+}f(x, y) . Let i\in\{1, \ldots , m\} and assume that
\langle x-y, n_{i}\rangle\geq-\overline{\theta}|x-y| . Notice that \overline{\theta}\leq\theta . By (4. 12) we have \langle\gamma_{i}(x) ,
-q\rangle\geq 0 . Hence, using (4. 19), we get
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\langle\gamma_{i}(x), p\rangle\geq\langle\gamma_{i}(x), p+q\rangle\geq-|x-y|^{2} .

Similarly, if \langle x-y, n_{i}\rangle\leq\overline{\theta}|x-y|^{2} , then we have \langle\gamma_{i}(x), - q\rangle\leq 0 by (4.13),
and therefore

\langle \gamma_{i}(y), q\rangle\geq\langle\gamma_{i}(x), q\rangle-C|x-y||q|\geq-|x-y|^{2} .

Thus, (4.6) and (4.7) hold with \overline{\theta} in place of \theta . To complete the proof,
we have only to note that (4.5) follows directly from (4.19). \square

REMARK 4. 4. If the family \{B(x):x\in W\} is just assumed to be of
class C^{1,+}(W) in the above arguments, then for each open set V\subset W ,
with \overline{V}\subset W , we obtain a function f\in C^{1,+}(V\cross V) and a number \theta>0

satisfying conditions (a) and (b) of Theorem 4. 1.

PROPOSITION 4. 5. For each z\in W there is a function f of class
C^{1,1}(R^{N}\cross R^{N}) and a constant \theta>0 such that for x, y\in R^{N} and 1\leq i\leq m,

(4.21) f(x, x)=0, f(x, y)\geq\theta|x-y|^{2} .
(4.22) \langle\gamma_{i}(z), D_{x}f(x, y)\rangle\geq-|x-y|^{2} if \langle x-y, n_{i}\rangle\geq-\theta|x-y| ,
(4.23) \langle\gamma_{i}(z), D_{y}f(x, y)\rangle\geq 0 if \langle x-y, n_{i}\rangle\leq\theta|x-y| ,
(4.24) |D_{x}f(x, y)|\leq|x-y| , D_{x}f(x, y)+D_{y}f(x, y)=0 ,

and

(4.25) (Df(x, y), (\begin{array}{ll}I -I-I I\end{array})+|x-y|^{2}(\begin{array}{ll}I 00 I\end{array}))\in D^{2,+}f(x, y) .

OUTLINE OF proof. Fix z\in W . Define g as in the proof of Lemma
4. 4. Set f(x, y)=g(z, x-y) for x , y\in R^{N} Then we see, as in the proofs
of Lemma 4. 4 and Theorem 4. 1, that f\in C^{1,1}(R^{2N}) and that the multiplica-
f or of f by a positive constant gives a function with all the desired prop-
erties. \square

\S 5. A sufficient condition for (B. 8)

In this section we give a simple sufficient condition for (B. 8).

THEOREM 5. 1. Assume (B. 4), that
(5. 1) \gamma_{i}\in C^{1,1}(R^{N},-R^{N}) for i\in I,

and that for each z\in\partial\Omega there is a set \{b_{i} : i\in I(z)\} of positive numbers
such that

(5.2)
b_{i} \langle\gamma_{i}(z), n_{i}(z)\rangle>\sum_{j\in I(z)\backslash \{i\}}b_{j}|\langle\gamma_{j}(z), n_{i}(z)\rangle|
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for all i\in I(z)- Then (B. 8) holds. If instead of (5.1), we assume
(5.3) \gamma_{i}\in C^{1}(R^{N}R^{N}) for i\in I,

then (B. 8)” holds.

PROOF. F\overline{1}X z\in\partial\Omega . We may assume that I(z)=\{1,2, \ldots.m\} for
some m\in N . Let \{b_{i}\}_{i=1}^{m} be a set of positive numbers as above. We set
Q=\Pi_{i=1}^{m}[-b_{i}, b_{i}]\subset R^{m} . Note that the inequality (5.2) may be replaced by

b_{i} \langle\gamma_{i}(z), n_{i}(z)\rangle>\sum_{j\neq i}b_{j}|\langle\gamma_{j}(z), n_{i}(z)\rangle|+1 ,

by multiplying the b_{i}’s by a large constant if necessary. Thus, by the
continuity of the \gamma_{i}’s , we can choose an open neighborhood W of z so
that

(5.4) b_{i} \langle\gamma_{i}(x), n_{i}(x)\rangle>\sum_{j\neq i}b_{j}|\langle\gamma_{j}(x), n_{i}(x)\rangle|+1

for all x\in W and 1\leq i\leq m . In view of (B. 4), we may assume that I(x)
\subset\{1, \ldots, m\} for x\in W .

For x\in W we define a compact convex subset B(x) of R^{N} by

B(x)= \{\sum_{i=1}^{m}t_{i}\gamma_{i}(x):t=(t_{1_{ }}, \ldots . t_{m})\in Q\} .

We will prove that this family \{B(x):x\in W\} has the required properties.
It is clear that B(x)\ni 0 for x\in W .

Next, we check the condition (2.6). Let x\in W\cap\partial\Omega , p\in\partial B(x) , i\in

I(x) and n\in N_{p}(B(x)) . Assume that \langle p, n_{i}(x)\rangle\geq-1 . Since p\in B(x) ,
there is a \overline{t}=(\overline{t}_{1_{ }},\ldots, \overline{t}_{m})\in Q , such that p= \sum_{j=1}^{m}\overline{t}_{j}\gamma_{j}(x) . We have \overline{t}_{i}>

-b_{i} . Indeed, if \overline{t}_{i}=-b_{i} , then we would have

\langle p, n_{i}(x)\rangle\leq-b_{i}\langle\gamma_{i}(x), n_{i}(x)\rangle+\sum_{j\neq i}b_{j}|\langle\gamma_{j}(x), n_{i}(x)\rangle|<-1

by (5.4), which is a contradiction. Define s=(s_{1_{ }}, \ldots . s_{m})\in Q by s_{j}=\overline{t}_{j}

for j\neq i and s_{i}=-b_{i} . Then we have

0 \geq\langle n,\sum_{j=1}^{m}s_{j}\gamma_{j}(x)-p\rangle=-(b_{i}+\overline{t}_{i})\langle n, \gamma_{i}(x)\rangle ,

and hence \langle n, \gamma_{i}(x)\rangle\geq 0 since \overline{t}_{i}+b_{i}>0 . Similarly, if we assume that
\langle p, n_{i}(x)\rangle\leq 1 , then we have \langle n, \gamma_{i}(x)\rangle\leq 0 . Thus (2.6) is satisfied.

Finally, we examine the regularity of the family \{B(x) : x\in W\} .
Assuming (5.1) and observing that the set of functions

(x, \xi)arrow|\xi-\sum_{i=1}^{m}t_{i}\gamma_{i}(x)|^{2} on W\cross R^{N}
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with t=(t_{1_{ }}, \ldots . t_{m})\in Q , is bounded in C^{1,1}(W\cross R^{N}) , we see that the func-
tion

(x, \xi)arrow d(\xi, B(x))^{2}=\min_{t\in Q}|\xi-\sum_{i=1}^{m}t_{i}\gamma_{i}(x)|^{2}

is of class C^{2,+}(W\cross R^{N}) . Similarly, we see that if (5.3) is assumed
insead of (5.1), then the function (x, \xi) - d(\xi, B(x))^{2} is of class
C^{1,+}(W\cross R^{N}) . \square

REMARK. As is noted in [3], an algebraic characterization of (5.2)

may be stated as follows. We may assume without loss of generality that
I(z)=\{1, \ldots r. m\} for some m\in N and that \langle n_{i}(z), \gamma_{i}(z)\rangle=1 for i\in I(z) .
Set v_{ij}=|\langle n_{i}(z), \gamma_{j}(z)\rangle|-\delta_{ij} for i , j\in I(z) , where \delta_{ij}=0 if i\neq j and 1 if i=
j, and define the m\cross m matrix V by V=(v_{ij}) . Let \sigma(V) denote the
spectral radius of V. The characterization is that (5.2) holds if and only
if \sigma(V)<1 . To see this, note that all entries of V are non-negative and
recall the Perron-Frobenius theorem concerning positive matrices and
non-negative matrices. Consider first the case \sigma(V)<1 . Perturbing V by
a matrix with small positive entries and using the Perron-Frobenius the0-
rem, we find a vector b= (b_{1}, \ldots.b_{m}) with b_{i}>0 for all i such that
\Sigma_{j=1}^{m}b_{j}v_{ij}<b_{i} for all i . Hence, (5.2) holds. Next, connider the case
\sigma(V)\geq 1 . Suppose that (5.2) holds for some b=(b_{1}, \ldots.b_{m}) . By the
Perron-Frobenius theorem, there \overline{1}S a non-negative vector c=(c_{1_{ }},\ldots , c_{m})

such that Vc=\sigma(V)c . By multiplication, we may assume that b_{i}\geq c_{i} for
all i and b_{j}=c_{j} for some j . Then, we have

b_{j}> \sum_{k=1}^{m}b_{k}v_{jk}\geq\sum_{k=1}^{m}c_{k}v_{jk}=c_{j} ; a contradiction.

Thus we see that the above algebraic characterization holds.

Appendix

We here discuss some consequences of assumption (B. 8). Let B be a
bounded, closed convex subset of R^{N} with O\in B . Let n , \gamma\in R^{N} satisfy
the condition that for all p\in\partial B and v\in N_{p}(B) ,

(A. 1) \langle\gamma, v\rangle\{_{\geq 0}^{\leq 0}ifif\langle p,n\rangle\geq-1\langle p,n\rangle\leq 1,

.

LEMMA A. 1. Let p\in B satisfy \langle p, n\rangle<1 . Then there is an s>0
such that p+s\gamma\in B.
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PROOF. We argue by contradiction. Suppose that p+ \frac{1}{k}\gamma\oplus B for

all k\in N . Fix k\in N . and set x=p+ \frac{1}{k}\gamma and y=P_{B}(x) . Clearly, we

have x-y\in N_{y}(B) and therefore, \langle p-y, x-y\rangle\leq 0 . It is eas\overline{l}ly seen by the
definition of y that |y-x|\leq|p-x|=|\gamma|/k . H ence, \langle y, n\rangle=

\langle p+\frac{1}{k}\gamma+(y-x), n\rangle\leq\langle p, n\rangle+2|\gamma||n|/k\leq 1 if k is sufficiently large.

Assume k large enough so that \langle y, n\rangle\leq 1 . Assumption (A. 1) now

ensures that \langle x-y, \gamma\rangle\leq 0 . Thus, we have |x-y|^{2}= \langle p-y, x-y\rangle+\frac{1}{k}\langle\gamma , x

-y\rangle\leq 0 , and hence x\in B , a contradiction. \square

LEMMA A. 2. Define C= {x\in R^{N} : \langle\chi, p\rangle\leq 1 for all p\in B}. Let x\in

C satisfy \langle x, \gamma\rangle<0 . Then there is a \delta>0 such that x+\delta n\in C.

PROOF. Note that C is the polar set of B . It is well-known (and

easily checked) that C is a closed convex set with O\in C^{o} Suppose to the

contrary that x+ \frac{1}{k}n\not\in C for all k\in N . Then, by definition there is a

sequence \{p_{k}\}\subset B such that \langle x+\frac{1}{k}n, p_{k}\rangle>1 . Therefore, we have \langle n, p_{k}\rangle

>0 for all k . Passing to the limit as karrow\infty along a subsequence, we find
a p_{0}\in B such that \langle\chi, p_{0}\rangle=1 and \langle n, p_{0}\rangle\geq 0 . By Lemma A. 1 with n and
\gamma replaced by - n and -\gamma (note that (A. 1) is invariant under this
replacement), we see that p_{0}-s\gamma\in B for some s>0 . Thus we have 1\geq

\langle\chi, p_{0}-s\gamma\rangle=1-s\langle x, \gamma\rangle>1 ; a contradiction. \square

Now we let n_{i} , \gamma_{i}\in R^{N} for i=1 , \ldots . m. Assume that each pair of n_{i} ,

\gamma_{i} satisfies (A. 1) for all p\in\partial B and v\in N_{p}(B) .

LEMMA A. 3. Let q\in R^{N}\backslash \{0\} be represented as q=\Sigma_{i=1}^{m}t_{i}\gamma_{i}, with
t_{i}\geq 0 . Then \max_{1\leq j\leq m}\langle n_{j}, q\rangle>0 .

PROOF. We argue by contradiction, and thus suppose that \max_{1\leq j\leq m}

\langle n_{j}, q\rangle\leq 0 . Dividing q by \Sigma_{i=1}^{m}t_{i} if necessary, we may assume that \Sigma_{i=1}^{m}t_{i}

=1 . Define \rho=\sup\{t\geq 0:tq\in B\} . From the boundedness of B, it is easily

seen that \rho is finite. Since \rho q\in B and \langle n_{i}, \rho q\rangle\leq 0 for all i , using Lemma
A. 1, we see that \rho q+s\gamma_{i}\in B for all i and some s>0 . Hence,

( \rho+s)q=\sum_{i=1}^{m}t_{i}(\rho q+s\gamma_{i})\in B .

This is a contradiction. \square
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To proceed, we observe that we may assume that O\in B^{O} For any r
>0 , it is easily seen that for all p\in\partial(rB) , v\in N_{p}(rB) and i,

\langle\gamma_{i}, v\rangle\{_{\geq 0}^{\leq 0}ifif\langle p,n_{i}\rangle\geq-r\langle p,n_{i}\rangle\leq r,

.

This \overline{1}mplies that we may assume that |n_{i}|\leq 1 for all i . We set \tilde{B}=\{p\in

R^{N} : dist (P, 3B)\leq 1\} . Clearly, \tilde{B} has the origin in its interior. Moreover,
\tilde{B} satisfies (A. 1) for any pair of \gamma_{i} and n_{i} . To see this, fix i\in\{1 , \ldots ,
m\} , p\in\partial\tilde{B} and v\in N_{p}(\tilde{B}) . Assume that \langle p, n_{i}\rangle\leq 1 . There is a unique q
\in\partial(3B) such that |p-q|=1 . It follows that \langle q, n_{i}\rangle\leq 2 . In view of
Lemma A. 1, we see that q+s\gamma_{i}\in 3B for some s>0 . Therefore, p+s\gamma_{i}=q

+s\gamma_{i}+(p-q)\in\tilde{B} and hence s\langle v, \gamma_{i}\rangle=\langle v, p+s\gamma_{i}-p\rangle\leq 0 . Thus, we have
\langle v, \gamma_{i}\rangle\leq 0 . Similarly, if \langle p, n_{i}\rangle\geq-1 , then we have (v, \gamma_{i}\rangle\geq 0 .

LEMMA A. 4. Let t_{i}\geq 0 for all i=1 , \ldots . m, and set z=\Sigma_{i=1}^{m}fii .
Then \max_{1\leq j\leq m}\langle z, \gamma_{i}\rangle\geq 0 .

PROOF. We suppose that \max_{1\leq j\leq m}\langle z, \gamma_{i}\rangle<0 , and will get a contra-
diction. By the argument just above, we may assume that 0\in B^{o} Since
z\neq 0 and hence \Sigma_{i=1}^{m}t_{i}\neq 0 , we may assume that \Sigma_{i=1}^{m}t_{i}=1 . Define C as in
Lemma A. 2. Since O\in B^{o} . we see that C is bounded. Set r= \sup\{t\geq 0 :
tz\in C\} , so that 0\leq r<\infty and rz\in C . By Lemma A. 2, there is a \delta>0

such that rz+\delta n_{i}\in C for all i . Hence, \Sigma_{i=1}^{m}t_{i}(rz+\delta n_{i})=(r+\delta)z\in C ,
which is a contradiction. \square

LEMMA A. 5. Assume that any convex combination of the \gamma_{i}, with i
=1 , \ldots-m, does not vanish. Then neither does any convex combination of
the n_{i}, with i=1, \ldots m.

PROOF. By the assumption there is a \xi\in R^{N} such that \langle\xi, \gamma_{i}\rangle<0 for
all i=1 , \ldots , m . Since B is compact, there is a p_{0}\in B such that \langle\xi, p_{0}\rangle=

\min_{p\in B}\langle\xi, p\rangle , so that \langle\xi, p-p_{0}\rangle\geq 0 for all p\in B . Suppose that \Sigma_{i=1}^{m}t_{i}n_{i}=

0 for some t_{i}\geq 0 , i=1 , \ldots . m, with \Sigma_{i=1}^{m}t_{i}=1 . Since \Sigma_{i=1}^{m}t_{i}\langle n_{i}, p_{0}\rangle=0 , we
can find a j\in\{1, \ldots.m\} such that \langle n_{j}, p_{0}\rangle\leq 0 . Therefore, it follows from
Lemma A. 1 that p_{0}+s\gamma_{j}\in B for some s>0 . Thus

\langle\xi, \gamma_{j}\rangle=\frac{1}{s}\langle\xi, p_{0}+s\gamma_{j}-p_{0}\rangle\geq 0 ,

which is a contradiction. \square

Finally we state and prove, for the reader’s convenience, a well-
known duality result for polar sets of closed convex cones. Let K be a
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closed convex cone of R^{N} with vertex at the origin. Let K^{-} denote the
polar set of K, i . e. , K^{-}= {p\in R^{N} : \langle p , x\rangle\leq 0 for all x\in K}. Then K^{-} is a
closed convex cone of R^{N} with vertex at the origin.

Lemma A. 6. The identity K^{--}=K holds.

PROOF. It is easily seen from the definition of polar sets that K\subset

K^{--} Fix any x_{0}\in K^{--} and set y_{0}=P_{K}(x_{0}) . It follows that \langle x - \mathcal{Y}0 ,
x_{0}-y_{0}\rangle\leq 0 for all x\in K . Since ty_{0}\in K for t\geq 0 , it follows that \langle ty_{0}-y_{0} ,
x_{0}-y_{0}\rangle\leq 0 for all t\geq 0 , and hence that \langle y_{0}, x_{0}-y_{0}\rangle=0 . Also, since y_{0}+K

\subset K , it follows that \langle x, x_{0}-y_{0}\rangle\leq 0 for all x\in K . That is, x_{0}-y_{0}\in K^{-}

Thus, we have
|x_{0}-y_{0}|^{2}=\langle\chi_{0}, \chi_{0}-y_{0}\rangle-\langle y_{0}, x_{0}-y_{0}\rangle\leq 0 ,

from which x_{0}=y_{0}\in K . This proves that K^{--}\subset K . \square
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